1205 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			1205 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Move instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Register move.
 | |
|   def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
 | |
|   def VLR32 : UnaryAliasVRR<null_frag, v32eb, v32eb>;
 | |
|   def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
 | |
| 
 | |
|   // Load GR from VR element.
 | |
|   def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
 | |
|   def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
 | |
|   def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
 | |
|   def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
 | |
|   def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
 | |
| 
 | |
|   // Load VR element from GR.
 | |
|   def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
 | |
|   def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
 | |
|                           v128b, v128b, GR32, 0>;
 | |
|   def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
 | |
|                           v128h, v128h, GR32, 1>;
 | |
|   def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
 | |
|                           v128f, v128f, GR32, 2>;
 | |
|   def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
 | |
|                           v128g, v128g, GR64, 3>;
 | |
| 
 | |
|   // Load VR from GRs disjoint.
 | |
|   def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
 | |
|   def VLVGP32 : BinaryAliasVRRf<GR32>;
 | |
| }
 | |
| 
 | |
| // Extractions always assign to the full GR64, even if the element would
 | |
| // fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
 | |
| // subreg of the result.
 | |
| class VectorExtractSubreg<ValueType type, Instruction insn>
 | |
|   : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
 | |
|         (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
 | |
| 
 | |
| def : VectorExtractSubreg<v16i8, VLGVB>;
 | |
| def : VectorExtractSubreg<v8i16, VLGVH>;
 | |
| def : VectorExtractSubreg<v4i32, VLGVF>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Immediate instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
 | |
|       isReMaterializable = 1 in {
 | |
| 
 | |
|     // Generate byte mask.
 | |
|     def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
 | |
|     def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
 | |
|     def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
 | |
| 
 | |
|     // Generate mask.
 | |
|     def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
 | |
|     def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
 | |
|     def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
 | |
|     def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
 | |
|     def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
 | |
| 
 | |
|     // Replicate immediate.
 | |
|     def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
 | |
|     def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
 | |
|     def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
 | |
|     def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
 | |
|     def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
 | |
|   }
 | |
| 
 | |
|   // Load element immediate.
 | |
|   //
 | |
|   // We want these instructions to be used ahead of VLVG* where possible.
 | |
|   // However, VLVG* takes a variable BD-format index whereas VLEI takes
 | |
|   // a plain immediate index.  This means that VLVG* has an extra "base"
 | |
|   // register operand and is 3 units more complex.  Bumping the complexity
 | |
|   // of the VLEI* instructions by 4 means that they are strictly better
 | |
|   // than VLVG* in cases where both forms match.
 | |
|   let AddedComplexity = 4 in {
 | |
|     def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
 | |
|                             v128b, v128b, imm32sx16trunc, imm32zx4>;
 | |
|     def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
 | |
|                             v128h, v128h, imm32sx16trunc, imm32zx3>;
 | |
|     def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
 | |
|                             v128f, v128f, imm32sx16, imm32zx2>;
 | |
|     def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
 | |
|                             v128g, v128g, imm64sx16, imm32zx1>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Loads
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Load.
 | |
|   def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>;
 | |
| 
 | |
|   // Load to block boundary.  The number of loaded bytes is only known
 | |
|   // at run time.  The instruction is really polymorphic, but v128b matches
 | |
|   // the return type of the associated intrinsic.
 | |
|   def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
 | |
| 
 | |
|   // Load count to block boundary.
 | |
|   let Defs = [CC] in
 | |
|     def LCBB : InstRXE<0xE727, (outs GR32:$R1),
 | |
|                                (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
 | |
|                        "lcbb\t$R1, $XBD2, $M3",
 | |
|                        [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
 | |
|                                                       imm32zx4:$M3))]>;
 | |
| 
 | |
|   // Load with length.  The number of loaded bytes is only known at run time.
 | |
|   def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
 | |
| 
 | |
|   // Load multiple.
 | |
|   def VLM : LoadMultipleVRSa<"vlm", 0xE736>;
 | |
| 
 | |
|   // Load and replicate
 | |
|   def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
 | |
|   def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
 | |
|   def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
 | |
|   def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
 | |
|   def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
 | |
|   def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
 | |
|             (VLREPF bdxaddr12only:$addr)>;
 | |
|   def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
 | |
|             (VLREPG bdxaddr12only:$addr)>;
 | |
| 
 | |
|   // Use VLREP to load subvectors.  These patterns use "12pair" because
 | |
|   // LEY and LDY offer full 20-bit displacement fields.  It's often better
 | |
|   // to use those instructions rather than force a 20-bit displacement
 | |
|   // into a GPR temporary.
