1124 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			1124 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This describes the calling conventions for the X86-32 and X86-64
 | |
| // architectures.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CCIfSubtarget - Match if the current subtarget has a feature F.
 | |
| class CCIfSubtarget<string F, CCAction A>
 | |
|     : CCIf<!strconcat("static_cast<const X86Subtarget&>"
 | |
|                        "(State.getMachineFunction().getSubtarget()).", F),
 | |
|            A>;
 | |
| 
 | |
| // Register classes for RegCall
 | |
| class RC_X86_RegCall {
 | |
|   list<Register> GPR_8 = [];
 | |
|   list<Register> GPR_16 = [];
 | |
|   list<Register> GPR_32 = [];
 | |
|   list<Register> GPR_64 = [];
 | |
|   list<Register> FP_CALL = [FP0];
 | |
|   list<Register> FP_RET = [FP0, FP1];
 | |
|   list<Register> XMM = [];
 | |
|   list<Register> YMM = [];
 | |
|   list<Register> ZMM = [];
 | |
| }
 | |
| 
 | |
| // RegCall register classes for 32 bits
 | |
| def RC_X86_32_RegCall : RC_X86_RegCall {
 | |
|   let GPR_8 = [AL, CL, DL, DIL, SIL];
 | |
|   let GPR_16 = [AX, CX, DX, DI, SI];
 | |
|   let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
 | |
|   let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
 | |
|                       ///< \todo Fix AssignToReg to enable empty lists
 | |
|   let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
 | |
|   let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
 | |
|   let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
 | |
| }
 | |
| 
 | |
| class RC_X86_64_RegCall : RC_X86_RegCall {
 | |
|   let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
 | |
|              XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
 | |
|   let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
 | |
|              YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
 | |
|   let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
 | |
|              ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
 | |
| }
 | |
| 
 | |
| def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
 | |
|   let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
 | |
|   let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
 | |
|   let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
 | |
|   let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
 | |
| }
 | |
| 
 | |
| def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
 | |
|   let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
 | |
|   let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
 | |
|   let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
 | |
|   let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
 | |
| }
 | |
| 
 | |
| // X86-64 Intel regcall calling convention.
 | |
| multiclass X86_RegCall_base<RC_X86_RegCall RC> {
 | |
| def CC_#NAME : CallingConv<[
 | |
|   // Handles byval parameters.
 | |
|     CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
 | |
|     CCIfByVal<CCPassByVal<4, 4>>,
 | |
| 
 | |
|     // Promote i1/i8/i16 arguments to i32.
 | |
|     CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|     // Promote v8i1/v16i1/v32i1 arguments to i32.
 | |
|     CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
 | |
| 
 | |
|     // bool, char, int, enum, long, pointer --> GPR
 | |
|     CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
 | |
| 
 | |
|     // long long, __int64 --> GPR
 | |
|     CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
 | |
| 
 | |
|     // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
 | |
|     CCIfType<[v64i1], CCPromoteToType<i64>>,
 | |
|     CCIfSubtarget<"is64Bit()", CCIfType<[i64], 
 | |
|       CCAssignToReg<RC.GPR_64>>>,
 | |
|     CCIfSubtarget<"is32Bit()", CCIfType<[i64], 
 | |
|       CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
 | |
| 
 | |
|     // float, double, float128 --> XMM
 | |
|     // In the case of SSE disabled --> save to stack
 | |
|     CCIfType<[f32, f64, f128], 
 | |
|       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
 | |
| 
 | |
|     // long double --> FP
 | |
|     CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
 | |
| 
 | |
|     // __m128, __m128i, __m128d --> XMM
 | |
|     // In the case of SSE disabled --> save to stack
 | |
|     CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 
 | |
|       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
 | |
| 
 | |
|     // __m256, __m256i, __m256d --> YMM
 | |
|     // In the case of SSE disabled --> save to stack
 | |
|     CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 
 | |
|       CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
 | |
| 
 | |
|     // __m512, __m512i, __m512d --> ZMM
 | |
|     // In the case of SSE disabled --> save to stack
 | |
|     CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], 
 | |
|       CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
 | |
| 
 | |
|     // If no register was found -> assign to stack
 | |
| 
 | |
|     // In 64 bit, assign 64/32 bit values to 8 byte stack
 | |
|     CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64], 
 | |
|       CCAssignToStack<8, 8>>>,
 | |
| 
 | |
|     // In 32 bit, assign 64/32 bit values to 8/4 byte stack
 | |
|     CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
 | |
|     CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
 | |
| 
 | |
|     // MMX type gets 8 byte slot in stack , while alignment depends on target
 | |
|     CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
 | |
|     CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
 | |
| 
 | |
|     // float 128 get stack slots whose size and alignment depends 
 | |
|     // on the subtarget.
 | |
|     CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
 | |
| 
 | |
|     // Vectors get 16-byte stack slots that are 16-byte aligned.
 | |
|     CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 
 | |
|       CCAssignToStack<16, 16>>,
 | |
| 
 | |
|     // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
 | |
|     CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 
 | |
|       CCAssignToStack<32, 32>>,
 | |
| 
 | |
|     // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
 | |
|     CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>>
 | |
| ]>;
 | |
| 
 | |
| def RetCC_#NAME : CallingConv<[
 | |
|     // Promote i1, v8i1 arguments to i8.
