1615 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1615 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineMulDivRem.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
 | |
| // srem, urem, frem.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| 
 | |
| /// The specific integer value is used in a context where it is known to be
 | |
| /// non-zero.  If this allows us to simplify the computation, do so and return
 | |
| /// the new operand, otherwise return null.
 | |
| static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
 | |
|                                         Instruction &CxtI) {
 | |
|   // If V has multiple uses, then we would have to do more analysis to determine
 | |
|   // if this is safe.  For example, the use could be in dynamically unreached
 | |
|   // code.
 | |
|   if (!V->hasOneUse()) return nullptr;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // ((1 << A) >>u B) --> (1 << (A-B))
 | |
|   // Because V cannot be zero, we know that B is less than A.
 | |
|   Value *A = nullptr, *B = nullptr, *One = nullptr;
 | |
|   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
 | |
|       match(One, m_One())) {
 | |
|     A = IC.Builder->CreateSub(A, B);
 | |
|     return IC.Builder->CreateShl(One, A);
 | |
|   }
 | |
| 
 | |
|   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
 | |
|   // inexact.  Similarly for <<.
 | |
|   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
 | |
|   if (I && I->isLogicalShift() &&
 | |
|       isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
 | |
|                              &IC.getAssumptionCache(), &CxtI,
 | |
|                              &IC.getDominatorTree())) {
 | |
|     // We know that this is an exact/nuw shift and that the input is a
 | |
|     // non-zero context as well.
 | |
|     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
 | |
|       I->setOperand(0, V2);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
 | |
|       I->setIsExact();
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
 | |
|       I->setHasNoUnsignedWrap();
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: Lots more we could do here:
 | |
|   //    If V is a phi node, we can call this on each of its operands.
 | |
|   //    "select cond, X, 0" can simplify to "X".
 | |
| 
 | |
|   return MadeChange ? V : nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// True if the multiply can not be expressed in an int this size.
 | |
| static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
 | |
|                               bool IsSigned) {
 | |
|   bool Overflow;
 | |
|   if (IsSigned)
 | |
|     Product = C1.smul_ov(C2, Overflow);
 | |
|   else
 | |
|     Product = C1.umul_ov(C2, Overflow);
 | |
| 
 | |
|   return Overflow;
 | |
| }
 | |
| 
 | |
| /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
 | |
| static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
 | |
|                        bool IsSigned) {
 | |
|   assert(C1.getBitWidth() == C2.getBitWidth() &&
 | |
|          "Inconsistent width of constants!");
 | |
| 
 | |
|   // Bail if we will divide by zero.
 | |
|   if (C2.isMinValue())
 | |
|     return false;
 | |
| 
 | |
|   // Bail if we would divide INT_MIN by -1.
 | |
|   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
 | |
|     return false;
 | |
| 
 | |
|   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
 | |
|   if (IsSigned)
 | |
|     APInt::sdivrem(C1, C2, Quotient, Remainder);
 | |
|   else
 | |
|     APInt::udivrem(C1, C2, Quotient, Remainder);
 | |
| 
 | |
|   return Remainder.isMinValue();
 | |
| }
 | |
| 
 | |
| /// \brief A helper routine of InstCombiner::visitMul().
 | |
| ///
 | |
| /// If C is a vector of known powers of 2, then this function returns
 | |
| /// a new vector obtained from C replacing each element with its logBase2.
 | |
| /// Return a null pointer otherwise.
 | |
| static Constant *getLogBase2Vector(ConstantDataVector *CV) {
 | |
|   const APInt *IVal;
 | |
|   SmallVector<Constant *, 4> Elts;
 | |
| 
 | |
|   for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
 | |
|     Constant *Elt = CV->getElementAsConstant(I);
 | |
|     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
 | |
|       return nullptr;
 | |
|     Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
 | |
|   }
 | |
| 
 | |
|   return ConstantVector::get(Elts);
 | |
| }
 | |
| 
 | |
| /// \brief Return true if we can prove that:
 | |
| ///    (mul LHS, RHS)  === (mul nsw LHS, RHS)
 | |
| bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
 | |
|                                             Instruction &CxtI) {
 | |
|   // Multiplying n * m significant bits yields a result of n + m significant
 | |
|   // bits. If the total number of significant bits does not exceed the
 | |
|   // result bit width (minus 1), there is no overflow.
 | |
|   // This means if we have enough leading sign bits in the operands
 | |
|   // we can guarantee that the result does not overflow.
 | |
|   // Ref: "Hacker's Delight" by Henry Warren
 | |
|   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   // Note that underestimating the number of sign bits gives a more
 | |
|   // conservative answer.
 | |
|   unsigned SignBits =
 | |
|       ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
 | |
| 
 | |
|   // First handle the easy case: if we have enough sign bits there's
 | |
|   // definitely no overflow.
 | |
|   if (SignBits > BitWidth + 1)
 | |
|     return true;
 | |
| 
 | |
|   // There are two ambiguous cases where there can be no overflow:
 | |
|   //   SignBits == BitWidth + 1    and
 | |
|   //   SignBits == BitWidth
 | |
|   // The second case is difficult to check, therefore we only handle the
 | |
|   // first case.
 | |
|   if (SignBits == BitWidth + 1) {
 | |
|     // It overflows only when both arguments are negative and the true
 | |
|     // product is exactly the minimum negative number.
 | |
|     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
 | |
|     // For simplicity we just check if at least one side is not negative.
 | |
|     bool LHSNonNegative, LHSNegative;
 | |
|     bool RHSNonNegative, RHSNegative;
 | |
|     ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
 | |
|     ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
 | |
|     if (LHSNonNegative || RHSNonNegative)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyMulInst(Op0, Op1, DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // X * -1 == 0 - X
 | |
|   if (match(Op1, m_AllOnes())) {
 | |
|     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
 | |
|     if (I.hasNoSignedWrap())
 | |
|       BO->setHasNoSignedWrap();
 | |
|     return BO;
 | |
|   }
 | |
| 
 | |
|   // Also allow combining multiply instructions on vectors.
 | |
|   {
 | |
|     Value *NewOp;
 | |
|     Constant *C1, *C2;
 | |
|     const APInt *IVal;
 | |
|     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
 | |
|                         m_Constant(C1))) &&
 | |
|         match(C1, m_APInt(IVal))) {
 | |
|       // ((X << C2)*C1) == (X * (C1 << C2))
 | |
|       Constant *Shl = ConstantExpr::getShl(C1, C2);
 | |
|       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
 | |
|       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
 | |
|       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
 | |
|         BO->setHasNoUnsignedWrap();
 | |
|       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
 | |
|           Shl->isNotMinSignedValue())
 | |
|         BO->setHasNoSignedWrap();
 | |
|       return BO;
 | |
|     }
 | |
| 
 | |
|     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
 | |
|       Constant *NewCst = nullptr;
 | |
|       if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
 | |
|         // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
 | |
|         NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
 | |
|       else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
 | |
|         // Replace X*(2^C) with X << C, where C is a vector of known
 | |
|         // constant powers of 2.