 | |
|   def VL32 : UnaryAliasVRX<load, v32eb, bdxaddr12pair>;
 | |
|   def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
 | |
| 
 | |
|   // Load logical element and zero.
 | |
|   def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
 | |
|   def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
 | |
|   def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
 | |
|   def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
 | |
|   def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
 | |
|   def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)),
 | |
|             (VLLEZF bdxaddr12only:$addr)>;
 | |
|   def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
 | |
|             (VLLEZG bdxaddr12only:$addr)>;
 | |
| 
 | |
|   // Load element.
 | |
|   def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
 | |
|   def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
 | |
|   def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
 | |
|   def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
 | |
|   def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
 | |
|             (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
 | |
|   def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
 | |
|             (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
 | |
| 
 | |
|   // Gather element.
 | |
|   def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
 | |
|   def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
 | |
| }
 | |
| 
 | |
| // Use replicating loads if we're inserting a single element into an
 | |
| // undefined vector.  This avoids a false dependency on the previous
 | |
| // register contents.
 | |
| multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
 | |
|                              SDPatternOperator load, ValueType scalartype> {
 | |
|   def : Pat<(vectype (z_vector_insert
 | |
|                       (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
 | |
|             (vlrep bdxaddr12only:$addr)>;
 | |
|   def : Pat<(vectype (scalar_to_vector
 | |
|                       (scalartype (load bdxaddr12only:$addr)))),
 | |
|             (vlrep bdxaddr12only:$addr)>;
 | |
| }
 | |
| defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
 | |
| defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
 | |
| defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
 | |
| defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
 | |
| defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
 | |
| defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Stores
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Store.
 | |
|   def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>;
 | |
| 
 | |
|   // Store with length.  The number of stored bytes is only known at run time.
 | |
|   def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
 | |
| 
 | |
|   // Store multiple.
 | |
|   def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>;
 | |
| 
 | |
|   // Store element.
 | |
|   def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
 | |
|   def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
 | |
|   def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
 | |
|   def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
 | |
|   def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
 | |
|                        imm32zx2:$index),
 | |
|             (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
 | |
|   def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
 | |
|                        imm32zx1:$index),
 | |
|             (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
 | |
| 
 | |
|   // Use VSTE to store subvectors.  These patterns use "12pair" because
 | |
|   // STEY and STDY offer full 20-bit displacement fields.  It's often better
 | |
|   // to use those instructions rather than force a 20-bit displacement
 | |
|   // into a GPR temporary.
 | |
|   def VST32 : StoreAliasVRX<store, v32eb, bdxaddr12pair>;
 | |
|   def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
 | |
| 
 | |
|   // Scatter element.
 | |
|   def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
 | |
|   def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Selects and permutes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Merge high.
 | |
|   def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
 | |
|   def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
 | |
|   def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
 | |
|   def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
 | |
|   def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
 | |
|   def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
 | |
|   def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
 | |
| 
 | |
|   // Merge low.
 | |
|   def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
 | |
|   def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
 | |
|   def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
 | |
|   def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
 | |
|   def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
 | |
|   def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
 | |
|   def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
 | |
| 
 | |
|   // Permute.
 | |
|   def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
 | |
| 
 | |
|   // Permute doubleword immediate.
 | |
|   def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
 | |
| 
 | |
|   // Replicate.
 | |
|   def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
 | |
|   def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
 | |
|   def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
 | |
|   def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
 | |
|   def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
 | |
|   def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
 | |
|             (VREPF VR128:$vec, imm32zx16:$index)>;
 | |
|   def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
 | |
|             (VREPG VR128:$vec, imm32zx16:$index)>;
 | |
| 
 | |
|   // Select.
 | |
|   def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Widening and narrowing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Pack
 | |
|   def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
 | |
|   def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
 | |
|   def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
 | |
|   def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
 | |
| 
 | |
|   // Pack saturate.
 | |
|   def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
 | |
|   defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
 | |
|                                v128b, v128h, 1>;
 | |
|   defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
 | |
|                                v128h, v128f, 2>;
 | |
|   defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
 | |
|                                v128f, v128g, 3>;
 | |
| 
 | |
|   // Pack saturate logical.
