4337 lines
		
	
	
		
			159 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4337 lines
		
	
	
		
			159 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineCalls.cpp -----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitCall and visitInvoke functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| STATISTIC(NumSimplified, "Number of library calls simplified");
 | |
| 
 | |
| static cl::opt<unsigned> UnfoldElementAtomicMemcpyMaxElements(
 | |
|     "unfold-element-atomic-memcpy-max-elements",
 | |
|     cl::init(16),
 | |
|     cl::desc("Maximum number of elements in atomic memcpy the optimizer is "
 | |
|              "allowed to unfold"));
 | |
| 
 | |
| /// Return the specified type promoted as it would be to pass though a va_arg
 | |
| /// area.
 | |
| static Type *getPromotedType(Type *Ty) {
 | |
|   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
 | |
|     if (ITy->getBitWidth() < 32)
 | |
|       return Type::getInt32Ty(Ty->getContext());
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// Return a constant boolean vector that has true elements in all positions
 | |
| /// where the input constant data vector has an element with the sign bit set.
 | |
| static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
 | |
|   SmallVector<Constant *, 32> BoolVec;
 | |
|   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
 | |
|   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
 | |
|     Constant *Elt = V->getElementAsConstant(I);
 | |
|     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
 | |
|            "Unexpected constant data vector element type");
 | |
|     bool Sign = V->getElementType()->isIntegerTy()
 | |
|                     ? cast<ConstantInt>(Elt)->isNegative()
 | |
|                     : cast<ConstantFP>(Elt)->isNegative();
 | |
|     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
 | |
|   }
 | |
|   return ConstantVector::get(BoolVec);
 | |
| }
 | |
| 
 | |
| Instruction *
 | |
| InstCombiner::SimplifyElementAtomicMemCpy(ElementAtomicMemCpyInst *AMI) {
 | |
|   // Try to unfold this intrinsic into sequence of explicit atomic loads and
 | |
|   // stores.
 | |
|   // First check that number of elements is compile time constant.
 | |
|   auto *NumElementsCI = dyn_cast<ConstantInt>(AMI->getNumElements());
 | |
|   if (!NumElementsCI)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that there are not too many elements.
 | |
|   uint64_t NumElements = NumElementsCI->getZExtValue();
 | |
|   if (NumElements >= UnfoldElementAtomicMemcpyMaxElements)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't unfold into illegal integers
 | |
|   uint64_t ElementSizeInBytes = AMI->getElementSizeInBytes() * 8;
 | |
|   if (!getDataLayout().isLegalInteger(ElementSizeInBytes))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Cast source and destination to the correct type. Intrinsic input arguments
 | |
|   // are usually represented as i8*.
 | |
|   // Often operands will be explicitly casted to i8* and we can just strip
 | |
|   // those casts instead of inserting new ones. However it's easier to rely on
 | |
|   // other InstCombine rules which will cover trivial cases anyway.
 | |
|   Value *Src = AMI->getRawSource();
 | |
|   Value *Dst = AMI->getRawDest();
 | |
|   Type *ElementPointerType = Type::getIntNPtrTy(
 | |
|       AMI->getContext(), ElementSizeInBytes, Src->getType()->getPointerAddressSpace());
 | |
| 
 | |
|   Value *SrcCasted = Builder->CreatePointerCast(Src, ElementPointerType,
 | |
|                                                 "memcpy_unfold.src_casted");
 | |
|   Value *DstCasted = Builder->CreatePointerCast(Dst, ElementPointerType,
 | |
|                                                 "memcpy_unfold.dst_casted");
 | |
| 
 | |
|   for (uint64_t i = 0; i < NumElements; ++i) {
 | |
|     // Get current element addresses
 | |
|     ConstantInt *ElementIdxCI =
 | |
|         ConstantInt::get(AMI->getContext(), APInt(64, i));
 | |
|     Value *SrcElementAddr =
 | |
|         Builder->CreateGEP(SrcCasted, ElementIdxCI, "memcpy_unfold.src_addr");
 | |
|     Value *DstElementAddr =
 | |
|         Builder->CreateGEP(DstCasted, ElementIdxCI, "memcpy_unfold.dst_addr");
 | |
| 
 | |
|     // Load from the source. Transfer alignment information and mark load as
 | |
|     // unordered atomic.
 | |
|     LoadInst *Load = Builder->CreateLoad(SrcElementAddr, "memcpy_unfold.val");
 | |
|     Load->setOrdering(AtomicOrdering::Unordered);
 | |
|     // We know alignment of the first element. It is also guaranteed by the
 | |
|     // verifier that element size is less or equal than first element alignment
 | |
|     // and both of this values are powers of two.
 | |
|     // This means that all subsequent accesses are at least element size
 | |
|     // aligned.
 | |
|     // TODO: We can infer better alignment but there is no evidence that this
 | |
|     // will matter.
 | |
|     Load->setAlignment(i == 0 ? AMI->getSrcAlignment()
 | |
|                               : AMI->getElementSizeInBytes());
 | |
|     Load->setDebugLoc(AMI->getDebugLoc());
 | |
| 
 | |
|     // Store loaded value via unordered atomic store.
 | |
|     StoreInst *Store = Builder->CreateStore(Load, DstElementAddr);
 | |
|     Store->setOrdering(AtomicOrdering::Unordered);
 | |
|     Store->setAlignment(i == 0 ? AMI->getDstAlignment()
 | |
|                                : AMI->getElementSizeInBytes());
 | |
|     Store->setDebugLoc(AMI->getDebugLoc());
 | |
|   }
 | |
| 
 | |
|   // Set the number of elements of the copy to 0, it will be deleted on the
 | |
|   // next iteration.
 | |
|   AMI->setNumElements(Constant::getNullValue(NumElementsCI->getType()));
 | |
|   return AMI;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
 | |
|   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, &AC, &DT);
 | |
|   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, &AC, &DT);
 | |
|   unsigned MinAlign = std::min(DstAlign, SrcAlign);
 | |
|   unsigned CopyAlign = MI->getAlignment();
 | |
| 
 | |
|   if (CopyAlign < MinAlign) {
 | |
|     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
 | |
|   // load/store.
 | |
|   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
 | |
|   if (!MemOpLength) return nullptr;
 | |
| 
 | |
|   // Source and destination pointer types are always "i8*" for intrinsic.  See
 | |
|   // if the size is something we can handle with a single primitive load/store.
 | |
|   // A single load+store correctly handles overlapping memory in the memmove
 | |
|   // case.
 | |
|   uint64_t Size = MemOpLength->getLimitedValue();
 | |
|   assert(Size && "0-sized memory transferring should be removed already.");
 | |
| 
 | |
|   if (Size > 8 || (Size&(Size-1)))
 | |
|     return nullptr;  // If not 1/2/4/8 bytes, exit.
 | |
| 
 | |
|   // Use an integer load+store unless we can find something better.
 | |
|   unsigned SrcAddrSp =
 | |
|     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
 | |
|   unsigned DstAddrSp =
 | |
|     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
 | |
| 
 | |
|   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
 | |
|   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
 | |
|   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
 | |
| 
 | |
|   // If the memcpy has metadata describing the members, see if we can get the
 | |
|   // TBAA tag describing our copy.
 | |
|   MDNode *CopyMD = nullptr;
 | |
|   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
 | |
|     if (M->getNumOperands() == 3 && M->getOperand(0) &&
 | |
|         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
 | |
|         mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
 | |
|         M->getOperand(1) &&
 | |
|         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
 | |
|         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
 | |
|         Size &&
 | |
|         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
 | |
|       CopyMD = cast<MDNode>(M->getOperand(2));
 | |
|   }
 | |
| 
 | |
|   // If the memcpy/memmove provides better alignment info than we can
 | |
|   // infer, use it.
 | |
|   SrcAlign = std::max(SrcAlign, CopyAlign);
 | |
|   DstAlign = std::max(DstAlign, CopyAlign);
 | |
| 
 | |
|   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
 | |
|   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
 | |
|   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
 | |
|   L->setAlignment(SrcAlign);
 | |
|   if (CopyMD)
 | |
|     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
 | |
|   MDNode *LoopMemParallelMD =
 | |
|     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
 | |
|   if (LoopMemParallelMD)
 | |
|     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
 | |
| 
 | |
|   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
 | |
|   S->setAlignment(DstAlign);
 | |
|   if (CopyMD)
 | |
|     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
 | |
|   if (LoopMemParallelMD)
 | |
|     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
 | |
| 
 | |
|   // Set the size of the copy to 0, it will be deleted on the next iteration.
 | |
|   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
 | |
|   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
 | |
|   if (MI->getAlignment() < Alignment) {
 | |
|     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
 | |
|                                              Alignment, false));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   // Extract the length and alignment and fill if they are constant.
 | |
|   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
 | |
|   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
 | |
|     return nullptr;
 | |
|   uint64_t Len = LenC->getLimitedValue();
 | |
|   Alignment = MI->getAlignment();
 | |
|   assert(Len && "0-sized memory setting should be removed already.");
 | |
| 
 | |
|   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
 | |
|   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
 | |
|     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
 | |
| 
 | |
|     Value *Dest = MI->getDest();
 | |
|     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
 | |
|     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
 | |
|     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
 | |
| 
 | |
|     // Alignment 0 is identity for alignment 1 for memset, but not store.
 | |
|     if (Alignment == 0) Alignment = 1;
 | |
| 
 | |
|     // Extract the fill value and store.
 | |
|     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
 | |
|     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
 | |
|                                         MI->isVolatile());
 | |
|     S->setAlignment(Alignment);
 | |
| 
 | |
|     // Set the size of the copy to 0, it will be deleted on the next iteration.
 | |
|     MI->setLength(Constant::getNullValue(LenC->getType()));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyX86immShift(const IntrinsicInst &II,
 | |
|                                   InstCombiner::BuilderTy &Builder) {
 | |
|   bool LogicalShift = false;
 | |
|   bool ShiftLeft = false;
 | |
| 
 | |
|   switch (II.getIntrinsicID()) {
 | |
|   default: llvm_unreachable("Unexpected intrinsic!");
 | |
|   case Intrinsic::x86_sse2_psra_d:
 | |
|   case Intrinsic::x86_sse2_psra_w:
 | |
|   case Intrinsic::x86_sse2_psrai_d:
 | |
|   case Intrinsic::x86_sse2_psrai_w:
 | |
|   case Intrinsic::x86_avx2_psra_d:
 | |
|   case Intrinsic::x86_avx2_psra_w:
 | |
|   case Intrinsic::x86_avx2_psrai_d:
 | |
|   case Intrinsic::x86_avx2_psrai_w:
 | |
|   case Intrinsic::x86_avx512_psra_q_128:
 | |
|   case Intrinsic::x86_avx512_psrai_q_128:
 | |
|   case Intrinsic::x86_avx512_psra_q_256:
 | |
|   case Intrinsic::x86_avx512_psrai_q_256:
 | |
|   case Intrinsic::x86_avx512_psra_d_512:
 | |
|   case Intrinsic::x86_avx512_psra_q_512:
 | |
|   case Intrinsic::x86_avx512_psra_w_512:
 | |
|   case Intrinsic::x86_avx512_psrai_d_512:
 | |
|   case Intrinsic::x86_avx512_psrai_q_512:
 | |
|   case Intrinsic::x86_avx512_psrai_w_512:
 | |
|     LogicalShift = false; ShiftLeft = false;
 | |
|     break;
 | |
|   case Intrinsic::x86_sse2_psrl_d:
 | |
|   case Intrinsic::x86_sse2_psrl_q:
 | |
|   case Intrinsic::x86_sse2_psrl_w:
 | |
|   case Intrinsic::x86_sse2_psrli_d:
 | |
|   case Intrinsic::x86_sse2_psrli_q:
 | |
|   case Intrinsic::x86_sse2_psrli_w:
 | |
|   case Intrinsic::x86_avx2_psrl_d:
 | |
|   case Intrinsic::x86_avx2_psrl_q:
 | |
|   case Intrinsic::x86_avx2_psrl_w:
 | |
|   case Intrinsic::x86_avx2_psrli_d:
 | |
|   case Intrinsic::x86_avx2_psrli_q:
 | |
|   case Intrinsic::x86_avx2_psrli_w:
 | |
|   case Intrinsic::x86_avx512_psrl_d_512:
 | |
|   case Intrinsic::x86_avx512_psrl_q_512:
 | |
|   case Intrinsic::x86_avx512_psrl_w_512:
 | |
|   case Intrinsic::x86_avx512_psrli_d_512:
 | |
|   case Intrinsic::x86_avx512_psrli_q_512:
 | |
|   case Intrinsic::x86_avx512_psrli_w_512:
 | |
|     LogicalShift = true; ShiftLeft = false;
 | |
|     break;
 | |
|   case Intrinsic::x86_sse2_psll_d:
 | |
|   case Intrinsic::x86_sse2_psll_q:
 | |
|   case Intrinsic::x86_sse2_psll_w:
 | |
|   case Intrinsic::x86_sse2_pslli_d:
 | |
|   case Intrinsic::x86_sse2_pslli_q:
 | |
|   case Intrinsic::x86_sse2_pslli_w:
 | |
|   case Intrinsic::x86_avx2_psll_d:
 | |
|   case Intrinsic::x86_avx2_psll_q:
 | |
|   case Intrinsic::x86_avx2_psll_w:
 | |
|   case Intrinsic::x86_avx2_pslli_d:
 | |
|   case Intrinsic::x86_avx2_pslli_q:
 | |
|   case Intrinsic::x86_avx2_pslli_w:
 | |
|   case Intrinsic::x86_avx512_psll_d_512:
 | |
|   case Intrinsic::x86_avx512_psll_q_512:
 | |
|   case Intrinsic::x86_avx512_psll_w_512:
 | |
|   case Intrinsic::x86_avx512_pslli_d_512:
 | |
|   case Intrinsic::x86_avx512_pslli_q_512:
 | |
|   case Intrinsic::x86_avx512_pslli_w_512:
 | |
|     LogicalShift = true; ShiftLeft = true;
 | |
|     break;
 | |
|   }
 | |
|   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
 | |
| 
 | |
|   // Simplify if count is constant.
 | |
|   auto Arg1 = II.getArgOperand(1);
 | |
|   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
 | |
|   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
 | |
|   auto CInt = dyn_cast<ConstantInt>(Arg1);
 | |
|   if (!CAZ && !CDV && !CInt)
 | |
|     return nullptr;
 | |
| 
 | |
|   APInt Count(64, 0);
 | |
|   if (CDV) {
 | |
|     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
 | |
|     // operand to compute the shift amount.
 | |
|     auto VT = cast<VectorType>(CDV->getType());
 | |
|     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
 | |
|     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
 | |
|     unsigned NumSubElts = 64 / BitWidth;
 | |
| 
 | |
|     // Concatenate the sub-elements to create the 64-bit value.
 | |
|     for (unsigned i = 0; i != NumSubElts; ++i) {
 | |
|       unsigned SubEltIdx = (NumSubElts - 1) - i;
 | |
|       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
 | |
|       Count = Count.shl(BitWidth);
 | |
|       Count |= SubElt->getValue().zextOrTrunc(64);
 | |
|     }
 | |
|   }
 | |
|   else if (CInt)
 | |
|     Count = CInt->getValue();
 | |
| 
 | |
|   auto Vec = II.getArgOperand(0);
 | |
|   auto VT = cast<VectorType>(Vec->getType());
 | |
|   auto SVT = VT->getElementType();
 | |
|   unsigned VWidth = VT->getNumElements();
 | |
|   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // If shift-by-zero then just return the original value.
 | |
|   if (Count == 0)
 | |
|     return Vec;
 | |
| 
 | |
|   // Handle cases when Shift >= BitWidth.
 | |
|   if (Count.uge(BitWidth)) {
 | |
|     // If LogicalShift - just return zero.
 | |
|     if (LogicalShift)
 | |
|       return ConstantAggregateZero::get(VT);
 | |
| 
 | |
|     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
 | |
|     Count = APInt(64, BitWidth - 1);
 | |
|   }
 | |
| 
 | |
|   // Get a constant vector of the same type as the first operand.
 | |
|   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
 | |
|   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
 | |
| 
 | |
|   if (ShiftLeft)
 | |
|     return Builder.CreateShl(Vec, ShiftVec);
 | |
| 
 | |
|   if (LogicalShift)
 | |
|     return Builder.CreateLShr(Vec, ShiftVec);
 | |
| 
 | |
|   return Builder.CreateAShr(Vec, ShiftVec);
 | |
| }
 | |
| 
 | |
| // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
 | |
| // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
 | |
| // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
 | |
| static Value *simplifyX86varShift(const IntrinsicInst &II,
 | |
|                                   InstCombiner::BuilderTy &Builder) {
 | |
|   bool LogicalShift = false;
 | |
|   bool ShiftLeft = false;
 | |
| 
 | |
|   switch (II.getIntrinsicID()) {
 | |
|   default: llvm_unreachable("Unexpected intrinsic!");
 | |
|   case Intrinsic::x86_avx2_psrav_d:
 | |
|   case Intrinsic::x86_avx2_psrav_d_256:
 | |
|   case Intrinsic::x86_avx512_psrav_q_128:
 | |
|   case Intrinsic::x86_avx512_psrav_q_256:
 | |
|   case Intrinsic::x86_avx512_psrav_d_512:
 | |
|   case Intrinsic::x86_avx512_psrav_q_512:
 | |
|   case Intrinsic::x86_avx512_psrav_w_128:
 | |
|   case Intrinsic::x86_avx512_psrav_w_256:
 | |
|   case Intrinsic::x86_avx512_psrav_w_512:
 | |
|     LogicalShift = false;
 | |
|     ShiftLeft = false;
 | |
|     break;
 | |
|   case Intrinsic::x86_avx2_psrlv_d:
 | |
|   case Intrinsic::x86_avx2_psrlv_d_256:
 | |
|   case Intrinsic::x86_avx2_psrlv_q:
 | |
|   case Intrinsic::x86_avx2_psrlv_q_256:
 | |
|   case Intrinsic::x86_avx512_psrlv_d_512:
 | |
|   case Intrinsic::x86_avx512_psrlv_q_512:
 | |
|   case Intrinsic::x86_avx512_psrlv_w_128:
 | |
|   case Intrinsic::x86_avx512_psrlv_w_256:
 | |
|   case Intrinsic::x86_avx512_psrlv_w_512:
 | |
|     LogicalShift = true;
 | |
|     ShiftLeft = false;
 | |
|     break;
 | |
|   case Intrinsic::x86_avx2_psllv_d:
 | |
|   case Intrinsic::x86_avx2_psllv_d_256:
 | |
|   case Intrinsic::x86_avx2_psllv_q:
 | |
|   case Intrinsic::x86_avx2_psllv_q_256:
 | |
|   case Intrinsic::x86_avx512_psllv_d_512:
 | |
|   case Intrinsic::x86_avx512_psllv_q_512:
 | |
|   case Intrinsic::x86_avx512_psllv_w_128:
 | |
|   case Intrinsic::x86_avx512_psllv_w_256:
 | |
|   case Intrinsic::x86_avx512_psllv_w_512:
 | |
|     LogicalShift = true;
 | |
|     ShiftLeft = true;
 | |
|     break;
 | |
|   }
 | |
|   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
 | |
| 
 | |
|   // Simplify if all shift amounts are constant/undef.
 | |
|   auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
 | |
|   if (!CShift)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto Vec = II.getArgOperand(0);
 | |
|   auto VT = cast<VectorType>(II.getType());
 | |
|   auto SVT = VT->getVectorElementType();
 | |
|   int NumElts = VT->getNumElements();
 | |
|   int BitWidth = SVT->getIntegerBitWidth();
 | |
| 
 | |
|   // Collect each element's shift amount.
 | |
|   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
 | |
|   bool AnyOutOfRange = false;
 | |
|   SmallVector<int, 8> ShiftAmts;
 | |
|   for (int I = 0; I < NumElts; ++I) {
 | |
|     auto *CElt = CShift->getAggregateElement(I);
 | |
|     if (CElt && isa<UndefValue>(CElt)) {
 | |
|       ShiftAmts.push_back(-1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
 | |
|     if (!COp)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Handle out of range shifts.
 | |
|     // If LogicalShift - set to BitWidth (special case).
 | |
|     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
 | |
|     APInt ShiftVal = COp->getValue();
 | |
|     if (ShiftVal.uge(BitWidth)) {
 | |
|       AnyOutOfRange = LogicalShift;
 | |
|       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
 | |
|   }
 | |
| 
 | |
|   // If all elements out of range or UNDEF, return vector of zeros/undefs.
 | |
|   // ArithmeticShift should only hit this if they are all UNDEF.
 | |
|   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
 | |
|   if (all_of(ShiftAmts, OutOfRange)) {
 | |
|     SmallVector<Constant *, 8> ConstantVec;
 | |
|     for (int Idx : ShiftAmts) {
 | |
|       if (Idx < 0) {
 | |
|         ConstantVec.push_back(UndefValue::get(SVT));
 | |
|       } else {
 | |
|         assert(LogicalShift && "Logical shift expected");
 | |
|         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
 | |
|       }
 | |
|     }
 | |
|     return ConstantVector::get(ConstantVec);
 | |
|   }
 | |
| 
 | |
|   // We can't handle only some out of range values with generic logical shifts.
 | |
|   if (AnyOutOfRange)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Build the shift amount constant vector.
