3185 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3185 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "X86AsmInstrumentation.h"
 | |
| #include "X86AsmParserCommon.h"
 | |
| #include "X86Operand.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/MC/MCInstrInfo.h"
 | |
| #include "llvm/MC/MCParser/MCAsmLexer.h"
 | |
| #include "llvm/MC/MCParser/MCAsmParser.h"
 | |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 | |
| #include "llvm/MC/MCParser/MCTargetAsmParser.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/MC/MCSection.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSubtargetInfo.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static const char OpPrecedence[] = {
 | |
|   0, // IC_OR
 | |
|   1, // IC_XOR
 | |
|   2, // IC_AND
 | |
|   3, // IC_LSHIFT
 | |
|   3, // IC_RSHIFT
 | |
|   4, // IC_PLUS
 | |
|   4, // IC_MINUS
 | |
|   5, // IC_MULTIPLY
 | |
|   5, // IC_DIVIDE
 | |
|   6, // IC_RPAREN
 | |
|   7, // IC_LPAREN
 | |
|   0, // IC_IMM
 | |
|   0  // IC_REGISTER
 | |
| };
 | |
| 
 | |
| class X86AsmParser : public MCTargetAsmParser {
 | |
|   const MCInstrInfo &MII;
 | |
|   ParseInstructionInfo *InstInfo;
 | |
|   std::unique_ptr<X86AsmInstrumentation> Instrumentation;
 | |
|   bool Code16GCC;
 | |
| 
 | |
| private:
 | |
|   SMLoc consumeToken() {
 | |
|     MCAsmParser &Parser = getParser();
 | |
|     SMLoc Result = Parser.getTok().getLoc();
 | |
|     Parser.Lex();
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
 | |
|                             uint64_t &ErrorInfo, bool matchingInlineAsm,
 | |
|                             unsigned VariantID = 0) {
 | |
|     // In Code16GCC mode, match as 32-bit.
 | |
|     if (Code16GCC)
 | |
|       SwitchMode(X86::Mode32Bit);
 | |
|     unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
 | |
|                                        matchingInlineAsm, VariantID);
 | |
|     if (Code16GCC)
 | |
|       SwitchMode(X86::Mode16Bit);
 | |
|     return rv;
 | |
|   }
 | |
| 
 | |
|   enum InfixCalculatorTok {
 | |
|     IC_OR = 0,
 | |
|     IC_XOR,
 | |
|     IC_AND,
 | |
|     IC_LSHIFT,
 | |
|     IC_RSHIFT,
 | |
|     IC_PLUS,
 | |
|     IC_MINUS,
 | |
|     IC_MULTIPLY,
 | |
|     IC_DIVIDE,
 | |
|     IC_RPAREN,
 | |
|     IC_LPAREN,
 | |
|     IC_IMM,
 | |
|     IC_REGISTER
 | |
|   };
 | |
| 
 | |
|   class InfixCalculator {
 | |
|     typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
 | |
|     SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
 | |
|     SmallVector<ICToken, 4> PostfixStack;
 | |
| 
 | |
|   public:
 | |
|     int64_t popOperand() {
 | |
|       assert (!PostfixStack.empty() && "Poped an empty stack!");
 | |
|       ICToken Op = PostfixStack.pop_back_val();
 | |
|       assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
 | |
|               && "Expected and immediate or register!");
 | |
|       return Op.second;
 | |
|     }
 | |
|     void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
 | |
|       assert ((Op == IC_IMM || Op == IC_REGISTER) &&
 | |
|               "Unexpected operand!");
 | |
|       PostfixStack.push_back(std::make_pair(Op, Val));
 | |
|     }
 | |
| 
 | |
|     void popOperator() { InfixOperatorStack.pop_back(); }
 | |
|     void pushOperator(InfixCalculatorTok Op) {
 | |
|       // Push the new operator if the stack is empty.
 | |
|       if (InfixOperatorStack.empty()) {
 | |
|         InfixOperatorStack.push_back(Op);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Push the new operator if it has a higher precedence than the operator
 | |
|       // on the top of the stack or the operator on the top of the stack is a
 | |
|       // left parentheses.
 | |
|       unsigned Idx = InfixOperatorStack.size() - 1;
 | |
|       InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
 | |
|       if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
 | |
|         InfixOperatorStack.push_back(Op);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // The operator on the top of the stack has higher precedence than the
 | |
|       // new operator.
 | |
|       unsigned ParenCount = 0;
 | |
|       while (1) {
 | |
|         // Nothing to process.
 | |
|         if (InfixOperatorStack.empty())
 | |
|           break;
 | |
| 
 | |
|         Idx = InfixOperatorStack.size() - 1;
 | |
|         StackOp = InfixOperatorStack[Idx];
 | |
|         if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
 | |
|           break;
 | |
| 
 | |
|         // If we have an even parentheses count and we see a left parentheses,
 | |
|         // then stop processing.
 | |
|         if (!ParenCount && StackOp == IC_LPAREN)
 | |
|           break;
 | |
| 
 | |
|         if (StackOp == IC_RPAREN) {
 | |
|           ++ParenCount;
 | |
|           InfixOperatorStack.pop_back();
 | |
|         } else if (StackOp == IC_LPAREN) {
 | |
|           --ParenCount;
 | |
|           InfixOperatorStack.pop_back();
 | |
|         } else {
 | |
|           InfixOperatorStack.pop_back();
 | |
|           PostfixStack.push_back(std::make_pair(StackOp, 0));
 | |
|         }
 | |
|       }
 | |
|       // Push the new operator.
 | |
|       InfixOperatorStack.push_back(Op);
 | |
|     }
 | |
| 
 | |
|     int64_t execute() {
 | |
|       // Push any remaining operators onto the postfix stack.
 | |
|       while (!InfixOperatorStack.empty()) {
 | |
|         InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
 | |
|         if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
 | |
|           PostfixStack.push_back(std::make_pair(StackOp, 0));
 | |
|       }
 | |
| 
 | |
|       if (PostfixStack.empty())
 | |
|         return 0;
 | |
| 
 | |
|       SmallVector<ICToken, 16> OperandStack;
 | |
|       for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
 | |
|         ICToken Op = PostfixStack[i];
 | |
|         if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
 | |
|           OperandStack.push_back(Op);
 | |
|         } else {
 | |
|           assert (OperandStack.size() > 1 && "Too few operands.");
 | |
|           int64_t Val;
 | |
|           ICToken Op2 = OperandStack.pop_back_val();
 | |
|           ICToken Op1 = OperandStack.pop_back_val();
 | |
|           switch (Op.first) {
 | |
|           default:
 | |
|             report_fatal_error("Unexpected operator!");
 | |
|             break;
 | |
|           case IC_PLUS:
 | |
|             Val = Op1.second + Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_MINUS:
 | |
|             Val = Op1.second - Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_MULTIPLY:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Multiply operation with an immediate and a register!");
 | |
|             Val = Op1.second * Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_DIVIDE:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Divide operation with an immediate and a register!");
 | |
|             assert (Op2.second != 0 && "Division by zero!");
 | |
|             Val = Op1.second / Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_OR:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Or operation with an immediate and a register!");
 | |
|             Val = Op1.second | Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_XOR:
 | |
|             assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|               "Xor operation with an immediate and a register!");
 | |
|             Val = Op1.second ^ Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_AND:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "And operation with an immediate and a register!");
 | |
|             Val = Op1.second & Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_LSHIFT:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Left shift operation with an immediate and a register!");
 | |
|             Val = Op1.second << Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_RSHIFT:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Right shift operation with an immediate and a register!");
 | |
|             Val = Op1.second >> Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       assert (OperandStack.size() == 1 && "Expected a single result.");
 | |
|       return OperandStack.pop_back_val().second;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   enum IntelExprState {
 | |
|     IES_OR,
 | |
|     IES_XOR,
 | |
|     IES_AND,
 | |
|     IES_LSHIFT,
 | |
|     IES_RSHIFT,
 | |
|     IES_PLUS,
 | |
|     IES_MINUS,
 | |
|     IES_NOT,
 | |
|     IES_MULTIPLY,
 | |
|     IES_DIVIDE,
 | |
|     IES_LBRAC,
 | |
|     IES_RBRAC,
 | |
|     IES_LPAREN,
 | |
|     IES_RPAREN,
 | |
|     IES_REGISTER,
 | |
|     IES_INTEGER,
 | |
|     IES_IDENTIFIER,
 | |
|     IES_ERROR
 | |
|   };
 | |
| 
 | |
|   class IntelExprStateMachine {
 | |
|     IntelExprState State, PrevState;
 | |
|     unsigned BaseReg, IndexReg, TmpReg, Scale;
 | |
|     int64_t Imm;
 | |
|     const MCExpr *Sym;
 | |
|     StringRef SymName;
 | |
|     bool StopOnLBrac, AddImmPrefix;
 | |
|     InfixCalculator IC;
 | |
|     InlineAsmIdentifierInfo Info;
 | |
| 
 | |
|   public:
 | |
|     IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
 | |
|       State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
 | |
|       Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
 | |
|       AddImmPrefix(addimmprefix) { Info.clear(); }
 | |
| 
 | |
|     unsigned getBaseReg() { return BaseReg; }
 | |
|     unsigned getIndexReg() { return IndexReg; }
 | |
|     unsigned getScale() { return Scale; }
 | |
|     const MCExpr *getSym() { return Sym; }
 | |
|     StringRef getSymName() { return SymName; }
 | |
|     int64_t getImm() { return Imm + IC.execute(); }
 | |
|     bool isValidEndState() {
 | |
|       return State == IES_RBRAC || State == IES_INTEGER;
 | |
|     }
 | |
|     bool getStopOnLBrac() { return StopOnLBrac; }
 | |
|     bool getAddImmPrefix() { return AddImmPrefix; }
 | |
|     bool hadError() { return State == IES_ERROR; }
 | |
| 
 | |
|     InlineAsmIdentifierInfo &getIdentifierInfo() {
 | |
|       return Info;
 | |
|     }
 | |
| 
 | |
|     void onOr() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_OR;
 | |
|         IC.pushOperator(IC_OR);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onXor() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_XOR;
 | |
|         IC.pushOperator(IC_XOR);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onAnd() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_AND;
 | |
|         IC.pushOperator(IC_AND);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onLShift() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_LSHIFT;
 | |
|         IC.pushOperator(IC_LSHIFT);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onRShift() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_RSHIFT;
 | |
|         IC.pushOperator(IC_RSHIFT);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onPlus() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_PLUS;
 | |
|         IC.pushOperator(IC_PLUS);
 | |
|         if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | |
|           // If we already have a BaseReg, then assume this is the IndexReg with
 | |
|           // a scale of 1.
 | |
|           if (!BaseReg) {
 | |
|             BaseReg = TmpReg;
 | |
|           } else {
 | |
|             assert (!IndexReg && "BaseReg/IndexReg already set!");
 | |
|             IndexReg = TmpReg;
 | |
|             Scale = 1;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onMinus() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_NOT:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_LPAREN:
 | |
|       case IES_RPAREN:
 | |
|       case IES_LBRAC:
 | |
|       case IES_RBRAC:
 | |
|       case IES_INTEGER:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_MINUS;
 | |
|         // Only push the minus operator if it is not a unary operator.
 | |
|         if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
 | |
|               CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
 | |
|               CurrState == IES_LPAREN || CurrState == IES_LBRAC))
 | |
|           IC.pushOperator(IC_MINUS);
 | |
|         if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | |
|           // If we already have a BaseReg, then assume this is the IndexReg with
 | |
|           // a scale of 1.
 | |
|           if (!BaseReg) {
 | |
|             BaseReg = TmpReg;
 | |
|           } else {
 | |
|             assert (!IndexReg && "BaseReg/IndexReg already set!");
 | |
|             IndexReg = TmpReg;
 | |
|             Scale = 1;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onNot() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_NOT:
 | |
|         State = IES_NOT;
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onRegister(unsigned Reg) {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_LPAREN:
 | |
|         State = IES_REGISTER;
 | |
|         TmpReg = Reg;
 | |
|         IC.pushOperand(IC_REGISTER);
 | |
|         break;
 | |
|       case IES_MULTIPLY:
 | |
|         // Index Register - Scale * Register
 | |
|         if (PrevState == IES_INTEGER) {
 | |
|           assert (!IndexReg && "IndexReg already set!");
 | |
|           State = IES_REGISTER;
 | |
|           IndexReg = Reg;
 | |
|           // Get the scale and replace the 'Scale * Register' with '0'.
 | |
|           Scale = IC.popOperand();
 | |
|           IC.pushOperand(IC_IMM);
 | |
|           IC.popOperator();
 | |
|         } else {
 | |
|           State = IES_ERROR;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|         State = IES_INTEGER;
 | |
|         Sym = SymRef;
 | |
|         SymName = SymRefName;
 | |
|         IC.pushOperand(IC_IMM);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|       case IES_OR:
 | |
|       case IES_XOR:
 | |
|       case IES_AND:
 | |
|       case IES_LSHIFT:
 | |
|       case IES_RSHIFT:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_LPAREN:
 | |
|         State = IES_INTEGER;
 | |
|         if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | |
|           // Index Register - Register * Scale
 | |
|           assert (!IndexReg && "IndexReg already set!");
 | |
|           IndexReg = TmpReg;
 | |
|           Scale = TmpInt;
 | |
|           if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
 | |
|             ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
 | |
|             return true;
 | |
|           }
 | |
|           // Get the scale and replace the 'Register * Scale' with '0'.
 | |
|           IC.popOperator();
 | |
|         } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | |
|                     PrevState == IES_OR || PrevState == IES_AND ||
 | |
|                     PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
 | |
|                     PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | |
|                     PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
 | |
|                     PrevState == IES_NOT || PrevState == IES_XOR) &&
 | |
|                    CurrState == IES_MINUS) {
 | |
|           // Unary minus.  No need to pop the minus operand because it was never
 | |
|           // pushed.
 | |
|           IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
 | |
|         } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | |
|                     PrevState == IES_OR || PrevState == IES_AND ||
 | |
|                     PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
 | |
|                     PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | |
|                     PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
 | |
|                     PrevState == IES_NOT || PrevState == IES_XOR) &&
 | |
|                    CurrState == IES_NOT) {
 | |
|           // Unary not.  No need to pop the not operand because it was never
 | |
|           // pushed.
 | |
|           IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
 | |
|         } else {
 | |
|           IC.pushOperand(IC_IMM, TmpInt);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|       return false;
 | |
|     }
 | |
|     void onStar() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_REGISTER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_MULTIPLY;
 | |
|         IC.pushOperator(IC_MULTIPLY);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     void onDivide() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_DIVIDE;
 | |
|         IC.pushOperator(IC_DIVIDE);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     void onLBrac() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_RBRAC:
 | |
|         State = IES_PLUS;
 | |
|         IC.pushOperator(IC_PLUS);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     void onRBrac() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_REGISTER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_RBRAC;
 | |
|         if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | |
|           // If we already have a BaseReg, then assume this is the IndexReg with
 | |
|           // a scale of 1.