 | |
|     CCIfType<[i1, v8i1], CCPromoteToType<i8>>,
 | |
| 
 | |
|     // Promote v16i1 arguments to i16.
 | |
|     CCIfType<[v16i1], CCPromoteToType<i16>>,
 | |
| 
 | |
|     // Promote v32i1 arguments to i32.
 | |
|     CCIfType<[v32i1], CCPromoteToType<i32>>,
 | |
| 
 | |
|     // bool, char, int, enum, long, pointer --> GPR
 | |
|     CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
 | |
|     CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
 | |
|     CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
 | |
| 
 | |
|     // long long, __int64 --> GPR
 | |
|     CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
 | |
| 
 | |
|     // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
 | |
|     CCIfType<[v64i1], CCPromoteToType<i64>>,
 | |
|     CCIfSubtarget<"is64Bit()", CCIfType<[i64], 
 | |
|       CCAssignToReg<RC.GPR_64>>>,
 | |
|     CCIfSubtarget<"is32Bit()", CCIfType<[i64], 
 | |
|       CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
 | |
| 
 | |
|     // long double --> FP
 | |
|     CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
 | |
| 
 | |
|     // float, double, float128 --> XMM
 | |
|     CCIfType<[f32, f64, f128], 
 | |
|       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
 | |
| 
 | |
|     // __m128, __m128i, __m128d --> XMM
 | |
|     CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 
 | |
|       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
 | |
| 
 | |
|     // __m256, __m256i, __m256d --> YMM
 | |
|     CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 
 | |
|       CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
 | |
| 
 | |
|     // __m512, __m512i, __m512d --> ZMM
 | |
|     CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], 
 | |
|       CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
 | |
| ]>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Return Value Calling Conventions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Return-value conventions common to all X86 CC's.
 | |
| def RetCC_X86Common : CallingConv<[
 | |
|   // Scalar values are returned in AX first, then DX.  For i8, the ABI
 | |
|   // requires the values to be in AL and AH, however this code uses AL and DL
 | |
|   // instead. This is because using AH for the second register conflicts with
 | |
|   // the way LLVM does multiple return values -- a return of {i16,i8} would end
 | |
|   // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
 | |
|   // for functions that return two i8 values are currently expected to pack the
 | |
|   // values into an i16 (which uses AX, and thus AL:AH).
 | |
|   //
 | |
|   // For code that doesn't care about the ABI, we allow returning more than two
 | |
|   // integer values in registers.
 | |
|   CCIfType<[i1],  CCPromoteToType<i8>>,
 | |
|   CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
 | |
|   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
 | |
|   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
 | |
|   CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
 | |
| 
 | |
|   // Boolean vectors of AVX-512 are returned in SIMD registers.
 | |
|   // The call from AVX to AVX-512 function should work,
 | |
|   // since the boolean types in AVX/AVX2 are promoted by default.
 | |
|   CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
 | |
|   CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
 | |
|   CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
 | |
|   CCIfType<[v16i1], CCPromoteToType<v16i8>>,
 | |
|   CCIfType<[v32i1], CCPromoteToType<v32i8>>,
 | |
|   CCIfType<[v64i1], CCPromoteToType<v64i8>>,
 | |
| 
 | |
|   // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
 | |
|   // can only be used by ABI non-compliant code. If the target doesn't have XMM
 | |
|   // registers, it won't have vector types.
 | |
|   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
 | |
|             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
 | |
| 
 | |
|   // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
 | |
|   // can only be used by ABI non-compliant code. This vector type is only
 | |
|   // supported while using the AVX target feature.
 | |
|   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
 | |
|             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
 | |
| 
 | |
|   // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
 | |
|   // can only be used by ABI non-compliant code. This vector type is only
 | |
|   // supported while using the AVX-512 target feature.
 | |
|   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
 | |
|             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
 | |
| 
 | |
|   // MMX vector types are always returned in MM0. If the target doesn't have
 | |
|   // MM0, it doesn't support these vector types.
 | |
|   CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
 | |
| 
 | |
|   // Long double types are always returned in FP0 (even with SSE).
 | |
|   CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
 | |
| ]>;
 | |
| 
 | |
| // X86-32 C return-value convention.
 | |
| def RetCC_X86_32_C : CallingConv<[
 | |
|   // The X86-32 calling convention returns FP values in FP0, unless marked
 | |
|   // with "inreg" (used here to distinguish one kind of reg from another,
 | |
|   // weirdly; this is really the sse-regparm calling convention) in which
 | |
|   // case they use XMM0, otherwise it is the same as the common X86 calling
 | |
|   // conv.
 | |
|   CCIfInReg<CCIfSubtarget<"hasSSE2()",
 | |
|     CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
 | |
|   CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| 
 | |
| // X86-32 FastCC return-value convention.
 | |
| def RetCC_X86_32_Fast : CallingConv<[
 | |
|   // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
 | |
|   // SSE2.
 | |
|   // This can happen when a float, 2 x float, or 3 x float vector is split by
 | |
|   // target lowering, and is returned in 1-3 sse regs.
 | |
|   CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
 | |
|   CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
 | |
| 
 | |
|   // For integers, ECX can be used as an extra return register
 | |
|   CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
 | |
|   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
 | |
|   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
 | |
| 
 | |
|   // Otherwise, it is the same as the common X86 calling convention.