 | |
|   SmallVector<Constant *, 8> ShiftVecAmts;
 | |
|   for (int Idx : ShiftAmts) {
 | |
|     if (Idx < 0)
 | |
|       ShiftVecAmts.push_back(UndefValue::get(SVT));
 | |
|     else
 | |
|       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
 | |
|   }
 | |
|   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
 | |
| 
 | |
|   if (ShiftLeft)
 | |
|     return Builder.CreateShl(Vec, ShiftVec);
 | |
| 
 | |
|   if (LogicalShift)
 | |
|     return Builder.CreateLShr(Vec, ShiftVec);
 | |
| 
 | |
|   return Builder.CreateAShr(Vec, ShiftVec);
 | |
| }
 | |
| 
 | |
| static Value *simplifyX86muldq(const IntrinsicInst &II,
 | |
|                                InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Arg0 = II.getArgOperand(0);
 | |
|   Value *Arg1 = II.getArgOperand(1);
 | |
|   Type *ResTy = II.getType();
 | |
|   assert(Arg0->getType()->getScalarSizeInBits() == 32 &&
 | |
|          Arg1->getType()->getScalarSizeInBits() == 32 &&
 | |
|          ResTy->getScalarSizeInBits() == 64 && "Unexpected muldq/muludq types");
 | |
| 
 | |
|   // muldq/muludq(undef, undef) -> zero (matches generic mul behavior)
 | |
|   if (isa<UndefValue>(Arg0) || isa<UndefValue>(Arg1))
 | |
|     return ConstantAggregateZero::get(ResTy);
 | |
| 
 | |
|   // Constant folding.
 | |
|   // PMULDQ  = (mul(vXi64 sext(shuffle<0,2,..>(Arg0)),
 | |
|   //                vXi64 sext(shuffle<0,2,..>(Arg1))))
 | |
|   // PMULUDQ = (mul(vXi64 zext(shuffle<0,2,..>(Arg0)),
 | |
|   //                vXi64 zext(shuffle<0,2,..>(Arg1))))
 | |
|   if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned NumElts = ResTy->getVectorNumElements();
 | |
|   assert(Arg0->getType()->getVectorNumElements() == (2 * NumElts) &&
 | |
|          Arg1->getType()->getVectorNumElements() == (2 * NumElts) &&
 | |
|          "Unexpected muldq/muludq types");
 | |
| 
 | |
|   unsigned IntrinsicID = II.getIntrinsicID();
 | |
|   bool IsSigned = (Intrinsic::x86_sse41_pmuldq == IntrinsicID ||
 | |
|                    Intrinsic::x86_avx2_pmul_dq == IntrinsicID ||
 | |
|                    Intrinsic::x86_avx512_pmul_dq_512 == IntrinsicID);
 | |
| 
 | |
|   SmallVector<unsigned, 16> ShuffleMask;
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     ShuffleMask.push_back(i * 2);
 | |
| 
 | |
|   auto *LHS = Builder.CreateShuffleVector(Arg0, Arg0, ShuffleMask);
 | |
|   auto *RHS = Builder.CreateShuffleVector(Arg1, Arg1, ShuffleMask);
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     LHS = Builder.CreateSExt(LHS, ResTy);
 | |
|     RHS = Builder.CreateSExt(RHS, ResTy);
 | |
|   } else {
 | |
|     LHS = Builder.CreateZExt(LHS, ResTy);
 | |
|     RHS = Builder.CreateZExt(RHS, ResTy);
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateMul(LHS, RHS);
 | |
| }
 | |
| 
 | |
| static Value *simplifyX86pack(IntrinsicInst &II, InstCombiner &IC,
 | |
|                               InstCombiner::BuilderTy &Builder, bool IsSigned) {
 | |
|   Value *Arg0 = II.getArgOperand(0);
 | |
|   Value *Arg1 = II.getArgOperand(1);
 | |
|   Type *ResTy = II.getType();
 | |
| 
 | |
|   // Fast all undef handling.
 | |
|   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
 | |
|     return UndefValue::get(ResTy);
 | |
| 
 | |
|   Type *ArgTy = Arg0->getType();
 | |
|   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
 | |
|   unsigned NumDstElts = ResTy->getVectorNumElements();
 | |
|   unsigned NumSrcElts = ArgTy->getVectorNumElements();
 | |
|   assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
 | |
| 
 | |
|   unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
 | |
|   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
 | |
|   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
 | |
|   assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
 | |
|          "Unexpected packing types");
 | |
| 
 | |
|   // Constant folding.
 | |
|   auto *Cst0 = dyn_cast<Constant>(Arg0);
 | |
|   auto *Cst1 = dyn_cast<Constant>(Arg1);
 | |
|   if (!Cst0 || !Cst1)
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<Constant *, 32> Vals;
 | |
|   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | |
|     for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
 | |
|       unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
 | |
|       auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
 | |
|       auto *COp = Cst->getAggregateElement(SrcIdx);
 | |
|       if (COp && isa<UndefValue>(COp)) {
 | |
|         Vals.push_back(UndefValue::get(ResTy->getScalarType()));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
 | |
|       if (!CInt)
 | |
|         return nullptr;
 | |
| 
 | |
|       APInt Val = CInt->getValue();
 | |
|       assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
 | |
|              "Unexpected constant bitwidth");
 | |
| 
 | |
|       if (IsSigned) {
 | |
|         // PACKSS: Truncate signed value with signed saturation.
 | |
|         // Source values less than dst minint are saturated to minint.
 | |
|         // Source values greater than dst maxint are saturated to maxint.
 | |
|         if (Val.isSignedIntN(DstScalarSizeInBits))
 | |
|           Val = Val.trunc(DstScalarSizeInBits);
 | |
|         else if (Val.isNegative())
 | |
|           Val = APInt::getSignedMinValue(DstScalarSizeInBits);
 | |
|         else
 | |
|           Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
 | |
|       } else {
 | |
|         // PACKUS: Truncate signed value with unsigned saturation.
 | |
|         // Source values less than zero are saturated to zero.
 | |
|         // Source values greater than dst maxuint are saturated to maxuint.
 | |
|         if (Val.isIntN(DstScalarSizeInBits))
 | |
|           Val = Val.trunc(DstScalarSizeInBits);
 | |
|         else if (Val.isNegative())
 | |
|           Val = APInt::getNullValue(DstScalarSizeInBits);
 | |
|         else
 | |
|           Val = APInt::getAllOnesValue(DstScalarSizeInBits);
 | |
|       }
 | |
| 
 | |
|       Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ConstantVector::get(Vals);
 | |
| }
 | |
| 
 | |
| static Value *simplifyX86movmsk(const IntrinsicInst &II,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Arg = II.getArgOperand(0);
 | |
|   Type *ResTy = II.getType();
 | |
|   Type *ArgTy = Arg->getType();
 | |
| 
 | |
|   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
 | |
|   if (isa<UndefValue>(Arg))
 | |
|     return Constant::getNullValue(ResTy);
 | |
| 
 | |
|   // We can't easily peek through x86_mmx types.
 | |
|   if (!ArgTy->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *C = dyn_cast<Constant>(Arg);
 | |
|   if (!C)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Extract signbits of the vector input and pack into integer result.
 | |
|   APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
 | |
|   for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
 | |
|     auto *COp = C->getAggregateElement(I);
 | |
|     if (!COp)
 | |
|       return nullptr;
 | |
|     if (isa<UndefValue>(COp))
 | |
|       continue;
 | |
| 
 | |
|     auto *CInt = dyn_cast<ConstantInt>(COp);
 | |
|     auto *CFp = dyn_cast<ConstantFP>(COp);
 | |
|     if (!CInt && !CFp)
 | |
|       return nullptr;
 | |
| 
 | |
|     if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
 | |
|       Result.setBit(I);
 | |
|   }
 | |
| 
 | |
|   return Constant::getIntegerValue(ResTy, Result);
 | |
| }
 | |
| 
 | |
| static Value *simplifyX86insertps(const IntrinsicInst &II,
 | |
|                                   InstCombiner::BuilderTy &Builder) {
 | |
|   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
 | |
|   if (!CInt)
 | |
|     return nullptr;
 | |
| 
 | |
|   VectorType *VecTy = cast<VectorType>(II.getType());
 | |
|   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
 | |
| 
 | |
|   // The immediate permute control byte looks like this:
 | |
|   //    [3:0] - zero mask for each 32-bit lane
 | |
|   //    [5:4] - select one 32-bit destination lane
 | |
|   //    [7:6] - select one 32-bit source lane
 | |
| 
 | |
|   uint8_t Imm = CInt->getZExtValue();
 | |
|   uint8_t ZMask = Imm & 0xf;
 | |
|   uint8_t DestLane = (Imm >> 4) & 0x3;
 | |
|   uint8_t SourceLane = (Imm >> 6) & 0x3;
 | |
| 
 | |
|   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
 | |
| 
 | |
|   // If all zero mask bits are set, this was just a weird way to
 | |
|   // generate a zero vector.
 | |
|   if (ZMask == 0xf)
 | |
|     return ZeroVector;
 | |
| 
 | |
|   // Initialize by passing all of the first source bits through.
 | |
|   uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
 | |
| 
 | |
|   // We may replace the second operand with the zero vector.
 | |
|   Value *V1 = II.getArgOperand(1);
 | |
| 
 | |
|   if (ZMask) {
 | |
|     // If the zero mask is being used with a single input or the zero mask
 | |
|     // overrides the destination lane, this is a shuffle with the zero vector.
 | |
|     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
 | |
|         (ZMask & (1 << DestLane))) {
 | |
|       V1 = ZeroVector;
 | |
|       // We may still move 32-bits of the first source vector from one lane
 | |
|       // to another.
 | |
|       ShuffleMask[DestLane] = SourceLane;
 | |
|       // The zero mask may override the previous insert operation.
 | |
|       for (unsigned i = 0; i < 4; ++i)
 | |
|         if ((ZMask >> i) & 0x1)
 | |
|           ShuffleMask[i] = i + 4;
 | |
|     } else {
 | |
|       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
 | |
|       return nullptr;
 | |
|     }
 | |
|   } else {
 | |
|     // Replace the selected destination lane with the selected source lane.
 | |
|     ShuffleMask[DestLane] = SourceLane + 4;
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
 | |
| }
 | |
| 
 | |
| /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
 | |
| /// or conversion to a shuffle vector.
 | |
| static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
 | |
|                                ConstantInt *CILength, ConstantInt *CIIndex,
 | |
|                                InstCombiner::BuilderTy &Builder) {
 | |
|   auto LowConstantHighUndef = [&](uint64_t Val) {
 | |
|     Type *IntTy64 = Type::getInt64Ty(II.getContext());
 | |
|     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
 | |
|                         UndefValue::get(IntTy64)};
 | |
|     return ConstantVector::get(Args);
 | |
|   };
 | |
| 
 | |
|   // See if we're dealing with constant values.
 | |
|   Constant *C0 = dyn_cast<Constant>(Op0);
 | |
|   ConstantInt *CI0 =
 | |
|       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
 | |
|          : nullptr;
 | |
| 
 | |
|   // Attempt to constant fold.
 | |
|   if (CILength && CIIndex) {
 | |
|     // From AMD documentation: "The bit index and field length are each six
 | |
|     // bits in length other bits of the field are ignored."
 | |
|     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
 | |
|     APInt APLength = CILength->getValue().zextOrTrunc(6);
 | |
| 
 | |
|     unsigned Index = APIndex.getZExtValue();
 | |
| 
 | |
|     // From AMD documentation: "a value of zero in the field length is
 | |
|     // defined as length of 64".
 | |
|     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
 | |
| 
 | |
|     // From AMD documentation: "If the sum of the bit index + length field
 | |
|     // is greater than 64, the results are undefined".
 | |
|     unsigned End = Index + Length;
 | |
| 
 | |
|     // Note that both field index and field length are 8-bit quantities.
 | |
|     // Since variables 'Index' and 'Length' are unsigned values
 | |
|     // obtained from zero-extending field index and field length
 | |
|     // respectively, their sum should never wrap around.
 | |
|     if (End > 64)
 | |
|       return UndefValue::get(II.getType());
 | |
| 
 | |
|     // If we are inserting whole bytes, we can convert this to a shuffle.
 | |
|     // Lowering can recognize EXTRQI shuffle masks.
 | |
|     if ((Length % 8) == 0 && (Index % 8) == 0) {
 | |
|       // Convert bit indices to byte indices.
 | |
|       Length /= 8;
 | |
|       Index /= 8;
 | |
| 
 | |
|       Type *IntTy8 = Type::getInt8Ty(II.getContext());
 | |
|       Type *IntTy32 = Type::getInt32Ty(II.getContext());
 | |
|       VectorType *ShufTy = VectorType::get(IntTy8, 16);
 | |
| 
 | |
|       SmallVector<Constant *, 16> ShuffleMask;
 | |
|       for (int i = 0; i != (int)Length; ++i)
 | |
|         ShuffleMask.push_back(
 | |
|             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
 | |
|       for (int i = Length; i != 8; ++i)
 | |
|         ShuffleMask.push_back(
 | |
|             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
 | |
|       for (int i = 8; i != 16; ++i)
 | |
|         ShuffleMask.push_back(UndefValue::get(IntTy32));
 | |
| 
 | |
|       Value *SV = Builder.CreateShuffleVector(
 | |
|           Builder.CreateBitCast(Op0, ShufTy),
 | |
|           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
 | |
|       return Builder.CreateBitCast(SV, II.getType());
 | |
|     }
 | |
| 
 | |
|     // Constant Fold - shift Index'th bit to lowest position and mask off
 | |
|     // Length bits.
 | |
|     if (CI0) {
 | |
|       APInt Elt = CI0->getValue();
 | |
|       Elt = Elt.lshr(Index).zextOrTrunc(Length);
 | |
|       return LowConstantHighUndef(Elt.getZExtValue());
 | |
|     }
 | |
| 
 | |
|     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
 | |
|     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
 | |
|       Value *Args[] = {Op0, CILength, CIIndex};
 | |
|       Module *M = II.getModule();
 | |
|       Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
 | |
|       return Builder.CreateCall(F, Args);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant Fold - extraction from zero is always {zero, undef}.
 | |
|   if (CI0 && CI0->equalsInt(0))
 | |
|     return LowConstantHighUndef(0);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
 | |
| /// folding or conversion to a shuffle vector.
 | |
| static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
 | |
|                                  APInt APLength, APInt APIndex,
 | |
|                                  InstCombiner::BuilderTy &Builder) {
 | |
|   // From AMD documentation: "The bit index and field length are each six bits
 | |
|   // in length other bits of the field are ignored."
 | |
|   APIndex = APIndex.zextOrTrunc(6);
 | |
|   APLength = APLength.zextOrTrunc(6);
 | |
| 
 | |
|   // Attempt to constant fold.
 | |
|   unsigned Index = APIndex.getZExtValue();
 | |
| 
 | |
|   // From AMD documentation: "a value of zero in the field length is
 | |
|   // defined as length of 64".
 | |
|   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
 | |
| 
 | |
|   // From AMD documentation: "If the sum of the bit index + length field
 | |
|   // is greater than 64, the results are undefined".
 | |
|   unsigned End = Index + Length;
 | |
| 
 | |
|   // Note that both field index and field length are 8-bit quantities.
 | |
|   // Since variables 'Index' and 'Length' are unsigned values
 | |
|   // obtained from zero-extending field index and field length
 | |
|   // respectively, their sum should never wrap around.
 | |
|   if (End > 64)
 | |
|     return UndefValue::get(II.getType());
 | |
| 
 | |
|   // If we are inserting whole bytes, we can convert this to a shuffle.
 | |
|   // Lowering can recognize INSERTQI shuffle masks.
 | |
|   if ((Length % 8) == 0 && (Index % 8) == 0) {
 | |
|     // Convert bit indices to byte indices.
 | |
|     Length /= 8;
 | |
|     Index /= 8;
 | |
| 
 | |
|     Type *IntTy8 = Type::getInt8Ty(II.getContext());
 | |
|     Type *IntTy32 = Type::getInt32Ty(II.getContext());
 | |
|     VectorType *ShufTy = VectorType::get(IntTy8, 16);
 | |
| 
 | |
|     SmallVector<Constant *, 16> ShuffleMask;
 | |
|     for (int i = 0; i != (int)Index; ++i)
 | |
|       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
 | |
|     for (int i = 0; i != (int)Length; ++i)
 | |
|       ShuffleMask.push_back(
 | |
|           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
 | |
|     for (int i = Index + Length; i != 8; ++i)
 | |
|       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
 | |
|     for (int i = 8; i != 16; ++i)
 | |
|       ShuffleMask.push_back(UndefValue::get(IntTy32));
 | |
| 
 | |
|     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
 | |
|                                             Builder.CreateBitCast(Op1, ShufTy),
 | |
|                                             ConstantVector::get(ShuffleMask));
 | |
|     return Builder.CreateBitCast(SV, II.getType());
 | |
|   }
 | |
| 
 | |
|   // See if we're dealing with constant values.
 | |
|   Constant *C0 = dyn_cast<Constant>(Op0);
 | |
|   Constant *C1 = dyn_cast<Constant>(Op1);
 | |
|   ConstantInt *CI00 =
 | |
|       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
 | |
|          : nullptr;
 | |
|   ConstantInt *CI10 =
 | |
|       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
 | |
|          : nullptr;
 | |
| 
 | |
|   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
 | |
|   if (CI00 && CI10) {
 | |
|     APInt V00 = CI00->getValue();
 | |
|     APInt V10 = CI10->getValue();
 | |
|     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
 | |
|     V00 = V00 & ~Mask;
 | |
|     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
 | |
|     APInt Val = V00 | V10;
 | |
|     Type *IntTy64 = Type::getInt64Ty(II.getContext());
 | |
|     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
 | |
|                         UndefValue::get(IntTy64)};
 | |
|     return ConstantVector::get(Args);
 | |
|   }
 | |
| 
 | |
|   // If we were an INSERTQ call, we'll save demanded elements if we convert to
 | |
|   // INSERTQI.
 | |
|   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
 | |
|     Type *IntTy8 = Type::getInt8Ty(II.getContext());
 | |
|     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
 | |
|     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
 | |
| 
 | |
|     Value *Args[] = {Op0, Op1, CILength, CIIndex};
 | |
|     Module *M = II.getModule();
 | |
|     Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
 | |
|     return Builder.CreateCall(F, Args);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Attempt to convert pshufb* to shufflevector if the mask is constant.
 | |
| static Value *simplifyX86pshufb(const IntrinsicInst &II,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *VecTy = cast<VectorType>(II.getType());
 | |
|   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
 | |
|   unsigned NumElts = VecTy->getNumElements();
 | |
|   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
 | |
|          "Unexpected number of elements in shuffle mask!");
 | |
| 
 | |
|   // Construct a shuffle mask from constant integers or UNDEFs.
 | |
|   Constant *Indexes[64] = {nullptr};
 | |
| 
 | |
|   // Each byte in the shuffle control mask forms an index to permute the
 | |
|   // corresponding byte in the destination operand.
 | |
|   for (unsigned I = 0; I < NumElts; ++I) {
 | |
|     Constant *COp = V->getAggregateElement(I);
 | |
|     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (isa<UndefValue>(COp)) {
 | |
|       Indexes[I] = UndefValue::get(MaskEltTy);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
 | |
| 
 | |
|     // If the most significant bit (bit[7]) of each byte of the shuffle
 | |
|     // control mask is set, then zero is written in the result byte.
 | |
|     // The zero vector is in the right-hand side of the resulting
 | |
|     // shufflevector.
 | |
| 
 | |
|     // The value of each index for the high 128-bit lane is the least
 | |
|     // significant 4 bits of the respective shuffle control byte.
 | |
|     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
 | |
|     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
 | |
|   }
 | |
| 
 | |
|   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
 | |
|   auto V1 = II.getArgOperand(0);
 | |
|   auto V2 = Constant::getNullValue(VecTy);
 | |
|   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
 | |
| }
 | |
| 
 | |
| /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
 | |
| static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
 | |
|                                     InstCombiner::BuilderTy &Builder) {
 | |
|   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *VecTy = cast<VectorType>(II.getType());
 | |
|   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
 | |
|   unsigned NumElts = VecTy->getVectorNumElements();
 | |
|   bool IsPD = VecTy->getScalarType()->isDoubleTy();
 | |
|   unsigned NumLaneElts = IsPD ? 2 : 4;
 | |
|   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
 | |
| 
 | |
|   // Construct a shuffle mask from constant integers or UNDEFs.
 | |
|   Constant *Indexes[16] = {nullptr};
 | |
| 
 | |
|   // The intrinsics only read one or two bits, clear the rest.
 | |
|   for (unsigned I = 0; I < NumElts; ++I) {
 | |
|     Constant *COp = V->getAggregateElement(I);
 | |
|     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (isa<UndefValue>(COp)) {
 | |
|       Indexes[I] = UndefValue::get(MaskEltTy);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     APInt Index = cast<ConstantInt>(COp)->getValue();
 | |
|     Index = Index.zextOrTrunc(32).getLoBits(2);
 | |
| 
 | |
|     // The PD variants uses bit 1 to select per-lane element index, so
 | |
|     // shift down to convert to generic shuffle mask index.
 | |
|     if (IsPD)
 | |
|       Index = Index.lshr(1);
 | |
| 
 | |
|     // The _256 variants are a bit trickier since the mask bits always index
 | |
|     // into the corresponding 128 half. In order to convert to a generic
 | |
|     // shuffle, we have to make that explicit.