 | |
|           if (!BaseReg) {
 | |
|             BaseReg = TmpReg;
 | |
|           } else {
 | |
|             assert (!IndexReg && "BaseReg/IndexReg already set!");
 | |
|             IndexReg = TmpReg;
 | |
|             Scale = 1;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onLParen() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|       case IES_OR:
 | |
|       case IES_XOR:
 | |
|       case IES_AND:
 | |
|       case IES_LSHIFT:
 | |
|       case IES_RSHIFT:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_LPAREN:
 | |
|         // FIXME: We don't handle this type of unary minus or not, yet.
 | |
|         if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
 | |
|             PrevState == IES_OR || PrevState == IES_AND ||
 | |
|             PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
 | |
|             PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
 | |
|             PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
 | |
|             PrevState == IES_NOT || PrevState == IES_XOR) &&
 | |
|             (CurrState == IES_MINUS || CurrState == IES_NOT)) {
 | |
|           State = IES_ERROR;
 | |
|           break;
 | |
|         }
 | |
|         State = IES_LPAREN;
 | |
|         IC.pushOperator(IC_LPAREN);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onRParen() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_REGISTER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_RPAREN;
 | |
|         IC.pushOperator(IC_RPAREN);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
 | |
|              bool MatchingInlineAsm = false) {
 | |
|     MCAsmParser &Parser = getParser();
 | |
|     if (MatchingInlineAsm) {
 | |
|       if (!getLexer().isAtStartOfStatement())
 | |
|         Parser.eatToEndOfStatement();
 | |
|       return false;
 | |
|     }
 | |
|     return Parser.Error(L, Msg, Range);
 | |
|   }
 | |
| 
 | |
|   std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
 | |
|     Error(Loc, Msg);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
 | |
|   std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
 | |
|   bool IsSIReg(unsigned Reg);
 | |
|   unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
 | |
|   void
 | |
|   AddDefaultSrcDestOperands(OperandVector &Operands,
 | |
|                             std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
 | |
|                             std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
 | |
|   bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
 | |
|                                OperandVector &FinalOperands);
 | |
|   std::unique_ptr<X86Operand> ParseOperand();
 | |
|   std::unique_ptr<X86Operand> ParseATTOperand();
 | |
|   std::unique_ptr<X86Operand> ParseIntelOperand();
 | |
|   std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
 | |
|   bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
 | |
|   std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
 | |
|   std::unique_ptr<X86Operand>
 | |
|   ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
 | |
|   std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start, SMLoc End);
 | |
|   bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
 | |
|   std::unique_ptr<X86Operand>
 | |
|   ParseIntelBracExpression(unsigned SegReg, SMLoc Start, int64_t ImmDisp,
 | |
|                            bool isSymbol, unsigned Size);
 | |
|   bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
 | |
|                             InlineAsmIdentifierInfo &Info,
 | |
|                             bool IsUnevaluatedOperand, SMLoc &End);
 | |
| 
 | |
|   std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
 | |
| 
 | |
|   std::unique_ptr<X86Operand>
 | |
|   CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
 | |
|                         unsigned IndexReg, unsigned Scale, SMLoc Start,
 | |
|                         SMLoc End, unsigned Size, StringRef Identifier,
 | |
|                         InlineAsmIdentifierInfo &Info,
 | |
|                         bool AllowBetterSizeMatch = false);
 | |
| 
 | |
|   bool parseDirectiveEven(SMLoc L);
 | |
|   bool ParseDirectiveWord(unsigned Size, SMLoc L);
 | |
|   bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
 | |
| 
 | |
|   bool processInstruction(MCInst &Inst, const OperandVector &Ops);
 | |
| 
 | |
|   /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
 | |
|   /// instrumentation around Inst.
 | |
|   void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
 | |
| 
 | |
|   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                OperandVector &Operands, MCStreamer &Out,
 | |
|                                uint64_t &ErrorInfo,
 | |
|                                bool MatchingInlineAsm) override;
 | |
| 
 | |
|   void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
 | |
|                          MCStreamer &Out, bool MatchingInlineAsm);
 | |
| 
 | |
|   bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
 | |
|                            bool MatchingInlineAsm);
 | |
| 
 | |
|   bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                   OperandVector &Operands, MCStreamer &Out,
 | |
|                                   uint64_t &ErrorInfo,
 | |
|                                   bool MatchingInlineAsm);
 | |
| 
 | |
|   bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                     OperandVector &Operands, MCStreamer &Out,
 | |
|                                     uint64_t &ErrorInfo,
 | |
|                                     bool MatchingInlineAsm);
 | |
| 
 | |
|   bool OmitRegisterFromClobberLists(unsigned RegNo) override;
 | |
| 
 | |
|   /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
 | |
|   /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
 | |
|   /// return false if no parsing errors occurred, true otherwise.
 | |
|   bool HandleAVX512Operand(OperandVector &Operands,
 | |
|                            const MCParsedAsmOperand &Op);
 | |
| 
 | |
|   bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
 | |
| 
 | |
|   /// MS-compatibility:
 | |
|   /// Obtain an appropriate size qualifier, when facing its absence,
 | |
|   /// upon AVX512 vector/broadcast memory operand
 | |
|   unsigned AdjustAVX512Mem(unsigned Size, X86Operand* UnsizedMemOpNext);
 | |
| 
 | |
|   bool is64BitMode() const {
 | |
|     // FIXME: Can tablegen auto-generate this?
 | |
|     return getSTI().getFeatureBits()[X86::Mode64Bit];
 | |
|   }
 | |
|   bool is32BitMode() const {
 | |
|     // FIXME: Can tablegen auto-generate this?
 | |
|     return getSTI().getFeatureBits()[X86::Mode32Bit];
 | |
|   }
 | |
|   bool is16BitMode() const {
 | |
|     // FIXME: Can tablegen auto-generate this?
 | |
|     return getSTI().getFeatureBits()[X86::Mode16Bit];
 | |
|   }
 | |
|   void SwitchMode(unsigned mode) {
 | |
|     MCSubtargetInfo &STI = copySTI();
 | |
|     FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
 | |
|     FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
 | |
|     unsigned FB = ComputeAvailableFeatures(
 | |
|       STI.ToggleFeature(OldMode.flip(mode)));
 | |
|     setAvailableFeatures(FB);
 | |
| 
 | |
|     assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
 | |
|   }
 | |
| 
 | |
|   unsigned getPointerWidth() {
 | |
|     if (is16BitMode()) return 16;
 | |
|     if (is32BitMode()) return 32;
 | |
|     if (is64BitMode()) return 64;
 | |
|     llvm_unreachable("invalid mode");
 | |
|   }
 | |
| 
 | |
|   bool isParsingIntelSyntax() {
 | |
|     return getParser().getAssemblerDialect();
 | |
|   }
 | |
| 
 | |
|   /// @name Auto-generated Matcher Functions
 | |
|   /// {
 | |
| 
 | |
| #define GET_ASSEMBLER_HEADER
 | |
| #include "X86GenAsmMatcher.inc"
 | |
| 
 | |
|   /// }
 | |
| 
 | |
| public:
 | |
|   X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
 | |
|                const MCInstrInfo &mii, const MCTargetOptions &Options)
 | |
|       : MCTargetAsmParser(Options, sti), MII(mii), InstInfo(nullptr),
 | |
|         Code16GCC(false) {
 | |
| 
 | |
|     // Initialize the set of available features.
 | |
|     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
 | |
|     Instrumentation.reset(
 | |
|         CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
 | |
|   }
 | |
| 
 | |
|   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
 | |
| 
 | |
|   void SetFrameRegister(unsigned RegNo) override;
 | |
| 
 | |
|   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | |
|                         SMLoc NameLoc, OperandVector &Operands) override;
 | |
| 
 | |
|   bool ParseDirective(AsmToken DirectiveID) override;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// @name Auto-generated Match Functions
 | |
| /// {
 | |
| 
 | |
| static unsigned MatchRegisterName(StringRef Name);
 | |
| 
 | |
| /// }
 | |
| 
 | |
| static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
 | |
|                                     StringRef &ErrMsg) {
 | |
|   // If we have both a base register and an index register make sure they are
 | |
|   // both 64-bit or 32-bit registers.
 | |
|   // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
 | |
| 
 | |
|   if ((BaseReg == X86::RIP && IndexReg != 0) || (IndexReg == X86::RIP)) {
 | |
|     ErrMsg = "invalid base+index expression";
 | |
|     return true;
 | |
|   }
 | |
|   if (BaseReg != 0 && IndexReg != 0) {
 | |
|     if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
 | |
|         (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | |
|          X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
 | |
|         IndexReg != X86::RIZ) {
 | |
|       ErrMsg = "base register is 64-bit, but index register is not";
 | |
|       return true;
 | |
|     }
 | |
|     if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
 | |
|         (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | |
|          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
 | |
|         IndexReg != X86::EIZ){
 | |
|       ErrMsg = "base register is 32-bit, but index register is not";
 | |
|       return true;
 | |
|     }
 | |
|     if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
 | |
|       if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | |
|           X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
 | |
|         ErrMsg = "base register is 16-bit, but index register is not";
 | |
|         return true;
 | |
|       }
 | |
|       if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
 | |
|            IndexReg != X86::SI && IndexReg != X86::DI) ||
 | |
|           ((BaseReg == X86::SI || BaseReg == X86::DI) &&
 | |
|            IndexReg != X86::BX && IndexReg != X86::BP)) {
 | |
|         ErrMsg = "invalid 16-bit base/index register combination";
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseRegister(unsigned &RegNo,
 | |
|                                  SMLoc &StartLoc, SMLoc &EndLoc) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   RegNo = 0;
 | |
|   const AsmToken &PercentTok = Parser.getTok();
 | |
|   StartLoc = PercentTok.getLoc();
 | |
| 
 | |
|   // If we encounter a %, ignore it. This code handles registers with and
 | |
|   // without the prefix, unprefixed registers can occur in cfi directives.
 | |
|   if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
 | |
|     Parser.Lex(); // Eat percent token.
 | |
| 
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   EndLoc = Tok.getEndLoc();
 | |
| 
 | |
|   if (Tok.isNot(AsmToken::Identifier)) {
 | |
|     if (isParsingIntelSyntax()) return true;
 | |
|     return Error(StartLoc, "invalid register name",
 | |
|                  SMRange(StartLoc, EndLoc));
 | |
|   }
 | |
| 
 | |
|   RegNo = MatchRegisterName(Tok.getString());
 | |
| 
 | |
|   // If the match failed, try the register name as lowercase.
 | |
|   if (RegNo == 0)
 | |
|     RegNo = MatchRegisterName(Tok.getString().lower());
 | |
| 
 | |
|   // The "flags" register cannot be referenced directly.
 | |
|   // Treat it as an identifier instead.
 | |
|   if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS)
 | |
|     RegNo = 0;
 | |
| 
 | |
|   if (!is64BitMode()) {
 | |
|     // FIXME: This should be done using Requires<Not64BitMode> and
 | |
|     // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
 | |
|     // checked.
 | |
|     // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
 | |
|     // REX prefix.
 | |
|     if (RegNo == X86::RIZ ||
 | |
|         X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
 | |
|         X86II::isX86_64NonExtLowByteReg(RegNo) ||
 | |
|         X86II::isX86_64ExtendedReg(RegNo))
 | |
|       return Error(StartLoc, "register %"
 | |
|                    + Tok.getString() + " is only available in 64-bit mode",
 | |
|                    SMRange(StartLoc, EndLoc));
 | |
|   } else if (!getSTI().getFeatureBits()[X86::FeatureAVX512]) {
 | |
|     if (X86II::is32ExtendedReg(RegNo))
 | |
|       return Error(StartLoc, "register %"
 | |
|                    + Tok.getString() + " is only available with AVX512",
 | |
|                    SMRange(StartLoc, EndLoc));
 | |
|   }
 | |
| 
 | |
|   // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
 | |
|   if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
 | |
|     RegNo = X86::ST0;
 | |
|     Parser.Lex(); // Eat 'st'
 | |
| 
 | |
|     // Check to see if we have '(4)' after %st.
 | |
|     if (getLexer().isNot(AsmToken::LParen))
 | |
|       return false;
 | |
|     // Lex the paren.
 | |
|     getParser().Lex();
 | |
| 
 | |
|     const AsmToken &IntTok = Parser.getTok();
 | |
|     if (IntTok.isNot(AsmToken::Integer))
 | |
|       return Error(IntTok.getLoc(), "expected stack index");
 | |
|     switch (IntTok.getIntVal()) {
 | |
|     case 0: RegNo = X86::ST0; break;
 | |
|     case 1: RegNo = X86::ST1; break;
 | |
|     case 2: RegNo = X86::ST2; break;
 | |
|     case 3: RegNo = X86::ST3; break;
 | |
|     case 4: RegNo = X86::ST4; break;
 | |
|     case 5: RegNo = X86::ST5; break;
 | |
|     case 6: RegNo = X86::ST6; break;
 | |
|     case 7: RegNo = X86::ST7; break;
 | |
|     default: return Error(IntTok.getLoc(), "invalid stack index");
 | |
|     }
 | |
| 
 | |
|     if (getParser().Lex().isNot(AsmToken::RParen))
 | |
|       return Error(Parser.getTok().getLoc(), "expected ')'");
 | |
| 
 | |
|     EndLoc = Parser.getTok().getEndLoc();
 | |
|     Parser.Lex(); // Eat ')'
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EndLoc = Parser.getTok().getEndLoc();
 | |
| 
 | |
|   // If this is "db[0-7]", match it as an alias
 | |
|   // for dr[0-7].