 | |
|   def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
 | |
|   defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
 | |
|                                 v128b, v128h, 1>;
 | |
|   defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
 | |
|                                 v128h, v128f, 2>;
 | |
|   defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
 | |
|                                 v128f, v128g, 3>;
 | |
| 
 | |
|   // Sign-extend to doubleword.
 | |
|   def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
 | |
|   def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
 | |
|   def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
 | |
|   def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
 | |
|   def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
 | |
|   def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
 | |
|   def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
 | |
| 
 | |
|   // Unpack high.
 | |
|   def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
 | |
|   def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
 | |
|   def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
 | |
|   def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
 | |
| 
 | |
|   // Unpack logical high.
 | |
|   def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
 | |
|   def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
 | |
|   def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
 | |
|   def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
 | |
| 
 | |
|   // Unpack low.
 | |
|   def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
 | |
|   def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
 | |
|   def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
 | |
|   def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
 | |
| 
 | |
|   // Unpack logical low.
 | |
|   def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
 | |
|   def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
 | |
|   def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
 | |
|   def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instantiating generic operations for specific types.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| multiclass GenericVectorOps<ValueType type, ValueType inttype> {
 | |
|   let Predicates = [FeatureVector] in {
 | |
|     def : Pat<(type (load bdxaddr12only:$addr)),
 | |
|               (VL bdxaddr12only:$addr)>;
 | |
|     def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
 | |
|               (VST VR128:$src, bdxaddr12only:$addr)>;
 | |
|     def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
 | |
|               (VSEL VR128:$y, VR128:$z, VR128:$x)>;
 | |
|     def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
 | |
|               (VSEL VR128:$z, VR128:$y, VR128:$x)>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| defm : GenericVectorOps<v16i8, v16i8>;
 | |
| defm : GenericVectorOps<v8i16, v8i16>;
 | |
| defm : GenericVectorOps<v4i32, v4i32>;
 | |
| defm : GenericVectorOps<v2i64, v2i64>;
 | |
| defm : GenericVectorOps<v4f32, v4i32>;
 | |
| defm : GenericVectorOps<v2f64, v2i64>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Integer arithmetic
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Add.
 | |
|   def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
 | |
|   def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
 | |
|   def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
 | |
|   def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
 | |
|   def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
 | |
|   def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
 | |
| 
 | |
|   // Add compute carry.
 | |
|   def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
 | |
|   def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
 | |
|   def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
 | |
|   def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
 | |
|   def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
 | |
|   def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
 | |
| 
 | |
|   // Add with carry.
 | |
|   def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
 | |
|   def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
 | |
| 
 | |
|   // Add with carry compute carry.
 | |
|   def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
 | |
|   def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
 | |
| 
 | |
|   // And.
 | |
|   def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
 | |
| 
 | |
|   // And with complement.
 | |
|   def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
 | |
| 
 | |
|   // Average.
 | |
|   def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
 | |
|   def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
 | |
|   def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
 | |
|   def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
 | |
|   def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
 | |
| 
 | |
|   // Average logical.
 | |
|   def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
 | |
|   def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
 | |
|   def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
 | |
|   def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
 | |
|   def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
 | |
| 
 | |
|   // Checksum.
 | |
|   def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
 | |
| 
 | |
|   // Count leading zeros.
 | |
|   def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
 | |
|   def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
 | |
|   def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
 | |
|   def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
 | |
|   def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
 | |
| 
 | |
|   // Count trailing zeros.
 | |
|   def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
 | |
|   def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
 | |
|   def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
 | |
|   def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
 | |
|   def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
 | |
| 
 | |
|   // Exclusive or.
 | |
|   def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
 | |
| 
 | |
|   // Galois field multiply sum.
 | |
|   def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
 | |
|   def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
 | |
|   def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
 | |
|   def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
 | |
|   def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
 | |
| 
 | |
|   // Galois field multiply sum and accumulate.
 | |
|   def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
 | |
|   def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
 | |
|   def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
 | |
|   def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
 | |
|   def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
 | |
| 
 | |
|   // Load complement.
 | |
|   def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
 | |
|   def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
 | |
|   def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
 | |
|   def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
 | |
|   def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
 | |
| 
 | |
|   // Load positive.
 | |
|   def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
 | |
|   def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
 | |
|   def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
 | |
|   def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
 | |
|   def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
 | |
| 
 | |
|   // Maximum.