 | |
|     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
 | |
| 
 | |
|     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
 | |
|   }
 | |
| 
 | |
|   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
 | |
|   auto V1 = II.getArgOperand(0);
 | |
|   auto V2 = UndefValue::get(V1->getType());
 | |
|   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
 | |
| }
 | |
| 
 | |
| /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
 | |
| static Value *simplifyX86vpermv(const IntrinsicInst &II,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *VecTy = cast<VectorType>(II.getType());
 | |
|   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
 | |
|   unsigned Size = VecTy->getNumElements();
 | |
|   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
 | |
|          "Unexpected shuffle mask size");
 | |
| 
 | |
|   // Construct a shuffle mask from constant integers or UNDEFs.
 | |
|   Constant *Indexes[64] = {nullptr};
 | |
| 
 | |
|   for (unsigned I = 0; I < Size; ++I) {
 | |
|     Constant *COp = V->getAggregateElement(I);
 | |
|     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (isa<UndefValue>(COp)) {
 | |
|       Indexes[I] = UndefValue::get(MaskEltTy);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
 | |
|     Index &= Size - 1;
 | |
|     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
 | |
|   }
 | |
| 
 | |
|   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
 | |
|   auto V1 = II.getArgOperand(0);
 | |
|   auto V2 = UndefValue::get(VecTy);
 | |
|   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
 | |
| }
 | |
| 
 | |
| /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
 | |
| /// source vectors, unless a zero bit is set. If a zero bit is set,
 | |
| /// then ignore that half of the mask and clear that half of the vector.
 | |
| static Value *simplifyX86vperm2(const IntrinsicInst &II,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
 | |
|   if (!CInt)
 | |
|     return nullptr;
 | |
| 
 | |
|   VectorType *VecTy = cast<VectorType>(II.getType());
 | |
|   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
 | |
| 
 | |
|   // The immediate permute control byte looks like this:
 | |
|   //    [1:0] - select 128 bits from sources for low half of destination
 | |
|   //    [2]   - ignore
 | |
|   //    [3]   - zero low half of destination
 | |
|   //    [5:4] - select 128 bits from sources for high half of destination
 | |
|   //    [6]   - ignore
 | |
|   //    [7]   - zero high half of destination
 | |
| 
 | |
|   uint8_t Imm = CInt->getZExtValue();
 | |
| 
 | |
|   bool LowHalfZero = Imm & 0x08;
 | |
|   bool HighHalfZero = Imm & 0x80;
 | |
| 
 | |
|   // If both zero mask bits are set, this was just a weird way to
 | |
|   // generate a zero vector.
 | |
|   if (LowHalfZero && HighHalfZero)
 | |
|     return ZeroVector;
 | |
| 
 | |
|   // If 0 or 1 zero mask bits are set, this is a simple shuffle.
 | |
|   unsigned NumElts = VecTy->getNumElements();
 | |
|   unsigned HalfSize = NumElts / 2;
 | |
|   SmallVector<uint32_t, 8> ShuffleMask(NumElts);
 | |
| 
 | |
|   // The high bit of the selection field chooses the 1st or 2nd operand.
 | |
|   bool LowInputSelect = Imm & 0x02;
 | |
|   bool HighInputSelect = Imm & 0x20;
 | |
| 
 | |
|   // The low bit of the selection field chooses the low or high half
 | |
|   // of the selected operand.
 | |
|   bool LowHalfSelect = Imm & 0x01;
 | |
|   bool HighHalfSelect = Imm & 0x10;
 | |
| 
 | |
|   // Determine which operand(s) are actually in use for this instruction.
 | |
|   Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
 | |
|   Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
 | |
| 
 | |
|   // If needed, replace operands based on zero mask.
 | |
|   V0 = LowHalfZero ? ZeroVector : V0;
 | |
|   V1 = HighHalfZero ? ZeroVector : V1;
 | |
| 
 | |
|   // Permute low half of result.
 | |
|   unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
 | |
|   for (unsigned i = 0; i < HalfSize; ++i)
 | |
|     ShuffleMask[i] = StartIndex + i;
 | |
| 
 | |
|   // Permute high half of result.
 | |
|   StartIndex = HighHalfSelect ? HalfSize : 0;
 | |
|   StartIndex += NumElts;
 | |
|   for (unsigned i = 0; i < HalfSize; ++i)
 | |
|     ShuffleMask[i + HalfSize] = StartIndex + i;
 | |
| 
 | |
|   return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
 | |
| }
 | |
| 
 | |
| /// Decode XOP integer vector comparison intrinsics.
 | |
| static Value *simplifyX86vpcom(const IntrinsicInst &II,
 | |
|                                InstCombiner::BuilderTy &Builder,
 | |
|                                bool IsSigned) {
 | |
|   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
 | |
|     uint64_t Imm = CInt->getZExtValue() & 0x7;
 | |
|     VectorType *VecTy = cast<VectorType>(II.getType());
 | |
|     CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
 | |
| 
 | |
|     switch (Imm) {
 | |
|     case 0x0:
 | |
|       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | |
|       break;
 | |
|     case 0x1:
 | |
|       Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
 | |
|       break;
 | |
|     case 0x2:
 | |
|       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|       break;
 | |
|     case 0x3:
 | |
|       Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
 | |
|       break;
 | |
|     case 0x4:
 | |
|       Pred = ICmpInst::ICMP_EQ; break;
 | |
|     case 0x5:
 | |
|       Pred = ICmpInst::ICMP_NE; break;
 | |
|     case 0x6:
 | |
|       return ConstantInt::getSigned(VecTy, 0); // FALSE
 | |
|     case 0x7:
 | |
|       return ConstantInt::getSigned(VecTy, -1); // TRUE
 | |
|     }
 | |
| 
 | |
|     if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
 | |
|                                         II.getArgOperand(1)))
 | |
|       return Builder.CreateSExtOrTrunc(Cmp, VecTy);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Emit a select instruction and appropriate bitcasts to help simplify
 | |
| // masked intrinsics.
 | |
| static Value *emitX86MaskSelect(Value *Mask, Value *Op0, Value *Op1,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   unsigned VWidth = Op0->getType()->getVectorNumElements();
 | |
| 
 | |
|   // If the mask is all ones we don't need the select. But we need to check
 | |
|   // only the bit thats will be used in case VWidth is less than 8.
 | |
|   if (auto *C = dyn_cast<ConstantInt>(Mask))
 | |
|     if (C->getValue().zextOrTrunc(VWidth).isAllOnesValue())
 | |
|       return Op0;
 | |
| 
 | |
|   auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
 | |
|                          cast<IntegerType>(Mask->getType())->getBitWidth());
 | |
|   Mask = Builder.CreateBitCast(Mask, MaskTy);
 | |
| 
 | |
|   // If we have less than 8 elements, then the starting mask was an i8 and
 | |
|   // we need to extract down to the right number of elements.
 | |
|   if (VWidth < 8) {
 | |
|     uint32_t Indices[4];
 | |
|     for (unsigned i = 0; i != VWidth; ++i)
 | |
|       Indices[i] = i;
 | |
|     Mask = Builder.CreateShuffleVector(Mask, Mask,
 | |
|                                        makeArrayRef(Indices, VWidth),
 | |
|                                        "extract");
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateSelect(Mask, Op0, Op1);
 | |
| }
 | |
| 
 | |
| static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
 | |
|   Value *Arg0 = II.getArgOperand(0);
 | |
|   Value *Arg1 = II.getArgOperand(1);
 | |
| 
 | |
|   // fmin(x, x) -> x
 | |
|   if (Arg0 == Arg1)
 | |
|     return Arg0;
 | |
| 
 | |
|   const auto *C1 = dyn_cast<ConstantFP>(Arg1);
 | |
| 
 | |
|   // fmin(x, nan) -> x
 | |
|   if (C1 && C1->isNaN())
 | |
|     return Arg0;
 | |
| 
 | |
|   // This is the value because if undef were NaN, we would return the other
 | |
|   // value and cannot return a NaN unless both operands are.
 | |
|   //
 | |
|   // fmin(undef, x) -> x
 | |
|   if (isa<UndefValue>(Arg0))
 | |
|     return Arg1;
 | |
| 
 | |
|   // fmin(x, undef) -> x
 | |
|   if (isa<UndefValue>(Arg1))
 | |
|     return Arg0;
 | |
| 
 | |
|   Value *X = nullptr;
 | |
|   Value *Y = nullptr;
 | |
|   if (II.getIntrinsicID() == Intrinsic::minnum) {
 | |
|     // fmin(x, fmin(x, y)) -> fmin(x, y)
 | |
|     // fmin(y, fmin(x, y)) -> fmin(x, y)
 | |
|     if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
 | |
|       if (Arg0 == X || Arg0 == Y)
 | |
|         return Arg1;
 | |
|     }
 | |
| 
 | |
|     // fmin(fmin(x, y), x) -> fmin(x, y)
 | |
|     // fmin(fmin(x, y), y) -> fmin(x, y)
 | |
|     if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
 | |
|       if (Arg1 == X || Arg1 == Y)
 | |
|         return Arg0;
 | |
|     }
 | |
| 
 | |
|     // TODO: fmin(nnan x, inf) -> x
 | |
|     // TODO: fmin(nnan ninf x, flt_max) -> x
 | |
|     if (C1 && C1->isInfinity()) {
 | |
|       // fmin(x, -inf) -> -inf
 | |
|       if (C1->isNegative())
 | |
|         return Arg1;
 | |
|     }
 | |
|   } else {
 | |
|     assert(II.getIntrinsicID() == Intrinsic::maxnum);
 | |
|     // fmax(x, fmax(x, y)) -> fmax(x, y)
 | |
|     // fmax(y, fmax(x, y)) -> fmax(x, y)
 | |
|     if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
 | |
|       if (Arg0 == X || Arg0 == Y)
 | |
|         return Arg1;
 | |
|     }
 | |
| 
 | |
|     // fmax(fmax(x, y), x) -> fmax(x, y)
 | |
|     // fmax(fmax(x, y), y) -> fmax(x, y)
 | |
|     if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
 | |
|       if (Arg1 == X || Arg1 == Y)
 | |
|         return Arg0;
 | |
|     }
 | |
| 
 | |
|     // TODO: fmax(nnan x, -inf) -> x
 | |
|     // TODO: fmax(nnan ninf x, -flt_max) -> x
 | |
|     if (C1 && C1->isInfinity()) {
 | |
|       // fmax(x, inf) -> inf
 | |
|       if (!C1->isNegative())
 | |
|         return Arg1;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool maskIsAllOneOrUndef(Value *Mask) {
 | |
|   auto *ConstMask = dyn_cast<Constant>(Mask);
 | |
|   if (!ConstMask)
 | |
|     return false;
 | |
|   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
 | |
|     return true;
 | |
|   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
 | |
|        ++I) {
 | |
|     if (auto *MaskElt = ConstMask->getAggregateElement(I))
 | |
|       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
 | |
|         continue;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Value *simplifyMaskedLoad(const IntrinsicInst &II,
 | |
|                                  InstCombiner::BuilderTy &Builder) {
 | |
|   // If the mask is all ones or undefs, this is a plain vector load of the 1st
 | |
|   // argument.
 | |
|   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
 | |
|     Value *LoadPtr = II.getArgOperand(0);
 | |
|     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
 | |
|     return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
 | |
|   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
 | |
|   if (!ConstMask)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the mask is all zeros, this instruction does nothing.
 | |
|   if (ConstMask->isNullValue())
 | |
|     return IC.eraseInstFromFunction(II);
 | |
| 
 | |
|   // If the mask is all ones, this is a plain vector store of the 1st argument.
 | |
|   if (ConstMask->isAllOnesValue()) {
 | |
|     Value *StorePtr = II.getArgOperand(1);
 | |
|     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
 | |
|     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
 | |
|   // If the mask is all zeros, return the "passthru" argument of the gather.
 | |
|   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
 | |
|   if (ConstMask && ConstMask->isNullValue())
 | |
|     return IC.replaceInstUsesWith(II, II.getArgOperand(3));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
 | |
|   // If the mask is all zeros, a scatter does nothing.
 | |
|   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
 | |
|   if (ConstMask && ConstMask->isNullValue())
 | |
|     return IC.eraseInstFromFunction(II);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
 | |
|   assert((II.getIntrinsicID() == Intrinsic::cttz ||
 | |
|           II.getIntrinsicID() == Intrinsic::ctlz) &&
 | |
|          "Expected cttz or ctlz intrinsic");
 | |
|   Value *Op0 = II.getArgOperand(0);
 | |
|   // FIXME: Try to simplify vectors of integers.
 | |
|   auto *IT = dyn_cast<IntegerType>(Op0->getType());
 | |
|   if (!IT)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned BitWidth = IT->getBitWidth();
 | |
|   APInt KnownZero(BitWidth, 0);
 | |
|   APInt KnownOne(BitWidth, 0);
 | |
|   IC.computeKnownBits(Op0, KnownZero, KnownOne, 0, &II);
 | |
| 
 | |
|   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
 | |
|   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
 | |
|   unsigned NumMaskBits = IsTZ ? KnownOne.countTrailingZeros()
 | |
|                               : KnownOne.countLeadingZeros();
 | |
|   APInt Mask = IsTZ ? APInt::getLowBitsSet(BitWidth, NumMaskBits)
 | |
|                     : APInt::getHighBitsSet(BitWidth, NumMaskBits);
 | |
| 
 | |
|   // If all bits above (ctlz) or below (cttz) the first known one are known
 | |
|   // zero, this value is constant.
 | |
|   // FIXME: This should be in InstSimplify because we're replacing an
 | |
|   // instruction with a constant.
 | |
|   if ((Mask & KnownZero) == Mask) {
 | |
|     auto *C = ConstantInt::get(IT, APInt(BitWidth, NumMaskBits));
 | |
|     return IC.replaceInstUsesWith(II, C);
 | |
|   }
 | |
| 
 | |
|   // If the input to cttz/ctlz is known to be non-zero,
 | |
|   // then change the 'ZeroIsUndef' parameter to 'true'
 | |
|   // because we know the zero behavior can't affect the result.
 | |
|   if (KnownOne != 0 || isKnownNonZero(Op0, IC.getDataLayout())) {
 | |
|     if (!match(II.getArgOperand(1), m_One())) {
 | |
|       II.setOperand(1, IC.Builder->getTrue());
 | |
|       return &II;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // TODO: If the x86 backend knew how to convert a bool vector mask back to an
 | |
| // XMM register mask efficiently, we could transform all x86 masked intrinsics
 | |
| // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
 | |
| static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
 | |
|   Value *Ptr = II.getOperand(0);
 | |
|   Value *Mask = II.getOperand(1);
 | |
|   Constant *ZeroVec = Constant::getNullValue(II.getType());
 | |
| 
 | |
|   // Special case a zero mask since that's not a ConstantDataVector.
 | |
|   // This masked load instruction creates a zero vector.
 | |
|   if (isa<ConstantAggregateZero>(Mask))
 | |
|     return IC.replaceInstUsesWith(II, ZeroVec);
 | |
| 
 | |
|   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
 | |
|   if (!ConstMask)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
 | |
|   // to allow target-independent optimizations.
 | |
| 
 | |
|   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
 | |
|   // the LLVM intrinsic definition for the pointer argument.
 | |
|   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
 | |
|   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
 | |
|   Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
 | |
| 
 | |
|   // Second, convert the x86 XMM integer vector mask to a vector of bools based
 | |
|   // on each element's most significant bit (the sign bit).
 | |
|   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
 | |
| 
 | |
|   // The pass-through vector for an x86 masked load is a zero vector.
 | |
|   CallInst *NewMaskedLoad =
 | |
|       IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
 | |
|   return IC.replaceInstUsesWith(II, NewMaskedLoad);
 | |
| }
 | |
| 
 | |
| // TODO: If the x86 backend knew how to convert a bool vector mask back to an
 | |
| // XMM register mask efficiently, we could transform all x86 masked intrinsics
 | |
| // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
 | |
| static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
 | |
|   Value *Ptr = II.getOperand(0);
 | |
|   Value *Mask = II.getOperand(1);
 | |
|   Value *Vec = II.getOperand(2);
 | |
| 
 | |
|   // Special case a zero mask since that's not a ConstantDataVector:
 | |
|   // this masked store instruction does nothing.
 | |
|   if (isa<ConstantAggregateZero>(Mask)) {
 | |
|     IC.eraseInstFromFunction(II);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
 | |
|   // anything else at this level.
 | |
|   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
 | |
|     return false;
 | |
| 
 | |
|   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
 | |
|   if (!ConstMask)
 | |
|     return false;
 | |
| 
 | |
|   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
 | |
|   // to allow target-independent optimizations.
 | |
| 
 | |
|   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
 | |
|   // the LLVM intrinsic definition for the pointer argument.
 | |
|   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
 | |
|   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
 | |
|   Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec");
 | |
| 
 | |
|   // Second, convert the x86 XMM integer vector mask to a vector of bools based
 | |
|   // on each element's most significant bit (the sign bit).
 | |
|   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
 | |
| 
 | |
|   IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
 | |
| 
 | |
|   // 'Replace uses' doesn't work for stores. Erase the original masked store.
 | |
|   IC.eraseInstFromFunction(II);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
 | |
| //
 | |
| // A single NaN input is folded to minnum, so we rely on that folding for
 | |
| // handling NaNs.
 | |
| static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
 | |
|                            const APFloat &Src2) {
 | |
|   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
 | |
| 
 | |
|   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
 | |
|   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
 | |
|   if (Cmp0 == APFloat::cmpEqual)
 | |
|     return maxnum(Src1, Src2);
 | |
| 
 | |
|   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
 | |
|   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
 | |
|   if (Cmp1 == APFloat::cmpEqual)
 | |
|     return maxnum(Src0, Src2);
 | |
| 
 | |
|   return maxnum(Src0, Src1);
 | |
| }
 | |
| 
 | |
| // Returns true iff the 2 intrinsics have the same operands, limiting the
 | |
| // comparison to the first NumOperands.
 | |
| static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
 | |
|                              unsigned NumOperands) {
 | |
|   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
 | |
|   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
 | |
|   for (unsigned i = 0; i < NumOperands; i++)
 | |
|     if (I.getArgOperand(i) != E.getArgOperand(i))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Remove trivially empty start/end intrinsic ranges, i.e. a start
 | |
| // immediately followed by an end (ignoring debuginfo or other
 | |
| // start/end intrinsics in between). As this handles only the most trivial
 | |
| // cases, tracking the nesting level is not needed:
 | |
| //
 | |
| //   call @llvm.foo.start(i1 0) ; &I
 | |
| //   call @llvm.foo.start(i1 0)
 | |
| //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
 | |
| //   call @llvm.foo.end(i1 0)
 | |
| static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
 | |
|                                       unsigned EndID, InstCombiner &IC) {
 | |
|   assert(I.getIntrinsicID() == StartID &&
 | |
|          "Start intrinsic does not have expected ID");
 | |
|   BasicBlock::iterator BI(I), BE(I.getParent()->end());
 | |
|   for (++BI; BI != BE; ++BI) {
 | |
|     if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
 | |
|       if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
 | |
|         continue;
 | |
|       if (E->getIntrinsicID() == EndID &&
 | |
|           haveSameOperands(I, *E, E->getNumArgOperands())) {
 | |
|         IC.eraseInstFromFunction(*E);
 | |
|         IC.eraseInstFromFunction(I);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Convert NVVM intrinsics to target-generic LLVM code where possible.
 | |
| static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
 | |
|   // Each NVVM intrinsic we can simplify can be replaced with one of:
 | |
|   //
 | |
|   //  * an LLVM intrinsic,
 | |
|   //  * an LLVM cast operation,
 | |
|   //  * an LLVM binary operation, or
 | |
|   //  * ad-hoc LLVM IR for the particular operation.
 | |
| 
 | |
|   // Some transformations are only valid when the module's
 | |
|   // flush-denormals-to-zero (ftz) setting is true/false, whereas other
 | |
|   // transformations are valid regardless of the module's ftz setting.
 | |
|   enum FtzRequirementTy {
 | |
|     FTZ_Any,       // Any ftz setting is ok.
 | |
|     FTZ_MustBeOn,  // Transformation is valid only if ftz is on.
 | |
|     FTZ_MustBeOff, // Transformation is valid only if ftz is off.
 | |
|   };
 | |
|   // Classes of NVVM intrinsics that can't be replaced one-to-one with a
 | |
|   // target-generic intrinsic, cast op, or binary op but that we can nonetheless
 | |
|   // simplify.
 | |
|   enum SpecialCase {
 | |
|     SPC_Reciprocal,
 | |
|   };
 | |
| 
 | |
|   // SimplifyAction is a poor-man's variant (plus an additional flag) that
 | |
|   // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
 | |
|   struct SimplifyAction {
 | |
|     // Invariant: At most one of these Optionals has a value.
 | |
|     Optional<Intrinsic::ID> IID;
 | |
|     Optional<Instruction::CastOps> CastOp;
 | |
|     Optional<Instruction::BinaryOps> BinaryOp;
 | |
|     Optional<SpecialCase> Special;
 | |
| 
 | |
|     FtzRequirementTy FtzRequirement = FTZ_Any;
 | |
| 
 | |
|     SimplifyAction() = default;
 | |
| 
 | |
|     SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
 | |
|         : IID(IID), FtzRequirement(FtzReq) {}
 | |
| 
 | |
|     // Cast operations don't have anything to do with FTZ, so we skip that
 | |
|     // argument.