 | |
|   if (RegNo == 0 && Tok.getString().size() == 3 &&
 | |
|       Tok.getString().startswith("db")) {
 | |
|     switch (Tok.getString()[2]) {
 | |
|     case '0': RegNo = X86::DR0; break;
 | |
|     case '1': RegNo = X86::DR1; break;
 | |
|     case '2': RegNo = X86::DR2; break;
 | |
|     case '3': RegNo = X86::DR3; break;
 | |
|     case '4': RegNo = X86::DR4; break;
 | |
|     case '5': RegNo = X86::DR5; break;
 | |
|     case '6': RegNo = X86::DR6; break;
 | |
|     case '7': RegNo = X86::DR7; break;
 | |
|     }
 | |
| 
 | |
|     if (RegNo != 0) {
 | |
|       EndLoc = Parser.getTok().getEndLoc();
 | |
|       Parser.Lex(); // Eat it.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (RegNo == 0) {
 | |
|     if (isParsingIntelSyntax()) return true;
 | |
|     return Error(StartLoc, "invalid register name",
 | |
|                  SMRange(StartLoc, EndLoc));
 | |
|   }
 | |
| 
 | |
|   Parser.Lex(); // Eat identifier token.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86AsmParser::SetFrameRegister(unsigned RegNo) {
 | |
|   Instrumentation->SetInitialFrameRegister(RegNo);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
 | |
|   bool Parse32 = is32BitMode() || Code16GCC;
 | |
|   unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
 | |
|   const MCExpr *Disp = MCConstantExpr::create(0, getContext());
 | |
|   return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
 | |
|                                /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
 | |
|                                Loc, Loc, 0);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
 | |
|   bool Parse32 = is32BitMode() || Code16GCC;
 | |
|   unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
 | |
|   const MCExpr *Disp = MCConstantExpr::create(0, getContext());
 | |
|   return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
 | |
|                                /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
 | |
|                                Loc, Loc, 0);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::IsSIReg(unsigned Reg) {
 | |
|   switch (Reg) {
 | |
|   default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
 | |
|   case X86::RSI:
 | |
|   case X86::ESI:
 | |
|   case X86::SI:
 | |
|     return true;
 | |
|   case X86::RDI:
 | |
|   case X86::EDI:
 | |
|   case X86::DI:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
 | |
|                                           bool IsSIReg) {
 | |
|   switch (RegClassID) {
 | |
|   default: llvm_unreachable("Unexpected register class");
 | |
|   case X86::GR64RegClassID:
 | |
|     return IsSIReg ? X86::RSI : X86::RDI;
 | |
|   case X86::GR32RegClassID:
 | |
|     return IsSIReg ? X86::ESI : X86::EDI;
 | |
|   case X86::GR16RegClassID:
 | |
|     return IsSIReg ? X86::SI : X86::DI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86AsmParser::AddDefaultSrcDestOperands(
 | |
|     OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
 | |
|     std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
 | |
|   if (isParsingIntelSyntax()) {
 | |
|     Operands.push_back(std::move(Dst));
 | |
|     Operands.push_back(std::move(Src));
 | |
|   }
 | |
|   else {
 | |
|     Operands.push_back(std::move(Src));
 | |
|     Operands.push_back(std::move(Dst));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
 | |
|                                            OperandVector &FinalOperands) {
 | |
| 
 | |
|   if (OrigOperands.size() > 1) {
 | |
|     // Check if sizes match, OrigOperands also contains the instruction name
 | |
|     assert(OrigOperands.size() == FinalOperands.size() + 1 &&
 | |
|            "Operand size mismatch");
 | |
| 
 | |
|     SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
 | |
|     // Verify types match
 | |
|     int RegClassID = -1;
 | |
|     for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
 | |
|       X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
 | |
|       X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
 | |
| 
 | |
|       if (FinalOp.isReg() &&
 | |
|           (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
 | |
|         // Return false and let a normal complaint about bogus operands happen
 | |
|         return false;
 | |
| 
 | |
|       if (FinalOp.isMem()) {
 | |
| 
 | |
|         if (!OrigOp.isMem())
 | |
|           // Return false and let a normal complaint about bogus operands happen
 | |
|           return false;
 | |
| 
 | |
|         unsigned OrigReg = OrigOp.Mem.BaseReg;
 | |
|         unsigned FinalReg = FinalOp.Mem.BaseReg;
 | |
| 
 | |
|         // If we've already encounterd a register class, make sure all register
 | |
|         // bases are of the same register class
 | |
|         if (RegClassID != -1 &&
 | |
|             !X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
 | |
|           return Error(OrigOp.getStartLoc(),
 | |
|                        "mismatching source and destination index registers");
 | |
|         }
 | |
| 
 | |
|         if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
 | |
|           RegClassID = X86::GR64RegClassID;
 | |
|         else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
 | |
|           RegClassID = X86::GR32RegClassID;
 | |
|         else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
 | |
|           RegClassID = X86::GR16RegClassID;
 | |
|         else
 | |
|           // Unexpected register class type
 | |
|           // Return false and let a normal complaint about bogus operands happen
 | |
|           return false;
 | |
| 
 | |
|         bool IsSI = IsSIReg(FinalReg);
 | |
|         FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
 | |
| 
 | |
|         if (FinalReg != OrigReg) {
 | |
|           std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
 | |
|           Warnings.push_back(std::make_pair(
 | |
|               OrigOp.getStartLoc(),
 | |
|               "memory operand is only for determining the size, " + RegName +
 | |
|                   " will be used for the location"));
 | |
|         }
 | |
| 
 | |
|         FinalOp.Mem.Size = OrigOp.Mem.Size;
 | |
|         FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
 | |
|         FinalOp.Mem.BaseReg = FinalReg;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Produce warnings only if all the operands passed the adjustment - prevent
 | |
|     // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
 | |
|     for (auto &WarningMsg : Warnings) {
 | |
|       Warning(WarningMsg.first, WarningMsg.second);
 | |
|     }
 | |
| 
 | |
|     // Remove old operands
 | |
|     for (unsigned int i = 0; i < FinalOperands.size(); ++i)
 | |
|       OrigOperands.pop_back();
 | |
|   }
 | |
|   // OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
 | |
|   for (unsigned int i = 0; i < FinalOperands.size(); ++i)
 | |
|     OrigOperands.push_back(std::move(FinalOperands[i]));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
 | |
|   if (isParsingIntelSyntax())
 | |
|     return ParseIntelOperand();
 | |
|   return ParseATTOperand();
 | |
| }
 | |
| 
 | |
| /// getIntelMemOperandSize - Return intel memory operand size.
 | |
| static unsigned getIntelMemOperandSize(StringRef OpStr) {
 | |
|   unsigned Size = StringSwitch<unsigned>(OpStr)
 | |
|     .Cases("BYTE", "byte", 8)
 | |
|     .Cases("WORD", "word", 16)
 | |
|     .Cases("DWORD", "dword", 32)
 | |
|     .Cases("FWORD", "fword", 48)
 | |
|     .Cases("QWORD", "qword", 64)
 | |
|     .Cases("MMWORD","mmword", 64)
 | |
|     .Cases("XWORD", "xword", 80)
 | |
|     .Cases("TBYTE", "tbyte", 80)
 | |
|     .Cases("XMMWORD", "xmmword", 128)
 | |
|     .Cases("YMMWORD", "ymmword", 256)
 | |
|     .Cases("ZMMWORD", "zmmword", 512)
 | |
|     .Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
 | |
|     .Default(0);
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
 | |
|     unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
 | |
|     unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
 | |
|     InlineAsmIdentifierInfo &Info, bool AllowBetterSizeMatch) {
 | |
|   // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
 | |
|   // some other label reference.
 | |
|   if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) {
 | |
|     // Insert an explicit size if the user didn't have one.
 | |
|     if (!Size) {
 | |
|       Size = getPointerWidth();
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
 | |
|                                           /*Len=*/0, Size);
 | |
|     }
 | |
| 
 | |
|     // Create an absolute memory reference in order to match against
 | |
|     // instructions taking a PC relative operand.
 | |
|     return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
 | |
|                                  Identifier, Info.OpDecl);
 | |
|   }
 | |
| 
 | |
|   // We either have a direct symbol reference, or an offset from a symbol.  The
 | |
|   // parser always puts the symbol on the LHS, so look there for size
 | |
|   // calculation purposes.
 | |
|   const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
 | |
|   bool IsSymRef =
 | |
|       isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
 | |
|   if (IsSymRef) {
 | |
|     if (!Size) {
 | |
|       Size = Info.Type * 8; // Size is in terms of bits in this context.
 | |
|       if (Size)
 | |
|         InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
 | |
|                                             /*Len=*/0, Size);
 | |
|     if (AllowBetterSizeMatch)
 | |
|       // Handle cases where size qualifier is absent, upon an indirect symbol
 | |
|       // reference - e.g. "vaddps zmm1, zmm2, [var]"
 | |
|       // set Size to zero to allow matching mechansim to try and find a better
 | |
|       // size qualifier than our initial guess, based on available variants of
 | |
|       // the given instruction
 | |
|       Size = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // When parsing inline assembly we set the base register to a non-zero value
 | |
|   // if we don't know the actual value at this time.  This is necessary to
 | |
|   // get the matching correct in some cases.
 | |
|   BaseReg = BaseReg ? BaseReg : 1;
 | |
|   return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | |
|                                IndexReg, Scale, Start, End, Size, Identifier,
 | |
|                                Info.OpDecl);
 | |
| }
 | |
| 
 | |
| static void
 | |
| RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> &AsmRewrites,
 | |
|                            StringRef SymName, int64_t ImmDisp,
 | |
|                            int64_t FinalImmDisp, SMLoc &BracLoc,
 | |
|                            SMLoc &StartInBrac, SMLoc &End) {
 | |
|   // Remove the '[' and ']' from the IR string.
 | |
|   AsmRewrites.emplace_back(AOK_Skip, BracLoc, 1);
 | |
|   AsmRewrites.emplace_back(AOK_Skip, End, 1);
 | |
| 
 | |
|   // If ImmDisp is non-zero, then we parsed a displacement before the
 | |
|   // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
 | |
|   // If ImmDisp doesn't match the displacement computed by the state machine
 | |
|   // then we have an additional displacement in the bracketed expression.
 | |
|   if (ImmDisp != FinalImmDisp) {
 | |
|     if (ImmDisp) {
 | |
|       // We have an immediate displacement before the bracketed expression.
 | |
|       // Adjust this to match the final immediate displacement.
 | |
|       bool Found = false;
 | |
|       for (AsmRewrite &AR : AsmRewrites) {
 | |
|         if (AR.Loc.getPointer() > BracLoc.getPointer())
 | |
|           continue;
 | |
|         if (AR.Kind == AOK_ImmPrefix || AR.Kind == AOK_Imm) {
 | |
|           assert (!Found && "ImmDisp already rewritten.");
 | |
|           AR.Kind = AOK_Imm;
 | |
|           AR.Len = BracLoc.getPointer() - AR.Loc.getPointer();
 | |
|           AR.Val = FinalImmDisp;
 | |
|           Found = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       assert (Found && "Unable to rewrite ImmDisp.");
 | |
|       (void)Found;
 | |
|     } else {
 | |
|       // We have a symbolic and an immediate displacement, but no displacement
 | |
|       // before the bracketed expression.  Put the immediate displacement
 | |
|       // before the bracketed expression.
 | |
|       AsmRewrites.emplace_back(AOK_Imm, BracLoc, 0, FinalImmDisp);
 | |
|     }
 | |
|   }
 | |
|   // Remove all the ImmPrefix rewrites within the brackets.
 | |
|   for (AsmRewrite &AR : AsmRewrites) {
 | |
|     if (AR.Loc.getPointer() < StartInBrac.getPointer())
 | |
|       continue;
 | |
|     if (AR.Kind == AOK_ImmPrefix)
 | |
|       AR.Kind = AOK_Delete;
 | |
|   }
 | |
|   const char *SymLocPtr = SymName.data();
 | |
|   // Skip everything before the symbol.
 | |
|   if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
 | |
|     assert(Len > 0 && "Expected a non-negative length.");
 | |
|     AsmRewrites.emplace_back(AOK_Skip, StartInBrac, Len);
 | |
|   }
 | |
|   // Skip everything after the symbol.
 | |
|   if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
 | |
|     SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
 | |
|     assert(Len > 0 && "Expected a non-negative length.");
 | |
|     AsmRewrites.emplace_back(AOK_Skip, Loc, Len);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
| 
 | |
|   AsmToken::TokenKind PrevTK = AsmToken::Error;
 | |
|   bool Done = false;
 | |
|   while (!Done) {
 | |
|     bool UpdateLocLex = true;
 | |
| 
 | |
|     // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
 | |
|     // identifier.  Don't try an parse it as a register.
 | |
|     if (PrevTK != AsmToken::Error && Tok.getString().startswith("."))
 | |
|       break;
 | |
| 
 | |
|     // If we're parsing an immediate expression, we don't expect a '['.
 | |
|     if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
 | |
|       break;
 | |
| 
 | |
|     AsmToken::TokenKind TK = getLexer().getKind();
 | |
|     switch (TK) {
 | |
|     default: {
 | |
|       if (SM.isValidEndState()) {
 | |
|         Done = true;
 | |
|         break;
 | |
|       }
 | |
|       return Error(Tok.getLoc(), "unknown token in expression");
 | |
|     }
 | |
|     case AsmToken::EndOfStatement: {
 | |
|       Done = true;
 | |
|       break;
 | |
|     }
 | |
|     case AsmToken::String:
 | |
|     case AsmToken::Identifier: {
 | |
|       // This could be a register or a symbolic displacement.
 | |
|       unsigned TmpReg;
 | |
|       const MCExpr *Val;
 | |
|       SMLoc IdentLoc = Tok.getLoc();
 | |
|       StringRef Identifier = Tok.getString();
 | |
|       if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
 | |
|         SM.onRegister(TmpReg);
 | |
|         UpdateLocLex = false;
 | |
|         break;
 | |
|       } else {
 | |
|         if (!isParsingInlineAsm()) {
 | |
|           if (getParser().parsePrimaryExpr(Val, End))
 | |
|             return Error(Tok.getLoc(), "Unexpected identifier!");
 | |
|         } else {
 | |
|           // This is a dot operator, not an adjacent identifier.