 | |
|   def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
 | |
|   def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
 | |
|   def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
 | |
|   def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
 | |
|   def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
 | |
| 
 | |
|   // Maximum logical.
 | |
|   def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
 | |
|   def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
 | |
|   def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
 | |
|   def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
 | |
|   def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
 | |
| 
 | |
|   // Minimum.
 | |
|   def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
 | |
|   def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
 | |
|   def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
 | |
|   def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
 | |
|   def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
 | |
| 
 | |
|   // Minimum logical.
 | |
|   def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
 | |
|   def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
 | |
|   def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
 | |
|   def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
 | |
|   def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
 | |
| 
 | |
|   // Multiply and add low.
 | |
|   def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
 | |
|   def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
 | |
|   def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
 | |
|   def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
 | |
| 
 | |
|   // Multiply and add high.
 | |
|   def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
 | |
|   def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
 | |
|   def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
 | |
|   def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
 | |
| 
 | |
|   // Multiply and add logical high.
 | |
|   def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
 | |
|   def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
 | |
|   def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
 | |
|   def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
 | |
| 
 | |
|   // Multiply and add even.
 | |
|   def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
 | |
|   def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
 | |
|   def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
 | |
|   def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply and add logical even.
 | |
|   def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
 | |
|   def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
 | |
|   def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
 | |
|   def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply and add odd.
 | |
|   def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
 | |
|   def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
 | |
|   def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
 | |
|   def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply and add logical odd.
 | |
|   def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
 | |
|   def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
 | |
|   def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
 | |
|   def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply high.
 | |
|   def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
 | |
|   def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
 | |
|   def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
 | |
|   def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
 | |
| 
 | |
|   // Multiply logical high.
 | |
|   def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
 | |
|   def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
 | |
|   def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
 | |
|   def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
 | |
| 
 | |
|   // Multiply low.
 | |
|   def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
 | |
|   def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
 | |
|   def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
 | |
|   def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
 | |
| 
 | |
|   // Multiply even.
 | |
|   def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
 | |
|   def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
 | |
|   def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
 | |
|   def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply logical even.
 | |
|   def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
 | |
|   def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
 | |
|   def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
 | |
|   def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply odd.
 | |
|   def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
 | |
|   def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
 | |
|   def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
 | |
|   def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
 | |
| 
 | |
|   // Multiply logical odd.
 | |
|   def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
 | |
|   def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
 | |
|   def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
 | |
|   def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
 | |
| 
 | |
|   // Nor.
 | |
|   def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
 | |
|   def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
 | |
| 
 | |
|   // Or.
 | |
|   def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
 | |
| 
 | |
|   // Population count.
 | |
|   def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
 | |
|   def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
 | |
| 
 | |
|   // Element rotate left logical (with vector shift amount).
 | |
|   def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
 | |
|   def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
 | |
|                            v128b, v128b, 0>;
 | |
|   def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
 | |
|                            v128h, v128h, 1>;
 | |
|   def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
 | |
|                            v128f, v128f, 2>;
 | |
|   def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
 | |
|                            v128g, v128g, 3>;
 | |
| 
 | |
|   // Element rotate left logical (with scalar shift amount).
 | |
|   def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
 | |
|   def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
 | |
|   def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
 | |
|   def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
 | |
|   def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element rotate and insert under mask.
 | |
|   def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
 | |
|   def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
 | |
|   def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
 | |
|   def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
 | |
|   def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element shift left (with vector shift amount).
 | |
|   def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
 | |
|   def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
 | |
|   def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
 | |
|   def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
 | |
|   def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element shift left (with scalar shift amount).
 | |
|   def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
 | |
|   def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
 | |
|   def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
 | |
|   def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
 | |
|   def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element shift right arithmetic (with vector shift amount).
 | |
|   def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
 | |
|   def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
 | |
|   def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
 | |
|   def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
 | |
|   def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element shift right arithmetic (with scalar shift amount).
 | |
|   def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
 | |
|   def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
 | |
|   def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
 | |
|   def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
 | |
|   def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element shift right logical (with vector shift amount).
 | |
|   def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
 | |
|   def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
 | |
|   def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
 | |
|   def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
 | |
|   def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
 | |
| 
 | |
|   // Element shift right logical (with scalar shift amount).
 | |
|   def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
 | |
|   def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
 | |
|   def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
 | |
|   def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
 | |
|   def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
 | |
| 
 | |
|   // Shift left.
 | |
|   def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
 | |
| 
 | |
|   // Shift left by byte.