 | |
|     SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
 | |
| 
 | |
|     SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
 | |
|         : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
 | |
| 
 | |
|     SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
 | |
|         : Special(Special), FtzRequirement(FtzReq) {}
 | |
|   };
 | |
| 
 | |
|   // Try to generate a SimplifyAction describing how to replace our
 | |
|   // IntrinsicInstr with target-generic LLVM IR.
 | |
|   const SimplifyAction Action = [II]() -> SimplifyAction {
 | |
|     switch (II->getIntrinsicID()) {
 | |
| 
 | |
|     // NVVM intrinsics that map directly to LLVM intrinsics.
 | |
|     case Intrinsic::nvvm_ceil_d:
 | |
|       return {Intrinsic::ceil, FTZ_Any};
 | |
|     case Intrinsic::nvvm_ceil_f:
 | |
|       return {Intrinsic::ceil, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_ceil_ftz_f:
 | |
|       return {Intrinsic::ceil, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_fabs_d:
 | |
|       return {Intrinsic::fabs, FTZ_Any};
 | |
|     case Intrinsic::nvvm_fabs_f:
 | |
|       return {Intrinsic::fabs, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_fabs_ftz_f:
 | |
|       return {Intrinsic::fabs, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_floor_d:
 | |
|       return {Intrinsic::floor, FTZ_Any};
 | |
|     case Intrinsic::nvvm_floor_f:
 | |
|       return {Intrinsic::floor, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_floor_ftz_f:
 | |
|       return {Intrinsic::floor, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_fma_rn_d:
 | |
|       return {Intrinsic::fma, FTZ_Any};
 | |
|     case Intrinsic::nvvm_fma_rn_f:
 | |
|       return {Intrinsic::fma, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_fma_rn_ftz_f:
 | |
|       return {Intrinsic::fma, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_fmax_d:
 | |
|       return {Intrinsic::maxnum, FTZ_Any};
 | |
|     case Intrinsic::nvvm_fmax_f:
 | |
|       return {Intrinsic::maxnum, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_fmax_ftz_f:
 | |
|       return {Intrinsic::maxnum, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_fmin_d:
 | |
|       return {Intrinsic::minnum, FTZ_Any};
 | |
|     case Intrinsic::nvvm_fmin_f:
 | |
|       return {Intrinsic::minnum, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_fmin_ftz_f:
 | |
|       return {Intrinsic::minnum, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_round_d:
 | |
|       return {Intrinsic::round, FTZ_Any};
 | |
|     case Intrinsic::nvvm_round_f:
 | |
|       return {Intrinsic::round, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_round_ftz_f:
 | |
|       return {Intrinsic::round, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_sqrt_rn_d:
 | |
|       return {Intrinsic::sqrt, FTZ_Any};
 | |
|     case Intrinsic::nvvm_sqrt_f:
 | |
|       // nvvm_sqrt_f is a special case.  For  most intrinsics, foo_ftz_f is the
 | |
|       // ftz version, and foo_f is the non-ftz version.  But nvvm_sqrt_f adopts
 | |
|       // the ftz-ness of the surrounding code.  sqrt_rn_f and sqrt_rn_ftz_f are
 | |
|       // the versions with explicit ftz-ness.
 | |
|       return {Intrinsic::sqrt, FTZ_Any};
 | |
|     case Intrinsic::nvvm_sqrt_rn_f:
 | |
|       return {Intrinsic::sqrt, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_sqrt_rn_ftz_f:
 | |
|       return {Intrinsic::sqrt, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_trunc_d:
 | |
|       return {Intrinsic::trunc, FTZ_Any};
 | |
|     case Intrinsic::nvvm_trunc_f:
 | |
|       return {Intrinsic::trunc, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_trunc_ftz_f:
 | |
|       return {Intrinsic::trunc, FTZ_MustBeOn};
 | |
| 
 | |
|     // NVVM intrinsics that map to LLVM cast operations.
 | |
|     //
 | |
|     // Note that llvm's target-generic conversion operators correspond to the rz
 | |
|     // (round to zero) versions of the nvvm conversion intrinsics, even though
 | |
|     // most everything else here uses the rn (round to nearest even) nvvm ops.
 | |
|     case Intrinsic::nvvm_d2i_rz:
 | |
|     case Intrinsic::nvvm_f2i_rz:
 | |
|     case Intrinsic::nvvm_d2ll_rz:
 | |
|     case Intrinsic::nvvm_f2ll_rz:
 | |
|       return {Instruction::FPToSI};
 | |
|     case Intrinsic::nvvm_d2ui_rz:
 | |
|     case Intrinsic::nvvm_f2ui_rz:
 | |
|     case Intrinsic::nvvm_d2ull_rz:
 | |
|     case Intrinsic::nvvm_f2ull_rz:
 | |
|       return {Instruction::FPToUI};
 | |
|     case Intrinsic::nvvm_i2d_rz:
 | |
|     case Intrinsic::nvvm_i2f_rz:
 | |
|     case Intrinsic::nvvm_ll2d_rz:
 | |
|     case Intrinsic::nvvm_ll2f_rz:
 | |
|       return {Instruction::SIToFP};
 | |
|     case Intrinsic::nvvm_ui2d_rz:
 | |
|     case Intrinsic::nvvm_ui2f_rz:
 | |
|     case Intrinsic::nvvm_ull2d_rz:
 | |
|     case Intrinsic::nvvm_ull2f_rz:
 | |
|       return {Instruction::UIToFP};
 | |
| 
 | |
|     // NVVM intrinsics that map to LLVM binary ops.
 | |
|     case Intrinsic::nvvm_add_rn_d:
 | |
|       return {Instruction::FAdd, FTZ_Any};
 | |
|     case Intrinsic::nvvm_add_rn_f:
 | |
|       return {Instruction::FAdd, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_add_rn_ftz_f:
 | |
|       return {Instruction::FAdd, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_mul_rn_d:
 | |
|       return {Instruction::FMul, FTZ_Any};
 | |
|     case Intrinsic::nvvm_mul_rn_f:
 | |
|       return {Instruction::FMul, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_mul_rn_ftz_f:
 | |
|       return {Instruction::FMul, FTZ_MustBeOn};
 | |
|     case Intrinsic::nvvm_div_rn_d:
 | |
|       return {Instruction::FDiv, FTZ_Any};
 | |
|     case Intrinsic::nvvm_div_rn_f:
 | |
|       return {Instruction::FDiv, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_div_rn_ftz_f:
 | |
|       return {Instruction::FDiv, FTZ_MustBeOn};
 | |
| 
 | |
|     // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
 | |
|     // need special handling.
 | |
|     //
 | |
|     // We seem to be mising intrinsics for rcp.approx.{ftz.}f32, which is just
 | |
|     // as well.
 | |
|     case Intrinsic::nvvm_rcp_rn_d:
 | |
|       return {SPC_Reciprocal, FTZ_Any};
 | |
|     case Intrinsic::nvvm_rcp_rn_f:
 | |
|       return {SPC_Reciprocal, FTZ_MustBeOff};
 | |
|     case Intrinsic::nvvm_rcp_rn_ftz_f:
 | |
|       return {SPC_Reciprocal, FTZ_MustBeOn};
 | |
| 
 | |
|     // We do not currently simplify intrinsics that give an approximate answer.
 | |
|     // These include:
 | |
|     //
 | |
|     //   - nvvm_cos_approx_{f,ftz_f}
 | |
|     //   - nvvm_ex2_approx_{d,f,ftz_f}
 | |
|     //   - nvvm_lg2_approx_{d,f,ftz_f}
 | |
|     //   - nvvm_sin_approx_{f,ftz_f}
 | |
|     //   - nvvm_sqrt_approx_{f,ftz_f}
 | |
|     //   - nvvm_rsqrt_approx_{d,f,ftz_f}
 | |
|     //   - nvvm_div_approx_{ftz_d,ftz_f,f}
 | |
|     //   - nvvm_rcp_approx_ftz_d
 | |
|     //
 | |
|     // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
 | |
|     // means that fastmath is enabled in the intrinsic.  Unfortunately only
 | |
|     // binary operators (currently) have a fastmath bit in SelectionDAG, so this
 | |
|     // information gets lost and we can't select on it.
 | |
|     //
 | |
|     // TODO: div and rcp are lowered to a binary op, so these we could in theory
 | |
|     // lower them to "fast fdiv".
 | |
| 
 | |
|     default:
 | |
|       return {};
 | |
|     }
 | |
|   }();
 | |
| 
 | |
|   // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
 | |
|   // can bail out now.  (Notice that in the case that IID is not an NVVM
 | |
|   // intrinsic, we don't have to look up any module metadata, as
 | |
|   // FtzRequirementTy will be FTZ_Any.)
 | |
|   if (Action.FtzRequirement != FTZ_Any) {
 | |
|     bool FtzEnabled =
 | |
|         II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
 | |
|         "true";
 | |
| 
 | |
|     if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Simplify to target-generic intrinsic.
 | |
|   if (Action.IID) {
 | |
|     SmallVector<Value *, 4> Args(II->arg_operands());
 | |
|     // All the target-generic intrinsics currently of interest to us have one
 | |
|     // type argument, equal to that of the nvvm intrinsic's argument.
 | |
|     Type *Tys[] = {II->getArgOperand(0)->getType()};
 | |
|     return CallInst::Create(
 | |
|         Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
 | |
|   }
 | |
| 
 | |
|   // Simplify to target-generic binary op.
 | |
|   if (Action.BinaryOp)
 | |
|     return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
 | |
|                                   II->getArgOperand(1), II->getName());
 | |
| 
 | |
|   // Simplify to target-generic cast op.
 | |
|   if (Action.CastOp)
 | |
|     return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
 | |
|                             II->getName());
 | |
| 
 | |
|   // All that's left are the special cases.
 | |
|   if (!Action.Special)
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (*Action.Special) {
 | |
|   case SPC_Reciprocal:
 | |
|     // Simplify reciprocal.
 | |
|     return BinaryOperator::Create(
 | |
|         Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
 | |
|         II->getArgOperand(0), II->getName());
 | |
|   }
 | |
|   llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
 | |
|   removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
 | |
|   removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// CallInst simplification. This mostly only handles folding of intrinsic
 | |
| /// instructions. For normal calls, it allows visitCallSite to do the heavy
 | |
| /// lifting.
 | |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | |
|   auto Args = CI.arg_operands();
 | |
|   if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
 | |
|                               &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(CI, V);
 | |
| 
 | |
|   if (isFreeCall(&CI, &TLI))
 | |
|     return visitFree(CI);
 | |
| 
 | |
|   // If the caller function is nounwind, mark the call as nounwind, even if the
 | |
|   // callee isn't.
 | |
|   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
 | |
|     CI.setDoesNotThrow();
 | |
|     return &CI;
 | |
|   }
 | |
| 
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
 | |
|   if (!II) return visitCallSite(&CI);
 | |
| 
 | |
|   // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | |
|   // visitCallSite.
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // memmove/cpy/set of zero bytes is a noop.
 | |
|     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | |
|       if (NumBytes->isNullValue())
 | |
|         return eraseInstFromFunction(CI);
 | |
| 
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | |
|         if (CI->getZExtValue() == 1) {
 | |
|           // Replace the instruction with just byte operations.  We would
 | |
|           // transform other cases to loads/stores, but we don't know if
 | |
|           // alignment is sufficient.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No other transformations apply to volatile transfers.
 | |
|     if (MI->isVolatile())
 | |
|       return nullptr;
 | |
| 
 | |
|     // If we have a memmove and the source operation is a constant global,
 | |
|     // then the source and dest pointers can't alias, so we can change this
 | |
|     // into a call to memcpy.
 | |
|     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
 | |
|       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | |
|         if (GVSrc->isConstant()) {
 | |
|           Module *M = CI.getModule();
 | |
|           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
 | |
|           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
 | |
|                            CI.getArgOperand(1)->getType(),
 | |
|                            CI.getArgOperand(2)->getType() };
 | |
|           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
 | |
|           Changed = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
 | |
|       // memmove(x,x,size) -> noop.
 | |
|       if (MTI->getSource() == MTI->getDest())
 | |
|         return eraseInstFromFunction(CI);
 | |
|     }
 | |
| 
 | |
|     // If we can determine a pointer alignment that is bigger than currently
 | |
|     // set, update the alignment.
 | |
|     if (isa<MemTransferInst>(MI)) {
 | |
|       if (Instruction *I = SimplifyMemTransfer(MI))
 | |
|         return I;
 | |
|     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
 | |
|       if (Instruction *I = SimplifyMemSet(MSI))
 | |
|         return I;
 | |
|     }
 | |
| 
 | |
|     if (Changed) return II;
 | |
|   }
 | |
| 
 | |
|   if (auto *AMI = dyn_cast<ElementAtomicMemCpyInst>(II)) {
 | |
|     if (Constant *C = dyn_cast<Constant>(AMI->getNumElements()))
 | |
|       if (C->isNullValue())
 | |
|         return eraseInstFromFunction(*AMI);
 | |
| 
 | |
|     if (Instruction *I = SimplifyElementAtomicMemCpy(AMI))
 | |
|       return I;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
 | |
|     return I;
 | |
| 
 | |
|   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
 | |
|                                               unsigned DemandedWidth) {
 | |
|     APInt UndefElts(Width, 0);
 | |
|     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
 | |
|     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
 | |
|   };
 | |
| 
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: break;
 | |
|   case Intrinsic::objectsize:
 | |
|     if (ConstantInt *N =
 | |
|             lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
 | |
|       return replaceInstUsesWith(CI, N);
 | |
|     return nullptr;
 | |
| 
 | |
|   case Intrinsic::bswap: {
 | |
|     Value *IIOperand = II->getArgOperand(0);
 | |
|     Value *X = nullptr;
 | |
| 
 | |
|     // bswap(bswap(x)) -> x
 | |
|     if (match(IIOperand, m_BSwap(m_Value(X))))
 | |
|         return replaceInstUsesWith(CI, X);
 | |
| 
 | |
|     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
 | |
|     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
 | |
|       unsigned C = X->getType()->getPrimitiveSizeInBits() -
 | |
|         IIOperand->getType()->getPrimitiveSizeInBits();
 | |
|       Value *CV = ConstantInt::get(X->getType(), C);
 | |
|       Value *V = Builder->CreateLShr(X, CV);
 | |
|       return new TruncInst(V, IIOperand->getType());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::bitreverse: {
 | |
|     Value *IIOperand = II->getArgOperand(0);
 | |
|     Value *X = nullptr;
 | |
| 
 | |
|     // bitreverse(bitreverse(x)) -> x
 | |
|     if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
 | |
|       return replaceInstUsesWith(CI, X);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::masked_load:
 | |
|     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder))
 | |
|       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
 | |
|     break;
 | |
|   case Intrinsic::masked_store:
 | |
|     return simplifyMaskedStore(*II, *this);
 | |
|   case Intrinsic::masked_gather:
 | |
|     return simplifyMaskedGather(*II, *this);
 | |
|   case Intrinsic::masked_scatter:
 | |
|     return simplifyMaskedScatter(*II, *this);
 | |
| 
 | |
|   case Intrinsic::powi:
 | |
|     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
 | |
|       // powi(x, 0) -> 1.0
 | |
|       if (Power->isZero())
 | |
|         return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
 | |
|       // powi(x, 1) -> x
 | |
|       if (Power->isOne())
 | |
|         return replaceInstUsesWith(CI, II->getArgOperand(0));
 | |
|       // powi(x, -1) -> 1/x
 | |
|       if (Power->isAllOnesValue())
 | |
|         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
 | |
|                                           II->getArgOperand(0));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::ctlz:
 | |
|     if (auto *I = foldCttzCtlz(*II, *this))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|     if (isa<Constant>(II->getArgOperand(0)) &&
 | |
|         !isa<Constant>(II->getArgOperand(1))) {
 | |
|       // Canonicalize constants into the RHS.
 | |
|       Value *LHS = II->getArgOperand(0);
 | |
|       II->setArgOperand(0, II->getArgOperand(1));
 | |
|       II->setArgOperand(1, LHS);
 | |
|       return II;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
| 
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow: {
 | |
|     OverflowCheckFlavor OCF =
 | |
|         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
 | |
|     assert(OCF != OCF_INVALID && "unexpected!");
 | |
| 
 | |
|     Value *OperationResult = nullptr;
 | |
|     Constant *OverflowResult = nullptr;
 | |
|     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
 | |
|                               *II, OperationResult, OverflowResult))
 | |
|       return CreateOverflowTuple(II, OperationResult, OverflowResult);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::minnum:
 | |
|   case Intrinsic::maxnum: {
 | |
|     Value *Arg0 = II->getArgOperand(0);
 | |
|     Value *Arg1 = II->getArgOperand(1);
 | |
|     // Canonicalize constants to the RHS.
 | |
|     if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
 | |
|       II->setArgOperand(0, Arg1);
 | |
|       II->setArgOperand(1, Arg0);
 | |
|       return II;
 | |
|     }
 | |
|     if (Value *V = simplifyMinnumMaxnum(*II))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::fmuladd: {
 | |
|     // Canonicalize fast fmuladd to the separate fmul + fadd.
 | |
|     if (II->hasUnsafeAlgebra()) {
 | |
|       BuilderTy::FastMathFlagGuard Guard(*Builder);
 | |
|       Builder->setFastMathFlags(II->getFastMathFlags());
 | |
|       Value *Mul = Builder->CreateFMul(II->getArgOperand(0),
 | |
|                                        II->getArgOperand(1));
 | |
|       Value *Add = Builder->CreateFAdd(Mul, II->getArgOperand(2));
 | |
|       Add->takeName(II);
 | |
|       return replaceInstUsesWith(*II, Add);
 | |
|     }
 | |
| 
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   case Intrinsic::fma: {
 | |
|     Value *Src0 = II->getArgOperand(0);
 | |
|     Value *Src1 = II->getArgOperand(1);
 | |
| 
 | |
|     // Canonicalize constants into the RHS.
 | |
|     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
 | |
|       II->setArgOperand(0, Src1);
 | |
|       II->setArgOperand(1, Src0);
 | |
|       std::swap(Src0, Src1);
 | |
|     }
 | |
| 
 | |
|     Value *LHS = nullptr;
 | |
|     Value *RHS = nullptr;
 | |
| 
 | |
|     // fma fneg(x), fneg(y), z -> fma x, y, z
 | |
|     if (match(Src0, m_FNeg(m_Value(LHS))) &&
 | |
|         match(Src1, m_FNeg(m_Value(RHS)))) {
 | |
|       II->setArgOperand(0, LHS);
 | |
|       II->setArgOperand(1, RHS);
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     // fma fabs(x), fabs(x), z -> fma x, x, z
 | |
|     if (match(Src0, m_Intrinsic<Intrinsic::fabs>(m_Value(LHS))) &&
 | |
|         match(Src1, m_Intrinsic<Intrinsic::fabs>(m_Value(RHS))) && LHS == RHS) {
 | |
|       II->setArgOperand(0, LHS);
 | |
|       II->setArgOperand(1, RHS);
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     // fma x, 1, z -> fadd x, z
 | |
|     if (match(Src1, m_FPOne())) {
 | |
|       Instruction *RI = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
 | |
|       RI->copyFastMathFlags(II);
 | |
|       return RI;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::fabs: {
 | |
|     Value *Cond;
 | |
|     Constant *LHS, *RHS;
 | |
|     if (match(II->getArgOperand(0),
 | |
|               m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
 | |
|       CallInst *Call0 = Builder->CreateCall(II->getCalledFunction(), {LHS});
 | |
|       CallInst *Call1 = Builder->CreateCall(II->getCalledFunction(), {RHS});
 | |
|       return SelectInst::Create(Cond, Call0, Call1);
 | |
|     }
 | |
| 
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::trunc: {
 | |
|     Value *ExtSrc;
 | |
|     if (match(II->getArgOperand(0), m_FPExt(m_Value(ExtSrc))) &&
 | |
|         II->getArgOperand(0)->hasOneUse()) {
 | |
|       // fabs (fpext x) -> fpext (fabs x)
 | |
|       Value *F = Intrinsic::getDeclaration(II->getModule(), II->getIntrinsicID(),
 | |
|                                            { ExtSrc->getType() });
 | |
|       CallInst *NewFabs = Builder->CreateCall(F, ExtSrc);
 | |
|       NewFabs->copyFastMathFlags(II);
 | |
|       NewFabs->takeName(II);
 | |
|       return new FPExtInst(NewFabs, II->getType());
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::cos:
 | |
|   case Intrinsic::amdgcn_cos: {
 | |
|     Value *SrcSrc;
 | |
|     Value *Src = II->getArgOperand(0);
 | |
|     if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
 | |
|         match(Src, m_Intrinsic<Intrinsic::fabs>(m_Value(SrcSrc)))) {
 | |
|       // cos(-x) -> cos(x)
 | |
|       // cos(fabs(x)) -> cos(x)
 | |
|       II->setArgOperand(0, SrcSrc);
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::ppc_altivec_lvx:
 | |
|   case Intrinsic::ppc_altivec_lvxl:
 | |
|     // Turn PPC lvx -> load if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
 | |
|                                    &DT) >= 16) {
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                          PointerType::getUnqual(II->getType()));
 | |
|       return new LoadInst(Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_vsx_lxvw4x:
 | |
|   case Intrinsic::ppc_vsx_lxvd2x: {
 | |
|     // Turn PPC VSX loads into normal loads.