 | |
|         NewCst = getLogBase2Vector(CV);
 | |
| 
 | |
|       if (NewCst) {
 | |
|         unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
 | |
|         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
 | |
| 
 | |
|         if (I.hasNoUnsignedWrap())
 | |
|           Shl->setHasNoUnsignedWrap();
 | |
|         if (I.hasNoSignedWrap()) {
 | |
|           uint64_t V;
 | |
|           if (match(NewCst, m_ConstantInt(V)) && V != Width - 1)
 | |
|             Shl->setHasNoSignedWrap();
 | |
|         }
 | |
| 
 | |
|         return Shl;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
 | |
|     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
 | |
|     // The "* (2**n)" thus becomes a potential shifting opportunity.
 | |
|     {
 | |
|       const APInt &   Val = CI->getValue();
 | |
|       const APInt &PosVal = Val.abs();
 | |
|       if (Val.isNegative() && PosVal.isPowerOf2()) {
 | |
|         Value *X = nullptr, *Y = nullptr;
 | |
|         if (Op0->hasOneUse()) {
 | |
|           ConstantInt *C1;
 | |
|           Value *Sub = nullptr;
 | |
|           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
 | |
|             Sub = Builder->CreateSub(X, Y, "suba");
 | |
|           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
 | |
|             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
 | |
|           if (Sub)
 | |
|             return
 | |
|               BinaryOperator::CreateMul(Sub,
 | |
|                                         ConstantInt::get(Y->getType(), PosVal));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS.
 | |
|   if (isa<Constant>(Op1)) {
 | |
|     if (Instruction *FoldedMul = foldOpWithConstantIntoOperand(I))
 | |
|       return FoldedMul;
 | |
| 
 | |
|     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
 | |
|     {
 | |
|       Value *X;
 | |
|       Constant *C1;
 | |
|       if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
 | |
|         Value *Mul = Builder->CreateMul(C1, Op1);
 | |
|         // Only go forward with the transform if C1*CI simplifies to a tidier
 | |
|         // constant.
 | |
|         if (!match(Mul, m_Mul(m_Value(), m_Value())))
 | |
|           return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0)) {   // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(Op1)) {
 | |
|       BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
 | |
|       if (I.hasNoSignedWrap() &&
 | |
|           match(Op0, m_NSWSub(m_Value(), m_Value())) &&
 | |
|           match(Op1, m_NSWSub(m_Value(), m_Value())))
 | |
|         BO->setHasNoSignedWrap();
 | |
|       return BO;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (X / Y) *  Y = X - (X % Y)
 | |
|   // (X / Y) * -Y = (X % Y) - X
 | |
|   {
 | |
|     Value *Y = Op1;
 | |
|     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
 | |
|     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
 | |
|                  Div->getOpcode() != Instruction::SDiv)) {
 | |
|       Y = Op0;
 | |
|       Div = dyn_cast<BinaryOperator>(Op1);
 | |
|     }
 | |
|     Value *Neg = dyn_castNegVal(Y);
 | |
|     if (Div && Div->hasOneUse() &&
 | |
|         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
 | |
|         (Div->getOpcode() == Instruction::UDiv ||
 | |
|          Div->getOpcode() == Instruction::SDiv)) {
 | |
|       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
 | |
| 
 | |
|       // If the division is exact, X % Y is zero, so we end up with X or -X.
 | |
|       if (Div->isExact()) {
 | |
|         if (DivOp1 == Y)
 | |
|           return replaceInstUsesWith(I, X);
 | |
|         return BinaryOperator::CreateNeg(X);
 | |
|       }
 | |
| 
 | |
|       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
 | |
|                                                           : Instruction::SRem;
 | |
|       Value *Rem = Builder->CreateBinOp(RemOpc, X, DivOp1);
 | |
|       if (DivOp1 == Y)
 | |
|         return BinaryOperator::CreateSub(X, Rem);
 | |
|       return BinaryOperator::CreateSub(Rem, X);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// i1 mul -> i1 and.
 | |
|   if (I.getType()->getScalarType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateAnd(Op0, Op1);
 | |
| 
 | |
|   // X*(1 << Y) --> X << Y
 | |
|   // (1 << Y)*X --> X << Y
 | |
|   {
 | |
|     Value *Y;
 | |
|     BinaryOperator *BO = nullptr;
 | |
|     bool ShlNSW = false;
 | |
|     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
 | |
|       BO = BinaryOperator::CreateShl(Op1, Y);
 | |
|       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
 | |
|     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
 | |
|       BO = BinaryOperator::CreateShl(Op0, Y);
 | |
|       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
 | |
|     }
 | |
|     if (BO) {
 | |
|       if (I.hasNoUnsignedWrap())
 | |
|         BO->setHasNoUnsignedWrap();
 | |
|       if (I.hasNoSignedWrap() && ShlNSW)
 | |
|         BO->setHasNoSignedWrap();
 | |
|       return BO;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If one of the operands of the multiply is a cast from a boolean value, then
 | |
|   // we know the bool is either zero or one, so this is a 'masking' multiply.
 | |
|   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
 | |
|   if (!I.getType()->isVectorTy()) {
 | |
|     // -2 is "-1 << 1" so it is all bits set except the low one.
 | |
|     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
 | |
| 
 | |
|     Value *BoolCast = nullptr, *OtherOp = nullptr;
 | |
|     if (MaskedValueIsZero(Op0, Negative2, 0, &I)) {
 | |
|       BoolCast = Op0;
 | |
|       OtherOp = Op1;
 | |
|     } else if (MaskedValueIsZero(Op1, Negative2, 0, &I)) {
 | |
|       BoolCast = Op1;
 | |
|       OtherOp = Op0;
 | |
|     }
 | |
| 
 | |
|     if (BoolCast) {
 | |
|       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
 | |
|                                     BoolCast);
 | |
|       return BinaryOperator::CreateAnd(V, OtherOp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for (mul (sext x), y), see if we can merge this into an
 | |
|   // integer mul followed by a sext.