 | |
|           if (Identifier.find('.') != StringRef::npos &&
 | |
|               PrevTK == AsmToken::RBrac) {
 | |
|             return false;
 | |
|           } else {
 | |
|             InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
 | |
|             if (ParseIntelIdentifier(Val, Identifier, Info,
 | |
|                                      /*Unevaluated=*/false, End))
 | |
|               return true;
 | |
|           }
 | |
|         }
 | |
|         SM.onIdentifierExpr(Val, Identifier);
 | |
|         UpdateLocLex = false;
 | |
|         break;
 | |
|       }
 | |
|       return Error(Tok.getLoc(), "Unexpected identifier!");
 | |
|     }
 | |
|     case AsmToken::Integer: {
 | |
|       StringRef ErrMsg;
 | |
|       if (isParsingInlineAsm() && SM.getAddImmPrefix())
 | |
|         InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, Tok.getLoc());
 | |
|       // Look for 'b' or 'f' following an Integer as a directional label
 | |
|       SMLoc Loc = getTok().getLoc();
 | |
|       int64_t IntVal = getTok().getIntVal();
 | |
|       End = consumeToken();
 | |
|       UpdateLocLex = false;
 | |
|       if (getLexer().getKind() == AsmToken::Identifier) {
 | |
|         StringRef IDVal = getTok().getString();
 | |
|         if (IDVal == "f" || IDVal == "b") {
 | |
|           MCSymbol *Sym =
 | |
|               getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
 | |
|           MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | |
|           const MCExpr *Val =
 | |
|               MCSymbolRefExpr::create(Sym, Variant, getContext());
 | |
|           if (IDVal == "b" && Sym->isUndefined())
 | |
|             return Error(Loc, "invalid reference to undefined symbol");
 | |
|           StringRef Identifier = Sym->getName();
 | |
|           SM.onIdentifierExpr(Val, Identifier);
 | |
|           End = consumeToken();
 | |
|         } else {
 | |
|           if (SM.onInteger(IntVal, ErrMsg))
 | |
|             return Error(Loc, ErrMsg);
 | |
|         }
 | |
|       } else {
 | |
|         if (SM.onInteger(IntVal, ErrMsg))
 | |
|           return Error(Loc, ErrMsg);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case AsmToken::Plus:    SM.onPlus(); break;
 | |
|     case AsmToken::Minus:   SM.onMinus(); break;
 | |
|     case AsmToken::Tilde:   SM.onNot(); break;
 | |
|     case AsmToken::Star:    SM.onStar(); break;
 | |
|     case AsmToken::Slash:   SM.onDivide(); break;
 | |
|     case AsmToken::Pipe:    SM.onOr(); break;
 | |
|     case AsmToken::Caret:   SM.onXor(); break;
 | |
|     case AsmToken::Amp:     SM.onAnd(); break;
 | |
|     case AsmToken::LessLess:
 | |
|                             SM.onLShift(); break;
 | |
|     case AsmToken::GreaterGreater:
 | |
|                             SM.onRShift(); break;
 | |
|     case AsmToken::LBrac:   SM.onLBrac(); break;
 | |
|     case AsmToken::RBrac:   SM.onRBrac(); break;
 | |
|     case AsmToken::LParen:  SM.onLParen(); break;
 | |
|     case AsmToken::RParen:  SM.onRParen(); break;
 | |
|     }
 | |
|     if (SM.hadError())
 | |
|       return Error(Tok.getLoc(), "unknown token in expression");
 | |
| 
 | |
|     if (!Done && UpdateLocLex)
 | |
|       End = consumeToken();
 | |
| 
 | |
|     PrevTK = TK;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand>
 | |
| X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
 | |
|                                        int64_t ImmDisp, bool isSymbol,
 | |
|                                        unsigned Size) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
 | |
|   if (getLexer().isNot(AsmToken::LBrac))
 | |
|     return ErrorOperand(BracLoc, "Expected '[' token!");
 | |
|   Parser.Lex(); // Eat '['
 | |
| 
 | |
|   SMLoc StartInBrac = Parser.getTok().getLoc();
 | |
|   // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ].  We
 | |
|   // may have already parsed an immediate displacement before the bracketed
 | |
|   // expression.
 | |
|   IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
 | |
|   if (ParseIntelExpression(SM, End))
 | |
|     return nullptr;
 | |
| 
 | |
|   const MCExpr *Disp = nullptr;
 | |
|   if (const MCExpr *Sym = SM.getSym()) {
 | |
|     // A symbolic displacement.
 | |
|     Disp = Sym;
 | |
|     if (isParsingInlineAsm())
 | |
|       RewriteIntelBracExpression(*InstInfo->AsmRewrites, SM.getSymName(),
 | |
|                                  ImmDisp, SM.getImm(), BracLoc, StartInBrac,
 | |
|                                  End);
 | |
|   }
 | |
| 
 | |
|   if (SM.getImm() || !Disp) {
 | |
|     const MCExpr *Imm = MCConstantExpr::create(SM.getImm(), getContext());
 | |
|     if (Disp)
 | |
|       Disp = MCBinaryExpr::createAdd(Disp, Imm, getContext());
 | |
|     else
 | |
|       Disp = Imm;  // An immediate displacement only.
 | |
|   }
 | |
| 
 | |
|   // Parse struct field access.  Intel requires a dot, but MSVC doesn't.  MSVC
 | |
|   // will in fact do global lookup the field name inside all global typedefs,
 | |
|   // but we don't emulate that.
 | |
|   if ((Parser.getTok().getKind() == AsmToken::Identifier ||
 | |
|        Parser.getTok().getKind() == AsmToken::Dot ||
 | |
|        Parser.getTok().getKind() == AsmToken::Real) &&
 | |
|       Parser.getTok().getString().find('.') != StringRef::npos) {
 | |
|     const MCExpr *NewDisp;
 | |
|     if (ParseIntelDotOperator(Disp, NewDisp))
 | |
|       return nullptr;
 | |
| 
 | |
|     End = Tok.getEndLoc();
 | |
|     Parser.Lex();  // Eat the field.
 | |
|     Disp = NewDisp;
 | |
|   }
 | |
| 
 | |
|   if (isSymbol) {
 | |
|     if (SM.getSym()) {
 | |
|       Error(Start, "cannot use more than one symbol in memory operand");
 | |
|       return nullptr;
 | |
|     }
 | |
|     if (SM.getBaseReg()) {
 | |
|       Error(Start, "cannot use base register with variable reference");
 | |
|       return nullptr;
 | |
|     }
 | |
|     if (SM.getIndexReg()) {
 | |
|       Error(Start, "cannot use index register with variable reference");
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int BaseReg = SM.getBaseReg();
 | |
|   int IndexReg = SM.getIndexReg();
 | |
|   int Scale = SM.getScale();
 | |
|   if (!isParsingInlineAsm()) {
 | |
|     // handle [-42]
 | |
|     if (!BaseReg && !IndexReg) {
 | |
|       if (!SegReg)
 | |
|         return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
 | |
|       return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
 | |
|                                    Start, End, Size);
 | |
|     }
 | |
|     StringRef ErrMsg;
 | |
|     if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
 | |
|       Error(StartInBrac, ErrMsg);
 | |
|       return nullptr;
 | |
|     }
 | |
|     return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | |
|                                  IndexReg, Scale, Start, End, Size);
 | |
|   }
 | |
| 
 | |
|   InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
 | |
|   return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
 | |
|                                End, Size, SM.getSymName(), Info,
 | |
|                                isParsingInlineAsm());
 | |
| }
 | |
| 
 | |
| // Inline assembly may use variable names with namespace alias qualifiers.
 | |
| bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
 | |
|                                         StringRef &Identifier,
 | |
|                                         InlineAsmIdentifierInfo &Info,
 | |
|                                         bool IsUnevaluatedOperand, SMLoc &End) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   assert(isParsingInlineAsm() && "Expected to be parsing inline assembly.");
 | |
|   Val = nullptr;
 | |
| 
 | |
|   StringRef LineBuf(Identifier.data());
 | |
|   void *Result =
 | |
|     SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
 | |
| 
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc Loc = Tok.getLoc();
 | |
| 
 | |
|   // Advance the token stream until the end of the current token is
 | |
|   // after the end of what the frontend claimed.
 | |
|   const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
 | |
|   do {
 | |
|     End = Tok.getEndLoc();
 | |
|     getLexer().Lex();
 | |
|   } while (End.getPointer() < EndPtr);
 | |
|   Identifier = LineBuf;
 | |
| 
 | |
|   // The frontend should end parsing on an assembler token boundary, unless it
 | |
|   // failed parsing.
 | |
|   assert((End.getPointer() == EndPtr || !Result) &&
 | |
|          "frontend claimed part of a token?");
 | |
| 
 | |
|   // If the identifier lookup was unsuccessful, assume that we are dealing with
 | |
|   // a label.
 | |
|   if (!Result) {
 | |
|     StringRef InternalName =
 | |
|       SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
 | |
|                                          Loc, false);
 | |
|     assert(InternalName.size() && "We should have an internal name here.");
 | |
|     // Push a rewrite for replacing the identifier name with the internal name.
 | |
|     InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
 | |
|                                         InternalName);
 | |
|   }
 | |
| 
 | |
|   // Create the symbol reference.
 | |
|   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
 | |
|   MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | |
|   Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Parse intel style segment override.
 | |
| std::unique_ptr<X86Operand>
 | |
| X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
 | |
|                                         unsigned Size) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
 | |
|   const AsmToken &Tok = Parser.getTok(); // Eat colon.
 | |
|   if (Tok.isNot(AsmToken::Colon))
 | |
|     return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
 | |
|   Parser.Lex(); // Eat ':'
 | |
| 
 | |
|   int64_t ImmDisp = 0;
 | |
|   if (getLexer().is(AsmToken::Integer)) {
 | |
|     ImmDisp = Tok.getIntVal();
 | |
|     AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
 | |
| 
 | |
|     if (isParsingInlineAsm())
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, ImmDispToken.getLoc());
 | |
| 
 | |
|     if (getLexer().isNot(AsmToken::LBrac)) {
 | |
|       // An immediate following a 'segment register', 'colon' token sequence can
 | |
|       // be followed by a bracketed expression.  If it isn't we know we have our
 | |
|       // final segment override.
 | |
|       const MCExpr *Disp = MCConstantExpr::create(ImmDisp, getContext());
 | |
|       return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
 | |
|                                    /*BaseReg=*/0, /*IndexReg=*/0, /*Scale=*/1,
 | |
|                                    Start, ImmDispToken.getEndLoc(), Size);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLexer().is(AsmToken::LBrac))
 | |
|     return ParseIntelBracExpression(SegReg, Start, ImmDisp, false, Size);
 | |
| 
 | |
|   const MCExpr *Val;
 | |
|   SMLoc End;
 | |
|   if (!isParsingInlineAsm()) {
 | |
|     if (getParser().parsePrimaryExpr(Val, End))
 | |
|       return ErrorOperand(Tok.getLoc(), "unknown token in expression");
 | |
| 
 | |
|     return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
 | |
|   }
 | |
| 
 | |
|   InlineAsmIdentifierInfo Info;
 | |
|   StringRef Identifier = Tok.getString();
 | |
|   if (ParseIntelIdentifier(Val, Identifier, Info,
 | |
|                            /*Unevaluated=*/false, End))
 | |
|     return nullptr;
 | |
|   return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
 | |
|                                /*Scale=*/1, Start, End, Size, Identifier, Info);
 | |
| }
 | |
| 
 | |
| //ParseRoundingModeOp - Parse AVX-512 rounding mode operand
 | |
| std::unique_ptr<X86Operand>
 | |
| X86AsmParser::ParseRoundingModeOp(SMLoc Start, SMLoc End) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   // Eat "{" and mark the current place.
 | |
|   const SMLoc consumedToken = consumeToken();
 | |
|   if (Tok.getIdentifier().startswith("r")){
 | |
|     int rndMode = StringSwitch<int>(Tok.getIdentifier())
 | |
|       .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
 | |
|       .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
 | |
|       .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
 | |
|       .Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
 | |
|       .Default(-1);
 | |
|     if (-1 == rndMode)
 | |
|       return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
 | |
|      Parser.Lex();  // Eat "r*" of r*-sae
 | |
|     if (!getLexer().is(AsmToken::Minus))
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected - at this point");
 | |
|     Parser.Lex();  // Eat "-"
 | |
|     Parser.Lex();  // Eat the sae
 | |
|     if (!getLexer().is(AsmToken::RCurly))
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected } at this point");
 | |
|     Parser.Lex();  // Eat "}"
 | |
|     const MCExpr *RndModeOp =
 | |
|       MCConstantExpr::create(rndMode, Parser.getContext());
 | |
|     return X86Operand::CreateImm(RndModeOp, Start, End);
 | |
|   }
 | |
|   if(Tok.getIdentifier().equals("sae")){
 | |
|     Parser.Lex();  // Eat the sae
 | |
|     if (!getLexer().is(AsmToken::RCurly))
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected } at this point");
 | |
|     Parser.Lex();  // Eat "}"
 | |
|     return X86Operand::CreateToken("{sae}", consumedToken);
 | |
|   }
 | |
|   return ErrorOperand(Tok.getLoc(), "unknown token in expression");
 | |
| }
 | |
| 
 | |
| /// Parse the '.' operator.
 | |
| bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
 | |
|                                                 const MCExpr *&NewDisp) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   int64_t OrigDispVal, DotDispVal;
 | |
| 
 | |
|   // FIXME: Handle non-constant expressions.
 | |
|   if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
 | |
|     OrigDispVal = OrigDisp->getValue();
 | |
|   else
 | |
|     return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
 | |
| 
 | |
|   // Drop the optional '.'.
 | |
|   StringRef DotDispStr = Tok.getString();
 | |
|   if (DotDispStr.startswith("."))
 | |
|     DotDispStr = DotDispStr.drop_front(1);
 | |
| 
 | |
|   // .Imm gets lexed as a real.
 | |
|   if (Tok.is(AsmToken::Real)) {
 | |
|     APInt DotDisp;
 | |
|     DotDispStr.getAsInteger(10, DotDisp);
 | |
|     DotDispVal = DotDisp.getZExtValue();
 | |
|   } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | |
|     unsigned DotDisp;
 | |
|     std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
 | |
|     if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
 | |
|                                            DotDisp))
 | |
|       return Error(Tok.getLoc(), "Unable to lookup field reference!");
 | |
|     DotDispVal = DotDisp;
 | |
|   } else
 | |
|     return Error(Tok.getLoc(), "Unexpected token type!");
 | |
| 
 | |
|   if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | |
|     SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
 | |
|     unsigned Len = DotDispStr.size();
 | |
|     unsigned Val = OrigDispVal + DotDispVal;
 | |
|     InstInfo->AsmRewrites->emplace_back(AOK_DotOperator, Loc, Len, Val);
 | |
|   }
 | |
| 
 | |
|   NewDisp = MCConstantExpr::create(OrigDispVal + DotDispVal, getContext());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Parse the 'offset' operator.  This operator is used to specify the
 | |
| /// location rather then the content of a variable.
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc OffsetOfLoc = Tok.getLoc();
 | |
|   Parser.Lex(); // Eat offset.
 | |
| 
 | |
|   const MCExpr *Val;
 | |
|   InlineAsmIdentifierInfo Info;
 | |
|   SMLoc Start = Tok.getLoc(), End;
 | |
|   StringRef Identifier = Tok.getString();
 | |
|   if (ParseIntelIdentifier(Val, Identifier, Info,
 | |
|                            /*Unevaluated=*/false, End))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't emit the offset operator.
 | |
|   InstInfo->AsmRewrites->emplace_back(AOK_Skip, OffsetOfLoc, 7);
 | |
| 
 | |
|   // The offset operator will have an 'r' constraint, thus we need to create
 | |
|   // register operand to ensure proper matching.  Just pick a GPR based on
 | |
|   // the size of a pointer.
 | |
|   bool Parse32 = is32BitMode() || Code16GCC;
 | |
|   unsigned RegNo = is64BitMode() ? X86::RBX : (Parse32 ? X86::EBX : X86::BX);
 | |
| 
 | |
|   return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
 | |
|                                OffsetOfLoc, Identifier, Info.OpDecl);
 | |
| }
 | |
| 
 | |
| enum IntelOperatorKind {
 | |
|   IOK_LENGTH,
 | |
|   IOK_SIZE,
 | |
|   IOK_TYPE
 | |
| };
 | |
| 
 | |
| /// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
 | |
| /// returns the number of elements in an array.  It returns the value 1 for
 | |
| /// non-array variables.  The SIZE operator returns the size of a C or C++
 | |
| /// variable.  A variable's size is the product of its LENGTH and TYPE.  The
 | |
| /// TYPE operator returns the size of a C or C++ type or variable. If the
 | |
| /// variable is an array, TYPE returns the size of a single element.