 | |
|     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                         PointerType::getUnqual(II->getType()));
 | |
|     return new LoadInst(Ptr, Twine(""), false, 1);
 | |
|   }
 | |
|   case Intrinsic::ppc_altivec_stvx:
 | |
|   case Intrinsic::ppc_altivec_stvxl:
 | |
|     // Turn stvx -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
 | |
|                                    &DT) >= 16) {
 | |
|       Type *OpPtrTy =
 | |
|         PointerType::getUnqual(II->getArgOperand(0)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|       return new StoreInst(II->getArgOperand(0), Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_vsx_stxvw4x:
 | |
|   case Intrinsic::ppc_vsx_stxvd2x: {
 | |
|     // Turn PPC VSX stores into normal stores.
 | |
|     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
 | |
|     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
 | |
|   }
 | |
|   case Intrinsic::ppc_qpx_qvlfs:
 | |
|     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
 | |
|                                    &DT) >= 16) {
 | |
|       Type *VTy = VectorType::get(Builder->getFloatTy(),
 | |
|                                   II->getType()->getVectorNumElements());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                          PointerType::getUnqual(VTy));
 | |
|       Value *Load = Builder->CreateLoad(Ptr);
 | |
|       return new FPExtInst(Load, II->getType());
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_qpx_qvlfd:
 | |
|     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
 | |
|                                    &DT) >= 32) {
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                          PointerType::getUnqual(II->getType()));
 | |
|       return new LoadInst(Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_qpx_qvstfs:
 | |
|     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
 | |
|                                    &DT) >= 16) {
 | |
|       Type *VTy = VectorType::get(Builder->getFloatTy(),
 | |
|           II->getArgOperand(0)->getType()->getVectorNumElements());
 | |
|       Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
 | |
|       Type *OpPtrTy = PointerType::getUnqual(VTy);
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|       return new StoreInst(TOp, Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_qpx_qvstfd:
 | |
|     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
 | |
|                                    &DT) >= 32) {
 | |
|       Type *OpPtrTy =
 | |
|         PointerType::getUnqual(II->getArgOperand(0)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|       return new StoreInst(II->getArgOperand(0), Ptr);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_vcvtph2ps_128:
 | |
|   case Intrinsic::x86_vcvtph2ps_256: {
 | |
|     auto Arg = II->getArgOperand(0);
 | |
|     auto ArgType = cast<VectorType>(Arg->getType());
 | |
|     auto RetType = cast<VectorType>(II->getType());
 | |
|     unsigned ArgWidth = ArgType->getNumElements();
 | |
|     unsigned RetWidth = RetType->getNumElements();
 | |
|     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
 | |
|     assert(ArgType->isIntOrIntVectorTy() &&
 | |
|            ArgType->getScalarSizeInBits() == 16 &&
 | |
|            "CVTPH2PS input type should be 16-bit integer vector");
 | |
|     assert(RetType->getScalarType()->isFloatTy() &&
 | |
|            "CVTPH2PS output type should be 32-bit float vector");
 | |
| 
 | |
|     // Constant folding: Convert to generic half to single conversion.
 | |
|     if (isa<ConstantAggregateZero>(Arg))
 | |
|       return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
 | |
| 
 | |
|     if (isa<ConstantDataVector>(Arg)) {
 | |
|       auto VectorHalfAsShorts = Arg;
 | |
|       if (RetWidth < ArgWidth) {
 | |
|         SmallVector<uint32_t, 8> SubVecMask;
 | |
|         for (unsigned i = 0; i != RetWidth; ++i)
 | |
|           SubVecMask.push_back((int)i);
 | |
|         VectorHalfAsShorts = Builder->CreateShuffleVector(
 | |
|             Arg, UndefValue::get(ArgType), SubVecMask);
 | |
|       }
 | |
| 
 | |
|       auto VectorHalfType =
 | |
|           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
 | |
|       auto VectorHalfs =
 | |
|           Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
 | |
|       auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
 | |
|       return replaceInstUsesWith(*II, VectorFloats);
 | |
|     }
 | |
| 
 | |
|     // We only use the lowest lanes of the argument.
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse_cvtss2si:
 | |
|   case Intrinsic::x86_sse_cvtss2si64:
 | |
|   case Intrinsic::x86_sse_cvttss2si:
 | |
|   case Intrinsic::x86_sse_cvttss2si64:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si64:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si64:
 | |
|   case Intrinsic::x86_avx512_vcvtss2si32:
 | |
|   case Intrinsic::x86_avx512_vcvtss2si64:
 | |
|   case Intrinsic::x86_avx512_vcvtss2usi32:
 | |
|   case Intrinsic::x86_avx512_vcvtss2usi64:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2si32:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2si64:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2usi32:
 | |
|   case Intrinsic::x86_avx512_vcvtsd2usi64:
 | |
|   case Intrinsic::x86_avx512_cvttss2si:
 | |
|   case Intrinsic::x86_avx512_cvttss2si64:
 | |
|   case Intrinsic::x86_avx512_cvttss2usi:
 | |
|   case Intrinsic::x86_avx512_cvttss2usi64:
 | |
|   case Intrinsic::x86_avx512_cvttsd2si:
 | |
|   case Intrinsic::x86_avx512_cvttsd2si64:
 | |
|   case Intrinsic::x86_avx512_cvttsd2usi:
 | |
|   case Intrinsic::x86_avx512_cvttsd2usi64: {
 | |
|     // These intrinsics only demand the 0th element of their input vectors. If
 | |
|     // we can simplify the input based on that, do so now.
 | |
|     Value *Arg = II->getArgOperand(0);
 | |
|     unsigned VWidth = Arg->getType()->getVectorNumElements();
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_mmx_pmovmskb:
 | |
|   case Intrinsic::x86_sse_movmsk_ps:
 | |
|   case Intrinsic::x86_sse2_movmsk_pd:
 | |
|   case Intrinsic::x86_sse2_pmovmskb_128:
 | |
|   case Intrinsic::x86_avx_movmsk_pd_256:
 | |
|   case Intrinsic::x86_avx_movmsk_ps_256:
 | |
|   case Intrinsic::x86_avx2_pmovmskb: {
 | |
|     if (Value *V = simplifyX86movmsk(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse_comieq_ss:
 | |
|   case Intrinsic::x86_sse_comige_ss:
 | |
|   case Intrinsic::x86_sse_comigt_ss:
 | |
|   case Intrinsic::x86_sse_comile_ss:
 | |
|   case Intrinsic::x86_sse_comilt_ss:
 | |
|   case Intrinsic::x86_sse_comineq_ss:
 | |
|   case Intrinsic::x86_sse_ucomieq_ss:
 | |
|   case Intrinsic::x86_sse_ucomige_ss:
 | |
|   case Intrinsic::x86_sse_ucomigt_ss:
 | |
|   case Intrinsic::x86_sse_ucomile_ss:
 | |
|   case Intrinsic::x86_sse_ucomilt_ss:
 | |
|   case Intrinsic::x86_sse_ucomineq_ss:
 | |
|   case Intrinsic::x86_sse2_comieq_sd:
 | |
|   case Intrinsic::x86_sse2_comige_sd:
 | |
|   case Intrinsic::x86_sse2_comigt_sd:
 | |
|   case Intrinsic::x86_sse2_comile_sd:
 | |
|   case Intrinsic::x86_sse2_comilt_sd:
 | |
|   case Intrinsic::x86_sse2_comineq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomige_sd:
 | |
|   case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomile_sd:
 | |
|   case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomineq_sd:
 | |
|   case Intrinsic::x86_avx512_vcomi_ss:
 | |
|   case Intrinsic::x86_avx512_vcomi_sd:
 | |
|   case Intrinsic::x86_avx512_mask_cmp_ss:
 | |
|   case Intrinsic::x86_avx512_mask_cmp_sd: {
 | |
|     // These intrinsics only demand the 0th element of their input vectors. If
 | |
|     // we can simplify the input based on that, do so now.
 | |
|     bool MadeChange = false;
 | |
|     Value *Arg0 = II->getArgOperand(0);
 | |
|     Value *Arg1 = II->getArgOperand(1);
 | |
|     unsigned VWidth = Arg0->getType()->getVectorNumElements();
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
 | |
|       II->setArgOperand(1, V);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (MadeChange)
 | |
|       return II;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_avx512_mask_add_ps_512:
 | |
|   case Intrinsic::x86_avx512_mask_div_ps_512:
 | |
|   case Intrinsic::x86_avx512_mask_mul_ps_512:
 | |
|   case Intrinsic::x86_avx512_mask_sub_ps_512:
 | |
|   case Intrinsic::x86_avx512_mask_add_pd_512:
 | |
|   case Intrinsic::x86_avx512_mask_div_pd_512:
 | |
|   case Intrinsic::x86_avx512_mask_mul_pd_512:
 | |
|   case Intrinsic::x86_avx512_mask_sub_pd_512:
 | |
|     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
 | |
|     // IR operations.
 | |
|     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
 | |
|       if (R->getValue() == 4) {
 | |
|         Value *Arg0 = II->getArgOperand(0);
 | |
|         Value *Arg1 = II->getArgOperand(1);
 | |
| 
 | |
|         Value *V;
 | |
|         switch (II->getIntrinsicID()) {
 | |
|         default: llvm_unreachable("Case stmts out of sync!");
 | |
|         case Intrinsic::x86_avx512_mask_add_ps_512:
 | |
|         case Intrinsic::x86_avx512_mask_add_pd_512:
 | |
|           V = Builder->CreateFAdd(Arg0, Arg1);
 | |
|           break;
 | |
|         case Intrinsic::x86_avx512_mask_sub_ps_512:
 | |
|         case Intrinsic::x86_avx512_mask_sub_pd_512:
 | |
|           V = Builder->CreateFSub(Arg0, Arg1);
 | |
|           break;
 | |
|         case Intrinsic::x86_avx512_mask_mul_ps_512:
 | |
|         case Intrinsic::x86_avx512_mask_mul_pd_512:
 | |
|           V = Builder->CreateFMul(Arg0, Arg1);
 | |
|           break;
 | |
|         case Intrinsic::x86_avx512_mask_div_ps_512:
 | |
|         case Intrinsic::x86_avx512_mask_div_pd_512:
 | |
|           V = Builder->CreateFDiv(Arg0, Arg1);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Create a select for the masking.
 | |
|         V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
 | |
|                               *Builder);
 | |
|         return replaceInstUsesWith(*II, V);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_avx512_mask_add_ss_round:
 | |
|   case Intrinsic::x86_avx512_mask_div_ss_round:
 | |
|   case Intrinsic::x86_avx512_mask_mul_ss_round:
 | |
|   case Intrinsic::x86_avx512_mask_sub_ss_round:
 | |
|   case Intrinsic::x86_avx512_mask_add_sd_round:
 | |
|   case Intrinsic::x86_avx512_mask_div_sd_round:
 | |
|   case Intrinsic::x86_avx512_mask_mul_sd_round:
 | |
|   case Intrinsic::x86_avx512_mask_sub_sd_round:
 | |
|     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
 | |
|     // IR operations.
 | |
|     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
 | |
|       if (R->getValue() == 4) {
 | |
|         // Extract the element as scalars.
 | |
|         Value *Arg0 = II->getArgOperand(0);
 | |
|         Value *Arg1 = II->getArgOperand(1);
 | |
|         Value *LHS = Builder->CreateExtractElement(Arg0, (uint64_t)0);
 | |
|         Value *RHS = Builder->CreateExtractElement(Arg1, (uint64_t)0);
 | |
| 
 | |
|         Value *V;
 | |
|         switch (II->getIntrinsicID()) {
 | |
|         default: llvm_unreachable("Case stmts out of sync!");
 | |
|         case Intrinsic::x86_avx512_mask_add_ss_round:
 | |
|         case Intrinsic::x86_avx512_mask_add_sd_round:
 | |
|           V = Builder->CreateFAdd(LHS, RHS);
 | |
|           break;
 | |
|         case Intrinsic::x86_avx512_mask_sub_ss_round:
 | |
|         case Intrinsic::x86_avx512_mask_sub_sd_round:
 | |
|           V = Builder->CreateFSub(LHS, RHS);
 | |
|           break;
 | |
|         case Intrinsic::x86_avx512_mask_mul_ss_round:
 | |
|         case Intrinsic::x86_avx512_mask_mul_sd_round:
 | |
|           V = Builder->CreateFMul(LHS, RHS);
 | |
|           break;
 | |
|         case Intrinsic::x86_avx512_mask_div_ss_round:
 | |
|         case Intrinsic::x86_avx512_mask_div_sd_round:
 | |
|           V = Builder->CreateFDiv(LHS, RHS);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Handle the masking aspect of the intrinsic.
 | |
|         Value *Mask = II->getArgOperand(3);
 | |
|         auto *C = dyn_cast<ConstantInt>(Mask);
 | |
|         // We don't need a select if we know the mask bit is a 1.
 | |
|         if (!C || !C->getValue()[0]) {
 | |
|           // Cast the mask to an i1 vector and then extract the lowest element.
 | |
|           auto *MaskTy = VectorType::get(Builder->getInt1Ty(),
 | |
|                              cast<IntegerType>(Mask->getType())->getBitWidth());
 | |
|           Mask = Builder->CreateBitCast(Mask, MaskTy);
 | |
|           Mask = Builder->CreateExtractElement(Mask, (uint64_t)0);
 | |
|           // Extract the lowest element from the passthru operand.
 | |
|           Value *Passthru = Builder->CreateExtractElement(II->getArgOperand(2),
 | |
|                                                           (uint64_t)0);
 | |
|           V = Builder->CreateSelect(Mask, V, Passthru);
 | |
|         }
 | |
| 
 | |
|         // Insert the result back into the original argument 0.
 | |
|         V = Builder->CreateInsertElement(Arg0, V, (uint64_t)0);
 | |
| 
 | |
|         return replaceInstUsesWith(*II, V);
 | |
|       }
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
| 
 | |
|   // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
 | |
|   case Intrinsic::x86_avx512_mask_max_ss_round:
 | |
|   case Intrinsic::x86_avx512_mask_min_ss_round:
 | |
|   case Intrinsic::x86_avx512_mask_max_sd_round:
 | |
|   case Intrinsic::x86_avx512_mask_min_sd_round:
 | |
|   case Intrinsic::x86_avx512_mask_vfmadd_ss:
 | |
|   case Intrinsic::x86_avx512_mask_vfmadd_sd:
 | |
|   case Intrinsic::x86_avx512_maskz_vfmadd_ss:
 | |
|   case Intrinsic::x86_avx512_maskz_vfmadd_sd:
 | |
|   case Intrinsic::x86_avx512_mask3_vfmadd_ss:
 | |
|   case Intrinsic::x86_avx512_mask3_vfmadd_sd:
 | |
|   case Intrinsic::x86_avx512_mask3_vfmsub_ss:
 | |
|   case Intrinsic::x86_avx512_mask3_vfmsub_sd:
 | |
|   case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
 | |
|   case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
 | |
|   case Intrinsic::x86_fma_vfmadd_ss:
 | |
|   case Intrinsic::x86_fma_vfmsub_ss:
 | |
|   case Intrinsic::x86_fma_vfnmadd_ss:
 | |
|   case Intrinsic::x86_fma_vfnmsub_ss:
 | |
|   case Intrinsic::x86_fma_vfmadd_sd:
 | |
|   case Intrinsic::x86_fma_vfmsub_sd:
 | |
|   case Intrinsic::x86_fma_vfnmadd_sd:
 | |
|   case Intrinsic::x86_fma_vfnmsub_sd:
 | |
|   case Intrinsic::x86_sse_cmp_ss:
 | |
|   case Intrinsic::x86_sse_min_ss:
 | |
|   case Intrinsic::x86_sse_max_ss:
 | |
|   case Intrinsic::x86_sse2_cmp_sd:
 | |
|   case Intrinsic::x86_sse2_min_sd:
 | |
|   case Intrinsic::x86_sse2_max_sd:
 | |
|   case Intrinsic::x86_sse41_round_ss:
 | |
|   case Intrinsic::x86_sse41_round_sd:
 | |
|   case Intrinsic::x86_xop_vfrcz_ss:
 | |
|   case Intrinsic::x86_xop_vfrcz_sd: {
 | |
|    unsigned VWidth = II->getType()->getVectorNumElements();
 | |
|    APInt UndefElts(VWidth, 0);
 | |
|    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|    if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
 | |
|      if (V != II)
 | |
|        return replaceInstUsesWith(*II, V);
 | |
|      return II;
 | |
|    }
 | |
|    break;
 | |
|   }
 | |
| 
 | |
|   // Constant fold ashr( <A x Bi>, Ci ).
 | |
|   // Constant fold lshr( <A x Bi>, Ci ).
 | |
|   // Constant fold shl( <A x Bi>, Ci ).
 | |
|   case Intrinsic::x86_sse2_psrai_d:
 | |
|   case Intrinsic::x86_sse2_psrai_w:
 | |
|   case Intrinsic::x86_avx2_psrai_d:
 | |
|   case Intrinsic::x86_avx2_psrai_w:
 | |
|   case Intrinsic::x86_avx512_psrai_q_128:
 | |
|   case Intrinsic::x86_avx512_psrai_q_256:
 | |
|   case Intrinsic::x86_avx512_psrai_d_512:
 | |
|   case Intrinsic::x86_avx512_psrai_q_512:
 | |
|   case Intrinsic::x86_avx512_psrai_w_512:
 | |
|   case Intrinsic::x86_sse2_psrli_d:
 | |
|   case Intrinsic::x86_sse2_psrli_q:
 | |
|   case Intrinsic::x86_sse2_psrli_w:
 | |
|   case Intrinsic::x86_avx2_psrli_d:
 | |
|   case Intrinsic::x86_avx2_psrli_q:
 | |
|   case Intrinsic::x86_avx2_psrli_w:
 | |
|   case Intrinsic::x86_avx512_psrli_d_512:
 | |
|   case Intrinsic::x86_avx512_psrli_q_512:
 | |
|   case Intrinsic::x86_avx512_psrli_w_512:
 | |
|   case Intrinsic::x86_sse2_pslli_d:
 | |
|   case Intrinsic::x86_sse2_pslli_q:
 | |
|   case Intrinsic::x86_sse2_pslli_w:
 | |
|   case Intrinsic::x86_avx2_pslli_d:
 | |
|   case Intrinsic::x86_avx2_pslli_q:
 | |
|   case Intrinsic::x86_avx2_pslli_w:
 | |
|   case Intrinsic::x86_avx512_pslli_d_512:
 | |
|   case Intrinsic::x86_avx512_pslli_q_512:
 | |
|   case Intrinsic::x86_avx512_pslli_w_512:
 | |
|     if (Value *V = simplifyX86immShift(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_sse2_psra_d:
 | |
|   case Intrinsic::x86_sse2_psra_w:
 | |
|   case Intrinsic::x86_avx2_psra_d:
 | |
|   case Intrinsic::x86_avx2_psra_w:
 | |
|   case Intrinsic::x86_avx512_psra_q_128:
 | |
|   case Intrinsic::x86_avx512_psra_q_256:
 | |
|   case Intrinsic::x86_avx512_psra_d_512:
 | |
|   case Intrinsic::x86_avx512_psra_q_512:
 | |
|   case Intrinsic::x86_avx512_psra_w_512:
 | |
|   case Intrinsic::x86_sse2_psrl_d:
 | |
|   case Intrinsic::x86_sse2_psrl_q:
 | |
|   case Intrinsic::x86_sse2_psrl_w:
 | |
|   case Intrinsic::x86_avx2_psrl_d:
 | |
|   case Intrinsic::x86_avx2_psrl_q:
 | |
|   case Intrinsic::x86_avx2_psrl_w:
 | |
|   case Intrinsic::x86_avx512_psrl_d_512:
 | |
|   case Intrinsic::x86_avx512_psrl_q_512:
 | |
|   case Intrinsic::x86_avx512_psrl_w_512:
 | |
|   case Intrinsic::x86_sse2_psll_d:
 | |
|   case Intrinsic::x86_sse2_psll_q:
 | |
|   case Intrinsic::x86_sse2_psll_w:
 | |
|   case Intrinsic::x86_avx2_psll_d:
 | |
|   case Intrinsic::x86_avx2_psll_q:
 | |
|   case Intrinsic::x86_avx2_psll_w:
 | |
|   case Intrinsic::x86_avx512_psll_d_512:
 | |
|   case Intrinsic::x86_avx512_psll_q_512:
 | |
|   case Intrinsic::x86_avx512_psll_w_512: {
 | |
|     if (Value *V = simplifyX86immShift(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
| 
 | |
|     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
 | |
|     // operand to compute the shift amount.