 | |
|   if (SExtInst *Op0Conv = dyn_cast<SExtInst>(Op0)) {
 | |
|     // (mul (sext x), cst) --> (sext (mul x, cst'))
 | |
|     if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|       if (Op0Conv->hasOneUse()) {
 | |
|         Constant *CI =
 | |
|             ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
 | |
|         if (ConstantExpr::getSExt(CI, I.getType()) == Op1C &&
 | |
|             WillNotOverflowSignedMul(Op0Conv->getOperand(0), CI, I)) {
 | |
|           // Insert the new, smaller mul.
 | |
|           Value *NewMul =
 | |
|               Builder->CreateNSWMul(Op0Conv->getOperand(0), CI, "mulconv");
 | |
|           return new SExtInst(NewMul, I.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (mul (sext x), (sext y)) --> (sext (mul int x, y))
 | |
|     if (SExtInst *Op1Conv = dyn_cast<SExtInst>(Op1)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of sexts), and if the
 | |
|       // integer mul will not overflow.
 | |
|       if (Op0Conv->getOperand(0)->getType() ==
 | |
|               Op1Conv->getOperand(0)->getType() &&
 | |
|           (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedMul(Op0Conv->getOperand(0),
 | |
|                                    Op1Conv->getOperand(0), I)) {
 | |
|         // Insert the new integer mul.
 | |
|         Value *NewMul = Builder->CreateNSWMul(
 | |
|             Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
 | |
|         return new SExtInst(NewMul, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for (mul (zext x), y), see if we can merge this into an
 | |
|   // integer mul followed by a zext.
 | |
|   if (auto *Op0Conv = dyn_cast<ZExtInst>(Op0)) {
 | |
|     // (mul (zext x), cst) --> (zext (mul x, cst'))
 | |
|     if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|       if (Op0Conv->hasOneUse()) {
 | |
|         Constant *CI =
 | |
|             ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
 | |
|         if (ConstantExpr::getZExt(CI, I.getType()) == Op1C &&
 | |
|             computeOverflowForUnsignedMul(Op0Conv->getOperand(0), CI, &I) ==
 | |
|                 OverflowResult::NeverOverflows) {
 | |
|           // Insert the new, smaller mul.
 | |
|           Value *NewMul =
 | |
|               Builder->CreateNUWMul(Op0Conv->getOperand(0), CI, "mulconv");
 | |
|           return new ZExtInst(NewMul, I.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (mul (zext x), (zext y)) --> (zext (mul int x, y))
 | |
|     if (auto *Op1Conv = dyn_cast<ZExtInst>(Op1)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of zexts), and if the
 | |
|       // integer mul will not overflow.
 | |
|       if (Op0Conv->getOperand(0)->getType() ==
 | |
|               Op1Conv->getOperand(0)->getType() &&
 | |
|           (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
 | |
|           computeOverflowForUnsignedMul(Op0Conv->getOperand(0),
 | |
|                                         Op1Conv->getOperand(0),
 | |
|                                         &I) == OverflowResult::NeverOverflows) {
 | |
|         // Insert the new integer mul.
 | |
|         Value *NewMul = Builder->CreateNUWMul(
 | |
|             Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
 | |
|         return new ZExtInst(NewMul, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
 | |
|     Changed = true;
 | |
|     I.setHasNoSignedWrap(true);
 | |
|   }
 | |
| 
 | |
|   if (!I.hasNoUnsignedWrap() &&
 | |
|       computeOverflowForUnsignedMul(Op0, Op1, &I) ==
 | |
|           OverflowResult::NeverOverflows) {
 | |
|     Changed = true;
 | |
|     I.setHasNoUnsignedWrap(true);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| /// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
 | |
| static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
 | |
|   if (!Op->hasOneUse())
 | |
|     return;
 | |
| 
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
 | |
|   if (!II)
 | |
|     return;
 | |
|   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
 | |
|     return;
 | |
|   Log2 = II;
 | |
| 
 | |
|   Value *OpLog2Of = II->getArgOperand(0);
 | |
|   if (!OpLog2Of->hasOneUse())
 | |
|     return;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
 | |
|   if (!I)
 | |
|     return;
 | |
|   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
 | |
|     return;
 | |
| 
 | |
|   if (match(I->getOperand(0), m_SpecificFP(0.5)))
 | |
|     Y = I->getOperand(1);
 | |
|   else if (match(I->getOperand(1), m_SpecificFP(0.5)))
 | |
|     Y = I->getOperand(0);
 | |
| }
 | |
| 
 | |
| static bool isFiniteNonZeroFp(Constant *C) {
 | |
|   if (C->getType()->isVectorTy()) {
 | |
|     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
 | |
|          ++I) {
 | |
|       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
 | |
|       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return isa<ConstantFP>(C) &&
 | |
|          cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
 | |
| }
 | |
| 
 | |
| static bool isNormalFp(Constant *C) {
 | |
|   if (C->getType()->isVectorTy()) {
 | |
|     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
 | |
|          ++I) {
 | |
|       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
 | |
|       if (!CFP || !CFP->getValueAPF().isNormal())
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
 | |
| }
 | |
| 
 | |
| /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
 | |
| /// true iff the given value is FMul or FDiv with one and only one operand
 | |
| /// being a normal constant (i.e. not Zero/NaN/Infinity).
 | |
| static bool isFMulOrFDivWithConstant(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || (I->getOpcode() != Instruction::FMul &&
 | |
|              I->getOpcode() != Instruction::FDiv))
 | |
|     return false;
 | |
| 
 | |
|   Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
 | |
|   Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
 | |
| 
 | |
|   if (C0 && C1)
 | |
|     return false;
 | |
| 
 | |
|   return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
 | |
| }
 | |
| 
 | |
| /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
 | |
| /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
 | |
| /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
 | |
| /// This function is to simplify "FMulOrDiv * C" and returns the
 | |
| /// resulting expression. Note that this function could return NULL in
 | |
| /// case the constants cannot be folded into a normal floating-point.
 | |
| ///
 | |
| Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
 | |
|                                    Instruction *InsertBefore) {
 | |
|   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
 | |
| 
 | |
|   Value *Opnd0 = FMulOrDiv->getOperand(0);
 | |
|   Value *Opnd1 = FMulOrDiv->getOperand(1);
 | |
| 
 | |
|   Constant *C0 = dyn_cast<Constant>(Opnd0);
 | |
|   Constant *C1 = dyn_cast<Constant>(Opnd1);
 | |
| 
 | |
|   BinaryOperator *R = nullptr;
 | |
| 
 | |
|   // (X * C0) * C => X * (C0*C)
 | |
|   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
 | |
|     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
 | |
|     if (isNormalFp(F))
 | |
|       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
 | |
|   } else {
 | |
|     if (C0) {
 | |
|       // (C0 / X) * C => (C0 * C) / X
 | |
|       if (FMulOrDiv->hasOneUse()) {
 | |
|         // It would otherwise introduce another div.