 | |
|   def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
 | |
| 
 | |
|   // Shift left double by byte.
 | |
|   def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
 | |
|   def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
 | |
|             (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
 | |
| 
 | |
|   // Shift right arithmetic.
 | |
|   def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
 | |
| 
 | |
|   // Shift right arithmetic by byte.
 | |
|   def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
 | |
| 
 | |
|   // Shift right logical.
 | |
|   def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
 | |
| 
 | |
|   // Shift right logical by byte.
 | |
|   def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
 | |
| 
 | |
|   // Subtract.
 | |
|   def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
 | |
|   def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
 | |
|   def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
 | |
|   def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
 | |
|   def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
 | |
|   def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
 | |
| 
 | |
|   // Subtract compute borrow indication.
 | |
|   def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
 | |
|   def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
 | |
|   def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
 | |
|   def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
 | |
|   def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
 | |
|   def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
 | |
| 
 | |
|   // Subtract with borrow indication.
 | |
|   def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
 | |
|   def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
 | |
| 
 | |
|   // Subtract with borrow compute borrow indication.
 | |
|   def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
 | |
|   def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
 | |
|                             v128q, v128q, 4>;
 | |
| 
 | |
|   // Sum across doubleword.
 | |
|   def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
 | |
|   def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
 | |
|   def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
 | |
| 
 | |
|   // Sum across quadword.
 | |
|   def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
 | |
|   def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
 | |
|   def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
 | |
| 
 | |
|   // Sum across word.
 | |
|   def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
 | |
|   def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
 | |
|   def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
 | |
| }
 | |
| 
 | |
| // Instantiate the bitwise ops for type TYPE.
 | |
| multiclass BitwiseVectorOps<ValueType type> {
 | |
|   let Predicates = [FeatureVector] in {
 | |
|     def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
 | |
|               (VNC VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (or (and VR128:$x, VR128:$z),
 | |
|                         (and VR128:$y, (z_vnot VR128:$z)))),
 | |
|               (VSEL VR128:$x, VR128:$y, VR128:$z)>;
 | |
|     def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
 | |
|               (VNO VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| defm : BitwiseVectorOps<v16i8>;
 | |
| defm : BitwiseVectorOps<v8i16>;
 | |
| defm : BitwiseVectorOps<v4i32>;
 | |
| defm : BitwiseVectorOps<v2i64>;
 | |
| 
 | |
| // Instantiate additional patterns for absolute-related expressions on
 | |
| // type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
 | |
| // instruction.
 | |
| multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
 | |
|                                     Instruction lp, int shift> {
 | |
|   let Predicates = [FeatureVector] in {
 | |
|     def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
 | |
|                              (z_vneg VR128:$x), VR128:$x)),
 | |
|               (lc (lp VR128:$x))>;
 | |
|     def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
 | |
|                              VR128:$x, (z_vneg VR128:$x))),
 | |
|               (lc (lp VR128:$x))>;
 | |
|     def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
 | |
|                              VR128:$x, (z_vneg VR128:$x))),
 | |
|               (lc (lp VR128:$x))>;
 | |
|     def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
 | |
|                              (z_vneg VR128:$x), VR128:$x)),
 | |
|               (lc (lp VR128:$x))>;
 | |
|     def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
 | |
|                              (z_vneg VR128:$x)),
 | |
|                         (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
 | |
|                              VR128:$x))),
 | |
|               (lp VR128:$x)>;
 | |
|     def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
 | |
|                              VR128:$x),
 | |
|                         (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
 | |
|                              (z_vneg VR128:$x)))),
 | |
|               (lc (lp VR128:$x))>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
 | |
| defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
 | |
| defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
 | |
| defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
 | |
| 
 | |
| // Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
 | |
| // signed or unsigned "set if greater than" comparison instruction and
 | |
| // MIN and MAX are the associated minimum and maximum instructions.
 | |
| multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
 | |
|                                   Instruction min, Instruction max> {
 | |
|   let Predicates = [FeatureVector] in {
 | |
|     def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
 | |
|               (max VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
 | |
|               (min VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
 | |
|                              VR128:$x, VR128:$y)),
 | |
|               (min VR128:$x, VR128:$y)>;
 | |
|     def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
 | |
|                              VR128:$y, VR128:$x)),
 | |
|               (max VR128:$x, VR128:$y)>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Signed min/max.