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| 
 | |
| // Intel_OCL_BI return-value convention.
 | |
| def RetCC_Intel_OCL_BI : CallingConv<[
 | |
|   // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
 | |
|   CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
 | |
|             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
 | |
| 
 | |
|   // 256-bit FP vectors
 | |
|   // No more than 4 registers
 | |
|   CCIfType<[v8f32, v4f64, v8i32, v4i64],
 | |
|             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
 | |
| 
 | |
|   // 512-bit FP vectors
 | |
|   CCIfType<[v16f32, v8f64, v16i32, v8i64],
 | |
|             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
 | |
| 
 | |
|   // i32, i64 in the standard way
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| 
 | |
| // X86-32 HiPE return-value convention.
 | |
| def RetCC_X86_32_HiPE : CallingConv<[
 | |
|   // Promote all types to i32
 | |
|   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // Return: HP, P, VAL1, VAL2
 | |
|   CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
 | |
| ]>;
 | |
| 
 | |
| // X86-32 Vectorcall return-value convention.
 | |
| def RetCC_X86_32_VectorCall : CallingConv<[
 | |
|   // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
 | |
|   CCIfType<[f32, f64, f128],
 | |
|             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
 | |
| 
 | |
|   // Return integers in the standard way.
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| 
 | |
| // X86-64 C return-value convention.
 | |
| def RetCC_X86_64_C : CallingConv<[
 | |
|   // The X86-64 calling convention always returns FP values in XMM0.
 | |
|   CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
 | |
|   CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
 | |
|   CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
 | |
| 
 | |
|   // MMX vector types are always returned in XMM0.
 | |
|   CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
 | |
| 
 | |
|   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
 | |
| 
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| 
 | |
| // X86-Win64 C return-value convention.
 | |
| def RetCC_X86_Win64_C : CallingConv<[
 | |
|   // The X86-Win64 calling convention always returns __m64 values in RAX.
 | |
|   CCIfType<[x86mmx], CCBitConvertToType<i64>>,
 | |
| 
 | |
|   // Otherwise, everything is the same as 'normal' X86-64 C CC.
 | |
|   CCDelegateTo<RetCC_X86_64_C>
 | |
| ]>;
 | |
| 
 | |
| // X86-64 vectorcall return-value convention.
 | |
| def RetCC_X86_64_Vectorcall : CallingConv<[
 | |
|   // Vectorcall calling convention always returns FP values in XMMs.
 | |
|   CCIfType<[f32, f64, f128], 
 | |
|     CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
 | |
| 
 | |
|   // Otherwise, everything is the same as Windows X86-64 C CC.
 | |
|   CCDelegateTo<RetCC_X86_Win64_C>
 | |
| ]>;
 | |
| 
 | |
| // X86-64 HiPE return-value convention.
 | |
| def RetCC_X86_64_HiPE : CallingConv<[
 | |
|   // Promote all types to i64
 | |
|   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
 | |
| 
 | |
|   // Return: HP, P, VAL1, VAL2
 | |
|   CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
 | |
| ]>;
 | |
| 
 | |
| // X86-64 WebKit_JS return-value convention.
 | |
| def RetCC_X86_64_WebKit_JS : CallingConv<[
 | |
|   // Promote all types to i64
 | |
|   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
 | |
| 
 | |
|   // Return: RAX
 | |
|   CCIfType<[i64], CCAssignToReg<[RAX]>>
 | |
| ]>;
 | |
| 
 | |
| def RetCC_X86_64_Swift : CallingConv<[
 | |
| 
 | |
|   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
 | |
| 
 | |
|   // For integers, ECX, R8D can be used as extra return registers.
 | |
|   CCIfType<[i1],  CCPromoteToType<i8>>,
 | |
|   CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
 | |
|   CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
 | |
|   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
 | |
|   CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
 | |
| 
 | |
|   // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
 | |
|   CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
 | |
|   CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
 | |
|   CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
 | |
| 
 | |
|   // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
 | |
|   CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
 | |
|   CCDelegateTo<RetCC_X86Common>
 | |
| ]>;
 | |
| 
 | |
| // X86-64 AnyReg return-value convention. No explicit register is specified for
 | |
| // the return-value. The register allocator is allowed and expected to choose
 | |
| // any free register.
 | |
| //
 | |
| // This calling convention is currently only supported by the stackmap and
 | |
| // patchpoint intrinsics. All other uses will result in an assert on Debug
 | |
| // builds. On Release builds we fallback to the X86 C calling convention.
 | |
| def RetCC_X86_64_AnyReg : CallingConv<[
 | |
|   CCCustom<"CC_X86_AnyReg_Error">
 | |
| ]>;
 | |
| 
 | |
| // X86-64 HHVM return-value convention.
 | |
| def RetCC_X86_64_HHVM: CallingConv<[
 | |
|   // Promote all types to i64
 | |
|   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
 | |
| 
 | |
|   // Return: could return in any GP register save RSP and R12.
 | |
|   CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
 | |
|                                  RAX, R10, R11, R13, R14, R15]>>
 | |
| ]>;
 | |
| 
 | |
| 
 | |
| defm X86_32_RegCall :
 | |
| 	 X86_RegCall_base<RC_X86_32_RegCall>;
 | |
| defm X86_Win64_RegCall :
 | |
|      X86_RegCall_base<RC_X86_64_RegCall_Win>;
 | |
| defm X86_SysV64_RegCall :
 | |
|      X86_RegCall_base<RC_X86_64_RegCall_SysV>;
 | |
| 
 | |
| // This is the root return-value convention for the X86-32 backend.