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc TypeLoc = Tok.getLoc();
 | |
|   Parser.Lex(); // Eat operator.
 | |
| 
 | |
|   const MCExpr *Val = nullptr;
 | |
|   InlineAsmIdentifierInfo Info;
 | |
|   SMLoc Start = Tok.getLoc(), End;
 | |
|   StringRef Identifier = Tok.getString();
 | |
|   if (ParseIntelIdentifier(Val, Identifier, Info,
 | |
|                            /*Unevaluated=*/true, End))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!Info.OpDecl)
 | |
|     return ErrorOperand(Start, "unable to lookup expression");
 | |
| 
 | |
|   unsigned CVal = 0;
 | |
|   switch(OpKind) {
 | |
|   default: llvm_unreachable("Unexpected operand kind!");
 | |
|   case IOK_LENGTH: CVal = Info.Length; break;
 | |
|   case IOK_SIZE: CVal = Info.Size; break;
 | |
|   case IOK_TYPE: CVal = Info.Type; break;
 | |
|   }
 | |
| 
 | |
|   // Rewrite the type operator and the C or C++ type or variable in terms of an
 | |
|   // immediate.  E.g. TYPE foo -> $$4
 | |
|   unsigned Len = End.getPointer() - TypeLoc.getPointer();
 | |
|   InstInfo->AsmRewrites->emplace_back(AOK_Imm, TypeLoc, Len, CVal);
 | |
| 
 | |
|   const MCExpr *Imm = MCConstantExpr::create(CVal, getContext());
 | |
|   return X86Operand::CreateImm(Imm, Start, End);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc Start, End;
 | |
| 
 | |
|   // Offset, length, type and size operators.
 | |
|   if (isParsingInlineAsm()) {
 | |
|     StringRef AsmTokStr = Tok.getString();
 | |
|     if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
 | |
|       return ParseIntelOffsetOfOperator();
 | |
|     if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
 | |
|       return ParseIntelOperator(IOK_LENGTH);
 | |
|     if (AsmTokStr == "size" || AsmTokStr == "SIZE")
 | |
|       return ParseIntelOperator(IOK_SIZE);
 | |
|     if (AsmTokStr == "type" || AsmTokStr == "TYPE")
 | |
|       return ParseIntelOperator(IOK_TYPE);
 | |
|   }
 | |
| 
 | |
|   bool PtrInOperand = false;
 | |
|   unsigned Size = getIntelMemOperandSize(Tok.getString());
 | |
|   if (Size) {
 | |
|     Parser.Lex(); // Eat operand size (e.g., byte, word).
 | |
|     if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
 | |
|     Parser.Lex(); // Eat ptr.
 | |
|     PtrInOperand = true;
 | |
|   }
 | |
| 
 | |
|   Start = Tok.getLoc();
 | |
| 
 | |
|   // rounding mode token
 | |
|   if (getSTI().getFeatureBits()[X86::FeatureAVX512] &&
 | |
|       getLexer().is(AsmToken::LCurly))
 | |
|     return ParseRoundingModeOp(Start, End);
 | |
| 
 | |
|   // Register.
 | |
|   unsigned RegNo = 0;
 | |
|   if (getLexer().is(AsmToken::Identifier) &&
 | |
|       !ParseRegister(RegNo, Start, End)) {
 | |
|     // If this is a segment register followed by a ':', then this is the start
 | |
|     // of a segment override, otherwise this is a normal register reference.
 | |
|     // In case it is a normal register and there is ptr in the operand this
 | |
|     // is an error
 | |
|     if (RegNo == X86::RIP)
 | |
|       return ErrorOperand(Start, "rip can only be used as a base register");
 | |
|     if (getLexer().isNot(AsmToken::Colon)) {
 | |
|       if (PtrInOperand) {
 | |
|         return ErrorOperand(Start, "expected memory operand after "
 | |
|                                    "'ptr', found register operand instead");
 | |
|       }
 | |
|       return X86Operand::CreateReg(RegNo, Start, End);
 | |
|     }
 | |
|     return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
 | |
|   }
 | |
| 
 | |
|   // Immediates and Memory
 | |
| 
 | |
|   // Parse [ BaseReg + Scale*IndexReg + Disp ].
 | |
|   if (getLexer().is(AsmToken::LBrac))
 | |
|     return ParseIntelBracExpression(/*SegReg=*/0, Start, /*ImmDisp=*/0, false,
 | |
|                                     Size);
 | |
| 
 | |
|   AsmToken StartTok = Tok;
 | |
|   IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
 | |
|                            /*AddImmPrefix=*/false);
 | |
|   if (ParseIntelExpression(SM, End))
 | |
|     return nullptr;
 | |
| 
 | |
|   bool isSymbol = SM.getSym() && SM.getSym()->getKind() != MCExpr::Constant;
 | |
|   int64_t Imm = SM.getImm();
 | |
|   if (SM.getSym() && SM.getSym()->getKind() == MCExpr::Constant)
 | |
|     SM.getSym()->evaluateAsAbsolute(Imm);
 | |
| 
 | |
|   if (StartTok.isNot(AsmToken::Identifier) &&
 | |
|       StartTok.isNot(AsmToken::String) && isParsingInlineAsm()) {
 | |
|     unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
 | |
|     if (StartTok.getString().size() == Len)
 | |
|       // Just add a prefix if this wasn't a complex immediate expression.
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, Start);
 | |
|     else
 | |
|       // Otherwise, rewrite the complex expression as a single immediate.
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_Imm, Start, Len, Imm);
 | |
|   }
 | |
| 
 | |
|   if (getLexer().isNot(AsmToken::LBrac)) {
 | |
|     // If a directional label (ie. 1f or 2b) was parsed above from
 | |
|     // ParseIntelExpression() then SM.getSym() was set to a pointer to
 | |
|     // to the MCExpr with the directional local symbol and this is a
 | |
|     // memory operand not an immediate operand.
 | |
|     if (isSymbol) {
 | |
|       if (isParsingInlineAsm())
 | |
|         return CreateMemForInlineAsm(/*SegReg=*/0, SM.getSym(), /*BaseReg=*/0,
 | |
|                                      /*IndexReg=*/0,
 | |
|                                      /*Scale=*/1, Start, End, Size,
 | |
|                                      SM.getSymName(), SM.getIdentifierInfo());
 | |
|       return X86Operand::CreateMem(getPointerWidth(), SM.getSym(), Start, End,
 | |
|                                    Size);
 | |
|     }
 | |
| 
 | |
|     const MCExpr *ImmExpr = MCConstantExpr::create(Imm, getContext());
 | |
|     return X86Operand::CreateImm(ImmExpr, Start, End);
 | |
|   }
 | |
| 
 | |
|   // Only positive immediates are valid.
 | |
|   if (Imm < 0)
 | |
|     return ErrorOperand(Start, "expected a positive immediate displacement "
 | |
|                                "before bracketed expr.");
 | |
| 
 | |
|   return ParseIntelBracExpression(/*SegReg=*/0, Start, Imm, isSymbol, Size);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   switch (getLexer().getKind()) {
 | |
|   default:
 | |
|     // Parse a memory operand with no segment register.
 | |
|     return ParseMemOperand(0, Parser.getTok().getLoc());
 | |
|   case AsmToken::Percent: {
 | |
|     // Read the register.
 | |
|     unsigned RegNo;
 | |
|     SMLoc Start, End;
 | |
|     if (ParseRegister(RegNo, Start, End)) return nullptr;
 | |
|     if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
 | |
|       Error(Start, "%eiz and %riz can only be used as index registers",
 | |
|             SMRange(Start, End));
 | |
|       return nullptr;
 | |
|     }
 | |
|     if (RegNo == X86::RIP) {
 | |
|       Error(Start, "%rip can only be used as a base register",
 | |
|             SMRange(Start, End));
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // If this is a segment register followed by a ':', then this is the start
 | |
|     // of a memory reference, otherwise this is a normal register reference.
 | |
|     if (getLexer().isNot(AsmToken::Colon))
 | |
|       return X86Operand::CreateReg(RegNo, Start, End);
 | |
| 
 | |
|     if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
 | |
|       return ErrorOperand(Start, "invalid segment register");
 | |
| 
 | |
|     getParser().Lex(); // Eat the colon.
 | |
|     return ParseMemOperand(RegNo, Start);
 | |
|   }
 | |
|   case AsmToken::Dollar: {
 | |
|     // $42 -> immediate.
 | |
|     SMLoc Start = Parser.getTok().getLoc(), End;
 | |
|     Parser.Lex();
 | |
|     const MCExpr *Val;
 | |
|     if (getParser().parseExpression(Val, End))
 | |
|       return nullptr;
 | |
|     return X86Operand::CreateImm(Val, Start, End);
 | |
|   }
 | |
|   case AsmToken::LCurly:{
 | |
|     SMLoc Start = Parser.getTok().getLoc(), End;
 | |
|     if (getSTI().getFeatureBits()[X86::FeatureAVX512])
 | |
|       return ParseRoundingModeOp(Start, End);
 | |
|     return ErrorOperand(Start, "Unexpected '{' in expression");
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // true on failure, false otherwise
 | |
| // If no {z} mark was found - Parser doesn't advance
 | |
| bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
 | |
|                           const SMLoc &StartLoc) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   // Assuming we are just pass the '{' mark, quering the next token
 | |
|   // Searched for {z}, but none was found. Return false, as no parsing error was
 | |
|   // encountered
 | |
|   if (!(getLexer().is(AsmToken::Identifier) &&
 | |
|         (getLexer().getTok().getIdentifier() == "z")))
 | |
|     return false;
 | |
|   Parser.Lex(); // Eat z
 | |
|   // Query and eat the '}' mark
 | |
|   if (!getLexer().is(AsmToken::RCurly))
 | |
|     return Error(getLexer().getLoc(), "Expected } at this point");
 | |
|   Parser.Lex(); // Eat '}'
 | |
|   // Assign Z with the {z} mark opernad
 | |
|   Z = X86Operand::CreateToken("{z}", StartLoc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // true on failure, false otherwise
 | |
| bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
 | |
|                                        const MCParsedAsmOperand &Op) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   if(getSTI().getFeatureBits()[X86::FeatureAVX512]) {
 | |
|     if (getLexer().is(AsmToken::LCurly)) {
 | |
|       // Eat "{" and mark the current place.
 | |
|       const SMLoc consumedToken = consumeToken();
 | |
|       // Distinguish {1to<NUM>} from {%k<NUM>}.
 | |
|       if(getLexer().is(AsmToken::Integer)) {
 | |
|         // Parse memory broadcasting ({1to<NUM>}).
 | |
|         if (getLexer().getTok().getIntVal() != 1)
 | |
|           return TokError("Expected 1to<NUM> at this point");
 | |
|         Parser.Lex();  // Eat "1" of 1to8
 | |
|         if (!getLexer().is(AsmToken::Identifier) ||
 | |
|             !getLexer().getTok().getIdentifier().startswith("to"))
 | |
|           return TokError("Expected 1to<NUM> at this point");
 | |
|         // Recognize only reasonable suffixes.
 | |
|         const char *BroadcastPrimitive =
 | |
|           StringSwitch<const char*>(getLexer().getTok().getIdentifier())
 | |
|             .Case("to2",  "{1to2}")
 | |
|             .Case("to4",  "{1to4}")
 | |
|             .Case("to8",  "{1to8}")
 | |
|             .Case("to16", "{1to16}")
 | |
|             .Default(nullptr);
 | |
|         if (!BroadcastPrimitive)
 | |
|           return TokError("Invalid memory broadcast primitive.");
 | |
|         Parser.Lex();  // Eat "toN" of 1toN
 | |
|         if (!getLexer().is(AsmToken::RCurly))
 | |
|           return TokError("Expected } at this point");
 | |
|         Parser.Lex();  // Eat "}"
 | |
|         Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
 | |
|                                                    consumedToken));
 | |
|         // No AVX512 specific primitives can pass
 | |
|         // after memory broadcasting, so return.
 | |
|         return false;
 | |
|       } else {
 | |
|         // Parse either {k}{z}, {z}{k}, {k} or {z}
 | |
|         // last one have no meaning, but GCC accepts it
 | |
|         // Currently, we're just pass a '{' mark
 | |
|         std::unique_ptr<X86Operand> Z;
 | |
|         if (ParseZ(Z, consumedToken))
 | |
|           return true;
 | |
|         // Reaching here means that parsing of the allegadly '{z}' mark yielded
 | |
|         // no errors.
 | |
|         // Query for the need of further parsing for a {%k<NUM>} mark
 | |
|         if (!Z || getLexer().is(AsmToken::LCurly)) {
 | |
|           const SMLoc StartLoc = Z ? consumeToken() : consumedToken;
 | |
|           // Parse an op-mask register mark ({%k<NUM>}), which is now to be
 | |
|           // expected
 | |
|           if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
 | |
|             if (!getLexer().is(AsmToken::RCurly))
 | |
|               return Error(getLexer().getLoc(), "Expected } at this point");
 | |
|             Operands.push_back(X86Operand::CreateToken("{", StartLoc));
 | |
|             Operands.push_back(std::move(Op));
 | |
|             Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
 | |
|           } else
 | |
|             return Error(getLexer().getLoc(),
 | |
|                           "Expected an op-mask register at this point");
 | |
|           // {%k<NUM>} mark is found, inquire for {z}
 | |
|           if (getLexer().is(AsmToken::LCurly) && !Z) {
 | |
|             // Have we've found a parsing error, or found no (expected) {z} mark
 | |
|             // - report an error
 | |
|             if (ParseZ(Z, consumeToken()) || !Z)
 | |
|               return true;
 | |
| 
 | |
|           }
 | |
|           // '{z}' on its own is meaningless, hence should be ignored.
 | |
|           // on the contrary - have it been accompanied by a K register,
 | |
|           // allow it.
 | |
|           if (Z)
 | |
|             Operands.push_back(std::move(Z));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
 | |
| /// has already been parsed if present.