 | |
| defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
 | |
| defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
 | |
| defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
 | |
| defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
 | |
| 
 | |
| // Unsigned min/max.
 | |
| defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
 | |
| defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
 | |
| defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
 | |
| defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Integer comparison
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Element compare.
 | |
|   let Defs = [CC] in {
 | |
|     def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
 | |
|     def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
 | |
|     def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
 | |
|     def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
 | |
|     def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
 | |
|   }
 | |
| 
 | |
|   // Element compare logical.
 | |
|   let Defs = [CC] in {
 | |
|     def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
 | |
|     def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
 | |
|     def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
 | |
|     def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
 | |
|     def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
 | |
|   }
 | |
| 
 | |
|   // Compare equal.
 | |
|   def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
 | |
|   defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
 | |
|                                v128b, v128b, 0>;
 | |
|   defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
 | |
|                                v128h, v128h, 1>;
 | |
|   defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
 | |
|                                v128f, v128f, 2>;
 | |
|   defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
 | |
|                                v128g, v128g, 3>;
 | |
| 
 | |
|   // Compare high.
 | |
|   def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
 | |
|   defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
 | |
|                               v128b, v128b, 0>;
 | |
|   defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
 | |
|                               v128h, v128h, 1>;
 | |
|   defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
 | |
|                               v128f, v128f, 2>;
 | |
|   defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
 | |
|                               v128g, v128g, 3>;
 | |
| 
 | |
|   // Compare high logical.
 | |
|   def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
 | |
|   defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
 | |
|                                v128b, v128b, 0>;
 | |
|   defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
 | |
|                                v128h, v128h, 1>;
 | |
|   defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
 | |
|                                v128f, v128f, 2>;
 | |
|   defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
 | |
|                                v128g, v128g, 3>;
 | |
| 
 | |
|   // Test under mask.
 | |
|   let Defs = [CC] in
 | |
|     def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Floating-point arithmetic
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // See comments in SystemZInstrFP.td for the suppression flags and
 | |
| // rounding modes.
 | |
| multiclass VectorRounding<Instruction insn, TypedReg tr> {
 | |
|   def : FPConversion<insn, frint,      tr, tr, 0, 0>;
 | |
|   def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
 | |
|   def : FPConversion<insn, ffloor,     tr, tr, 4, 7>;
 | |
|   def : FPConversion<insn, fceil,      tr, tr, 4, 6>;
 | |
|   def : FPConversion<insn, ftrunc,     tr, tr, 4, 5>;
 | |
|   def : FPConversion<insn, fround,     tr, tr, 4, 1>;
 | |
| }
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Add.
 | |
|   def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
 | |
|   def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
 | |
|   def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>;
 | |
| 
 | |
|   // Convert from fixed 64-bit.
 | |
|   def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
 | |
|   def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
 | |
|   def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
 | |
|   def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
 | |
| 
 | |
|   // Convert from logical 64-bit.
 | |
|   def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
 | |
|   def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
 | |
|   def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
 | |
|   def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
 | |
| 
 | |
|   // Convert to fixed 64-bit.
 | |
|   def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
 | |
|   def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
 | |
|   def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
 | |
|   // Rounding mode should agree with SystemZInstrFP.td.
 | |
|   def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
 | |
| 
 | |
|   // Convert to logical 64-bit.
 | |
|   def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
 | |
|   def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
 | |
|   def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
 | |
|   // Rounding mode should agree with SystemZInstrFP.td.
 | |
|   def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
 | |
| 
 | |
|   // Divide.
 | |
|   def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
 | |
|   def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
 | |
|   def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>;
 | |
| 
 | |
|   // Load FP integer.
 | |
|   def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
 | |
|   def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
 | |
|   def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
 | |
|   defm : VectorRounding<VFIDB, v128db>;
 | |
|   defm : VectorRounding<WFIDB, v64db>;
 | |
| 
 | |
|   // Load lengthened.
 | |
|   def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
 | |
|   def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>;
 | |
|   def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fpextend, v64db, v32eb, 2, 8>;
 | |
| 
 | |
|   // Load rounded,
 | |
|   def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
 | |
|   def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>;
 | |
|   def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>;
 | |
|   def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
 | |
|   def : FPConversion<WLEDB, fpround, v32eb, v64db, 0, 0>;
 | |
| 
 | |
|   // Multiply.
 | |
|   def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
 | |
|   def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
 | |
|   def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>;
 | |
| 
 | |
|   // Multiply and add.