 | |
| def RetCC_X86_32 : CallingConv<[
 | |
|   // If FastCC, use RetCC_X86_32_Fast.
 | |
|   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
 | |
|   // If HiPE, use RetCC_X86_32_HiPE.
 | |
|   CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
 | |
|   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
 | |
|   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
 | |
| 
 | |
|   // Otherwise, use RetCC_X86_32_C.
 | |
|   CCDelegateTo<RetCC_X86_32_C>
 | |
| ]>;
 | |
| 
 | |
| // This is the root return-value convention for the X86-64 backend.
 | |
| def RetCC_X86_64 : CallingConv<[
 | |
|   // HiPE uses RetCC_X86_64_HiPE
 | |
|   CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
 | |
| 
 | |
|   // Handle JavaScript calls.
 | |
|   CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
 | |
|   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
 | |
| 
 | |
|   // Handle Swift calls.
 | |
|   CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
 | |
| 
 | |
|   // Handle explicit CC selection
 | |
|   CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
 | |
|   CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
 | |
| 
 | |
|   // Handle Vectorcall CC
 | |
|   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
 | |
| 
 | |
|   // Handle HHVM calls.
 | |
|   CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
 | |
| 
 | |
|   CCIfCC<"CallingConv::X86_RegCall",
 | |
|           CCIfSubtarget<"isTargetWin64()",
 | |
|                         CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
 | |
|   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
 | |
|           
 | |
|   // Mingw64 and native Win64 use Win64 CC
 | |
|   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
 | |
| 
 | |
|   // Otherwise, drop to normal X86-64 CC
 | |
|   CCDelegateTo<RetCC_X86_64_C>
 | |
| ]>;
 | |
| 
 | |
| // This is the return-value convention used for the entire X86 backend.
 | |
| def RetCC_X86 : CallingConv<[
 | |
| 
 | |
|   // Check if this is the Intel OpenCL built-ins calling convention
 | |
|   CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
 | |
| 
 | |
|   CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
 | |
|   CCDelegateTo<RetCC_X86_32>
 | |
| ]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86-64 Argument Calling Conventions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def CC_X86_64_C : CallingConv<[
 | |
|   // Handles byval parameters.
 | |
|   CCIfByVal<CCPassByVal<8, 8>>,
 | |
| 
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // The 'nest' parameter, if any, is passed in R10.
 | |
|   CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
 | |
|   CCIfNest<CCAssignToReg<[R10]>>,
 | |
| 
 | |
|   // Pass SwiftSelf in a callee saved register.
 | |
|   CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
 | |
| 
 | |
|   // A SwiftError is passed in R12.
 | |
|   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
 | |
| 
 | |
|   // For Swift Calling Convention, pass sret in %RAX.
 | |
|   CCIfCC<"CallingConv::Swift",
 | |
|     CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
 | |
| 
 | |
|   // The first 6 integer arguments are passed in integer registers.
 | |
|   CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
 | |
|   CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
 | |
| 
 | |
|   // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
 | |
|   CCIfType<[x86mmx],
 | |
|             CCIfSubtarget<"isTargetDarwin()",
 | |
|             CCIfSubtarget<"hasSSE2()",
 | |
|             CCPromoteToType<v2i64>>>>,
 | |
| 
 | |
|   // Boolean vectors of AVX-512 are passed in SIMD registers.
 | |
|   // The call from AVX to AVX-512 function should work,
 | |
|   // since the boolean types in AVX/AVX2 are promoted by default.
 | |
|   CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
 | |
|   CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
 | |
|   CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
 | |
|   CCIfType<[v16i1], CCPromoteToType<v16i8>>,
 | |
|   CCIfType<[v32i1], CCPromoteToType<v32i8>>,
 | |
|   CCIfType<[v64i1], CCPromoteToType<v64i8>>,
 | |
| 
 | |
|   // The first 8 FP/Vector arguments are passed in XMM registers.
 | |
|   CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
 | |
|             CCIfSubtarget<"hasSSE1()",
 | |
|             CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
 | |
| 
 | |
|   // The first 8 256-bit vector arguments are passed in YMM registers, unless
 | |
|   // this is a vararg function.
 | |
|   // FIXME: This isn't precisely correct; the x86-64 ABI document says that
 | |
|   // fixed arguments to vararg functions are supposed to be passed in
 | |
|   // registers.  Actually modeling that would be a lot of work, though.
 | |
|   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
 | |
|                           CCIfSubtarget<"hasFp256()",
 | |
|                           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
 | |
|                                          YMM4, YMM5, YMM6, YMM7]>>>>,
 | |
| 
 | |
|   // The first 8 512-bit vector arguments are passed in ZMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
 | |
|             CCIfSubtarget<"hasAVX512()",
 | |
|             CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
 | |
| 
 | |
|   // Integer/FP values get stored in stack slots that are 8 bytes in size and
 | |
|   // 8-byte aligned if there are no more registers to hold them.
 | |
|   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
 | |
| 
 | |
|   // Long doubles get stack slots whose size and alignment depends on the
 | |
|   // subtarget.
 | |
|   CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
 | |
| 
 | |
|   // Vectors get 16-byte stack slots that are 16-byte aligned.