 | |
|     Value *Arg1 = II->getArgOperand(1);
 | |
|     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
 | |
|            "Unexpected packed shift size");
 | |
|     unsigned VWidth = Arg1->getType()->getVectorNumElements();
 | |
| 
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
 | |
|       II->setArgOperand(1, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_avx2_psllv_d:
 | |
|   case Intrinsic::x86_avx2_psllv_d_256:
 | |
|   case Intrinsic::x86_avx2_psllv_q:
 | |
|   case Intrinsic::x86_avx2_psllv_q_256:
 | |
|   case Intrinsic::x86_avx512_psllv_d_512:
 | |
|   case Intrinsic::x86_avx512_psllv_q_512:
 | |
|   case Intrinsic::x86_avx512_psllv_w_128:
 | |
|   case Intrinsic::x86_avx512_psllv_w_256:
 | |
|   case Intrinsic::x86_avx512_psllv_w_512:
 | |
|   case Intrinsic::x86_avx2_psrav_d:
 | |
|   case Intrinsic::x86_avx2_psrav_d_256:
 | |
|   case Intrinsic::x86_avx512_psrav_q_128:
 | |
|   case Intrinsic::x86_avx512_psrav_q_256:
 | |
|   case Intrinsic::x86_avx512_psrav_d_512:
 | |
|   case Intrinsic::x86_avx512_psrav_q_512:
 | |
|   case Intrinsic::x86_avx512_psrav_w_128:
 | |
|   case Intrinsic::x86_avx512_psrav_w_256:
 | |
|   case Intrinsic::x86_avx512_psrav_w_512:
 | |
|   case Intrinsic::x86_avx2_psrlv_d:
 | |
|   case Intrinsic::x86_avx2_psrlv_d_256:
 | |
|   case Intrinsic::x86_avx2_psrlv_q:
 | |
|   case Intrinsic::x86_avx2_psrlv_q_256:
 | |
|   case Intrinsic::x86_avx512_psrlv_d_512:
 | |
|   case Intrinsic::x86_avx512_psrlv_q_512:
 | |
|   case Intrinsic::x86_avx512_psrlv_w_128:
 | |
|   case Intrinsic::x86_avx512_psrlv_w_256:
 | |
|   case Intrinsic::x86_avx512_psrlv_w_512:
 | |
|     if (Value *V = simplifyX86varShift(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_sse2_pmulu_dq:
 | |
|   case Intrinsic::x86_sse41_pmuldq:
 | |
|   case Intrinsic::x86_avx2_pmul_dq:
 | |
|   case Intrinsic::x86_avx2_pmulu_dq:
 | |
|   case Intrinsic::x86_avx512_pmul_dq_512:
 | |
|   case Intrinsic::x86_avx512_pmulu_dq_512: {
 | |
|     if (Value *V = simplifyX86muldq(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
| 
 | |
|     unsigned VWidth = II->getType()->getVectorNumElements();
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     APInt DemandedElts = APInt::getAllOnesValue(VWidth);
 | |
|     if (Value *V = SimplifyDemandedVectorElts(II, DemandedElts, UndefElts)) {
 | |
|       if (V != II)
 | |
|         return replaceInstUsesWith(*II, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse2_packssdw_128:
 | |
|   case Intrinsic::x86_sse2_packsswb_128:
 | |
|   case Intrinsic::x86_avx2_packssdw:
 | |
|   case Intrinsic::x86_avx2_packsswb:
 | |
|   case Intrinsic::x86_avx512_packssdw_512:
 | |
|   case Intrinsic::x86_avx512_packsswb_512:
 | |
|     if (Value *V = simplifyX86pack(*II, *this, *Builder, true))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_sse2_packuswb_128:
 | |
|   case Intrinsic::x86_sse41_packusdw:
 | |
|   case Intrinsic::x86_avx2_packusdw:
 | |
|   case Intrinsic::x86_avx2_packuswb:
 | |
|   case Intrinsic::x86_avx512_packusdw_512:
 | |
|   case Intrinsic::x86_avx512_packuswb_512:
 | |
|     if (Value *V = simplifyX86pack(*II, *this, *Builder, false))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_pclmulqdq: {
 | |
|     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
 | |
|       unsigned Imm = C->getZExtValue();
 | |
| 
 | |
|       bool MadeChange = false;
 | |
|       Value *Arg0 = II->getArgOperand(0);
 | |
|       Value *Arg1 = II->getArgOperand(1);
 | |
|       unsigned VWidth = Arg0->getType()->getVectorNumElements();
 | |
|       APInt DemandedElts(VWidth, 0);
 | |
| 
 | |
|       APInt UndefElts1(VWidth, 0);
 | |
|       DemandedElts = (Imm & 0x01) ? 2 : 1;
 | |
|       if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts,
 | |
|                                                 UndefElts1)) {
 | |
|         II->setArgOperand(0, V);
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       APInt UndefElts2(VWidth, 0);
 | |
|       DemandedElts = (Imm & 0x10) ? 2 : 1;
 | |
|       if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts,
 | |
|                                                 UndefElts2)) {
 | |
|         II->setArgOperand(1, V);
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       // If both input elements are undef, the result is undef.
 | |
|       if (UndefElts1[(Imm & 0x01) ? 1 : 0] ||
 | |
|           UndefElts2[(Imm & 0x10) ? 1 : 0])
 | |
|         return replaceInstUsesWith(*II,
 | |
|                                    ConstantAggregateZero::get(II->getType()));
 | |
| 
 | |
|       if (MadeChange)
 | |
|         return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse41_insertps:
 | |
|     if (Value *V = simplifyX86insertps(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_sse4a_extrq: {
 | |
|     Value *Op0 = II->getArgOperand(0);
 | |
|     Value *Op1 = II->getArgOperand(1);
 | |
|     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
 | |
|     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
 | |
|     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
 | |
|            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
 | |
|            VWidth1 == 16 && "Unexpected operand sizes");
 | |
| 
 | |
|     // See if we're dealing with constant values.
 | |
|     Constant *C1 = dyn_cast<Constant>(Op1);
 | |
|     ConstantInt *CILength =
 | |
|         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
 | |
|            : nullptr;
 | |
|     ConstantInt *CIIndex =
 | |
|         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
 | |
|            : nullptr;
 | |
| 
 | |
|     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
 | |
|     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
| 
 | |
|     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
 | |
|     // operands and the lowest 16-bits of the second.
 | |
|     bool MadeChange = false;
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
 | |
|       II->setArgOperand(1, V);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (MadeChange)
 | |
|       return II;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse4a_extrqi: {
 | |
|     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
 | |
|     // bits of the lower 64-bits. The upper 64-bits are undefined.
 | |
|     Value *Op0 = II->getArgOperand(0);
 | |
|     unsigned VWidth = Op0->getType()->getVectorNumElements();
 | |
|     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
 | |
|            "Unexpected operand size");
 | |
| 
 | |
|     // See if we're dealing with constant values.
 | |
|     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
 | |
|     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
 | |
| 
 | |
|     // Attempt to simplify to a constant or shuffle vector.
 | |
|     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
| 
 | |
|     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
 | |
|     // operand.
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse4a_insertq: {
 | |
|     Value *Op0 = II->getArgOperand(0);
 | |
|     Value *Op1 = II->getArgOperand(1);
 | |
|     unsigned VWidth = Op0->getType()->getVectorNumElements();
 | |
|     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
 | |
|            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
 | |
|            Op1->getType()->getVectorNumElements() == 2 &&
 | |
|            "Unexpected operand size");
 | |
| 
 | |
|     // See if we're dealing with constant values.
 | |
|     Constant *C1 = dyn_cast<Constant>(Op1);
 | |
|     ConstantInt *CI11 =
 | |
|         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
 | |
|            : nullptr;
 | |
| 
 | |
|     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
 | |
|     if (CI11) {
 | |
|       const APInt &V11 = CI11->getValue();
 | |
|       APInt Len = V11.zextOrTrunc(6);
 | |
|       APInt Idx = V11.lshr(8).zextOrTrunc(6);
 | |
|       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
 | |
|         return replaceInstUsesWith(*II, V);
 | |
|     }
 | |
| 
 | |
|     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
 | |
|     // operand.
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse4a_insertqi: {
 | |
|     // INSERTQI: Extract lowest Length bits from lower half of second source and
 | |
|     // insert over first source starting at Index bit. The upper 64-bits are
 | |
|     // undefined.
 | |
|     Value *Op0 = II->getArgOperand(0);
 | |
|     Value *Op1 = II->getArgOperand(1);
 | |
|     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
 | |
|     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
 | |
|     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
 | |
|            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
 | |
|            VWidth1 == 2 && "Unexpected operand sizes");
 | |
| 
 | |
|     // See if we're dealing with constant values.
 | |
|     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
 | |
|     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
 | |
| 
 | |
|     // Attempt to simplify to a constant or shuffle vector.
 | |
|     if (CILength && CIIndex) {
 | |
|       APInt Len = CILength->getValue().zextOrTrunc(6);
 | |
|       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
 | |
|       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
 | |
|         return replaceInstUsesWith(*II, V);
 | |
|     }
 | |
| 
 | |
|     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
 | |
|     // operands.
 | |
|     bool MadeChange = false;
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
 | |
|       II->setArgOperand(1, V);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (MadeChange)
 | |
|       return II;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse41_pblendvb:
 | |
|   case Intrinsic::x86_sse41_blendvps:
 | |
|   case Intrinsic::x86_sse41_blendvpd:
 | |
|   case Intrinsic::x86_avx_blendv_ps_256:
 | |
|   case Intrinsic::x86_avx_blendv_pd_256:
 | |
|   case Intrinsic::x86_avx2_pblendvb: {
 | |
|     // Convert blendv* to vector selects if the mask is constant.
 | |
|     // This optimization is convoluted because the intrinsic is defined as
 | |
|     // getting a vector of floats or doubles for the ps and pd versions.
 | |
|     // FIXME: That should be changed.
 | |
| 
 | |
|     Value *Op0 = II->getArgOperand(0);
 | |
|     Value *Op1 = II->getArgOperand(1);
 | |
|     Value *Mask = II->getArgOperand(2);
 | |
| 
 | |
|     // fold (blend A, A, Mask) -> A
 | |
|     if (Op0 == Op1)
 | |
|       return replaceInstUsesWith(CI, Op0);
 | |
| 
 | |
|     // Zero Mask - select 1st argument.
 | |
|     if (isa<ConstantAggregateZero>(Mask))
 | |
|       return replaceInstUsesWith(CI, Op0);
 | |
| 
 | |
|     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
 | |
|     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
 | |
|       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
 | |
|       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_ssse3_pshuf_b_128:
 | |
|   case Intrinsic::x86_avx2_pshuf_b:
 | |
|   case Intrinsic::x86_avx512_pshuf_b_512:
 | |
|     if (Value *V = simplifyX86pshufb(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_avx_vpermilvar_ps:
 | |
|   case Intrinsic::x86_avx_vpermilvar_ps_256:
 | |
|   case Intrinsic::x86_avx512_vpermilvar_ps_512:
 | |
|   case Intrinsic::x86_avx_vpermilvar_pd:
 | |
|   case Intrinsic::x86_avx_vpermilvar_pd_256:
 | |
|   case Intrinsic::x86_avx512_vpermilvar_pd_512:
 | |
|     if (Value *V = simplifyX86vpermilvar(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_avx2_permd:
 | |
|   case Intrinsic::x86_avx2_permps:
 | |
|     if (Value *V = simplifyX86vpermv(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_avx512_mask_permvar_df_256:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_df_512:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_di_256:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_di_512:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_hi_128:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_hi_256:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_hi_512:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_qi_128:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_qi_256:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_qi_512:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_sf_256:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_sf_512:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_si_256:
 | |
|   case Intrinsic::x86_avx512_mask_permvar_si_512:
 | |
|     if (Value *V = simplifyX86vpermv(*II, *Builder)) {
 | |
|       // We simplified the permuting, now create a select for the masking.
 | |
|       V = emitX86MaskSelect(II->getArgOperand(3), V, II->getArgOperand(2),
 | |
|                             *Builder);
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_avx_vperm2f128_pd_256:
 | |
|   case Intrinsic::x86_avx_vperm2f128_ps_256:
 | |
|   case Intrinsic::x86_avx_vperm2f128_si_256:
 | |
|   case Intrinsic::x86_avx2_vperm2i128:
 | |
|     if (Value *V = simplifyX86vperm2(*II, *Builder))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_avx_maskload_ps:
 | |
|   case Intrinsic::x86_avx_maskload_pd:
 | |
|   case Intrinsic::x86_avx_maskload_ps_256:
 | |
|   case Intrinsic::x86_avx_maskload_pd_256:
 | |
|   case Intrinsic::x86_avx2_maskload_d:
 | |
|   case Intrinsic::x86_avx2_maskload_q:
 | |
|   case Intrinsic::x86_avx2_maskload_d_256:
 | |
|   case Intrinsic::x86_avx2_maskload_q_256:
 | |
|     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_sse2_maskmov_dqu:
 | |
|   case Intrinsic::x86_avx_maskstore_ps:
 | |
|   case Intrinsic::x86_avx_maskstore_pd:
 | |
|   case Intrinsic::x86_avx_maskstore_ps_256:
 | |
|   case Intrinsic::x86_avx_maskstore_pd_256:
 | |
|   case Intrinsic::x86_avx2_maskstore_d:
 | |
|   case Intrinsic::x86_avx2_maskstore_q:
 | |
|   case Intrinsic::x86_avx2_maskstore_d_256:
 | |
|   case Intrinsic::x86_avx2_maskstore_q_256:
 | |
|     if (simplifyX86MaskedStore(*II, *this))
 | |
|       return nullptr;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_xop_vpcomb:
 | |
|   case Intrinsic::x86_xop_vpcomd:
 | |
|   case Intrinsic::x86_xop_vpcomq:
 | |
|   case Intrinsic::x86_xop_vpcomw:
 | |
|     if (Value *V = simplifyX86vpcom(*II, *Builder, true))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_xop_vpcomub:
 | |
|   case Intrinsic::x86_xop_vpcomud:
 | |
|   case Intrinsic::x86_xop_vpcomuq:
 | |
|   case Intrinsic::x86_xop_vpcomuw:
 | |
|     if (Value *V = simplifyX86vpcom(*II, *Builder, false))
 | |
|       return replaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::ppc_altivec_vperm:
 | |
|     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | |
|     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
 | |
|     // a vectorshuffle for little endian, we must undo the transformation
 | |
|     // performed on vec_perm in altivec.h.  That is, we must complement
 | |
|     // the permutation mask with respect to 31 and reverse the order of
 | |
|     // V1 and V2.
 | |
|     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
 | |
|       assert(Mask->getType()->getVectorNumElements() == 16 &&
 | |
|              "Bad type for intrinsic!");
 | |
| 
 | |
|       // Check that all of the elements are integer constants or undefs.
 | |
|       bool AllEltsOk = true;
 | |
|       for (unsigned i = 0; i != 16; ++i) {
 | |
|         Constant *Elt = Mask->getAggregateElement(i);
 | |
|         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
 | |
|           AllEltsOk = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (AllEltsOk) {
 | |
|         // Cast the input vectors to byte vectors.
 | |
|         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                             Mask->getType());
 | |
|         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
 | |
|                                             Mask->getType());
 | |
|         Value *Result = UndefValue::get(Op0->getType());
 | |
| 
 | |
|         // Only extract each element once.
 | |
|         Value *ExtractedElts[32];
 | |
|         memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | |
| 
 | |
|         for (unsigned i = 0; i != 16; ++i) {
 | |
|           if (isa<UndefValue>(Mask->getAggregateElement(i)))
 | |
|             continue;
 | |
|           unsigned Idx =
 | |
|             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
 | |
|           Idx &= 31;  // Match the hardware behavior.
 | |
|           if (DL.isLittleEndian())
 | |
|             Idx = 31 - Idx;
 | |
| 
 | |
|           if (!ExtractedElts[Idx]) {
 | |
|             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
 | |
|             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
 | |
|             ExtractedElts[Idx] =
 | |
|               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
 | |
|                                             Builder->getInt32(Idx&15));
 | |
|           }
 | |
| 
 | |
|           // Insert this value into the result vector.
 | |
|           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
 | |
|                                                 Builder->getInt32(i));
 | |
|         }
 | |
|         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::arm_neon_vld1:
 | |
|   case Intrinsic::arm_neon_vld2:
 | |
|   case Intrinsic::arm_neon_vld3:
 | |
|   case Intrinsic::arm_neon_vld4:
 | |
|   case Intrinsic::arm_neon_vld2lane:
 | |
|   case Intrinsic::arm_neon_vld3lane:
 | |
|   case Intrinsic::arm_neon_vld4lane:
 | |
|   case Intrinsic::arm_neon_vst1:
 | |
|   case Intrinsic::arm_neon_vst2:
 | |
|   case Intrinsic::arm_neon_vst3:
 | |
|   case Intrinsic::arm_neon_vst4:
 | |
|   case Intrinsic::arm_neon_vst2lane:
 | |
|   case Intrinsic::arm_neon_vst3lane:
 | |
|   case Intrinsic::arm_neon_vst4lane: {
 | |
|     unsigned MemAlign =
 | |
|         getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
 | |
|     unsigned AlignArg = II->getNumArgOperands() - 1;
 | |
|     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
 | |
|     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
 | |
|       II->setArgOperand(AlignArg,
 | |
|                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
 | |
|                                          MemAlign, false));
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vmulls:
 | |
|   case Intrinsic::arm_neon_vmullu:
 | |
|   case Intrinsic::aarch64_neon_smull:
 | |
|   case Intrinsic::aarch64_neon_umull: {
 | |
|     Value *Arg0 = II->getArgOperand(0);
 | |
|     Value *Arg1 = II->getArgOperand(1);
 | |
| 
 | |
|     // Handle mul by zero first:
 | |
|     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
 | |
|       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
 | |
|     }
 | |
| 
 | |
|     // Check for constant LHS & RHS - in this case we just simplify.
 | |
|     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
 | |
|                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
 | |
|     VectorType *NewVT = cast<VectorType>(II->getType());
 | |
|     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
 | |
|       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
 | |
|         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
 | |
|         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
 | |
| 
 | |
|         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
 | |
|       }
 | |
| 
 | |
|       // Couldn't simplify - canonicalize constant to the RHS.
 | |
|       std::swap(Arg0, Arg1);
 | |
|     }
 | |
| 
 | |
|     // Handle mul by one:
 | |
|     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
 | |
|       if (ConstantInt *Splat =
 | |
|               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
 | |
|         if (Splat->isOne())
 | |
|           return CastInst::CreateIntegerCast(Arg0, II->getType(),
 | |
|                                              /*isSigned=*/!Zext);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::amdgcn_rcp: {
 | |
|     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
 | |
|       const APFloat &ArgVal = C->getValueAPF();
 | |
|       APFloat Val(ArgVal.getSemantics(), 1.0);
 | |
|       APFloat::opStatus Status = Val.divide(ArgVal,
 | |
|                                             APFloat::rmNearestTiesToEven);
 | |
|       // Only do this if it was exact and therefore not dependent on the
 | |
|       // rounding mode.
 | |
|       if (Status == APFloat::opOK)
 | |
|         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::amdgcn_frexp_mant:
 | |
|   case Intrinsic::amdgcn_frexp_exp: {
 | |
|     Value *Src = II->getArgOperand(0);
 | |
|     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
 | |
|       int Exp;
 | |
|       APFloat Significand = frexp(C->getValueAPF(), Exp,
 | |
|                                   APFloat::rmNearestTiesToEven);
 | |
| 
 | |
|       if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
 | |
|         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
 | |
|                                                        Significand));
 | |
|       }
 | |
| 
 | |
|       // Match instruction special case behavior.
 | |
|       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
 | |
|         Exp = 0;
 | |
| 
 | |
|       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
 | |
|     }
 | |
| 
 | |
|     if (isa<UndefValue>(Src))
 | |
|       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::amdgcn_class: {
 | |
|     enum  {
 | |
|       S_NAN = 1 << 0,        // Signaling NaN
 | |
|       Q_NAN = 1 << 1,        // Quiet NaN
 | |
|       N_INFINITY = 1 << 2,   // Negative infinity
 | |
|       N_NORMAL = 1 << 3,     // Negative normal
 | |
|       N_SUBNORMAL = 1 << 4,  // Negative subnormal
 | |
|       N_ZERO = 1 << 5,       // Negative zero
 | |
|       P_ZERO = 1 << 6,       // Positive zero
 | |
|       P_SUBNORMAL = 1 << 7,  // Positive subnormal
 | |
|       P_NORMAL = 1 << 8,     // Positive normal
 | |
|       P_INFINITY = 1 << 9    // Positive infinity
 | |
|     };
 | |
| 
 | |
|     const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
 | |
|       N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
 | |
| 
 | |
|     Value *Src0 = II->getArgOperand(0);
 | |
|     Value *Src1 = II->getArgOperand(1);
 | |
|     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
 | |
|     if (!CMask) {
 | |
|       if (isa<UndefValue>(Src0))
 | |
|         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
| 
 | |
|       if (isa<UndefValue>(Src1))
 | |
|         return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     uint32_t Mask = CMask->getZExtValue();
 | |
| 
 | |
|     // If all tests are made, it doesn't matter what the value is.
 | |
|     if ((Mask & FullMask) == FullMask)
 | |
|       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
 | |
| 
 | |
|     if ((Mask & FullMask) == 0)
 | |
|       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
 | |
| 
 | |
|     if (Mask == (S_NAN | Q_NAN)) {
 | |
|       // Equivalent of isnan. Replace with standard fcmp.