 | |
|         Constant *F = ConstantExpr::getFMul(C0, C);
 | |
|         if (isNormalFp(F))
 | |
|           R = BinaryOperator::CreateFDiv(F, Opnd1);
 | |
|       }
 | |
|     } else {
 | |
|       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
 | |
|       Constant *F = ConstantExpr::getFDiv(C, C1);
 | |
|       if (isNormalFp(F)) {
 | |
|         R = BinaryOperator::CreateFMul(Opnd0, F);
 | |
|       } else {
 | |
|         // (X / C1) * C => X / (C1/C)
 | |
|         Constant *F = ConstantExpr::getFDiv(C1, C);
 | |
|         if (isNormalFp(F))
 | |
|           R = BinaryOperator::CreateFDiv(Opnd0, F);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (R) {
 | |
|     R->setHasUnsafeAlgebra(true);
 | |
|     InsertNewInstWith(R, *InsertBefore);
 | |
|   }
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (isa<Constant>(Op0))
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   if (Value *V =
 | |
|           SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   bool AllowReassociate = I.hasUnsafeAlgebra();
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS.
 | |
|   if (isa<Constant>(Op1)) {
 | |
|     if (Instruction *FoldedMul = foldOpWithConstantIntoOperand(I))
 | |
|       return FoldedMul;
 | |
| 
 | |
|     // (fmul X, -1.0) --> (fsub -0.0, X)
 | |
|     if (match(Op1, m_SpecificFP(-1.0))) {
 | |
|       Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
 | |
|       Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
 | |
|       RI->copyFastMathFlags(&I);
 | |
|       return RI;
 | |
|     }
 | |
| 
 | |
|     Constant *C = cast<Constant>(Op1);
 | |
|     if (AllowReassociate && isFiniteNonZeroFp(C)) {
 | |
|       // Let MDC denote an expression in one of these forms:
 | |
|       // X * C, C/X, X/C, where C is a constant.
 | |
|       //
 | |
|       // Try to simplify "MDC * Constant"
 | |
|       if (isFMulOrFDivWithConstant(Op0))
 | |
|         if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
 | |
|           return replaceInstUsesWith(I, V);
 | |
| 
 | |
|       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
 | |
|       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
 | |
|       if (FAddSub &&
 | |
|           (FAddSub->getOpcode() == Instruction::FAdd ||
 | |
|            FAddSub->getOpcode() == Instruction::FSub)) {
 | |
|         Value *Opnd0 = FAddSub->getOperand(0);
 | |
|         Value *Opnd1 = FAddSub->getOperand(1);
 | |
|         Constant *C0 = dyn_cast<Constant>(Opnd0);
 | |
|         Constant *C1 = dyn_cast<Constant>(Opnd1);
 | |
|         bool Swap = false;
 | |
|         if (C0) {
 | |
|           std::swap(C0, C1);
 | |
|           std::swap(Opnd0, Opnd1);
 | |
|           Swap = true;
 | |
|         }
 | |
| 
 | |
|         if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
 | |
|           Value *M1 = ConstantExpr::getFMul(C1, C);
 | |
|           Value *M0 = isNormalFp(cast<Constant>(M1)) ?
 | |
|                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
 | |
|                       nullptr;
 | |
|           if (M0 && M1) {
 | |
|             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
 | |
|               std::swap(M0, M1);
 | |
| 
 | |
|             Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
 | |
|                                   ? BinaryOperator::CreateFAdd(M0, M1)
 | |
|                                   : BinaryOperator::CreateFSub(M0, M1);
 | |
|             RI->copyFastMathFlags(&I);
 | |
|             return RI;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op0 == Op1) {
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
 | |
|       // sqrt(X) * sqrt(X) -> X
 | |
|       if (AllowReassociate && II->getIntrinsicID() == Intrinsic::sqrt)
 | |
|         return replaceInstUsesWith(I, II->getOperand(0));
 | |
| 
 | |
|       // fabs(X) * fabs(X) -> X * X
 | |
|       if (II->getIntrinsicID() == Intrinsic::fabs) {
 | |
|         Instruction *FMulVal = BinaryOperator::CreateFMul(II->getOperand(0),
 | |
|                                                           II->getOperand(0),
 | |
|                                                           I.getName());
 | |
|         FMulVal->copyFastMathFlags(&I);
 | |
|         return FMulVal;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Under unsafe algebra do:
 | |
|   // X * log2(0.5*Y) = X*log2(Y) - X
 | |
|   if (AllowReassociate) {
 | |
|     Value *OpX = nullptr;
 | |
|     Value *OpY = nullptr;
 | |
|     IntrinsicInst *Log2;
 | |
|     detectLog2OfHalf(Op0, OpY, Log2);
 | |
|     if (OpY) {
 | |
|       OpX = Op1;
 | |
|     } else {
 | |
|       detectLog2OfHalf(Op1, OpY, Log2);
 | |
|       if (OpY) {
 | |
|         OpX = Op0;
 | |
|       }
 | |
|     }
 | |
|     // if pattern detected emit alternate sequence
 | |
|     if (OpX && OpY) {
 | |
|       BuilderTy::FastMathFlagGuard Guard(*Builder);
 | |
|       Builder->setFastMathFlags(Log2->getFastMathFlags());
 | |
|       Log2->setArgOperand(0, OpY);
 | |
|       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
 | |
|       Value *FSub = Builder->CreateFSub(FMulVal, OpX);
 | |
|       FSub->takeName(&I);
 | |
|       return replaceInstUsesWith(I, FSub);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle symmetric situation in a 2-iteration loop
 | |
|   Value *Opnd0 = Op0;
 | |
|   Value *Opnd1 = Op1;
 | |
|   for (int i = 0; i < 2; i++) {
 | |
|     bool IgnoreZeroSign = I.hasNoSignedZeros();
 | |
|     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
 | |
|       BuilderTy::FastMathFlagGuard Guard(*Builder);
 | |
|       Builder->setFastMathFlags(I.getFastMathFlags());
 | |
| 
 | |
|       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
 | |
|       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
 | |
| 
 | |
|       // -X * -Y => X*Y
 | |
|       if (N1) {
 | |
|         Value *FMul = Builder->CreateFMul(N0, N1);
 | |
|         FMul->takeName(&I);
 | |
|         return replaceInstUsesWith(I, FMul);
 | |
|       }
 | |
| 
 | |
|       if (Opnd0->hasOneUse()) {
 | |
|         // -X * Y => -(X*Y) (Promote negation as high as possible)
 | |
|         Value *T = Builder->CreateFMul(N0, Opnd1);
 | |
|         Value *Neg = Builder->CreateFNeg(T);
 | |
|         Neg->takeName(&I);
 | |
|         return replaceInstUsesWith(I, Neg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (X*Y) * X => (X*X) * Y where Y != X
 | |
|     //  The purpose is two-fold:
 | |
|     //   1) to form a power expression (of X).