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
 | |
|                                                           SMLoc MemStart) {
 | |
| 
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   // We have to disambiguate a parenthesized expression "(4+5)" from the start
 | |
|   // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
 | |
|   // only way to do this without lookahead is to eat the '(' and see what is
 | |
|   // after it.
 | |
|   const MCExpr *Disp = MCConstantExpr::create(0, getParser().getContext());
 | |
|   if (getLexer().isNot(AsmToken::LParen)) {
 | |
|     SMLoc ExprEnd;
 | |
|     if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
 | |
| 
 | |
|     // After parsing the base expression we could either have a parenthesized
 | |
|     // memory address or not.  If not, return now.  If so, eat the (.
 | |
|     if (getLexer().isNot(AsmToken::LParen)) {
 | |
|       // Unless we have a segment register, treat this as an immediate.
 | |
|       if (SegReg == 0)
 | |
|         return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd);
 | |
|       return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
 | |
|                                    MemStart, ExprEnd);
 | |
|     }
 | |
| 
 | |
|     // Eat the '('.
 | |
|     Parser.Lex();
 | |
|   } else {
 | |
|     // Okay, we have a '('.  We don't know if this is an expression or not, but
 | |
|     // so we have to eat the ( to see beyond it.
 | |
|     SMLoc LParenLoc = Parser.getTok().getLoc();
 | |
|     Parser.Lex(); // Eat the '('.
 | |
| 
 | |
|     if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
 | |
|       // Nothing to do here, fall into the code below with the '(' part of the
 | |
|       // memory operand consumed.
 | |
|     } else {
 | |
|       SMLoc ExprEnd;
 | |
| 
 | |
|       // It must be an parenthesized expression, parse it now.
 | |
|       if (getParser().parseParenExpression(Disp, ExprEnd))
 | |
|         return nullptr;
 | |
| 
 | |
|       // After parsing the base expression we could either have a parenthesized
 | |
|       // memory address or not.  If not, return now.  If so, eat the (.
 | |
|       if (getLexer().isNot(AsmToken::LParen)) {
 | |
|         // Unless we have a segment register, treat this as an immediate.
 | |
|         if (SegReg == 0)
 | |
|           return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc,
 | |
|                                        ExprEnd);
 | |
|         return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
 | |
|                                      MemStart, ExprEnd);
 | |
|       }
 | |
| 
 | |
|       // Eat the '('.
 | |
|       Parser.Lex();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we reached here, then we just ate the ( of the memory operand.  Process
 | |
|   // the rest of the memory operand.
 | |
|   unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
 | |
|   SMLoc IndexLoc, BaseLoc;
 | |
| 
 | |
|   if (getLexer().is(AsmToken::Percent)) {
 | |
|     SMLoc StartLoc, EndLoc;
 | |
|     BaseLoc = Parser.getTok().getLoc();
 | |
|     if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
 | |
|     if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
 | |
|       Error(StartLoc, "eiz and riz can only be used as index registers",
 | |
|             SMRange(StartLoc, EndLoc));
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLexer().is(AsmToken::Comma)) {
 | |
|     Parser.Lex(); // Eat the comma.
 | |
|     IndexLoc = Parser.getTok().getLoc();
 | |
| 
 | |
|     // Following the comma we should have either an index register, or a scale
 | |
|     // value. We don't support the later form, but we want to parse it
 | |
|     // correctly.
 | |
|     //
 | |
|     // Not that even though it would be completely consistent to support syntax
 | |
|     // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
 | |
|     if (getLexer().is(AsmToken::Percent)) {
 | |
|       SMLoc L;
 | |
|       if (ParseRegister(IndexReg, L, L))
 | |
|         return nullptr;
 | |
|       if (BaseReg == X86::RIP) {
 | |
|         Error(IndexLoc, "%rip as base register can not have an index register");
 | |
|         return nullptr;
 | |
|       }
 | |
|       if (IndexReg == X86::RIP) {
 | |
|         Error(IndexLoc, "%rip is not allowed as an index register");
 | |
|         return nullptr;
 | |
|       }
 | |
| 
 | |
|       if (getLexer().isNot(AsmToken::RParen)) {
 | |
|         // Parse the scale amount:
 | |
|         //  ::= ',' [scale-expression]
 | |
|         if (getLexer().isNot(AsmToken::Comma)) {
 | |
|           Error(Parser.getTok().getLoc(),
 | |
|                 "expected comma in scale expression");
 | |
|           return nullptr;
 | |
|         }
 | |
|         Parser.Lex(); // Eat the comma.
 | |
| 
 | |
|         if (getLexer().isNot(AsmToken::RParen)) {
 | |
|           SMLoc Loc = Parser.getTok().getLoc();
 | |
| 
 | |
|           int64_t ScaleVal;
 | |
|           if (getParser().parseAbsoluteExpression(ScaleVal)){
 | |
|             Error(Loc, "expected scale expression");
 | |
|             return nullptr;
 | |
|           }
 | |
| 
 | |
|           // Validate the scale amount.
 | |
|           if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | |
|               ScaleVal != 1) {
 | |
|             Error(Loc, "scale factor in 16-bit address must be 1");
 | |
|             return nullptr;
 | |
|           }
 | |
|           if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 &&
 | |
|               ScaleVal != 8) {
 | |
|             Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
 | |
|             return nullptr;
 | |
|           }
 | |
|           Scale = (unsigned)ScaleVal;
 | |
|         }
 | |
|       }
 | |
|     } else if (getLexer().isNot(AsmToken::RParen)) {
 | |
|       // A scale amount without an index is ignored.
 | |
|       // index.
 | |
|       SMLoc Loc = Parser.getTok().getLoc();
 | |
| 
 | |
|       int64_t Value;
 | |
|       if (getParser().parseAbsoluteExpression(Value))
 | |
|         return nullptr;
 | |
| 
 | |
|       if (Value != 1)
 | |
|         Warning(Loc, "scale factor without index register is ignored");
 | |
|       Scale = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
 | |
|   if (getLexer().isNot(AsmToken::RParen)) {
 | |
|     Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
 | |
|     return nullptr;
 | |
|   }
 | |
|   SMLoc MemEnd = Parser.getTok().getEndLoc();
 | |
|   Parser.Lex(); // Eat the ')'.
 | |
| 
 | |
|   // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
 | |
|   // and then only in non-64-bit modes. Except for DX, which is a special case
 | |
|   // because an unofficial form of in/out instructions uses it.
 | |
|   if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | |
|       (is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
 | |
|                          BaseReg != X86::SI && BaseReg != X86::DI)) &&
 | |
|       BaseReg != X86::DX) {
 | |
|     Error(BaseLoc, "invalid 16-bit base register");
 | |
|     return nullptr;
 | |
|   }
 | |
|   if (BaseReg == 0 &&
 | |
|       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
 | |
|     Error(IndexLoc, "16-bit memory operand may not include only index register");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   StringRef ErrMsg;
 | |
|   if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
 | |
|     Error(BaseLoc, ErrMsg);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (SegReg || BaseReg || IndexReg)
 | |
|     return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | |
|                                  IndexReg, Scale, MemStart, MemEnd);
 | |
|   return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | |
|                                     SMLoc NameLoc, OperandVector &Operands) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   InstInfo = &Info;
 | |
|   StringRef PatchedName = Name;
 | |
| 
 | |
|   if (Name == "jmp" && isParsingIntelSyntax() && isParsingInlineAsm()) {
 | |
|     StringRef NextTok = Parser.getTok().getString();
 | |
|     if (NextTok == "short") {
 | |
|       SMLoc NameEndLoc =
 | |
|           NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
 | |
|       // Eat the short keyword
 | |
|       Parser.Lex();
 | |
|       // MS ignores the short keyword, it determines the jmp type based
 | |
|       // on the distance of the label
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
 | |
|                                           NextTok.size() + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to recognize setneb as setne.
 | |
|   if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
 | |
|       PatchedName != "setb" && PatchedName != "setnb")
 | |
|     PatchedName = PatchedName.substr(0, Name.size()-1);
 | |
| 
 | |
|   // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
 | |
|   if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
 | |
|       (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
 | |
|        PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
 | |
|     bool IsVCMP = PatchedName[0] == 'v';
 | |
|     unsigned CCIdx = IsVCMP ? 4 : 3;
 | |
|     unsigned ComparisonCode = StringSwitch<unsigned>(
 | |
|       PatchedName.slice(CCIdx, PatchedName.size() - 2))
 | |
|       .Case("eq",       0x00)
 | |
|       .Case("eq_oq",    0x00)
 | |
|       .Case("lt",       0x01)
 | |
|       .Case("lt_os",    0x01)
 | |
|       .Case("le",       0x02)
 | |
|       .Case("le_os",    0x02)
 | |
|       .Case("unord",    0x03)
 | |
|       .Case("unord_q",  0x03)
 | |
|       .Case("neq",      0x04)
 | |
|       .Case("neq_uq",   0x04)
 | |
|       .Case("nlt",      0x05)
 | |
|       .Case("nlt_us",   0x05)
 | |
|       .Case("nle",      0x06)
 | |
|       .Case("nle_us",   0x06)
 | |
|       .Case("ord",      0x07)
 | |
|       .Case("ord_q",    0x07)
 | |
|       /* AVX only from here */
 | |
|       .Case("eq_uq",    0x08)
 | |
|       .Case("nge",      0x09)
 | |
|       .Case("nge_us",   0x09)
 | |
|       .Case("ngt",      0x0A)
 | |
|       .Case("ngt_us",   0x0A)
 | |
|       .Case("false",    0x0B)
 | |
|       .Case("false_oq", 0x0B)
 | |
|       .Case("neq_oq",   0x0C)
 | |
|       .Case("ge",       0x0D)
 | |
|       .Case("ge_os",    0x0D)
 | |
|       .Case("gt",       0x0E)
 | |
|       .Case("gt_os",    0x0E)
 | |
|       .Case("true",     0x0F)
 | |
|       .Case("true_uq",  0x0F)
 | |
|       .Case("eq_os",    0x10)
 | |
|       .Case("lt_oq",    0x11)
 | |
|       .Case("le_oq",    0x12)
 | |
|       .Case("unord_s",  0x13)
 | |
|       .Case("neq_us",   0x14)
 | |
|       .Case("nlt_uq",   0x15)
 | |
|       .Case("nle_uq",   0x16)
 | |
|       .Case("ord_s",    0x17)
 | |
|       .Case("eq_us",    0x18)
 | |
|       .Case("nge_uq",   0x19)
 | |
|       .Case("ngt_uq",   0x1A)
 | |
|       .Case("false_os", 0x1B)
 | |
|       .Case("neq_os",   0x1C)
 | |
|       .Case("ge_oq",    0x1D)
 | |
|       .Case("gt_oq",    0x1E)
 | |
|       .Case("true_us",  0x1F)
 | |
|       .Default(~0U);
 | |
|     if (ComparisonCode != ~0U && (IsVCMP || ComparisonCode < 8)) {
 | |
| 
 | |
|       Operands.push_back(X86Operand::CreateToken(PatchedName.slice(0, CCIdx),
 | |
|                                                  NameLoc));
 | |
| 
 | |
|       const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
 | |
|                                                    getParser().getContext());
 | |
|       Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | |
| 
 | |
|       PatchedName = PatchedName.substr(PatchedName.size() - 2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
 | |
|   if (PatchedName.startswith("vpcmp") &&
 | |
|       (PatchedName.endswith("b") || PatchedName.endswith("w") ||
 | |
|        PatchedName.endswith("d") || PatchedName.endswith("q"))) {
 | |
|     unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
 | |
|     unsigned ComparisonCode = StringSwitch<unsigned>(
 | |
|       PatchedName.slice(5, PatchedName.size() - CCIdx))
 | |
|       .Case("eq",    0x0) // Only allowed on unsigned. Checked below.
 | |
|       .Case("lt",    0x1)
 | |
|       .Case("le",    0x2)
 | |
|       //.Case("false", 0x3) // Not a documented alias.
 | |
|       .Case("neq",   0x4)
 | |
|       .Case("nlt",   0x5)
 | |
|       .Case("nle",   0x6)
 | |
|       //.Case("true",  0x7) // Not a documented alias.
 | |
|       .Default(~0U);
 | |
|     if (ComparisonCode != ~0U && (ComparisonCode != 0 || CCIdx == 2)) {
 | |
|       Operands.push_back(X86Operand::CreateToken("vpcmp", NameLoc));
 | |
| 
 | |
|       const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
 | |
|                                                    getParser().getContext());
 | |
|       Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | |
| 
 | |
|       PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
 | |
|   if (PatchedName.startswith("vpcom") &&
 | |
|       (PatchedName.endswith("b") || PatchedName.endswith("w") ||
 | |
|        PatchedName.endswith("d") || PatchedName.endswith("q"))) {
 | |
|     unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
 | |
|     unsigned ComparisonCode = StringSwitch<unsigned>(
 | |
|       PatchedName.slice(5, PatchedName.size() - CCIdx))
 | |
|       .Case("lt",    0x0)
 | |
|       .Case("le",    0x1)
 | |
|       .Case("gt",    0x2)
 | |
|       .Case("ge",    0x3)
 | |
|       .Case("eq",    0x4)
 | |
|       .Case("neq",   0x5)
 | |
|       .Case("false", 0x6)
 | |
|       .Case("true",  0x7)
 | |
|       .Default(~0U);
 | |
|     if (ComparisonCode != ~0U) {
 | |
|       Operands.push_back(X86Operand::CreateToken("vpcom", NameLoc));
 | |
| 
 | |
|       const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
 | |
|                                                    getParser().getContext());
 | |
|       Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | |
| 
 | |
|       PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
 | |
| 
 | |
|   // Determine whether this is an instruction prefix.
 | |
|   bool isPrefix =
 | |
|     Name == "lock" || Name == "rep" ||
 | |
|     Name == "repe" || Name == "repz" ||
 | |
|     Name == "repne" || Name == "repnz" ||
 | |
|     Name == "rex64" || Name == "data16" || Name == "data32";
 | |
| 
 | |
|   bool CurlyAsEndOfStatement = false;
 | |
|   // This does the actual operand parsing.  Don't parse any more if we have a
 | |
|   // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
 | |
|   // just want to parse the "lock" as the first instruction and the "incl" as
 | |
|   // the next one.