 | |
|   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
 | |
| 
 | |
|   // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
 | |
|   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
 | |
|            CCAssignToStack<32, 32>>,
 | |
| 
 | |
|   // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
 | |
|   CCIfType<[v16i32, v8i64, v16f32, v8f64],
 | |
|            CCAssignToStack<64, 64>>
 | |
| ]>;
 | |
| 
 | |
| // Calling convention for X86-64 HHVM.
 | |
| def CC_X86_64_HHVM : CallingConv<[
 | |
|   // Use all/any GP registers for args, except RSP.
 | |
|   CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
 | |
|                                  RDI, RSI, RDX, RCX, R8, R9,
 | |
|                                  RAX, R10, R11, R13, R14]>>
 | |
| ]>;
 | |
| 
 | |
| // Calling convention for helper functions in HHVM.
 | |
| def CC_X86_64_HHVM_C : CallingConv<[
 | |
|   // Pass the first argument in RBP.
 | |
|   CCIfType<[i64], CCAssignToReg<[RBP]>>,
 | |
| 
 | |
|   // Otherwise it's the same as the regular C calling convention.
 | |
|   CCDelegateTo<CC_X86_64_C>
 | |
| ]>;
 | |
| 
 | |
| // Calling convention used on Win64
 | |
| def CC_X86_Win64_C : CallingConv<[
 | |
|   // FIXME: Handle byval stuff.
 | |
|   // FIXME: Handle varargs.
 | |
| 
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // The 'nest' parameter, if any, is passed in R10.
 | |
|   CCIfNest<CCAssignToReg<[R10]>>,
 | |
| 
 | |
|   // 128 bit vectors are passed by pointer
 | |
|   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
 | |
| 
 | |
| 
 | |
|   // 256 bit vectors are passed by pointer
 | |
|   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
 | |
| 
 | |
|   // 512 bit vectors are passed by pointer
 | |
|   CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
 | |
| 
 | |
|   // The first 4 MMX vector arguments are passed in GPRs.
 | |
|   CCIfType<[x86mmx], CCBitConvertToType<i64>>,
 | |
| 
 | |
|   // The first 4 integer arguments are passed in integer registers.
 | |
|   CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
 | |
|                                           [XMM0, XMM1, XMM2, XMM3]>>,
 | |
| 
 | |
|   // Do not pass the sret argument in RCX, the Win64 thiscall calling
 | |
|   // convention requires "this" to be passed in RCX.
 | |
|   CCIfCC<"CallingConv::X86_ThisCall",
 | |
|     CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
 | |
|                                                      [XMM1, XMM2, XMM3]>>>>,
 | |
| 
 | |
|   CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
 | |
|                                           [XMM0, XMM1, XMM2, XMM3]>>,
 | |
| 
 | |
|   // The first 4 FP/Vector arguments are passed in XMM registers.
 | |
|   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
 | |
|            CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
 | |
|                                    [RCX , RDX , R8  , R9  ]>>,
 | |
| 
 | |
|   // Integer/FP values get stored in stack slots that are 8 bytes in size and
 | |
|   // 8-byte aligned if there are no more registers to hold them.
 | |
|   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
 | |
| 
 | |
|   // Long doubles get stack slots whose size and alignment depends on the
 | |
|   // subtarget.
 | |
|   CCIfType<[f80], CCAssignToStack<0, 0>>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_Win64_VectorCall : CallingConv<[
 | |
|   CCCustom<"CC_X86_64_VectorCall">,
 | |
| 
 | |
|   // Delegate to fastcall to handle integer types.
 | |
|   CCDelegateTo<CC_X86_Win64_C>
 | |
| ]>;
 | |
| 
 | |
| 
 | |
| def CC_X86_64_GHC : CallingConv<[
 | |
|   // Promote i8/i16/i32 arguments to i64.
 | |
|   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
 | |
| 
 | |
|   // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
 | |
|   CCIfType<[i64],
 | |
|             CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
 | |
| 
 | |
|   // Pass in STG registers: F1, F2, F3, F4, D1, D2
 | |
|   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
 | |
|             CCIfSubtarget<"hasSSE1()",
 | |
|             CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_64_HiPE : CallingConv<[
 | |
|   // Promote i8/i16/i32 arguments to i64.
 | |
|   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
 | |
| 
 | |
|   // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
 | |
|   CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
 | |
| 
 | |
|   // Integer/FP values get stored in stack slots that are 8 bytes in size and
 | |
|   // 8-byte aligned if there are no more registers to hold them.
 | |
|   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_64_WebKit_JS : CallingConv<[
 | |
|   // Promote i8/i16 arguments to i32.
 | |
|   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // Only the first integer argument is passed in register.
 | |
|   CCIfType<[i32], CCAssignToReg<[EAX]>>,
 | |
|   CCIfType<[i64], CCAssignToReg<[RAX]>>,
 | |
| 
 | |
|   // The remaining integer arguments are passed on the stack. 32bit integer and
 | |
|   // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
 | |
|   // 64bit integer and floating-point arguments are aligned to 8 byte and stored
 | |
|   // in 8 byte stack slots.
 | |
|   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
 | |
|   CCIfType<[i64, f64], CCAssignToStack<8, 8>>
 | |
| ]>;
 | |
| 
 | |
| // No explicit register is specified for the AnyReg calling convention. The
 | |
| // register allocator may assign the arguments to any free register.