 | |
|     //   2) potentially shorten the critical path: After transformation, the
 | |
|     //  latency of the instruction Y is amortized by the expression of X*X,
 | |
|     //  and therefore Y is in a "less critical" position compared to what it
 | |
|     //  was before the transformation.
 | |
|     //
 | |
|     if (AllowReassociate) {
 | |
|       Value *Opnd0_0, *Opnd0_1;
 | |
|       if (Opnd0->hasOneUse() &&
 | |
|           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
 | |
|         Value *Y = nullptr;
 | |
|         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
 | |
|           Y = Opnd0_1;
 | |
|         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
 | |
|           Y = Opnd0_0;
 | |
| 
 | |
|         if (Y) {
 | |
|           BuilderTy::FastMathFlagGuard Guard(*Builder);
 | |
|           Builder->setFastMathFlags(I.getFastMathFlags());
 | |
|           Value *T = Builder->CreateFMul(Opnd1, Opnd1);
 | |
|           Value *R = Builder->CreateFMul(T, Y);
 | |
|           R->takeName(&I);
 | |
|           return replaceInstUsesWith(I, R);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!isa<Constant>(Op1))
 | |
|       std::swap(Opnd0, Opnd1);
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to fold a divide or remainder of a select instruction.
 | |
| bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
 | |
|   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
 | |
| 
 | |
|   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
 | |
|   int NonNullOperand = -1;
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 2;
 | |
|   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 1;
 | |
| 
 | |
|   if (NonNullOperand == -1)
 | |
|     return false;
 | |
| 
 | |
|   Value *SelectCond = SI->getOperand(0);
 | |
| 
 | |
|   // Change the div/rem to use 'Y' instead of the select.
 | |
|   I.setOperand(1, SI->getOperand(NonNullOperand));
 | |
| 
 | |
|   // Okay, we know we replace the operand of the div/rem with 'Y' with no
 | |
|   // problem.  However, the select, or the condition of the select may have
 | |
|   // multiple uses.  Based on our knowledge that the operand must be non-zero,
 | |
|   // propagate the known value for the select into other uses of it, and
 | |
|   // propagate a known value of the condition into its other users.
 | |
| 
 | |
|   // If the select and condition only have a single use, don't bother with this,
 | |
|   // early exit.
 | |
|   if (SI->use_empty() && SelectCond->hasOneUse())
 | |
|     return true;
 | |
| 
 | |
|   // Scan the current block backward, looking for other uses of SI.
 | |
|   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
 | |
| 
 | |
|   while (BBI != BBFront) {
 | |
|     --BBI;
 | |
|     // If we found a call to a function, we can't assume it will return, so
 | |
|     // information from below it cannot be propagated above it.
 | |
|     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
 | |
|       break;
 | |
| 
 | |
|     // Replace uses of the select or its condition with the known values.
 | |
|     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (*I == SI) {
 | |
|         *I = SI->getOperand(NonNullOperand);
 | |
|         Worklist.Add(&*BBI);
 | |
|       } else if (*I == SelectCond) {
 | |
|         *I = Builder->getInt1(NonNullOperand == 1);
 | |
|         Worklist.Add(&*BBI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we past the instruction, quit looking for it.
 | |
|     if (&*BBI == SI)
 | |
|       SI = nullptr;
 | |
|     if (&*BBI == SelectCond)
 | |
|       SelectCond = nullptr;
 | |
| 
 | |
|     // If we ran out of things to eliminate, break out of the loop.
 | |
|     if (!SelectCond && !SI)
 | |
|       break;
 | |
| 
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function implements the transforms common to both integer division
 | |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer
 | |
| /// division instructions.
 | |
| /// @brief Common integer divide transforms
 | |
| Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // The RHS is known non-zero.
 | |
|   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
 | |
|     I.setOperand(1, V);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   // Handle cases involving: [su]div X, (select Cond, Y, Z)
 | |
|   // This does not apply for fdiv.
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
 | |
|     const APInt *C2;
 | |
|     if (match(Op1, m_APInt(C2))) {
 | |
|       Value *X;
 | |
|       const APInt *C1;
 | |
|       bool IsSigned = I.getOpcode() == Instruction::SDiv;
 | |
| 
 | |
|       // (X / C1) / C2  -> X / (C1*C2)
 | |
|       if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
 | |
|           (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
 | |
|         APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
 | |
|         if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
 | |
|           return BinaryOperator::Create(I.getOpcode(), X,
 | |
|                                         ConstantInt::get(I.getType(), Product));
 | |
|       }
 | |
| 
 | |
|       if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
 | |
|           (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
 | |
|         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
 | |
| 
 | |
|         // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
 | |
|         if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
 | |
|           BinaryOperator *BO = BinaryOperator::Create(
 | |
|               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
 | |
|           BO->setIsExact(I.isExact());
 | |
|           return BO;
 | |
|         }
 | |
| 
 | |
|         // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
 | |
|         if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
 | |
|           BinaryOperator *BO = BinaryOperator::Create(
 | |
|               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
 | |
|           BO->setHasNoUnsignedWrap(
 | |
|               !IsSigned &&
 | |
|               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
 | |
|           BO->setHasNoSignedWrap(
 | |
|               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
 | |
|           return BO;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
 | |
|            *C1 != C1->getBitWidth() - 1) ||
 | |
|           (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
 | |
|         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
 | |
|         APInt C1Shifted = APInt::getOneBitSet(
 | |
|             C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
 | |
| 
 | |
|         // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
 | |
|         if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
 | |
|           BinaryOperator *BO = BinaryOperator::Create(
 | |
|               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
 | |
|           BO->setIsExact(I.isExact());
 | |
|           return BO;
 | |
|         }
 | |
| 
 | |
|         // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
 | |
|         if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
 | |
|           BinaryOperator *BO = BinaryOperator::Create(
 | |
|               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
 | |
|           BO->setHasNoUnsignedWrap(
 | |
|               !IsSigned &&
 | |
|               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
 | |
|           BO->setHasNoSignedWrap(
 | |
|               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
 | |
|           return BO;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (*C2 != 0) // avoid X udiv 0
 | |
|         if (Instruction *FoldedDiv = foldOpWithConstantIntoOperand(I))
 | |
|           return FoldedDiv;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
 | |
|     if (One->isOne() && !I.getType()->isIntegerTy(1)) {
 | |
|       bool isSigned = I.getOpcode() == Instruction::SDiv;
 | |
|       if (isSigned) {
 | |
|         // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
 | |
|         // result is one, if Op1 is -1 then the result is minus one, otherwise
 | |
|         // it's zero.