 | |
|   def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
 | |
|   def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
 | |
|   def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>;
 | |
| 
 | |
|   // Multiply and subtract.
 | |
|   def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
 | |
|   def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
 | |
|   def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>;
 | |
| 
 | |
|   // Perform sign operation.
 | |
|   def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
 | |
|   def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
 | |
|   def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
 | |
| 
 | |
|   // Load complement.
 | |
|   def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
 | |
|   def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
 | |
| 
 | |
|   // Load negative.
 | |
|   def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
 | |
|   def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
 | |
| 
 | |
|   // Load positive.
 | |
|   def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
 | |
|   def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
 | |
| 
 | |
|   // Square root.
 | |
|   def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
 | |
|   def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
 | |
|   def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>;
 | |
| 
 | |
|   // Subtract.
 | |
|   def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
 | |
|   def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
 | |
|   def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>;
 | |
| 
 | |
|   // Test data class immediate.
 | |
|   let Defs = [CC] in {
 | |
|     def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
 | |
|     def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
 | |
|     def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Floating-point comparison
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   // Compare scalar.
 | |
|   let Defs = [CC] in {
 | |
|     def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
 | |
|     def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
 | |
|   }
 | |
| 
 | |
|   // Compare and signal scalar.
 | |
|   let Defs = [CC] in {
 | |
|     def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
 | |
|     def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
 | |
|   }
 | |
| 
 | |
|   // Compare equal.
 | |
|   def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
 | |
|   defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
 | |
|                                 v128g, v128db, 3, 0>;
 | |
|   defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
 | |
|                                 v64g, v64db, 3, 8>;
 | |
| 
 | |
|   // Compare high.
 | |
|   def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
 | |
|   defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
 | |
|                                 v128g, v128db, 3, 0>;
 | |
|   defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
 | |
|                                 v64g, v64db, 3, 8>;
 | |
| 
 | |
|   // Compare high or equal.
 | |
|   def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
 | |
|   defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
 | |
|                                  v128g, v128db, 3, 0>;
 | |
|   defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
 | |
|                                  v64g, v64db, 3, 8>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Conversions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
 | |
| def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
 | |
| def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
 | |
| def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
 | |
| def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
 | |
| 
 | |
| def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
 | |
| def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
 | |
| def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
 | |
| def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
 | |
| def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
 | |
| 
 | |
| def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
 | |
| def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
 | |
| def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
 | |
| def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
 | |
| def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
 | |
| 
 | |
| def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
 | |
| def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
 | |
| def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
 | |
| def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
 | |
| def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
 | |
| 
 | |
| def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
 | |
| def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
 | |
| def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
 | |
| def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
 | |
| def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
 | |
| 
 | |
| def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
 | |
| def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
 | |
| def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
 | |
| def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
 | |
| def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Replicating scalars
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Define patterns for replicating a scalar GR32 into a vector of type TYPE.
 | |
| // INDEX is 8 minus the element size in bytes.
 | |
| class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
 | |
|   : Pat<(type (z_replicate GR32:$scalar)),
 | |
|         (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
 | |
| 
 | |
| def : VectorReplicateScalar<v16i8, VREPB, 7>;
 | |
| def : VectorReplicateScalar<v8i16, VREPH, 3>;
 | |
| def : VectorReplicateScalar<v4i32, VREPF, 1>;
 | |
| 
 | |
| // i64 replications are just a single isntruction.
 | |
| def : Pat<(v2i64 (z_replicate GR64:$scalar)),
 | |
|           (VLVGP GR64:$scalar, GR64:$scalar)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Floating-point insertion and extraction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Moving 32-bit values between GPRs and FPRs can be done using VLVGF
 | |
| // and VLGVF.
 | |
| let Predicates = [FeatureVector] in {
 | |
|   def LEFR : UnaryAliasVRS<VR32, GR32>;
 | |
|   def LFER : UnaryAliasVRS<GR64, VR32>;
 | |
|   def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
 | |
|   def : Pat<(i32 (bitconvert (f32 VR32:$src))),
 | |
|             (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
 | |
| }
 | |
| 
 | |
| // Floating-point values are stored in element 0 of the corresponding
 | |
| // vector register.  Scalar to vector conversion is just a subreg and
 | |
| // scalar replication can just replicate element 0 of the vector register.