 | |
| //
 | |
| // This calling convention is currently only supported by the stackmap and
 | |
| // patchpoint intrinsics. All other uses will result in an assert on Debug
 | |
| // builds. On Release builds we fallback to the X86 C calling convention.
 | |
| def CC_X86_64_AnyReg : CallingConv<[
 | |
|   CCCustom<"CC_X86_AnyReg_Error">
 | |
| ]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86 C Calling Convention
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
 | |
| /// values are spilled on the stack.
 | |
| def CC_X86_32_Vector_Common : CallingConv<[
 | |
|   // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
 | |
|   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
 | |
| 
 | |
|   // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
 | |
|   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
 | |
|            CCAssignToStack<32, 32>>,
 | |
| 
 | |
|   // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
 | |
|   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
 | |
|            CCAssignToStack<64, 64>>
 | |
| ]>;
 | |
| 
 | |
| // CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
 | |
| // vector registers
 | |
| def CC_X86_32_Vector_Standard : CallingConv<[
 | |
|   // SSE vector arguments are passed in XMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
 | |
|                 CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
 | |
| 
 | |
|   // AVX 256-bit vector arguments are passed in YMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
 | |
|                 CCIfSubtarget<"hasFp256()",
 | |
|                 CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
 | |
| 
 | |
|   // AVX 512-bit vector arguments are passed in ZMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
 | |
|                 CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
 | |
| 
 | |
|   CCDelegateTo<CC_X86_32_Vector_Common>
 | |
| ]>;
 | |
| 
 | |
| // CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
 | |
| // vector registers.
 | |
| def CC_X86_32_Vector_Darwin : CallingConv<[
 | |
|   // SSE vector arguments are passed in XMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
 | |
|                 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
 | |
| 
 | |
|   // AVX 256-bit vector arguments are passed in YMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
 | |
|                 CCIfSubtarget<"hasFp256()",
 | |
|                 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
 | |
| 
 | |
|   // AVX 512-bit vector arguments are passed in ZMM registers.
 | |
|   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
 | |
|                 CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
 | |
| 
 | |
|   CCDelegateTo<CC_X86_32_Vector_Common>
 | |
| ]>;
 | |
| 
 | |
| /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
 | |
| /// values are spilled on the stack.
 | |
| def CC_X86_32_Common : CallingConv<[
 | |
|   // Handles byval parameters.
 | |
|   CCIfByVal<CCPassByVal<4, 4>>,
 | |
| 
 | |
|   // The first 3 float or double arguments, if marked 'inreg' and if the call
 | |
|   // is not a vararg call and if SSE2 is available, are passed in SSE registers.
 | |
|   CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
 | |
|                 CCIfSubtarget<"hasSSE2()",
 | |
|                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
 | |
| 
 | |
|   // The first 3 __m64 vector arguments are passed in mmx registers if the
 | |
|   // call is not a vararg call.
 | |
|   CCIfNotVarArg<CCIfType<[x86mmx],
 | |
|                 CCAssignToReg<[MM0, MM1, MM2]>>>,
 | |
| 
 | |
|   // Integer/Float values get stored in stack slots that are 4 bytes in
 | |
|   // size and 4-byte aligned.
 | |
|   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
 | |
| 
 | |
|   // Doubles get 8-byte slots that are 4-byte aligned.
 | |
|   CCIfType<[f64], CCAssignToStack<8, 4>>,
 | |
| 
 | |
|   // Long doubles get slots whose size depends on the subtarget.
 | |
|   CCIfType<[f80], CCAssignToStack<0, 4>>,
 | |
| 
 | |
|   // Boolean vectors of AVX-512 are passed in SIMD registers.
 | |
|   // The call from AVX to AVX-512 function should work,
 | |
|   // since the boolean types in AVX/AVX2 are promoted by default.
 | |
|   CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
 | |
|   CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
 | |
|   CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
 | |
|   CCIfType<[v16i1], CCPromoteToType<v16i8>>,
 | |
|   CCIfType<[v32i1], CCPromoteToType<v32i8>>,
 | |
|   CCIfType<[v64i1], CCPromoteToType<v64i8>>,
 | |
| 
 | |
|   // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
 | |
|   // passed in the parameter area.
 | |
|   CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
 | |
| 
 | |
|   // Darwin passes vectors in a form that differs from the i386 psABI
 | |
|   CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
 | |
| 
 | |
|   // Otherwise, drop to 'normal' X86-32 CC
 | |
|   CCDelegateTo<CC_X86_32_Vector_Standard>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_C : CallingConv<[
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // The 'nest' parameter, if any, is passed in ECX.
 | |
|   CCIfNest<CCAssignToReg<[ECX]>>,
 | |
| 
 | |
|   // The first 3 integer arguments, if marked 'inreg' and if the call is not
 | |
|   // a vararg call, are passed in integer registers.
 | |
|   CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
 | |
| 
 | |
|   // Otherwise, same as everything else.
 | |
|   CCDelegateTo<CC_X86_32_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_MCU : CallingConv<[
 | |
|   // Handles byval parameters.  Note that, like FastCC, we can't rely on
 | |
|   // the delegation to CC_X86_32_Common because that happens after code that
 | |
|   // puts arguments in registers.
 | |
|   CCIfByVal<CCPassByVal<4, 4>>,
 | |
| 
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // If the call is not a vararg call, some arguments may be passed
 | |
|   // in integer registers.