 | |
|         Value *Inc = Builder->CreateAdd(Op1, One);
 | |
|         Value *Cmp = Builder->CreateICmpULT(
 | |
|                          Inc, ConstantInt::get(I.getType(), 3));
 | |
|         return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
 | |
|       } else {
 | |
|         // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
 | |
|         // result is one, otherwise it's zero.
 | |
|         return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we can fold away this div instruction.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
 | |
|   Value *X = nullptr, *Z = nullptr;
 | |
|   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
 | |
|     bool isSigned = I.getOpcode() == Instruction::SDiv;
 | |
|     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
 | |
|         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
 | |
|       return BinaryOperator::Create(I.getOpcode(), X, Op1);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// dyn_castZExtVal - Checks if V is a zext or constant that can
 | |
| /// be truncated to Ty without losing bits.
 | |
| static Value *dyn_castZExtVal(Value *V, Type *Ty) {
 | |
|   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
 | |
|     if (Z->getSrcTy() == Ty)
 | |
|       return Z->getOperand(0);
 | |
|   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
 | |
|     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
 | |
|       return ConstantExpr::getTrunc(C, Ty);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| const unsigned MaxDepth = 6;
 | |
| typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
 | |
|                                           const BinaryOperator &I,
 | |
|                                           InstCombiner &IC);
 | |
| 
 | |
| /// \brief Used to maintain state for visitUDivOperand().
 | |
| struct UDivFoldAction {
 | |
|   FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
 | |
|                                 ///< operand.  This can be zero if this action
 | |
|                                 ///< joins two actions together.
 | |
| 
 | |
|   Value *OperandToFold;         ///< Which operand to fold.
 | |
|   union {
 | |
|     Instruction *FoldResult;    ///< The instruction returned when FoldAction is
 | |
|                                 ///< invoked.
 | |
| 
 | |
|     size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
 | |
|                                 ///< joins two actions together.
 | |
|   };
 | |
| 
 | |
|   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
 | |
|       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
 | |
|   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
 | |
|       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
 | |
| };
 | |
| }
 | |
| 
 | |
| // X udiv 2^C -> X >> C
 | |
| static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
 | |
|                                     const BinaryOperator &I, InstCombiner &IC) {
 | |
|   const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
 | |
|   BinaryOperator *LShr = BinaryOperator::CreateLShr(
 | |
|       Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
 | |
|   if (I.isExact())
 | |
|     LShr->setIsExact();
 | |
|   return LShr;
 | |
| }
 | |
| 
 | |
| // X udiv C, where C >= signbit
 | |
| static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
 | |
|                                    const BinaryOperator &I, InstCombiner &IC) {
 | |
|   Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
 | |
| 
 | |
|   return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
 | |
|                             ConstantInt::get(I.getType(), 1));
 | |
| }
 | |
| 
 | |
| // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
 | |
| // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
 | |
| static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
 | |
|                                 InstCombiner &IC) {
 | |
|   Value *ShiftLeft;
 | |
|   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
 | |
|     ShiftLeft = Op1;
 | |
| 
 | |
|   const APInt *CI;
 | |
|   Value *N;
 | |
|   if (!match(ShiftLeft, m_Shl(m_APInt(CI), m_Value(N))))
 | |
|     llvm_unreachable("match should never fail here!");
 | |
|   if (*CI != 1)
 | |
|     N = IC.Builder->CreateAdd(N,
 | |
|                               ConstantInt::get(N->getType(), CI->logBase2()));
 | |
|   if (Op1 != ShiftLeft)
 | |
|     N = IC.Builder->CreateZExt(N, Op1->getType());
 | |
|   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
 | |
|   if (I.isExact())
 | |
|     LShr->setIsExact();
 | |
|   return LShr;
 | |
| }
 | |
| 
 | |
| // \brief Recursively visits the possible right hand operands of a udiv
 | |
| // instruction, seeing through select instructions, to determine if we can
 | |
| // replace the udiv with something simpler.  If we find that an operand is not
 | |
| // able to simplify the udiv, we abort the entire transformation.
 | |
| static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
 | |
|                                SmallVectorImpl<UDivFoldAction> &Actions,
 | |
|                                unsigned Depth = 0) {
 | |
|   // Check to see if this is an unsigned division with an exact power of 2,
 | |
|   // if so, convert to a right shift.
 | |
|   if (match(Op1, m_Power2())) {
 | |
|     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
 | |
|     return Actions.size();
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
 | |
|     // X udiv C, where C >= signbit
 | |
|     if (C->getValue().isNegative()) {
 | |
|       Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
 | |
|       return Actions.size();
 | |
|     }
 | |
| 
 | |
|   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
 | |
|   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
 | |
|       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
 | |
|     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
 | |
|     return Actions.size();
 | |
|   }
 | |
| 
 | |
|   // The remaining tests are all recursive, so bail out if we hit the limit.
 | |
|   if (Depth++ == MaxDepth)
 | |
|     return 0;
 | |
| 
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|     if (size_t LHSIdx =
 | |
|             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
 | |
|       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
 | |
|         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
 | |
|         return Actions.size();
 | |
|       }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyUDivInst(Op0, Op1, DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
 | |
|   {
 | |
|     Value *X;
 | |
|     const APInt *C1, *C2;
 | |
|     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
 | |
|         match(Op1, m_APInt(C2))) {
 | |
|       bool Overflow;
 | |
|       APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
 | |
|       if (!Overflow) {
 | |
|         bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
 | |
|         BinaryOperator *BO = BinaryOperator::CreateUDiv(
 | |
|             X, ConstantInt::get(X->getType(), C2ShlC1));
 | |
|         if (IsExact)
 | |
|           BO->setIsExact();
 | |
|         return BO;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (zext A) udiv (zext B) --> zext (A udiv B)
 | |
|   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
 | |
|     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
 | |
|       return new ZExtInst(
 | |
|           Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
 | |
|           I.getType());
 | |
| 
 | |
|   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
 | |
|   SmallVector<UDivFoldAction, 6> UDivActions;
 | |
|   if (visitUDivOperand(Op0, Op1, I, UDivActions))
 | |
|     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
 | |
|       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
 | |
|       Value *ActionOp1 = UDivActions[i].OperandToFold;
 | |
|       Instruction *Inst;
 | |
|       if (Action)
 | |
|         Inst = Action(Op0, ActionOp1, I, *this);
 | |
|       else {
 | |
|         // This action joins two actions together.  The RHS of this action is
 | |
|         // simply the last action we processed, we saved the LHS action index in
 | |
|         // the joining action.