 | |
| multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
 | |
|                             SubRegIndex subreg> {
 | |
|   def : Pat<(vt (scalar_to_vector cls:$scalar)),
 | |
|             (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
 | |
|   def : Pat<(vt (z_replicate cls:$scalar)),
 | |
|             (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
 | |
|                                  subreg), 0)>;
 | |
| }
 | |
| defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>;
 | |
| defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
 | |
| 
 | |
| // Match v2f64 insertions.  The AddedComplexity counters the 3 added by
 | |
| // TableGen for the base register operand in VLVG-based integer insertions
 | |
| // and ensures that this version is strictly better.
 | |
| let AddedComplexity = 4 in {
 | |
|   def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
 | |
|             (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
 | |
|                                  subreg_r64), VR128:$vec, 1)>;
 | |
|   def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
 | |
|             (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
 | |
|                                              subreg_r64), 0)>;
 | |
| }
 | |
| 
 | |
| // We extract floating-point element X by replicating (for elements other
 | |
| // than 0) and then taking a high subreg.  The AddedComplexity counters the
 | |
| // 3 added by TableGen for the base register operand in VLGV-based integer
 | |
| // extractions and ensures that this version is strictly better.
 | |
| let AddedComplexity = 4 in {
 | |
|   def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
 | |
|             (EXTRACT_SUBREG VR128:$vec, subreg_r32)>;
 | |
|   def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
 | |
|             (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>;
 | |
| 
 | |
|   def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
 | |
|             (EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
 | |
|   def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
 | |
|             (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // String instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureVector] in {
 | |
|   defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
 | |
|   defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
 | |
|                                    z_vfae_cc, v128b, v128b, 0>;
 | |
|   defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
 | |
|                                    z_vfae_cc, v128h, v128h, 1>;
 | |
|   defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
 | |
|                                    z_vfae_cc, v128f, v128f, 2>;
 | |
|   defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
 | |
|                                     z_vfaez_cc, v128b, v128b, 0, 2>;
 | |
|   defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
 | |
|                                     z_vfaez_cc, v128h, v128h, 1, 2>;
 | |
|   defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
 | |
|                                     z_vfaez_cc, v128f, v128f, 2, 2>;
 | |
| 
 | |
|   defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
 | |
|   defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
 | |
|                                     z_vfee_cc, v128b, v128b, 0>;
 | |
|   defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
 | |
|                                     z_vfee_cc, v128h, v128h, 1>;
 | |
|   defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
 | |
|                                     z_vfee_cc, v128f, v128f, 2>;
 | |
|   defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
 | |
|                                 z_vfeez_cc, v128b, v128b, 0, 2>;
 | |
|   defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
 | |
|                                 z_vfeez_cc, v128h, v128h, 1, 2>;
 | |
|   defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
 | |
|                                 z_vfeez_cc, v128f, v128f, 2, 2>;
 | |
| 
 | |
|   defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
 | |
|   defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
 | |
|                                      z_vfene_cc, v128b, v128b, 0>;
 | |
|   defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
 | |
|                                      z_vfene_cc, v128h, v128h, 1>;
 | |
|   defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
 | |
|                                      z_vfene_cc, v128f, v128f, 2>;
 | |
|   defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
 | |
|                                  z_vfenez_cc, v128b, v128b, 0, 2>;
 | |
|   defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
 | |
|                                  z_vfenez_cc, v128h, v128h, 1, 2>;
 | |
|   defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
 | |
|                                  z_vfenez_cc, v128f, v128f, 2, 2>;
 | |
| 
 | |
|   defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
 | |
|   defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
 | |
|                                     z_vistr_cc, v128b, v128b, 0>;
 | |
|   defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
 | |
|                                     z_vistr_cc, v128h, v128h, 1>;
 | |
|   defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
 | |
|                                     z_vistr_cc, v128f, v128f, 2>;
 | |
| 
 | |
|   defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
 | |
|   defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
 | |
|                                        z_vstrc_cc, v128b, v128b, 0>;
 | |
|   defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
 | |
|                                        z_vstrc_cc, v128h, v128h, 1>;
 | |
|   defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
 | |
|                                        z_vstrc_cc, v128f, v128f, 2>;
 | |
|   defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
 | |
|                                         z_vstrcz_cc, v128b, v128b, 0, 2>;
 | |
|   defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
 | |
|                                         z_vstrcz_cc, v128h, v128h, 1, 2>;
 | |
|   defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
 | |
|                                         z_vstrcz_cc, v128f, v128f, 2, 2>;
 | |
| }
 |