 | |
|   CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
 | |
| 
 | |
|   // Otherwise, same as everything else.
 | |
|   CCDelegateTo<CC_X86_32_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_FastCall : CallingConv<[
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // The 'nest' parameter, if any, is passed in EAX.
 | |
|   CCIfNest<CCAssignToReg<[EAX]>>,
 | |
| 
 | |
|   // The first 2 integer arguments are passed in ECX/EDX
 | |
|   CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
 | |
| 
 | |
|   // Otherwise, same as everything else.
 | |
|   CCDelegateTo<CC_X86_32_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_Win32_VectorCall : CallingConv<[
 | |
|   // Pass floating point in XMMs
 | |
|   CCCustom<"CC_X86_32_VectorCall">,
 | |
| 
 | |
|   // Delegate to fastcall to handle integer types.
 | |
|   CCDelegateTo<CC_X86_32_FastCall>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_ThisCall_Common : CallingConv<[
 | |
|   // The first integer argument is passed in ECX
 | |
|   CCIfType<[i32], CCAssignToReg<[ECX]>>,
 | |
| 
 | |
|   // Otherwise, same as everything else.
 | |
|   CCDelegateTo<CC_X86_32_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_ThisCall_Mingw : CallingConv<[
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   CCDelegateTo<CC_X86_32_ThisCall_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_ThisCall_Win : CallingConv<[
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // Pass sret arguments indirectly through stack.
 | |
|   CCIfSRet<CCAssignToStack<4, 4>>,
 | |
| 
 | |
|   CCDelegateTo<CC_X86_32_ThisCall_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_ThisCall : CallingConv<[
 | |
|   CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
 | |
|   CCDelegateTo<CC_X86_32_ThisCall_Win>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_FastCC : CallingConv<[
 | |
|   // Handles byval parameters.  Note that we can't rely on the delegation
 | |
|   // to CC_X86_32_Common for this because that happens after code that
 | |
|   // puts arguments in registers.
 | |
|   CCIfByVal<CCPassByVal<4, 4>>,
 | |
| 
 | |
|   // Promote i1/i8/i16 arguments to i32.
 | |
|   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // The 'nest' parameter, if any, is passed in EAX.
 | |
|   CCIfNest<CCAssignToReg<[EAX]>>,
 | |
| 
 | |
|   // The first 2 integer arguments are passed in ECX/EDX
 | |
|   CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
 | |
| 
 | |
|   // The first 3 float or double arguments, if the call is not a vararg
 | |
|   // call and if SSE2 is available, are passed in SSE registers.
 | |
|   CCIfNotVarArg<CCIfType<[f32,f64],
 | |
|                 CCIfSubtarget<"hasSSE2()",
 | |
|                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
 | |
| 
 | |
|   // Doubles get 8-byte slots that are 8-byte aligned.
 | |
|   CCIfType<[f64], CCAssignToStack<8, 8>>,
 | |
| 
 | |
|   // Otherwise, same as everything else.
 | |
|   CCDelegateTo<CC_X86_32_Common>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_GHC : CallingConv<[
 | |
|   // Promote i8/i16 arguments to i32.
 | |
|   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // Pass in STG registers: Base, Sp, Hp, R1
 | |
|   CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_HiPE : CallingConv<[
 | |
|   // Promote i8/i16 arguments to i32.
 | |
|   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 | |
| 
 | |
|   // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
 | |
|   CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
 | |
| 
 | |
|   // Integer/Float values get stored in stack slots that are 4 bytes in
 | |
|   // size and 4-byte aligned.
 | |
|   CCIfType<[i32, f32], CCAssignToStack<4, 4>>
 | |
| ]>;
 | |
| 
 | |
| // X86-64 Intel OpenCL built-ins calling convention.
 | |
| def CC_Intel_OCL_BI : CallingConv<[
 | |
| 
 | |
|   CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
 | |
|   CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
 | |
| 
 | |
|   CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
 | |
|   CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
 | |
| 
 | |
|   CCIfType<[i32], CCAssignToStack<4, 4>>,
 | |
| 
 | |
|   // The SSE vector arguments are passed in XMM registers.
 | |
|   CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
 | |
|            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
 | |
| 
 | |
|   // The 256-bit vector arguments are passed in YMM registers.
 | |
|   CCIfType<[v8f32, v4f64, v8i32, v4i64],
 | |
|            CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
 | |
| 
 | |
|   // The 512-bit vector arguments are passed in ZMM registers.
 | |
|   CCIfType<[v16f32, v8f64, v16i32, v8i64],
 | |
|            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
 | |
| 
 | |
|   // Pass masks in mask registers
 | |
|   CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
 | |
| 
 | |
|   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
 | |
|   CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
 | |
|   CCDelegateTo<CC_X86_32_C>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_32_Intr : CallingConv<[
 | |
|   CCAssignToStack<4, 4>
 | |
| ]>;
 | |
| 
 | |
| def CC_X86_64_Intr : CallingConv<[
 | |
|   CCAssignToStack<8, 8>
 | |
| ]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86 Root Argument Calling Conventions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // This is the root argument convention for the X86-32 backend.
 | |
| def CC_X86_32 : CallingConv<[
 | |
|   // X86_INTR calling convention is valid in MCU target and should override the
 | |
|   // MCU calling convention. Thus, this should be checked before isTargetMCU().