 | |
|         size_t SelectRHSIdx = i - 1;
 | |
|         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
 | |
|         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
 | |
|         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
 | |
|         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
 | |
|                                   SelectLHS, SelectRHS);
 | |
|       }
 | |
| 
 | |
|       // If this is the last action to process, return it to the InstCombiner.
 | |
|       // Otherwise, we insert it before the UDiv and record it so that we may
 | |
|       // use it as part of a joining action (i.e., a SelectInst).
 | |
|       if (e - i != 1) {
 | |
|         Inst->insertBefore(&I);
 | |
|         UDivActions[i].FoldResult = Inst;
 | |
|       } else
 | |
|         return Inst;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifySDivInst(Op0, Op1, DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   const APInt *Op1C;
 | |
|   if (match(Op1, m_APInt(Op1C))) {
 | |
|     // sdiv X, -1 == -X
 | |
|     if (Op1C->isAllOnesValue())
 | |
|       return BinaryOperator::CreateNeg(Op0);
 | |
| 
 | |
|     // sdiv exact X, C  -->  ashr exact X, log2(C)
 | |
|     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
 | |
|       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
 | |
|       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
 | |
|     }
 | |
| 
 | |
|     // If the dividend is sign-extended and the constant divisor is small enough
 | |
|     // to fit in the source type, shrink the division to the narrower type:
 | |
|     // (sext X) sdiv C --> sext (X sdiv C)
 | |
|     Value *Op0Src;
 | |
|     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
 | |
|         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
 | |
| 
 | |
|       // In the general case, we need to make sure that the dividend is not the
 | |
|       // minimum signed value because dividing that by -1 is UB. But here, we
 | |
|       // know that the -1 divisor case is already handled above.
 | |
| 
 | |
|       Constant *NarrowDivisor =
 | |
|           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
 | |
|       Value *NarrowOp = Builder->CreateSDiv(Op0Src, NarrowDivisor);
 | |
|       return new SExtInst(NarrowOp, Op0->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
 | |
|     // X/INT_MIN -> X == INT_MIN
 | |
|     if (RHS->isMinSignedValue())
 | |
|       return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
 | |
| 
 | |
|     // -X/C  -->  X/-C  provided the negation doesn't overflow.
 | |
|     Value *X;
 | |
|     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
 | |
|       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
 | |
|       BO->setIsExact(I.isExact());
 | |
|       return BO;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a udiv.
 | |
|   if (I.getType()->isIntegerTy()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
 | |
|       if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
 | |
|         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
 | |
|         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|         BO->setIsExact(I.isExact());
 | |
|         return BO;
 | |
|       }
 | |
| 
 | |
|       if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, &AC, &I, &DT)) {
 | |
|         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
 | |
|         // Safe because the only negative value (1 << Y) can take on is
 | |
|         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
 | |
|         // the sign bit set.
 | |
|         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|         BO->setIsExact(I.isExact());
 | |
|         return BO;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
 | |
| /// FP value and:
 | |
| ///    1) 1/C is exact, or
 | |
| ///    2) reciprocal is allowed.
 | |
| /// If the conversion was successful, the simplified expression "X * 1/C" is
 | |
| /// returned; otherwise, NULL is returned.
 | |
| ///
 | |
| static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
 | |
|                                              bool AllowReciprocal) {
 | |
|   if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
 | |
|     return nullptr;
 | |
| 
 | |
|   const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
 | |
|   APFloat Reciprocal(FpVal.getSemantics());
 | |
|   bool Cvt = FpVal.getExactInverse(&Reciprocal);
 | |
| 
 | |
|   if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
 | |
|     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
 | |
|     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
 | |
|     Cvt = !Reciprocal.isDenormal();
 | |
|   }
 | |
| 
 | |
|   if (!Cvt)
 | |
|     return nullptr;
 | |
| 
 | |
|   ConstantFP *R;
 | |
|   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
 | |
|   return BinaryOperator::CreateFMul(Dividend, R);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
 | |
|                                   DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (isa<Constant>(Op0))
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|   bool AllowReassociate = I.hasUnsafeAlgebra();
 | |
|   bool AllowReciprocal = I.hasAllowReciprocal();
 | |
| 
 | |
|   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (AllowReassociate) {
 | |
|       Constant *C1 = nullptr;
 | |
|       Constant *C2 = Op1C;
 | |
|       Value *X;
 | |
|       Instruction *Res = nullptr;
 | |
| 
 | |
|       if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
 | |
|         // (X*C1)/C2 => X * (C1/C2)
 | |
|         //
 | |
|         Constant *C = ConstantExpr::getFDiv(C1, C2);
 | |
|         if (isNormalFp(C))
 | |
|           Res = BinaryOperator::CreateFMul(X, C);
 | |
|       } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
 | |
|         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
 | |
|         //
 | |
|         Constant *C = ConstantExpr::getFMul(C1, C2);
 | |
|         if (isNormalFp(C)) {
 | |
|           Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
 | |
|           if (!Res)
 | |
|             Res = BinaryOperator::CreateFDiv(X, C);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Res) {
 | |
|         Res->setFastMathFlags(I.getFastMathFlags());
 | |
|         return Res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // X / C => X * 1/C
 | |
|     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
 | |
|       T->copyFastMathFlags(&I);
 | |
|       return T;
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (AllowReassociate && isa<Constant>(Op0)) {
 | |
|     Constant *C1 = cast<Constant>(Op0), *C2;
 | |
|     Constant *Fold = nullptr;
 | |
|     Value *X;
 | |
|     bool CreateDiv = true;
 | |
| 
 | |
|     // C1 / (X*C2) => (C1/C2) / X
 | |
|     if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
 | |
|       Fold = ConstantExpr::getFDiv(C1, C2);
 | |
|     else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
 | |
|       // C1 / (X/C2) => (C1*C2) / X
 | |
|       Fold = ConstantExpr::getFMul(C1, C2);
 | |
|     } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
 | |
|       // C1 / (C2/X) => (C1/C2) * X
 | |
|       Fold = ConstantExpr::getFDiv(C1, C2);
 | |