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
 | |
| 
 | |
|     // Parse '*' modifier.
 | |
|     if (getLexer().is(AsmToken::Star))
 | |
|       Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
 | |
| 
 | |
|     // Read the operands.
 | |
|     while(1) {
 | |
|       if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
 | |
|         Operands.push_back(std::move(Op));
 | |
|         if (HandleAVX512Operand(Operands, *Operands.back()))
 | |
|           return true;
 | |
|       } else {
 | |
|          return true;
 | |
|       }
 | |
|       // check for comma and eat it
 | |
|       if (getLexer().is(AsmToken::Comma))
 | |
|         Parser.Lex();
 | |
|       else
 | |
|         break;
 | |
|      }
 | |
| 
 | |
|     // In MS inline asm curly braces mark the begining/end of a block, therefore
 | |
|     // they should be interepreted as end of statement
 | |
|     CurlyAsEndOfStatement =
 | |
|         isParsingIntelSyntax() && isParsingInlineAsm() &&
 | |
|         (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
 | |
|     if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
 | |
|       return TokError("unexpected token in argument list");
 | |
|    }
 | |
| 
 | |
|   // Consume the EndOfStatement or the prefix separator Slash
 | |
|   if (getLexer().is(AsmToken::EndOfStatement) ||
 | |
|       (isPrefix && getLexer().is(AsmToken::Slash)))
 | |
|     Parser.Lex();
 | |
|   else if (CurlyAsEndOfStatement)
 | |
|     // Add an actual EndOfStatement before the curly brace
 | |
|     Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
 | |
|                                    getLexer().getTok().getLoc(), 0);
 | |
| 
 | |
|   // This is for gas compatibility and cannot be done in td.
 | |
|   // Adding "p" for some floating point with no argument.
 | |
|   // For example: fsub --> fsubp
 | |
|   bool IsFp =
 | |
|     Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
 | |
|   if (IsFp && Operands.size() == 1) {
 | |
|     const char *Repl = StringSwitch<const char *>(Name)
 | |
|       .Case("fsub", "fsubp")
 | |
|       .Case("fdiv", "fdivp")
 | |
|       .Case("fsubr", "fsubrp")
 | |
|       .Case("fdivr", "fdivrp");
 | |
|     static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
 | |
|   }
 | |
| 
 | |
|   // Moving a 32 or 16 bit value into a segment register has the same
 | |
|   // behavior. Modify such instructions to always take shorter form.
 | |
|   if ((Name == "mov" || Name == "movw" || Name == "movl") &&
 | |
|       (Operands.size() == 3)) {
 | |
|     X86Operand &Op1 = (X86Operand &)*Operands[1];
 | |
|     X86Operand &Op2 = (X86Operand &)*Operands[2];
 | |
|     SMLoc Loc = Op1.getEndLoc();
 | |
|     if (Op1.isReg() && Op2.isReg() &&
 | |
|         X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
 | |
|             Op2.getReg()) &&
 | |
|         (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
 | |
|          X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
 | |
|       // Change instruction name to match new instruction.
 | |
|       if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
 | |
|         Name = is16BitMode() ? "movw" : "movl";
 | |
|         Operands[0] = X86Operand::CreateToken(Name, NameLoc);
 | |
|       }
 | |
|       // Select the correct equivalent 16-/32-bit source register.
 | |
|       unsigned Reg =
 | |
|           getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
 | |
|       Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
 | |
|   // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | |
|   // documented form in various unofficial manuals, so a lot of code uses it.
 | |
|   if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
 | |
|        Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
 | |
|       Operands.size() == 3) {
 | |
|     X86Operand &Op = (X86Operand &)*Operands.back();
 | |
|     if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | |
|         isa<MCConstantExpr>(Op.Mem.Disp) &&
 | |
|         cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | |
|         Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | |
|       SMLoc Loc = Op.getEndLoc();
 | |
|       Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | |
|     }
 | |
|   }
 | |
|   // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
 | |
|   if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
 | |
|        Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
 | |
|       Operands.size() == 3) {
 | |
|     X86Operand &Op = (X86Operand &)*Operands[1];
 | |
|     if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | |
|         isa<MCConstantExpr>(Op.Mem.Disp) &&
 | |
|         cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | |
|         Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | |
|       SMLoc Loc = Op.getEndLoc();
 | |
|       Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
 | |
|   bool HadVerifyError = false;
 | |
| 
 | |
|   // Append default arguments to "ins[bwld]"
 | |
|   if (Name.startswith("ins") && 
 | |
|       (Operands.size() == 1 || Operands.size() == 3) &&
 | |
|       (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
 | |
|        Name == "ins")) {
 | |
|     
 | |
|     AddDefaultSrcDestOperands(TmpOperands,
 | |
|                               X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
 | |
|                               DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Append default arguments to "outs[bwld]"
 | |
|   if (Name.startswith("outs") && 
 | |
|       (Operands.size() == 1 || Operands.size() == 3) &&
 | |
|       (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
 | |
|        Name == "outsd" || Name == "outs")) {
 | |
|     AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
 | |
|                               X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
 | |
|   // values of $SIREG according to the mode. It would be nice if this
 | |
|   // could be achieved with InstAlias in the tables.
 | |
|   if (Name.startswith("lods") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 2) &&
 | |
|       (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
 | |
|        Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
 | |
|     TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
 | |
|   // values of $DIREG according to the mode. It would be nice if this
 | |
|   // could be achieved with InstAlias in the tables.
 | |
|   if (Name.startswith("stos") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 2) &&
 | |
|       (Name == "stos" || Name == "stosb" || Name == "stosw" ||
 | |
|        Name == "stosl" || Name == "stosd" || Name == "stosq")) {
 | |
|     TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
 | |
|   // values of $DIREG according to the mode. It would be nice if this
 | |
|   // could be achieved with InstAlias in the tables.
 | |
|   if (Name.startswith("scas") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 2) &&
 | |
|       (Name == "scas" || Name == "scasb" || Name == "scasw" ||
 | |
|        Name == "scasl" || Name == "scasd" || Name == "scasq")) {
 | |
|     TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Add default SI and DI operands to "cmps[bwlq]".
 | |
|   if (Name.startswith("cmps") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 3) &&
 | |
|       (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
 | |
|        Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
 | |
|     AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
 | |
|                               DefaultMemSIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Add default SI and DI operands to "movs[bwlq]".
 | |
|   if (((Name.startswith("movs") &&
 | |
|         (Name == "movs" || Name == "movsb" || Name == "movsw" ||
 | |
|          Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
 | |
|        (Name.startswith("smov") &&
 | |
|         (Name == "smov" || Name == "smovb" || Name == "smovw" ||
 | |
|          Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
 | |
|       (Operands.size() == 1 || Operands.size() == 3)) {
 | |
|     if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
 | |
|       Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
 | |
|     AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
 | |
|                               DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Check if we encountered an error for one the string insturctions
 | |
|   if (HadVerifyError) {
 | |
|     return HadVerifyError;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
 | |
|   // "shift <op>".
 | |
|   if ((Name.startswith("shr") || Name.startswith("sar") ||
 | |
|        Name.startswith("shl") || Name.startswith("sal") ||
 | |
|        Name.startswith("rcl") || Name.startswith("rcr") ||
 | |
|        Name.startswith("rol") || Name.startswith("ror")) &&
 | |
|       Operands.size() == 3) {
 | |
|     if (isParsingIntelSyntax()) {
 | |
|       // Intel syntax
 | |
|       X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
 | |
|       if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | |
|           cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | |
|         Operands.pop_back();
 | |
|     } else {
 | |
|       X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | |
|       if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | |
|           cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | |
|         Operands.erase(Operands.begin() + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transforms "int $3" into "int3" as a size optimization.  We can't write an
 | |
|   // instalias with an immediate operand yet.
 | |
|   if (Name == "int" && Operands.size() == 2) {
 | |
|     X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | |
|     if (Op1.isImm())
 | |
|       if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
 | |
|         if (CE->getValue() == 3) {
 | |
|           Operands.erase(Operands.begin() + 1);
 | |
|           static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Transforms "xlat mem8" into "xlatb"
 | |
|   if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
 | |
|     X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | |
|     if (Op1.isMem8()) {
 | |
|       Warning(Op1.getStartLoc(), "memory operand is only for determining the "
 | |
|                                  "size, (R|E)BX will be used for the location");
 | |
|       Operands.pop_back();
 | |
|       static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const char *getSubtargetFeatureName(uint64_t Val);
 | |
| 
 | |
| void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
 | |
|                                    MCStreamer &Out) {
 | |
|   Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(),
 | |
|                                                 MII, Out);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                            OperandVector &Operands,
 | |
|                                            MCStreamer &Out, uint64_t &ErrorInfo,
 | |
|                                            bool MatchingInlineAsm) {
 | |
|   if (isParsingIntelSyntax())
 | |
|     return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | |
|                                         MatchingInlineAsm);
 | |
|   return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | |
|                                     MatchingInlineAsm);
 | |
| }
 | |
| 
 | |
| void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
 | |
|                                      OperandVector &Operands, MCStreamer &Out,
 | |
|                                      bool MatchingInlineAsm) {
 | |
|   // FIXME: This should be replaced with a real .td file alias mechanism.
 | |
|   // Also, MatchInstructionImpl should actually *do* the EmitInstruction
 | |
|   // call.
 | |
|   const char *Repl = StringSwitch<const char *>(Op.getToken())
 | |
|                          .Case("finit", "fninit")
 | |
|                          .Case("fsave", "fnsave")
 | |
|                          .Case("fstcw", "fnstcw")
 | |
|                          .Case("fstcww", "fnstcw")
 | |
|                          .Case("fstenv", "fnstenv")
 | |
|                          .Case("fstsw", "fnstsw")
 | |
|                          .Case("fstsww", "fnstsw")
 | |
|                          .Case("fclex", "fnclex")
 | |
|                          .Default(nullptr);
 | |
|   if (Repl) {
 | |
|     MCInst Inst;
 | |
|     Inst.setOpcode(X86::WAIT);
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       EmitInstruction(Inst, Operands, Out);
 | |
|     Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
 | |
|                                        bool MatchingInlineAsm) {
 | |
|   assert(ErrorInfo && "Unknown missing feature!");
 | |
|   SmallString<126> Msg;
 | |
|   raw_svector_ostream OS(Msg);
 | |
|   OS << "instruction requires:";
 | |
|   uint64_t Mask = 1;
 | |
|   for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
 | |
|     if (ErrorInfo & Mask)
 | |
|       OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
 | |
|     Mask <<= 1;
 | |
|   }
 | |
|   return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                               OperandVector &Operands,
 | |
|                                               MCStreamer &Out,
 | |
|                                               uint64_t &ErrorInfo,
 | |
|                                               bool MatchingInlineAsm) {
 | |
|   assert(!Operands.empty() && "Unexpect empty operand list!");
 | |
|   X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | |
|   assert(Op.isToken() && "Leading operand should always be a mnemonic!");
 | |
|   SMRange EmptyRange = None;
 | |
| 
 | |
|   // First, handle aliases that expand to multiple instructions.
 | |
|   MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
 | |
| 
 | |
|   bool WasOriginallyInvalidOperand = false;
 | |
|   MCInst Inst;
 | |
| 
 | |
|   // First, try a direct match.
 | |
|   switch (MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm,
 | |
|                            isParsingIntelSyntax())) {
 | |
|   default: llvm_unreachable("Unexpected match result!");
 | |
|   case Match_Success:
 | |
|     // Some instructions need post-processing to, for example, tweak which
 | |
|     // encoding is selected. Loop on it while changes happen so the
 | |
|     // individual transformations can chain off each other.
 | |
|     if (!MatchingInlineAsm)
 | |
|       while (processInstruction(Inst, Operands))
 | |
|         ;
 | |
| 
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       EmitInstruction(Inst, Operands, Out);
 | |
|     Opcode = Inst.getOpcode();
 | |
|     return false;
 | |
|   case Match_MissingFeature:
 | |
|     return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
 | |
|   case Match_InvalidOperand:
 | |
|     WasOriginallyInvalidOperand = true;
 | |
|     break;
 | |
|   case Match_MnemonicFail:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Ideally, we would only attempt suffix matches for things which are
 | |
|   // valid prefixes, and we could just infer the right unambiguous
 | |
|   // type. However, that requires substantially more matcher support than the
 | |
|   // following hack.
 | |
| 
 | |
|   // Change the operand to point to a temporary token.
 | |
|   StringRef Base = Op.getToken();
 | |
|   SmallString<16> Tmp;
 | |
|   Tmp += Base;
 | |
|   Tmp += ' ';
 | |
|   Op.setTokenValue(Tmp);
 | |
| 
 | |
|   // If this instruction starts with an 'f', then it is a floating point stack
 | |
|   // instruction.  These come in up to three forms for 32-bit, 64-bit, and
 | |
|   // 80-bit floating point, which use the suffixes s,l,t respectively.
 | |
|   //
 | |
|   // Otherwise, we assume that this may be an integer instruction, which comes
 | |
|   // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
 | |
|   const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
 | |
| 
 | |
|   // Check for the various suffix matches.
 | |
|   uint64_t ErrorInfoIgnore;
 | |
|   uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
 | |
|   unsigned Match[4];
 | |
| 
 | |
|   for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
 | |
|     Tmp.back() = Suffixes[I];
 | |
|     Match[I] = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
 | |
|                                 MatchingInlineAsm, isParsingIntelSyntax());
 | |
|     // If this returned as a missing feature failure, remember that.
 | |
|     if (Match[I] == Match_MissingFeature)
 | |
|       ErrorInfoMissingFeature = ErrorInfoIgnore;
 | |
|   }
 | |
| 
 | |
|   // Restore the old token.
 | |
|   Op.setTokenValue(Base);
 | |
| 
 | |
|   // If exactly one matched, then we treat that as a successful match (and the
 | |
|   // instruction will already have been filled in correctly, since the failing
 | |
|   // matches won't have modified it).
 | |
|   unsigned NumSuccessfulMatches =
 | |
|       std::count(std::begin(Match), std::end(Match), Match_Success);
 | |
|   if (NumSuccessfulMatches == 1) {
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       EmitInstruction(Inst, Operands, Out);
 | |
|     Opcode = Inst.getOpcode();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the match failed, try to produce a decent error message.
 | |
| 
 | |
|   // If we had multiple suffix matches, then identify this as an ambiguous
 | |
|   // match.
 | |
|   if (NumSuccessfulMatches > 1) {
 | |
|     char MatchChars[4];
 | |
|     unsigned NumMatches = 0;
 | |
|     for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
 | |
|       if (Match[I] == Match_Success)
 | |
|         MatchChars[NumMatches++] = Suffixes[I];
 | |
| 
 | |
|     SmallString<126> Msg;
 | |
|     raw_svector_ostream OS(Msg);
 | |
|     OS << "ambiguous instructions require an explicit suffix (could be ";
 | |
|     for (unsigned i = 0; i != NumMatches; ++i) {
 | |
|       if (i != 0)
 | |
|         OS << ", ";
 | |
|       if (i + 1 == NumMatches)
 | |
|         OS << "or ";
 | |
|       OS << "'" << Base << MatchChars[i] << "'";
 | |
|     }
 | |
|     OS << ")";
 | |
|     Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Okay, we know that none of the variants matched successfully.
 | |
| 
 | |
|   // If all of the instructions reported an invalid mnemonic, then the original
 | |
|   // mnemonic was invalid.
 | |
|   if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
 | |
|     if (!WasOriginallyInvalidOperand) {
 | |
|       return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
 | |
|                    Op.getLocRange(), MatchingInlineAsm);
 | |
|     }
 | |
| 
 | |
|     // Recover location info for the operand if we know which was the problem.