 | |
|       Value *FCmp = Builder->CreateFCmpUNO(Src0, Src0);
 | |
|       FCmp->takeName(II);
 | |
|       return replaceInstUsesWith(*II, FCmp);
 | |
|     }
 | |
| 
 | |
|     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
 | |
|     if (!CVal) {
 | |
|       if (isa<UndefValue>(Src0))
 | |
|         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
| 
 | |
|       // Clamp mask to used bits
 | |
|       if ((Mask & FullMask) != Mask) {
 | |
|         CallInst *NewCall = Builder->CreateCall(II->getCalledFunction(),
 | |
|           { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
 | |
|         );
 | |
| 
 | |
|         NewCall->takeName(II);
 | |
|         return replaceInstUsesWith(*II, NewCall);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     const APFloat &Val = CVal->getValueAPF();
 | |
| 
 | |
|     bool Result =
 | |
|       ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
 | |
|       ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
 | |
|       ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
 | |
|       ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
 | |
|       ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
 | |
|       ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
 | |
|       ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
 | |
|       ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
 | |
|       ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
 | |
|       ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
 | |
| 
 | |
|     return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
 | |
|   }
 | |
|   case Intrinsic::amdgcn_cvt_pkrtz: {
 | |
|     Value *Src0 = II->getArgOperand(0);
 | |
|     Value *Src1 = II->getArgOperand(1);
 | |
|     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
 | |
|       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
 | |
|         const fltSemantics &HalfSem
 | |
|           = II->getType()->getScalarType()->getFltSemantics();
 | |
|         bool LosesInfo;
 | |
|         APFloat Val0 = C0->getValueAPF();
 | |
|         APFloat Val1 = C1->getValueAPF();
 | |
|         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
 | |
|         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
 | |
| 
 | |
|         Constant *Folded = ConstantVector::get({
 | |
|             ConstantFP::get(II->getContext(), Val0),
 | |
|             ConstantFP::get(II->getContext(), Val1) });
 | |
|         return replaceInstUsesWith(*II, Folded);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
 | |
|       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::amdgcn_ubfe:
 | |
|   case Intrinsic::amdgcn_sbfe: {
 | |
|     // Decompose simple cases into standard shifts.
 | |
|     Value *Src = II->getArgOperand(0);
 | |
|     if (isa<UndefValue>(Src))
 | |
|       return replaceInstUsesWith(*II, Src);
 | |
| 
 | |
|     unsigned Width;
 | |
|     Type *Ty = II->getType();
 | |
|     unsigned IntSize = Ty->getIntegerBitWidth();
 | |
| 
 | |
|     ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
 | |
|     if (CWidth) {
 | |
|       Width = CWidth->getZExtValue();
 | |
|       if ((Width & (IntSize - 1)) == 0)
 | |
|         return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
 | |
| 
 | |
|       if (Width >= IntSize) {
 | |
|         // Hardware ignores high bits, so remove those.
 | |
|         II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
 | |
|                                               Width & (IntSize - 1)));
 | |
|         return II;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned Offset;
 | |
|     ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
 | |
|     if (COffset) {
 | |
|       Offset = COffset->getZExtValue();
 | |
|       if (Offset >= IntSize) {
 | |
|         II->setArgOperand(1, ConstantInt::get(COffset->getType(),
 | |
|                                               Offset & (IntSize - 1)));
 | |
|         return II;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
 | |
| 
 | |
|     // TODO: Also emit sub if only width is constant.
 | |
|     if (!CWidth && COffset && Offset == 0) {
 | |
|       Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
 | |
|       Value *ShiftVal = Builder->CreateSub(KSize, II->getArgOperand(2));
 | |
|       ShiftVal = Builder->CreateZExt(ShiftVal, II->getType());
 | |
| 
 | |
|       Value *Shl = Builder->CreateShl(Src, ShiftVal);
 | |
|       Value *RightShift = Signed ?
 | |
|         Builder->CreateAShr(Shl, ShiftVal) :
 | |
|         Builder->CreateLShr(Shl, ShiftVal);
 | |
|       RightShift->takeName(II);
 | |
|       return replaceInstUsesWith(*II, RightShift);
 | |
|     }
 | |
| 
 | |
|     if (!CWidth || !COffset)
 | |
|       break;
 | |
| 
 | |
|     // TODO: This allows folding to undef when the hardware has specific
 | |
|     // behavior?
 | |
|     if (Offset + Width < IntSize) {
 | |
|       Value *Shl = Builder->CreateShl(Src, IntSize  - Offset - Width);
 | |
|       Value *RightShift = Signed ?
 | |
|         Builder->CreateAShr(Shl, IntSize - Width) :
 | |
|         Builder->CreateLShr(Shl, IntSize - Width);
 | |
|       RightShift->takeName(II);
 | |
|       return replaceInstUsesWith(*II, RightShift);
 | |
|     }
 | |
| 
 | |
|     Value *RightShift = Signed ?
 | |
|       Builder->CreateAShr(Src, Offset) :
 | |
|       Builder->CreateLShr(Src, Offset);
 | |
| 
 | |
|     RightShift->takeName(II);
 | |
|     return replaceInstUsesWith(*II, RightShift);
 | |
|   }
 | |
|   case Intrinsic::amdgcn_exp:
 | |
|   case Intrinsic::amdgcn_exp_compr: {
 | |
|     ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
 | |
|     if (!En) // Illegal.
 | |
|       break;
 | |
| 
 | |
|     unsigned EnBits = En->getZExtValue();
 | |
|     if (EnBits == 0xf)
 | |
|       break; // All inputs enabled.
 | |
| 
 | |
|     bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
 | |
|     bool Changed = false;
 | |
|     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
 | |
|       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
 | |
|           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
 | |
|         Value *Src = II->getArgOperand(I + 2);
 | |
|         if (!isa<UndefValue>(Src)) {
 | |
|           II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Changed)
 | |
|       return II;
 | |
| 
 | |
|     break;
 | |
| 
 | |
|   }
 | |
|   case Intrinsic::amdgcn_fmed3: {
 | |
|     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
 | |
|     // for the shader.
 | |
| 
 | |
|     Value *Src0 = II->getArgOperand(0);
 | |
|     Value *Src1 = II->getArgOperand(1);
 | |
|     Value *Src2 = II->getArgOperand(2);
 | |
| 
 | |
|     bool Swap = false;
 | |
|     // Canonicalize constants to RHS operands.
 | |
|     //
 | |
|     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
 | |
|     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
 | |
|       std::swap(Src0, Src1);
 | |
|       Swap = true;
 | |
|     }
 | |
| 
 | |
|     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
 | |
|       std::swap(Src1, Src2);
 | |
|       Swap = true;
 | |
|     }
 | |
| 
 | |
|     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
 | |
|       std::swap(Src0, Src1);
 | |
|       Swap = true;
 | |
|     }
 | |
| 
 | |
|     if (Swap) {
 | |
|       II->setArgOperand(0, Src0);
 | |
|       II->setArgOperand(1, Src1);
 | |
|       II->setArgOperand(2, Src2);
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
 | |
|       CallInst *NewCall = Builder->CreateMinNum(Src0, Src1);
 | |
|       NewCall->copyFastMathFlags(II);
 | |
|       NewCall->takeName(II);
 | |
|       return replaceInstUsesWith(*II, NewCall);
 | |
|     }
 | |
| 
 | |
|     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
 | |
|       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
 | |
|         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
 | |
|           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
 | |
|                                        C2->getValueAPF());
 | |
|           return replaceInstUsesWith(*II,
 | |
|             ConstantFP::get(Builder->getContext(), Result));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::amdgcn_icmp:
 | |
|   case Intrinsic::amdgcn_fcmp: {
 | |
|     const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
 | |
|     if (!CC)
 | |
|       break;
 | |
| 
 | |
|     // Guard against invalid arguments.
 | |
|     int64_t CCVal = CC->getZExtValue();
 | |
|     bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
 | |
|     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
 | |
|                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
 | |
|         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
 | |
|                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
 | |
|       break;
 | |
| 
 | |
|     Value *Src0 = II->getArgOperand(0);
 | |
|     Value *Src1 = II->getArgOperand(1);
 | |
| 
 | |
|     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
 | |
|       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
 | |
|         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
 | |
|         return replaceInstUsesWith(*II,
 | |
|                                    ConstantExpr::getSExt(CCmp, II->getType()));
 | |
|       }
 | |
| 
 | |
|       // Canonicalize constants to RHS.
 | |
|       CmpInst::Predicate SwapPred
 | |
|         = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
 | |
|       II->setArgOperand(0, Src1);
 | |
|       II->setArgOperand(1, Src0);
 | |
|       II->setArgOperand(2, ConstantInt::get(CC->getType(),
 | |
|                                             static_cast<int>(SwapPred)));
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
 | |
|       break;
 | |
| 
 | |
|     // Canonicalize compare eq with true value to compare != 0
 | |
|     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
 | |
|     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
 | |
|     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
 | |
|     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
 | |
|     Value *ExtSrc;
 | |
|     if (CCVal == CmpInst::ICMP_EQ &&
 | |
|         ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
 | |
|          (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
 | |
|         ExtSrc->getType()->isIntegerTy(1)) {
 | |
|       II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
 | |
|       II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     CmpInst::Predicate SrcPred;
 | |
|     Value *SrcLHS;
 | |
|     Value *SrcRHS;
 | |
| 
 | |
|     // Fold compare eq/ne with 0 from a compare result as the predicate to the
 | |
|     // intrinsic. The typical use is a wave vote function in the library, which
 | |
|     // will be fed from a user code condition compared with 0. Fold in the
 | |
|     // redundant compare.
 | |
| 
 | |
|     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
 | |
|     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
 | |
|     //
 | |
|     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
 | |
|     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
 | |
|     if (match(Src1, m_Zero()) &&
 | |
|         match(Src0,
 | |
|               m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
 | |
|       if (CCVal == CmpInst::ICMP_EQ)
 | |
|         SrcPred = CmpInst::getInversePredicate(SrcPred);
 | |
| 
 | |
|       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
 | |
|         Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
 | |
| 
 | |
|       Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
 | |
|                                               SrcLHS->getType());
 | |
|       Value *Args[] = { SrcLHS, SrcRHS,
 | |
|                         ConstantInt::get(CC->getType(), SrcPred) };
 | |
|       CallInst *NewCall = Builder->CreateCall(NewF, Args);
 | |
|       NewCall->takeName(II);
 | |
|       return replaceInstUsesWith(*II, NewCall);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::stackrestore: {
 | |
|     // If the save is right next to the restore, remove the restore.  This can
 | |
|     // happen when variable allocas are DCE'd.
 | |
|     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
 | |
|       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
 | |
|         if (&*++SS->getIterator() == II)
 | |
|           return eraseInstFromFunction(CI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Scan down this block to see if there is another stack restore in the
 | |
|     // same block without an intervening call/alloca.
 | |
|     BasicBlock::iterator BI(II);
 | |
|     TerminatorInst *TI = II->getParent()->getTerminator();
 | |
|     bool CannotRemove = false;
 | |
|     for (++BI; &*BI != TI; ++BI) {
 | |
|       if (isa<AllocaInst>(BI)) {
 | |
|         CannotRemove = true;
 | |
|         break;
 | |
|       }
 | |
|       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
 | |
|         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
 | |
|           // If there is a stackrestore below this one, remove this one.
 | |
|           if (II->getIntrinsicID() == Intrinsic::stackrestore)
 | |
|             return eraseInstFromFunction(CI);
 | |
| 
 | |
|           // Bail if we cross over an intrinsic with side effects, such as
 | |
|           // llvm.stacksave, llvm.read_register, or llvm.setjmp.
 | |
|           if (II->mayHaveSideEffects()) {
 | |
|             CannotRemove = true;
 | |
|             break;
 | |
|           }
 | |
|         } else {
 | |
|           // If we found a non-intrinsic call, we can't remove the stack
 | |
|           // restore.
 | |
|           CannotRemove = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the stack restore is in a return, resume, or unwind block and if there
 | |
|     // are no allocas or calls between the restore and the return, nuke the
 | |
|     // restore.
 | |
|     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
 | |
|       return eraseInstFromFunction(CI);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::lifetime_start:
 | |
|     // Asan needs to poison memory to detect invalid access which is possible
 | |
|     // even for empty lifetime range.
 | |
|     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
 | |
|       break;
 | |
| 
 | |
|     if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
 | |
|                                   Intrinsic::lifetime_end, *this))
 | |
|       return nullptr;
 | |
|     break;
 | |
|   case Intrinsic::assume: {
 | |
|     Value *IIOperand = II->getArgOperand(0);
 | |
|     // Remove an assume if it is immediately followed by an identical assume.
 | |
|     if (match(II->getNextNode(),
 | |
|               m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
 | |
|       return eraseInstFromFunction(CI);
 | |
| 
 | |
|     // Canonicalize assume(a && b) -> assume(a); assume(b);
 | |
|     // Note: New assumption intrinsics created here are registered by
 | |
|     // the InstCombineIRInserter object.
 | |
|     Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
 | |
|     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
 | |
|       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
 | |
|       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
 | |
|       return eraseInstFromFunction(*II);
 | |
|     }
 | |
|     // assume(!(a || b)) -> assume(!a); assume(!b);
 | |
|     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
 | |
|       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
 | |
|                           II->getName());
 | |
|       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
 | |
|                           II->getName());
 | |
|       return eraseInstFromFunction(*II);
 | |
|     }
 | |
| 
 | |
|     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
 | |
|     // (if assume is valid at the load)
 | |
|     CmpInst::Predicate Pred;
 | |
|     Instruction *LHS;
 | |
|     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
 | |
|         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
 | |
|         LHS->getType()->isPointerTy() &&
 | |
|         isValidAssumeForContext(II, LHS, &DT)) {
 | |
|       MDNode *MD = MDNode::get(II->getContext(), None);
 | |
|       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
 | |
|       return eraseInstFromFunction(*II);
 | |
| 
 | |
|       // TODO: apply nonnull return attributes to calls and invokes
 | |
|       // TODO: apply range metadata for range check patterns?
 | |
|     }
 | |
| 
 | |
|     // If there is a dominating assume with the same condition as this one,
 | |
|     // then this one is redundant, and should be removed.
 | |
|     APInt KnownZero(1, 0), KnownOne(1, 0);
 | |
|     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
 | |
|     if (KnownOne.isAllOnesValue())
 | |
|       return eraseInstFromFunction(*II);
 | |
| 
 | |
|     // Update the cache of affected values for this assumption (we might be
 | |
|     // here because we just simplified the condition).
 | |
|     AC.updateAffectedValues(II);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_relocate: {
 | |
|     // Translate facts known about a pointer before relocating into
 | |
|     // facts about the relocate value, while being careful to
 | |
|     // preserve relocation semantics.
 | |
|     Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
 | |
| 
 | |
|     // Remove the relocation if unused, note that this check is required
 | |
|     // to prevent the cases below from looping forever.
 | |
|     if (II->use_empty())
 | |
|       return eraseInstFromFunction(*II);
 | |
| 
 | |
|     // Undef is undef, even after relocation.
 | |
|     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
 | |
|     // most practical collectors, but there was discussion in the review thread
 | |
|     // about whether it was legal for all possible collectors.
 | |
|     if (isa<UndefValue>(DerivedPtr))
 | |
|       // Use undef of gc_relocate's type to replace it.
 | |
|       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
| 
 | |
|     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
 | |
|       // The relocation of null will be null for most any collector.
 | |
|       // TODO: provide a hook for this in GCStrategy.  There might be some
 | |
|       // weird collector this property does not hold for.
 | |
|       if (isa<ConstantPointerNull>(DerivedPtr))
 | |
|         // Use null-pointer of gc_relocate's type to replace it.
 | |
|         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
 | |
| 
 | |
|       // isKnownNonNull -> nonnull attribute
 | |
|       if (isKnownNonNullAt(DerivedPtr, II, &DT))
 | |
|         II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
 | |
|     }
 | |
| 
 | |
|     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
 | |
|     // Canonicalize on the type from the uses to the defs
 | |
| 
 | |
|     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::experimental_guard: {
 | |
|     // Is this guard followed by another guard?
 | |
|     Instruction *NextInst = II->getNextNode();
 | |
|     Value *NextCond = nullptr;
 | |
|     if (match(NextInst,
 | |
|               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
 | |
|       Value *CurrCond = II->getArgOperand(0);
 | |
| 
 | |
|       // Remove a guard that it is immediately preceeded by an identical guard.
 | |
|       if (CurrCond == NextCond)
 | |
|         return eraseInstFromFunction(*NextInst);
 | |
| 
 | |
|       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
 | |
|       II->setArgOperand(0, Builder->CreateAnd(CurrCond, NextCond));
 | |
|       return eraseInstFromFunction(*NextInst);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return visitCallSite(II);
 | |
| }
 | |
| 
 | |
| // Fence instruction simplification
 | |
| Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
 | |
|   // Remove identical consecutive fences.
 | |
|   if (auto *NFI = dyn_cast<FenceInst>(FI.getNextNode()))
 | |
|     if (FI.isIdenticalTo(NFI))
 | |
|       return eraseInstFromFunction(FI);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // InvokeInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | |
|   return visitCallSite(&II);
 | |
| }
 | |
| 
 | |
| /// If this cast does not affect the value passed through the varargs area, we
 | |
| /// can eliminate the use of the cast.
 | |
| static bool isSafeToEliminateVarargsCast(const CallSite CS,
 | |
|                                          const DataLayout &DL,
 | |
|                                          const CastInst *const CI,
 | |
|                                          const int ix) {
 | |
|   if (!CI->isLosslessCast())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a GC intrinsic, avoid munging types.  We need types for
 | |
|   // statepoint reconstruction in SelectionDAG.
 | |
|   // TODO: This is probably something which should be expanded to all
 | |
|   // intrinsics since the entire point of intrinsics is that
 | |
|   // they are understandable by the optimizer.
 | |
|   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
 | |
|     return false;
 | |
| 
 | |
|   // The size of ByVal or InAlloca arguments is derived from the type, so we
 | |
|   // can't change to a type with a different size.  If the size were
 | |
|   // passed explicitly we could avoid this check.
 | |
|   if (!CS.isByValOrInAllocaArgument(ix))
 | |
|     return true;
 | |
| 
 | |
|   Type* SrcTy =
 | |
|             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
 | |
|   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   if (!SrcTy->isSized() || !DstTy->isSized())
 | |
|     return false;
 | |
|   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
 | |
|   if (!CI->getCalledFunction()) return nullptr;
 | |
| 
 | |
|   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
 | |
|     replaceInstUsesWith(*From, With);
 | |
|   };
 | |
|   LibCallSimplifier Simplifier(DL, &TLI, InstCombineRAUW);
 | |
|   if (Value *With = Simplifier.optimizeCall(CI)) {
 | |
|     ++NumSimplified;
 | |
|     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
 | |
|   // Strip off at most one level of pointer casts, looking for an alloca.  This
 | |
|   // is good enough in practice and simpler than handling any number of casts.
 | |
|   Value *Underlying = TrampMem->stripPointerCasts();
 | |
|   if (Underlying != TrampMem &&
 | |
|       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
 | |
|     return nullptr;
 | |
|   if (!isa<AllocaInst>(Underlying))
 | |
|     return nullptr;
 | |
| 
 | |
|   IntrinsicInst *InitTrampoline = nullptr;
 | |
|   for (User *U : TrampMem->users()) {
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
 | |
|     if (!II)
 | |
|       return nullptr;
 | |
|     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
 | |
|       if (InitTrampoline)
 | |
|         // More than one init_trampoline writes to this value.  Give up.
 | |
|         return nullptr;
 | |
|       InitTrampoline = II;
 | |
|       continue;
 | |
|     }
 | |
|     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
 | |
|       // Allow any number of calls to adjust.trampoline.
 | |
|       continue;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // No call to init.trampoline found.
 | |
|   if (!InitTrampoline)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that the alloca is being used in the expected way.
 | |
|   if (InitTrampoline->getOperand(0) != TrampMem)
 | |
|     return nullptr;
 | |
| 
 | |
|   return InitTrampoline;
 | |
| }
 | |
| 
 | |
| static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
 | |
|                                                Value *TrampMem) {
 | |
|   // Visit all the previous instructions in the basic block, and try to find a
 | |
|   // init.trampoline which has a direct path to the adjust.trampoline.
 | |
|   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
 | |
|                             E = AdjustTramp->getParent()->begin();
 | |
|        I != E;) {
 | |
|     Instruction *Inst = &*--I;
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
 | |
|           II->getOperand(0) == TrampMem)
 | |
|         return II;
 | |
|     if (Inst->mayWriteToMemory())
 | |
|       return nullptr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Given a call to llvm.adjust.trampoline, find and return the corresponding
 | |
| // call to llvm.init.trampoline if the call to the trampoline can be optimized
 | |
| // to a direct call to a function.  Otherwise return NULL.
 | |
| //
 | |
| static IntrinsicInst *findInitTrampoline(Value *Callee) {
 | |
|   Callee = Callee->stripPointerCasts();
 | |
|   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
 | |
|   if (!AdjustTramp ||
 | |
|       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *TrampMem = AdjustTramp->getOperand(0);
 | |
| 
 | |
|   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
 | |
|     return IT;
 | |
|   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
 | |
|     return IT;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Improvements for call and invoke instructions.
 | |
| Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | |
|   if (isAllocLikeFn(CS.getInstruction(), &TLI))
 | |
|     return visitAllocSite(*CS.getInstruction());
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Mark any parameters that are known to be non-null with the nonnull
 | |
|   // attribute.  This is helpful for inlining calls to functions with null
 | |
|   // checks on their arguments.