|       CreateDiv = false;
 | |
|     }
 | |
| 
 | |
|     if (Fold && isNormalFp(Fold)) {
 | |
|       Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
 | |
|                                  : BinaryOperator::CreateFMul(X, Fold);
 | |
|       R->setFastMathFlags(I.getFastMathFlags());
 | |
|       return R;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (AllowReassociate) {
 | |
|     Value *X, *Y;
 | |
|     Value *NewInst = nullptr;
 | |
|     Instruction *SimpR = nullptr;
 | |
| 
 | |
|     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
 | |
|       // (X/Y) / Z => X / (Y*Z)
 | |
|       //
 | |
|       if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
 | |
|         NewInst = Builder->CreateFMul(Y, Op1);
 | |
|         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
 | |
|           FastMathFlags Flags = I.getFastMathFlags();
 | |
|           Flags &= cast<Instruction>(Op0)->getFastMathFlags();
 | |
|           RI->setFastMathFlags(Flags);
 | |
|         }
 | |
|         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
 | |
|       }
 | |
|     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
 | |
|       // Z / (X/Y) => Z*Y / X
 | |
|       //
 | |
|       if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
 | |
|         NewInst = Builder->CreateFMul(Op0, Y);
 | |
|         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
 | |
|           FastMathFlags Flags = I.getFastMathFlags();
 | |
|           Flags &= cast<Instruction>(Op1)->getFastMathFlags();
 | |
|           RI->setFastMathFlags(Flags);
 | |
|         }
 | |
|         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NewInst) {
 | |
|       if (Instruction *T = dyn_cast<Instruction>(NewInst))
 | |
|         T->setDebugLoc(I.getDebugLoc());
 | |
|       SimpR->setFastMathFlags(I.getFastMathFlags());
 | |
|       return SimpR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *LHS;
 | |
|   Value *RHS;
 | |
| 
 | |
|   // -x / -y -> x / y
 | |
|   if (match(Op0, m_FNeg(m_Value(LHS))) && match(Op1, m_FNeg(m_Value(RHS)))) {
 | |
|     I.setOperand(0, LHS);
 | |
|     I.setOperand(1, RHS);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// This function implements the transforms common to both integer remainder
 | |
| /// instructions (urem and srem). It is called by the visitors to those integer
 | |
| /// remainder instructions.
 | |
| /// @brief Common integer remainder transforms
 | |
| Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // The RHS is known non-zero.
 | |
|   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
 | |
|     I.setOperand(1, V);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (isa<Constant>(Op1)) {
 | |
|     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|           return R;
 | |
|       } else if (isa<PHINode>(Op0I)) {
 | |
|         using namespace llvm::PatternMatch;
 | |
|         const APInt *Op1Int;
 | |
|         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
 | |
|             (I.getOpcode() == Instruction::URem ||
 | |
|              !Op1Int->isMinSignedValue())) {
 | |
|           // FoldOpIntoPhi will speculate instructions to the end of the PHI's
 | |
|           // predecessor blocks, so do this only if we know the srem or urem
 | |
|           // will not fault.
 | |
|           if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|             return NV;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // See if we can fold away this rem instruction.
 | |
|       if (SimplifyDemandedInstructionBits(I))
 | |
|         return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitURem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyURemInst(Op0, Op1, DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Instruction *common = commonIRemTransforms(I))
 | |
|     return common;
 | |
| 
 | |
|   // (zext A) urem (zext B) --> zext (A urem B)
 | |
|   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
 | |
|     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
 | |
|       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
 | |
|                           I.getType());
 | |
| 
 | |
|   // X urem Y -> X and Y-1, where Y is a power of 2,
 | |
|   if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, &AC, &I, &DT)) {
 | |
|     Constant *N1 = Constant::getAllOnesValue(I.getType());
 | |
|     Value *Add = Builder->CreateAdd(Op1, N1);
 | |
|     return BinaryOperator::CreateAnd(Op0, Add);
 | |
|   }
 | |
| 
 | |
|   // 1 urem X -> zext(X != 1)
 | |
|   if (match(Op0, m_One())) {
 | |
|     Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
 | |
|     Value *Ext = Builder->CreateZExt(Cmp, I.getType());
 | |
|     return replaceInstUsesWith(I, Ext);
 | |
|   }
 | |
| 
 | |
|   // X urem C -> X < C ? X : X - C, where C >= signbit.
 | |
|   const APInt *DivisorC;
 | |
|   if (match(Op1, m_APInt(DivisorC)) && DivisorC->isNegative()) {
 | |
|     Value *Cmp = Builder->CreateICmpULT(Op0, Op1);
 | |
|     Value *Sub = Builder->CreateSub(Op0, Op1);
 | |
|     return SelectInst::Create(Cmp, Op0, Sub);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifySRemInst(Op0, Op1, DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer rem common cases
 | |
|   if (Instruction *Common = commonIRemTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   {
 | |
|     const APInt *Y;
 | |
|     // X % -Y -> X % Y
 | |
|     if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
 | |
|       Worklist.AddValue(I.getOperand(1));
 | |
|       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a urem.
 | |
|   if (I.getType()->isIntegerTy()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
 | |
|         MaskedValueIsZero(Op0, Mask, 0, &I)) {
 | |
|       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
 | |
|       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it's a constant vector, flip any negative values positive.
 | |
|   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
 | |
|     Constant *C = cast<Constant>(Op1);
 | |
|     unsigned VWidth = C->getType()->getVectorNumElements();
 | |
| 
 | |
|     bool hasNegative = false;
 | |
|     bool hasMissing = false;
 | |
|     for (unsigned i = 0; i != VWidth; ++i) {
 | |
|       Constant *Elt = C->getAggregateElement(i);
 | |
|       if (!Elt) {
 | |
|         hasMissing = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
 | |
|         if (RHS->isNegative())
 | |
|           hasNegative = true;
 | |
|     }
 | |
| 
 | |
|     if (hasNegative && !hasMissing) {
 | |
|       SmallVector<Constant *, 16> Elts(VWidth);
 | |
|       for (unsigned i = 0; i != VWidth; ++i) {
 | |
|         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
 | |
|         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
 | |
|           if (RHS->isNegative())
 | |
|             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Constant *NewRHSV = ConstantVector::get(Elts);
 | |
|       if (NewRHSV != C) {  // Don't loop on -MININT
 | |
|         Worklist.AddValue(I.getOperand(1));
 | |
|         I.setOperand(1, NewRHSV);
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
 | |
|                                   DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 |