768 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			768 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineShifts.cpp ----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitShl, visitLShr, and visitAShr functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   assert(Op0->getType() == Op1->getType());
 | |
| 
 | |
|   // See if we can fold away this shift.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   // Try to fold constant and into select arguments.
 | |
|   if (isa<Constant>(Op0))
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|   if (Constant *CUI = dyn_cast<Constant>(Op1))
 | |
|     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
 | |
|       return Res;
 | |
| 
 | |
|   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
 | |
|   // iff A and C2 are both positive.
 | |
|   Value *A;
 | |
|   Constant *C;
 | |
|   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
 | |
|     if (isKnownNonNegative(A, DL) && isKnownNonNegative(C, DL))
 | |
|       return BinaryOperator::Create(
 | |
|           I.getOpcode(), Builder->CreateBinOp(I.getOpcode(), Op0, C), A);
 | |
| 
 | |
|   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
 | |
|   // Because shifts by negative values (which could occur if A were negative)
 | |
|   // are undefined.
 | |
|   const APInt *B;
 | |
|   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
 | |
|     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
 | |
|     // demand the sign bit (and many others) here??
 | |
|     Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
 | |
|                                     Op1->getName());
 | |
|     I.setOperand(1, Rem);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true if we can simplify two logical (either left or right) shifts
 | |
| /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
 | |
| static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
 | |
|                                     Instruction *InnerShift, InstCombiner &IC,
 | |
|                                     Instruction *CxtI) {
 | |
|   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
 | |
| 
 | |
|   // We need constant scalar or constant splat shifts.
 | |
|   const APInt *InnerShiftConst;
 | |
|   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
 | |
|     return false;
 | |
| 
 | |
|   // Two logical shifts in the same direction:
 | |
|   // shl (shl X, C1), C2 -->  shl X, C1 + C2
 | |
|   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
 | |
|   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
 | |
|   if (IsInnerShl == IsOuterShl)
 | |
|     return true;
 | |
| 
 | |
|   // Equal shift amounts in opposite directions become bitwise 'and':
 | |
|   // lshr (shl X, C), C --> and X, C'
 | |
|   // shl (lshr X, C), C --> and X, C'
 | |
|   unsigned InnerShAmt = InnerShiftConst->getZExtValue();
 | |
|   if (InnerShAmt == OuterShAmt)
 | |
|     return true;
 | |
| 
 | |
|   // If the 2nd shift is bigger than the 1st, we can fold:
 | |
|   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
 | |
|   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
 | |
|   // but it isn't profitable unless we know the and'd out bits are already zero.
 | |
|   // Also, check that the inner shift is valid (less than the type width) or
 | |
|   // we'll crash trying to produce the bit mask for the 'and'.
 | |
|   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
 | |
|   if (InnerShAmt > OuterShAmt && InnerShAmt < TypeWidth) {
 | |
|     unsigned MaskShift =
 | |
|         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
 | |
|     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
 | |
|     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if we can compute the specified value, but shifted logically to the left
 | |
| /// or right by some number of bits. This should return true if the expression
 | |
| /// can be computed for the same cost as the current expression tree. This is
 | |
| /// used to eliminate extraneous shifting from things like:
 | |
| ///      %C = shl i128 %A, 64
 | |
| ///      %D = shl i128 %B, 96
 | |
| ///      %E = or i128 %C, %D
 | |
| ///      %F = lshr i128 %E, 64
 | |
| /// where the client will ask if E can be computed shifted right by 64-bits. If
 | |
| /// this succeeds, getShiftedValue() will be called to produce the value.
 | |
| static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
 | |
|                                InstCombiner &IC, Instruction *CxtI) {
 | |
|   // We can always evaluate constants shifted.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // If this is the opposite shift, we can directly reuse the input of the shift
 | |
|   // if the needed bits are already zero in the input.  This allows us to reuse
 | |
|   // the value which means that we don't care if the shift has multiple uses.
 | |
|   //  TODO:  Handle opposite shift by exact value.
 | |
|   ConstantInt *CI = nullptr;
 | |
|   if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
 | |
|       (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
 | |
|     if (CI->getZExtValue() == NumBits) {
 | |
|       // TODO: Check that the input bits are already zero with MaskedValueIsZero
 | |
| #if 0
 | |
|       // If this is a truncate of a logical shr, we can truncate it to a smaller
 | |
|       // lshr iff we know that the bits we would otherwise be shifting in are
 | |
|       // already zeros.