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   unsigned ArgNo = 0;
 | |
| 
 | |
|   for (Value *V : CS.args()) {
 | |
|     if (V->getType()->isPointerTy() &&
 | |
|         !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) &&
 | |
|         isKnownNonNullAt(V, CS.getInstruction(), &DT))
 | |
|       Indices.push_back(ArgNo + 1);
 | |
|     ArgNo++;
 | |
|   }
 | |
| 
 | |
|   assert(ArgNo == CS.arg_size() && "sanity check");
 | |
| 
 | |
|   if (!Indices.empty()) {
 | |
|     AttributeList AS = CS.getAttributes();
 | |
|     LLVMContext &Ctx = CS.getInstruction()->getContext();
 | |
|     AS = AS.addAttribute(Ctx, Indices,
 | |
|                          Attribute::get(Ctx, Attribute::NonNull));
 | |
|     CS.setAttributes(AS);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // If the callee is a pointer to a function, attempt to move any casts to the
 | |
|   // arguments of the call/invoke.
 | |
|   Value *Callee = CS.getCalledValue();
 | |
|   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
 | |
|     // Remove the convergent attr on calls when the callee is not convergent.
 | |
|     if (CS.isConvergent() && !CalleeF->isConvergent() &&
 | |
|         !CalleeF->isIntrinsic()) {
 | |
|       DEBUG(dbgs() << "Removing convergent attr from instr "
 | |
|                    << CS.getInstruction() << "\n");
 | |
|       CS.setNotConvergent();
 | |
|       return CS.getInstruction();
 | |
|     }
 | |
| 
 | |
|     // If the call and callee calling conventions don't match, this call must
 | |
|     // be unreachable, as the call is undefined.
 | |
|     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
 | |
|         // Only do this for calls to a function with a body.  A prototype may
 | |
|         // not actually end up matching the implementation's calling conv for a
 | |
|         // variety of reasons (e.g. it may be written in assembly).
 | |
|         !CalleeF->isDeclaration()) {
 | |
|       Instruction *OldCall = CS.getInstruction();
 | |
|       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
 | |
|                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
 | |
|                                   OldCall);
 | |
|       // If OldCall does not return void then replaceAllUsesWith undef.
 | |
|       // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|       if (!OldCall->getType()->isVoidTy())
 | |
|         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
 | |
|       if (isa<CallInst>(OldCall))
 | |
|         return eraseInstFromFunction(*OldCall);
 | |
| 
 | |
|       // We cannot remove an invoke, because it would change the CFG, just
 | |
|       // change the callee to a null pointer.
 | |
|       cast<InvokeInst>(OldCall)->setCalledFunction(
 | |
|                                     Constant::getNullValue(CalleeF->getType()));
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|     // If CS does not return void then replaceAllUsesWith undef.
 | |
|     // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|     if (!CS.getInstruction()->getType()->isVoidTy())
 | |
|       replaceInstUsesWith(*CS.getInstruction(),
 | |
|                           UndefValue::get(CS.getInstruction()->getType()));
 | |
| 
 | |
|     if (isa<InvokeInst>(CS.getInstruction())) {
 | |
|       // Can't remove an invoke because we cannot change the CFG.
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // This instruction is not reachable, just remove it.  We insert a store to
 | |
|     // undef so that we know that this code is not reachable, despite the fact
 | |
|     // that we can't modify the CFG here.
 | |
|     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
 | |
|                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
 | |
|                   CS.getInstruction());
 | |
| 
 | |
|     return eraseInstFromFunction(*CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   if (IntrinsicInst *II = findInitTrampoline(Callee))
 | |
|     return transformCallThroughTrampoline(CS, II);
 | |
| 
 | |
|   PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   if (FTy->isVarArg()) {
 | |
|     int ix = FTy->getNumParams();
 | |
|     // See if we can optimize any arguments passed through the varargs area of
 | |
|     // the call.
 | |
|     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
 | |
|            E = CS.arg_end(); I != E; ++I, ++ix) {
 | |
|       CastInst *CI = dyn_cast<CastInst>(*I);
 | |
|       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
 | |
|         *I = CI->getOperand(0);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
 | |
|     // Inline asm calls cannot throw - mark them 'nounwind'.
 | |
|     CS.setDoesNotThrow();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // Try to optimize the call if possible, we require DataLayout for most of
 | |
|   // this.  None of these calls are seen as possibly dead so go ahead and
 | |
|   // delete the instruction now.
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
 | |
|     Instruction *I = tryOptimizeCall(CI);
 | |
|     // If we changed something return the result, etc. Otherwise let
 | |
|     // the fallthrough check.
 | |
|     if (I) return eraseInstFromFunction(*I);
 | |
|   }
 | |
| 
 | |
|   return Changed ? CS.getInstruction() : nullptr;
 | |
| }
 | |
| 
 | |
| /// If the callee is a constexpr cast of a function, attempt to move the cast to
 | |
| /// the arguments of the call/invoke.
 | |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | |
|   auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
 | |
|   if (!Callee)
 | |
|     return false;
 | |
| 
 | |
|   // The prototype of a thunk is a lie. Don't directly call such a function.
 | |
|   if (Callee->hasFnAttribute("thunk"))
 | |
|     return false;
 | |
| 
 | |
|   Instruction *Caller = CS.getInstruction();
 | |
|   const AttributeList &CallerPAL = CS.getAttributes();
 | |
| 
 | |
|   // Okay, this is a cast from a function to a different type.  Unless doing so
 | |
|   // would cause a type conversion of one of our arguments, change this call to
 | |
|   // be a direct call with arguments casted to the appropriate types.
 | |
|   //
 | |
|   FunctionType *FT = Callee->getFunctionType();
 | |
|   Type *OldRetTy = Caller->getType();
 | |
|   Type *NewRetTy = FT->getReturnType();
 | |
| 
 | |
|   // Check to see if we are changing the return type...
 | |
|   if (OldRetTy != NewRetTy) {
 | |
| 
 | |
|     if (NewRetTy->isStructTy())
 | |
|       return false; // TODO: Handle multiple return values.
 | |
| 
 | |
|     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
 | |
|       if (Callee->isDeclaration())
 | |
|         return false;   // Cannot transform this return value.
 | |
| 
 | |
|       if (!Caller->use_empty() &&
 | |
|           // void -> non-void is handled specially
 | |
|           !NewRetTy->isVoidTy())
 | |
|         return false;   // Cannot transform this return value.
 | |
|     }
 | |
| 
 | |
|     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
 | |
|       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
 | |
|       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
 | |
|         return false;   // Attribute not compatible with transformed value.
 | |
|     }
 | |
| 
 | |
|     // If the callsite is an invoke instruction, and the return value is used by
 | |
|     // a PHI node in a successor, we cannot change the return type of the call
 | |
|     // because there is no place to put the cast instruction (without breaking
 | |
|     // the critical edge).  Bail out in this case.
 | |
|     if (!Caller->use_empty())
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | |
|         for (User *U : II->users())
 | |
|           if (PHINode *PN = dyn_cast<PHINode>(U))
 | |
|             if (PN->getParent() == II->getNormalDest() ||
 | |
|                 PN->getParent() == II->getUnwindDest())
 | |
|               return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NumActualArgs = CS.arg_size();
 | |
|   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | |
| 
 | |
|   // Prevent us turning:
 | |
|   // declare void @takes_i32_inalloca(i32* inalloca)
 | |
|   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
 | |
|   //
 | |
|   // into:
 | |
|   //  call void @takes_i32_inalloca(i32* null)
 | |
|   //
 | |
|   //  Similarly, avoid folding away bitcasts of byval calls.
 | |
|   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
 | |
|       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
 | |
|     return false;
 | |
| 
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | |
|     Type *ParamTy = FT->getParamType(i);
 | |
|     Type *ActTy = (*AI)->getType();
 | |
| 
 | |
|     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
 | |
|       return false;   // Cannot transform this parameter value.
 | |
| 
 | |
|     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
 | |
|           overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
 | |
|       return false;   // Attribute not compatible with transformed value.
 | |
| 
 | |
|     if (CS.isInAllocaArgument(i))
 | |
|       return false;   // Cannot transform to and from inalloca.
 | |
| 
 | |
|     // If the parameter is passed as a byval argument, then we have to have a
 | |
|     // sized type and the sized type has to have the same size as the old type.
 | |
|     if (ParamTy != ActTy &&
 | |
|         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
 | |
|                                                          Attribute::ByVal)) {
 | |
|       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
 | |
|       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
 | |
|         return false;
 | |
| 
 | |
|       Type *CurElTy = ActTy->getPointerElementType();
 | |
|       if (DL.getTypeAllocSize(CurElTy) !=
 | |
|           DL.getTypeAllocSize(ParamPTy->getElementType()))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Callee->isDeclaration()) {
 | |
|     // Do not delete arguments unless we have a function body.
 | |
|     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
 | |
|       return false;
 | |
| 
 | |
|     // If the callee is just a declaration, don't change the varargsness of the
 | |
|     // call.  We don't want to introduce a varargs call where one doesn't
 | |
|     // already exist.
 | |
|     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
 | |
|       return false;
 | |
| 
 | |
|     // If both the callee and the cast type are varargs, we still have to make
 | |
|     // sure the number of fixed parameters are the same or we have the same
 | |
|     // ABI issues as if we introduce a varargs call.
 | |
|     if (FT->isVarArg() &&
 | |
|         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
 | |
|         FT->getNumParams() !=
 | |
|         cast<FunctionType>(APTy->getElementType())->getNumParams())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
 | |
|       !CallerPAL.isEmpty())
 | |
|     // In this case we have more arguments than the new function type, but we
 | |
|     // won't be dropping them.  Check that these extra arguments have attributes
 | |
|     // that are compatible with being a vararg call argument.
 | |
|     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
 | |
|       unsigned Index = CallerPAL.getSlotIndex(i - 1);
 | |
|       if (Index <= FT->getNumParams())
 | |
|         break;
 | |
| 
 | |
|       // Check if it has an attribute that's incompatible with varargs.
 | |
|       AttributeList PAttrs = CallerPAL.getSlotAttributes(i - 1);
 | |
|       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   // Okay, we decided that this is a safe thing to do: go ahead and start
 | |
|   // inserting cast instructions as necessary.
 | |
|   std::vector<Value*> Args;
 | |
|   Args.reserve(NumActualArgs);
 | |
|   SmallVector<AttributeList, 8> attrVec;
 | |
|   attrVec.reserve(NumCommonArgs);
 | |
| 
 | |
|   // Get any return attributes.
 | |
|   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
 | |
| 
 | |
|   // If the return value is not being used, the type may not be compatible
 | |
|   // with the existing attributes.  Wipe out any problematic attributes.
 | |
|   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
 | |
| 
 | |
|   // Add the new return attributes.
 | |
|   if (RAttrs.hasAttributes())
 | |
|     attrVec.push_back(AttributeList::get(Caller->getContext(),
 | |
|                                          AttributeList::ReturnIndex, RAttrs));
 | |
| 
 | |
|   AI = CS.arg_begin();
 | |
|   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | |
|     Type *ParamTy = FT->getParamType(i);
 | |
| 
 | |
|     if ((*AI)->getType() == ParamTy) {
 | |
|       Args.push_back(*AI);
 | |
|     } else {
 | |
|       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
 | |
|     }
 | |
| 
 | |
|     // Add any parameter attributes.
 | |
|     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
 | |
|     if (PAttrs.hasAttributes())
 | |
|       attrVec.push_back(
 | |
|           AttributeList::get(Caller->getContext(), i + 1, PAttrs));
 | |
|   }
 | |
| 
 | |
|   // If the function takes more arguments than the call was taking, add them
 | |
|   // now.
 | |
|   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | |
|     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | |
| 
 | |
|   // If we are removing arguments to the function, emit an obnoxious warning.
 | |
|   if (FT->getNumParams() < NumActualArgs) {
 | |
|     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
 | |
|     if (FT->isVarArg()) {
 | |
|       // Add all of the arguments in their promoted form to the arg list.
 | |
|       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | |
|         Type *PTy = getPromotedType((*AI)->getType());
 | |
|         if (PTy != (*AI)->getType()) {
 | |
|           // Must promote to pass through va_arg area!
 | |
|           Instruction::CastOps opcode =
 | |
|             CastInst::getCastOpcode(*AI, false, PTy, false);
 | |
|           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
 | |
|         } else {
 | |
|           Args.push_back(*AI);
 | |
|         }
 | |
| 
 | |
|         // Add any parameter attributes.
 | |
|         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
 | |
|         if (PAttrs.hasAttributes())
 | |
|           attrVec.push_back(
 | |
|               AttributeList::get(FT->getContext(), i + 1, PAttrs));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AttributeList FnAttrs = CallerPAL.getFnAttributes();
 | |
|   if (CallerPAL.hasAttributes(AttributeList::FunctionIndex))
 | |
|     attrVec.push_back(AttributeList::get(Callee->getContext(), FnAttrs));
 | |
| 
 | |
|   if (NewRetTy->isVoidTy())
 | |
|     Caller->setName("");   // Void type should not have a name.
 | |
| 
 | |
|   const AttributeList &NewCallerPAL =
 | |
|       AttributeList::get(Callee->getContext(), attrVec);
 | |
| 
 | |
|   SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|   CS.getOperandBundlesAsDefs(OpBundles);
 | |
| 
 | |
|   Instruction *NC;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|     NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args, OpBundles);
 | |
|     NC->takeName(II);
 | |
|     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
 | |
|     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
 | |
|   } else {
 | |
|     CallInst *CI = cast<CallInst>(Caller);
 | |
|     NC = Builder->CreateCall(Callee, Args, OpBundles);
 | |
|     NC->takeName(CI);
 | |
|     cast<CallInst>(NC)->setTailCallKind(CI->getTailCallKind());
 | |
|     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
 | |
|     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
 | |
|   }
 | |
| 
 | |
|   // Insert a cast of the return type as necessary.
 | |
|   Value *NV = NC;
 | |
|   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
 | |
|     if (!NV->getType()->isVoidTy()) {
 | |
|       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
 | |
|       NC->setDebugLoc(Caller->getDebugLoc());
 | |
| 
 | |
|       // If this is an invoke instruction, we should insert it after the first
 | |
|       // non-phi, instruction in the normal successor block.
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
 | |
|         InsertNewInstBefore(NC, *I);
 | |
|       } else {
 | |
|         // Otherwise, it's a call, just insert cast right after the call.
 | |
|         InsertNewInstBefore(NC, *Caller);
 | |
|       }
 | |
|       Worklist.AddUsersToWorkList(*Caller);
 | |
|     } else {
 | |
|       NV = UndefValue::get(Caller->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Caller->use_empty())
 | |
|     replaceInstUsesWith(*Caller, NV);
 | |
|   else if (Caller->hasValueHandle()) {
 | |
|     if (OldRetTy == NV->getType())
 | |
|       ValueHandleBase::ValueIsRAUWd(Caller, NV);
 | |
|     else
 | |
|       // We cannot call ValueIsRAUWd with a different type, and the
 | |
|       // actual tracked value will disappear.
 | |
|       ValueHandleBase::ValueIsDeleted(Caller);
 | |
|   }
 | |
| 
 | |
|   eraseInstFromFunction(*Caller);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Turn a call to a function created by init_trampoline / adjust_trampoline
 | |
| /// intrinsic pair into a direct call to the underlying function.
 | |
| Instruction *
 | |
| InstCombiner::transformCallThroughTrampoline(CallSite CS,
 | |
|                                              IntrinsicInst *Tramp) {
 | |
|   Value *Callee = CS.getCalledValue();
 | |
|   PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   const AttributeList &Attrs = CS.getAttributes();
 | |
| 
 | |
|   // If the call already has the 'nest' attribute somewhere then give up -
 | |
|   // otherwise 'nest' would occur twice after splicing in the chain.
 | |
|   if (Attrs.hasAttrSomewhere(Attribute::Nest))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(Tramp &&
 | |
|          "transformCallThroughTrampoline called with incorrect CallSite.");
 | |
| 
 | |
|   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
 | |
|   FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
 | |
| 
 | |
|   const AttributeList &NestAttrs = NestF->getAttributes();
 | |
|   if (!NestAttrs.isEmpty()) {
 | |
|     unsigned NestIdx = 1;
 | |
|     Type *NestTy = nullptr;
 | |
|     AttributeList NestAttr;
 | |
| 
 | |
|     // Look for a parameter marked with the 'nest' attribute.
 | |
|     for (FunctionType::param_iterator I = NestFTy->param_begin(),
 | |
|          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
 | |
|       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
 | |
|         // Record the parameter type and any other attributes.
 | |
|         NestTy = *I;
 | |
|         NestAttr = NestAttrs.getParamAttributes(NestIdx);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (NestTy) {
 | |
|       Instruction *Caller = CS.getInstruction();
 | |
|       std::vector<Value*> NewArgs;
 | |
|       NewArgs.reserve(CS.arg_size() + 1);
 | |
| 
 | |
|       SmallVector<AttributeList, 8> NewAttrs;
 | |
|       NewAttrs.reserve(Attrs.getNumSlots() + 1);
 | |
| 
 | |
|       // Insert the nest argument into the call argument list, which may
 | |
|       // mean appending it.  Likewise for attributes.
 | |
| 
 | |
|       // Add any result attributes.
 | |
|       if (Attrs.hasAttributes(AttributeList::ReturnIndex))
 | |
|         NewAttrs.push_back(
 | |
|             AttributeList::get(Caller->getContext(), Attrs.getRetAttributes()));
 | |
| 
 | |
|       {
 | |
|         unsigned Idx = 1;
 | |
|         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|         do {
 | |
|           if (Idx == NestIdx) {
 | |
|             // Add the chain argument and attributes.
 | |
|             Value *NestVal = Tramp->getArgOperand(2);
 | |
|             if (NestVal->getType() != NestTy)
 | |
|               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
 | |
|             NewArgs.push_back(NestVal);
 | |
|             NewAttrs.push_back(
 | |
|                 AttributeList::get(Caller->getContext(), NestAttr));
 | |
|           }
 | |
| 
 | |
|           if (I == E)
 | |
|             break;
 | |
| 
 | |
|           // Add the original argument and attributes.
 | |
|           NewArgs.push_back(*I);
 | |
|           AttributeList Attr = Attrs.getParamAttributes(Idx);
 | |
|           if (Attr.hasAttributes(Idx)) {
 | |
|             AttrBuilder B(Attr, Idx);
 | |
|             NewAttrs.push_back(AttributeList::get(Caller->getContext(),
 | |
|                                                   Idx + (Idx >= NestIdx), B));
 | |
|           }
 | |
| 
 | |
|           ++Idx;
 | |
|           ++I;
 | |
|         } while (true);
 | |
|       }
 | |
| 
 | |
|       // Add any function attributes.
 | |
|       if (Attrs.hasAttributes(AttributeList::FunctionIndex))
 | |
|         NewAttrs.push_back(
 | |
|             AttributeList::get(FTy->getContext(), Attrs.getFnAttributes()));
 | |
| 
 | |
|       // The trampoline may have been bitcast to a bogus type (FTy).
 | |
|       // Handle this by synthesizing a new function type, equal to FTy
 | |
|       // with the chain parameter inserted.
 | |
| 
 | |
|       std::vector<Type*> NewTypes;
 | |
|       NewTypes.reserve(FTy->getNumParams()+1);
 | |
| 
 | |
|       // Insert the chain's type into the list of parameter types, which may
 | |
|       // mean appending it.
 | |
|       {
 | |
|         unsigned Idx = 1;
 | |
|         FunctionType::param_iterator I = FTy->param_begin(),
 | |
|           E = FTy->param_end();
 | |
| 
 | |
|         do {
 | |
|           if (Idx == NestIdx)
 | |
|             // Add the chain's type.
 | |
|             NewTypes.push_back(NestTy);
 | |
| 
 | |
|           if (I == E)
 | |
|             break;
 | |
| 
 | |
|           // Add the original type.
 | |
|           NewTypes.push_back(*I);
 | |
| 
 | |
|           ++Idx;
 | |
|           ++I;
 | |
|         } while (true);
 | |
|       }
 | |
| 
 | |
|       // Replace the trampoline call with a direct call.  Let the generic
 | |
|       // code sort out any function type mismatches.
 | |
|       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
 | |
|                                                 FTy->isVarArg());
 | |
|       Constant *NewCallee =
 | |
|         NestF->getType() == PointerType::getUnqual(NewFTy) ?
 | |
|         NestF : ConstantExpr::getBitCast(NestF,
 | |
|                                          PointerType::getUnqual(NewFTy));
 | |
|       const AttributeList &NewPAL =
 | |
|           AttributeList::get(FTy->getContext(), NewAttrs);
 | |
| 
 | |
|       SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|       CS.getOperandBundlesAsDefs(OpBundles);
 | |
| 
 | |
|       Instruction *NewCaller;
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         NewCaller = InvokeInst::Create(NewCallee,
 | |
|                                        II->getNormalDest(), II->getUnwindDest(),
 | |
|                                        NewArgs, OpBundles);
 | |
|         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
 | |
|         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
 | |
|       } else {
 | |
|         NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
 | |
|         cast<CallInst>(NewCaller)->setTailCallKind(
 | |
|             cast<CallInst>(Caller)->getTailCallKind());
 | |
|         cast<CallInst>(NewCaller)->setCallingConv(
 | |
|             cast<CallInst>(Caller)->getCallingConv());
 | |
|         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
 | |
|       }
 | |
| 
 | |
|       return NewCaller;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace the trampoline call with a direct call.  Since there is no 'nest'
 | |
|   // parameter, there is no need to adjust the argument list.  Let the generic
 | |
|   // code sort out any function type mismatches.
 | |
|   Constant *NewCallee =
 | |
|     NestF->getType() == PTy ? NestF :
 | |
|                               ConstantExpr::getBitCast(NestF, PTy);
 | |
|   CS.setCalledFunction(NewCallee);
 | |
|   return CS.getInstruction();
 | |
| }
 |