 | |
|     if (ErrorInfo != ~0ULL) {
 | |
|       if (ErrorInfo >= Operands.size())
 | |
|         return Error(IDLoc, "too few operands for instruction", EmptyRange,
 | |
|                      MatchingInlineAsm);
 | |
| 
 | |
|       X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
 | |
|       if (Operand.getStartLoc().isValid()) {
 | |
|         SMRange OperandRange = Operand.getLocRange();
 | |
|         return Error(Operand.getStartLoc(), "invalid operand for instruction",
 | |
|                      OperandRange, MatchingInlineAsm);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with a missing feature, report this as a
 | |
|   // missing feature.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_MissingFeature) == 1) {
 | |
|     ErrorInfo = ErrorInfoMissingFeature;
 | |
|     return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
 | |
|                                MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with an invalid operand, report this as an
 | |
|   // operand failure.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_InvalidOperand) == 1) {
 | |
|     return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If all of these were an outright failure, report it in a useless way.
 | |
|   Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
 | |
|         EmptyRange, MatchingInlineAsm);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned X86AsmParser::AdjustAVX512Mem(unsigned Size,
 | |
|     X86Operand* UnsizedMemOpNext) {
 | |
|   // Check for the existence of an AVX512 platform
 | |
|   if (!getSTI().getFeatureBits()[X86::FeatureAVX512])
 | |
|     return 0;
 | |
|   // Allow adjusting upon a (x|y|z)mm
 | |
|   if (Size == 512 || Size == 256 || Size == 128)
 | |
|     return Size;
 | |
|   // This is an allegadly broadcasting mem op adjustment,
 | |
|   // allow some more inquiring to validate it
 | |
|   if (Size == 64 || Size == 32)
 | |
|     return UnsizedMemOpNext && UnsizedMemOpNext->isToken() &&
 | |
|       UnsizedMemOpNext->getToken().substr(0, 4).equals("{1to") ? Size : 0;
 | |
|   // Do not allow any other type of adjustments
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                                 OperandVector &Operands,
 | |
|                                                 MCStreamer &Out,
 | |
|                                                 uint64_t &ErrorInfo,
 | |
|                                                 bool MatchingInlineAsm) {
 | |
|   assert(!Operands.empty() && "Unexpect empty operand list!");
 | |
|   X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | |
|   assert(Op.isToken() && "Leading operand should always be a mnemonic!");
 | |
|   StringRef Mnemonic = Op.getToken();
 | |
|   SMRange EmptyRange = None;
 | |
|   StringRef Base = Op.getToken();
 | |
| 
 | |
|   // First, handle aliases that expand to multiple instructions.
 | |
|   MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
 | |
| 
 | |
|   MCInst Inst;
 | |
| 
 | |
|   // Find one unsized memory operand, if present.
 | |
|   X86Operand *UnsizedMemOp = nullptr;
 | |
|   // If unsized memory operand was found - obtain following operand.
 | |
|   // For use in AdjustAVX512Mem
 | |
|   X86Operand *UnsizedMemOpNext = nullptr;
 | |
|   for (const auto &Op : Operands) {
 | |
|     X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
 | |
|     if (UnsizedMemOp) {
 | |
|       UnsizedMemOpNext = X86Op;
 | |
|       // Have we found an unqualified memory operand,
 | |
|       // break. IA allows only one memory operand.
 | |
|       break;
 | |
|     }
 | |
|     if (X86Op->isMemUnsized())
 | |
|       UnsizedMemOp = X86Op;
 | |
|   }
 | |
| 
 | |
|   // Allow some instructions to have implicitly pointer-sized operands.  This is
 | |
|   // compatible with gas.
 | |
|   if (UnsizedMemOp) {
 | |
|     static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
 | |
|     for (const char *Instr : PtrSizedInstrs) {
 | |
|       if (Mnemonic == Instr) {
 | |
|         UnsizedMemOp->Mem.Size = getPointerWidth();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<unsigned, 8> Match;
 | |
|   uint64_t ErrorInfoMissingFeature = 0;
 | |
| 
 | |
|   // If unsized push has immediate operand we should default the default pointer
 | |
|   // size for the size.
 | |
|   if (Mnemonic == "push" && Operands.size() == 2) {
 | |
|     auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
 | |
|     if (X86Op->isImm()) {
 | |
|       // If it's not a constant fall through and let remainder take care of it.
 | |
|       const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
 | |
|       unsigned Size = getPointerWidth();
 | |
|       if (CE &&
 | |
|           (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
 | |
|         SmallString<16> Tmp;
 | |
|         Tmp += Base;
 | |
|         Tmp += (is64BitMode())
 | |
|                    ? "q"
 | |
|                    : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
 | |
|         Op.setTokenValue(Tmp);
 | |
|         // Do match in ATT mode to allow explicit suffix usage.
 | |
|         Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
 | |
|                                          MatchingInlineAsm,
 | |
|                                          false /*isParsingIntelSyntax()*/));
 | |
|         Op.setTokenValue(Base);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If an unsized memory operand is present, try to match with each memory
 | |
|   // operand size.  In Intel assembly, the size is not part of the instruction
 | |
|   // mnemonic.
 | |
|   unsigned MatchedSize = 0;
 | |
|   if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
 | |
|     static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
 | |
|     for (unsigned Size : MopSizes) {
 | |
|       UnsizedMemOp->Mem.Size = Size;
 | |
|       uint64_t ErrorInfoIgnore;
 | |
|       unsigned LastOpcode = Inst.getOpcode();
 | |
|       unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
 | |
|                                     MatchingInlineAsm, isParsingIntelSyntax());
 | |
|       if (Match.empty() || LastOpcode != Inst.getOpcode())
 | |
|         Match.push_back(M);
 | |
| 
 | |
|       // If this returned as a missing feature failure, remember that.
 | |
|       if (Match.back() == Match_MissingFeature)
 | |
|         ErrorInfoMissingFeature = ErrorInfoIgnore;
 | |
|       if (M == Match_Success)
 | |
|         // MS-compatability:
 | |
|         // Adjust AVX512 vector/broadcast memory operand,
 | |
|         // when facing the absence of a size qualifier.
 | |
|         // Match GCC behavior on respective cases.
 | |
|         MatchedSize = AdjustAVX512Mem(Size, UnsizedMemOpNext);
 | |
|     }
 | |
| 
 | |
|     // Restore the size of the unsized memory operand if we modified it.
 | |
|     if (UnsizedMemOp)
 | |
|       UnsizedMemOp->Mem.Size = 0;
 | |
|   }
 | |
| 
 | |
|   // If we haven't matched anything yet, this is not a basic integer or FPU
 | |
|   // operation.  There shouldn't be any ambiguity in our mnemonic table, so try
 | |
|   // matching with the unsized operand.
 | |
|   if (Match.empty()) {
 | |
|     Match.push_back(MatchInstruction(
 | |
|         Operands, Inst, ErrorInfo, MatchingInlineAsm, isParsingIntelSyntax()));
 | |
|     // If this returned as a missing feature failure, remember that.
 | |
|     if (Match.back() == Match_MissingFeature)
 | |
|       ErrorInfoMissingFeature = ErrorInfo;
 | |
|   }
 | |
| 
 | |
|   // Restore the size of the unsized memory operand if we modified it.
 | |
|   if (UnsizedMemOp)
 | |
|     UnsizedMemOp->Mem.Size = 0;
 | |
| 
 | |
|   // If it's a bad mnemonic, all results will be the same.
 | |
|   if (Match.back() == Match_MnemonicFail) {
 | |
|     return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
 | |
|                  Op.getLocRange(), MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If exactly one matched, then we treat that as a successful match (and the
 | |
|   // instruction will already have been filled in correctly, since the failing
 | |
|   // matches won't have modified it).
 | |
|   unsigned NumSuccessfulMatches =
 | |
|       std::count(std::begin(Match), std::end(Match), Match_Success);
 | |
|   if (NumSuccessfulMatches == 1) {
 | |
|     if (MatchedSize && isParsingInlineAsm() && isParsingIntelSyntax())
 | |
|       // MS compatibility -
 | |
|       // Fix the rewrite according to the matched memory size
 | |
|       // MS inline assembly only
 | |
|       for (AsmRewrite &AR : *InstInfo->AsmRewrites)
 | |
|         if ((AR.Loc.getPointer() == UnsizedMemOp->StartLoc.getPointer()) &&
 | |
|             (AR.Kind == AOK_SizeDirective))
 | |
|           AR.Val = MatchedSize;
 | |
|     // Some instructions need post-processing to, for example, tweak which
 | |
|     // encoding is selected. Loop on it while changes happen so the individual
 | |
|     // transformations can chain off each other.
 | |
|     if (!MatchingInlineAsm)
 | |
|       while (processInstruction(Inst, Operands))
 | |
|         ;
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       EmitInstruction(Inst, Operands, Out);
 | |
|     Opcode = Inst.getOpcode();
 | |
|     return false;
 | |
|   } else if (NumSuccessfulMatches > 1) {
 | |
|     assert(UnsizedMemOp &&
 | |
|            "multiple matches only possible with unsized memory operands");
 | |
|     return Error(UnsizedMemOp->getStartLoc(),
 | |
|                  "ambiguous operand size for instruction '" + Mnemonic + "\'",
 | |
|                  UnsizedMemOp->getLocRange(), MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with a missing feature, report this as a
 | |
|   // missing feature.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_MissingFeature) == 1) {
 | |
|     ErrorInfo = ErrorInfoMissingFeature;
 | |
|     return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
 | |
|                                MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with an invalid operand, report this as an
 | |
|   // operand failure.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_InvalidOperand) == 1) {
 | |
|     return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If all of these were an outright failure, report it in a useless way.
 | |
|   return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
 | |
|                MatchingInlineAsm);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
 | |
|   return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   StringRef IDVal = DirectiveID.getIdentifier();
 | |
|   if (IDVal == ".word")
 | |
|     return ParseDirectiveWord(2, DirectiveID.getLoc());
 | |
|   else if (IDVal.startswith(".code"))
 | |
|     return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
 | |
|   else if (IDVal.startswith(".att_syntax")) {
 | |
|     if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | |
|       if (Parser.getTok().getString() == "prefix")
 | |
|         Parser.Lex();
 | |
|       else if (Parser.getTok().getString() == "noprefix")
 | |
|         return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
 | |
|                                            "supported: registers must have a "
 | |
|                                            "'%' prefix in .att_syntax");
 | |
|     }
 | |
|     getParser().setAssemblerDialect(0);
 | |
|     return false;
 | |
|   } else if (IDVal.startswith(".intel_syntax")) {
 | |
|     getParser().setAssemblerDialect(1);
 | |
|     if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | |
|       if (Parser.getTok().getString() == "noprefix")
 | |
|         Parser.Lex();
 | |
|       else if (Parser.getTok().getString() == "prefix")
 | |
|         return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
 | |
|                                            "supported: registers must not have "
 | |
|                                            "a '%' prefix in .intel_syntax");
 | |
|     }
 | |
|     return false;
 | |
|   } else if (IDVal == ".even")
 | |
|     return parseDirectiveEven(DirectiveID.getLoc());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// parseDirectiveEven
 | |
| ///  ::= .even
 | |
| bool X86AsmParser::parseDirectiveEven(SMLoc L) {
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | |
|     TokError("unexpected token in directive");
 | |
|     return false;  
 | |
|   }
 | |
|   const MCSection *Section = getStreamer().getCurrentSectionOnly();
 | |
|   if (!Section) {
 | |
|     getStreamer().InitSections(false);
 | |
|     Section = getStreamer().getCurrentSectionOnly();
 | |
|   }
 | |
|   if (Section->UseCodeAlign())
 | |
|     getStreamer().EmitCodeAlignment(2, 0);
 | |
|   else
 | |
|     getStreamer().EmitValueToAlignment(2, 0, 1, 0);
 | |
|   return false;
 | |
| }
 | |
| /// ParseDirectiveWord
 | |
| ///  ::= .word [ expression (, expression)* ]
 | |
| bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | |
|     for (;;) {
 | |
|       const MCExpr *Value;
 | |
|       SMLoc ExprLoc = getLexer().getLoc();
 | |
|       if (getParser().parseExpression(Value))
 | |
|         return false;
 | |
| 
 | |
|       if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) {
 | |
|         assert(Size <= 8 && "Invalid size");
 | |
|         uint64_t IntValue = MCE->getValue();
 | |
|         if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
 | |
|           return Error(ExprLoc, "literal value out of range for directive");
 | |
|         getStreamer().EmitIntValue(IntValue, Size);
 | |
|       } else {
 | |
|         getStreamer().EmitValue(Value, Size, ExprLoc);
 | |
|       }
 | |
| 
 | |
|       if (getLexer().is(AsmToken::EndOfStatement))
 | |
|         break;
 | |
| 
 | |
|       // FIXME: Improve diagnostic.
 | |
|       if (getLexer().isNot(AsmToken::Comma)) {
 | |
|         Error(L, "unexpected token in directive");
 | |
|         return false;
 | |
|       }
 | |
|       Parser.Lex();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Parser.Lex();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ParseDirectiveCode
 | |
| ///  ::= .code16 | .code32 | .code64
 | |
| bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   Code16GCC = false;
 | |
|   if (IDVal == ".code16") {
 | |
|     Parser.Lex();
 | |
|     if (!is16BitMode()) {
 | |
|       SwitchMode(X86::Mode16Bit);
 | |
|       getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
 | |
|     }
 | |
|   } else if (IDVal == ".code16gcc") {
 | |
|     // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
 | |
|     Parser.Lex();
 | |
|     Code16GCC = true;
 | |
|     if (!is16BitMode()) {
 | |
|       SwitchMode(X86::Mode16Bit);
 | |
|       getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
 | |
|     }
 | |
|   } else if (IDVal == ".code32") {
 | |
|     Parser.Lex();
 | |
|     if (!is32BitMode()) {
 | |
|       SwitchMode(X86::Mode32Bit);
 | |
|       getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
 | |
|     }
 | |
|   } else if (IDVal == ".code64") {
 | |
|     Parser.Lex();
 | |
|     if (!is64BitMode()) {
 | |
|       SwitchMode(X86::Mode64Bit);
 | |
|       getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
 | |
|     }
 | |
|   } else {
 | |
|     Error(L, "unknown directive " + IDVal);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Force static initialization.
 | |
| extern "C" void LLVMInitializeX86AsmParser() {
 | |
|   RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
 | |
|   RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
 | |
| }
 | |
| 
 | |
| #define GET_REGISTER_MATCHER
 | |
| #define GET_MATCHER_IMPLEMENTATION
 | |
| #define GET_SUBTARGET_FEATURE_NAME
 | |
| #include "X86GenAsmMatcher.inc"
 |