 | |
|       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (MaskedValueIsZero(I->getOperand(0),
 | |
|             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
 | |
|           CI->getLimitedValue(BitWidth) < BitWidth) {
 | |
|         return CanEvaluateTruncated(I->getOperand(0), Ty);
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can't mutate something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default: return false;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
 | |
|     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
 | |
|            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
 | |
| 
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
 | |
| 
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     Value *TrueVal = SI->getTrueValue();
 | |
|     Value *FalseVal = SI->getFalseValue();
 | |
|     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
 | |
|            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (Value *IncValue : PN->incoming_values())
 | |
|       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Fold OuterShift (InnerShift X, C1), C2.
 | |
| /// See canEvaluateShiftedShift() for the constraints on these instructions.
 | |
| static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
 | |
|                                bool IsOuterShl,
 | |
|                                InstCombiner::BuilderTy &Builder) {
 | |
|   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
 | |
|   Type *ShType = InnerShift->getType();
 | |
|   unsigned TypeWidth = ShType->getScalarSizeInBits();
 | |
| 
 | |
|   // We only accept shifts-by-a-constant in canEvaluateShifted().
 | |
|   const APInt *C1;
 | |
|   match(InnerShift->getOperand(1), m_APInt(C1));
 | |
|   unsigned InnerShAmt = C1->getZExtValue();
 | |
| 
 | |
|   // Change the shift amount and clear the appropriate IR flags.
 | |
|   auto NewInnerShift = [&](unsigned ShAmt) {
 | |
|     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
 | |
|     if (IsInnerShl) {
 | |
|       InnerShift->setHasNoUnsignedWrap(false);
 | |
|       InnerShift->setHasNoSignedWrap(false);
 | |
|     } else {
 | |
|       InnerShift->setIsExact(false);
 | |
|     }
 | |
|     return InnerShift;
 | |
|   };
 | |
| 
 | |
|   // Two logical shifts in the same direction:
 | |
|   // shl (shl X, C1), C2 -->  shl X, C1 + C2
 | |
|   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
 | |
|   if (IsInnerShl == IsOuterShl) {
 | |
|     // If this is an oversized composite shift, then unsigned shifts get 0.
 | |
|     if (InnerShAmt + OuterShAmt >= TypeWidth)
 | |
|       return Constant::getNullValue(ShType);
 | |
| 
 | |
|     return NewInnerShift(InnerShAmt + OuterShAmt);
 | |
|   }
 | |
| 
 | |
|   // Equal shift amounts in opposite directions become bitwise 'and':
 | |
|   // lshr (shl X, C), C --> and X, C'
 | |
|   // shl (lshr X, C), C --> and X, C'
 | |
|   if (InnerShAmt == OuterShAmt) {
 | |
|     APInt Mask = IsInnerShl
 | |
|                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
 | |
|                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
 | |
|     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
 | |
|                                    ConstantInt::get(ShType, Mask));
 | |
|     if (auto *AndI = dyn_cast<Instruction>(And)) {
 | |
|       AndI->moveBefore(InnerShift);
 | |
|       AndI->takeName(InnerShift);
 | |
|     }
 | |
|     return And;
 | |
|   }
 | |
| 
 | |
|   assert(InnerShAmt > OuterShAmt &&
 | |
|          "Unexpected opposite direction logical shift pair");
 | |
| 
 | |
|   // In general, we would need an 'and' for this transform, but
 | |
|   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
 | |
|   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
 | |
|   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
 | |
|   return NewInnerShift(InnerShAmt - OuterShAmt);
 | |
| }
 | |
| 
 | |
| /// When canEvaluateShifted() returns true for an expression, this function
 | |
| /// inserts the new computation that produces the shifted value.
 | |
| static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
 | |
|                               InstCombiner &IC, const DataLayout &DL) {
 | |
|   // We can always evaluate constants shifted.