 | |
|   CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
 | |
|   CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
 | |
|   CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
 | |
|   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
 | |
|   CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
 | |
|   CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
 | |
|   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
 | |
|   CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
 | |
|   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
 | |
| 
 | |
|   // Otherwise, drop to normal X86-32 CC
 | |
|   CCDelegateTo<CC_X86_32_C>
 | |
| ]>;
 | |
| 
 | |
| // This is the root argument convention for the X86-64 backend.
 | |
| def CC_X86_64 : CallingConv<[
 | |
|   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
 | |
|   CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
 | |
|   CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
 | |
|   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
 | |
|   CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
 | |
|   CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
 | |
|   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
 | |
|   CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
 | |
|   CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
 | |
|   CCIfCC<"CallingConv::X86_RegCall",
 | |
|     CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
 | |
|   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
 | |
|   CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
 | |
| 
 | |
|   // Mingw64 and native Win64 use Win64 CC
 | |
|   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
 | |
| 
 | |
|   // Otherwise, drop to normal X86-64 CC
 | |
|   CCDelegateTo<CC_X86_64_C>
 | |
| ]>;
 | |
| 
 | |
| // This is the argument convention used for the entire X86 backend.
 | |
| def CC_X86 : CallingConv<[
 | |
|   CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
 | |
|   CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
 | |
|   CCDelegateTo<CC_X86_32>
 | |
| ]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Callee-saved Registers.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def CSR_NoRegs : CalleeSavedRegs<(add)>;
 | |
| 
 | |
| def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
 | |
| def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
 | |
| 
 | |
| def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
 | |
| 
 | |
| def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
 | |
| def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
 | |
| 
 | |
| def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
 | |
| 
 | |
| def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
 | |
|                                      (sequence "XMM%u", 6, 15))>;
 | |
| 
 | |
| // The function used by Darwin to obtain the address of a thread-local variable
 | |
| // uses rdi to pass a single parameter and rax for the return value. All other
 | |
| // GPRs are preserved.
 | |
| def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
 | |
|                                              R8, R9, R10, R11)>;
 | |
| 
 | |
| // CSRs that are handled by prologue, epilogue.
 | |
| def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
 | |
| 
 | |
| // CSRs that are handled explicitly via copies.
 | |
| def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
 | |
| 
 | |
| // All GPRs - except r11
 | |
| def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
 | |
|                                               R8, R9, R10, RSP)>;
 | |
| 
 | |
| // All registers - except r11
 | |
| def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
 | |
|                                                  (sequence "XMM%u", 0, 15))>;
 | |
| def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
 | |
|                                                  (sequence "YMM%u", 0, 15))>;
 | |
| 
 | |
| def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
 | |
|                                            R11, R12, R13, R14, R15, RBP,
 | |
|                                            (sequence "XMM%u", 0, 15))>;
 | |
| 
 | |
| def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
 | |
|                                               EDI)>;
 | |
| def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
 | |
|                                               (sequence "XMM%u", 0, 7))>;
 | |
| def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
 | |
|                                               (sequence "YMM%u", 0, 7))>;
 | |
| def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
 | |
|                                                  (sequence "ZMM%u", 0, 7),
 | |
|                                                  (sequence "K%u", 0, 7))>;
 | |
| 
 | |
| def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
 | |
| def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
 | |
|                                                 R10, R11, R12, R13, R14, R15, RBP)>;
 | |
| def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
 | |
|                                                    (sequence "YMM%u", 0, 15)),
 | |
|                                               (sequence "XMM%u", 0, 15))>;
 | |
| def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
 | |
|                                                       (sequence "ZMM%u", 0, 31),
 | |
|                                                       (sequence "K%u", 0, 7)),
 | |
|                                                  (sequence "XMM%u", 0, 15))>;
 | |
| 
 | |
| // Standard C + YMM6-15
 | |
| def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
 | |
|                                                   R13, R14, R15,
 | |
|                                                   (sequence "YMM%u", 6, 15))>;
 | |
| 
 | |
| def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
 | |
|                                                      R12, R13, R14, R15,
 | |
|                                                      (sequence "ZMM%u", 6, 21),
 | |
|                                                      K4, K5, K6, K7)>;
 | |
| //Standard C + XMM 8-15
 | |
| def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
 | |
|                                                  (sequence "XMM%u", 8, 15))>;
 | |
| 
 | |
| //Standard C + YMM 8-15
 | |
| def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
 | |
|                                                   (sequence "YMM%u", 8, 15))>;
 | |
| 
 | |
| def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
 | |
|                                                   (sequence "ZMM%u", 16, 31),
 | |
|                                                   K4, K5, K6, K7)>;
 | |
| 
 | |
| // Only R12 is preserved for PHP calls in HHVM.
 | |
| def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
 | |
| 
 | |
| // Register calling convention preserves few GPR and XMM8-15
 | |
| def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
 | |
| def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
 | |
|                                            (sequence "XMM%u", 4, 7))>;                                            
 | |
| def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
 | |
|                                               (sequence "R%u", 10, 15))>;
 | |
| def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,                                  
 | |
|                                               (sequence "XMM%u", 8, 15))>;
 | |
| def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
 | |
|                                                (sequence "R%u", 12, 15))>;
 | |
| def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,               
 | |
|                                                (sequence "XMM%u", 8, 15))>;
 | |
|                                                
 |