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isLeftShift)
 | |
|       V = IC.Builder->CreateShl(C, NumBits);
 | |
|     else
 | |
|       V = IC.Builder->CreateLShr(C, NumBits);
 | |
|     // If we got a constantexpr back, try to simplify it with TD info.
 | |
|     if (auto *C = dyn_cast<Constant>(V))
 | |
|       if (auto *FoldedC =
 | |
|               ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
 | |
|         V = FoldedC;
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   IC.Worklist.Add(I);
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
 | |
|     I->setOperand(
 | |
|         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
 | |
|     I->setOperand(
 | |
|         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
 | |
|     return I;
 | |
| 
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
 | |
|                             *(IC.Builder));
 | |
| 
 | |
|   case Instruction::Select:
 | |
|     I->setOperand(
 | |
|         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
 | |
|     I->setOperand(
 | |
|         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
 | |
|     return I;
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
 | |
|                                               isLeftShift, IC, DL));
 | |
|     return PN;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
 | |
|                                                BinaryOperator &I) {
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
| 
 | |
|   const APInt *Op1C;
 | |
|   if (!match(Op1, m_APInt(Op1C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // See if we can propagate this shift into the input, this covers the trivial
 | |
|   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
 | |
|   if (I.getOpcode() != Instruction::AShr &&
 | |
|       canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
 | |
|     DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
 | |
|               " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
 | |
| 
 | |
|     return replaceInstUsesWith(
 | |
|         I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
 | |
|   }
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   assert(!Op1C->uge(TypeBits) &&
 | |
|          "Shift over the type width should have been removed already");
 | |
| 
 | |
|   if (Instruction *FoldedShift = foldOpWithConstantIntoOperand(I))
 | |
|     return FoldedShift;
 | |
| 
 | |
|   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
 | |
|   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
 | |
|     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
 | |
|     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
 | |
|     // place.  Don't try to do this transformation in this case.  Also, we
 | |
|     // require that the input operand is a shift-by-constant so that we have
 | |
|     // confidence that the shifts will get folded together.  We could do this
 | |
|     // xform in more cases, but it is unlikely to be profitable.
 | |
|     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
 | |
|         isa<ConstantInt>(TrOp->getOperand(1))) {
 | |
|       // Okay, we'll do this xform.  Make the shift of shift.
 | |
|       Constant *ShAmt =
 | |
|           ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
 | |
|       // (shift2 (shift1 & 0x00FF), c2)
 | |
|       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
 | |
| 
 | |
|       // For logical shifts, the truncation has the effect of making the high
 | |
|       // part of the register be zeros.  Emulate this by inserting an AND to
 | |
|       // clear the top bits as needed.  This 'and' will usually be zapped by
 | |
|       // other xforms later if dead.
 | |
|       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
 | |
|       unsigned DstSize = TI->getType()->getScalarSizeInBits();
 | |
|       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
 | |
| 
 | |
|       // The mask we constructed says what the trunc would do if occurring
 | |
|       // between the shifts.  We want to know the effect *after* the second
 | |
|       // shift.  We know that it is a logical shift by a constant, so adjust the
 | |
|       // mask as appropriate.
 | |
|       if (I.getOpcode() == Instruction::Shl)
 | |
|         MaskV <<= Op1C->getZExtValue();
 | |
|       else {
 | |
|         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
 | |
|         MaskV = MaskV.lshr(Op1C->getZExtValue());
 | |
|       }
 | |
| 
 | |
|       // shift1 & 0x00FF
 | |
|       Value *And = Builder->CreateAnd(NSh,
 | |
|                                       ConstantInt::get(I.getContext(), MaskV),
 | |
|                                       TI->getName());
 | |
| 
 | |
|       // Return the value truncated to the interesting size.
 | |
|       return new TruncInst(And, I.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op0->hasOneUse()) {
 | |
|     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|       Value *V1, *V2;
 | |
|       ConstantInt *CC;
 | |
|       switch (Op0BO->getOpcode()) {
 | |
|       default: break;
 | |
|       case Instruction::Add:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor: {
 | |
|         // These operators commute.
 | |
|         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
 | |
|             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
 | |
|                   m_Specific(Op1)))) {
 | |
|           Value *YS =         // (Y << C)
 | |
|             Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
 | |
|           // (X + (Y << C))
 | |
|           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
 | |
|                                           Op0BO->getOperand(1)->getName());
 | |
|           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
 | |
| 
 | |
|           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
 | |
|           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
 | |
|           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
 | |
|             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
 | |
|           return BinaryOperator::CreateAnd(X, Mask);
 | |
|         }
 | |
| 
 | |
|         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
 | |
|         Value *Op0BOOp1 = Op0BO->getOperand(1);
 | |
|         if (isLeftShift && Op0BOOp1->hasOneUse() &&
 | |
|             match(Op0BOOp1,
 | |
|                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
 | |
|                         m_ConstantInt(CC)))) {
 | |
|           Value *YS =   // (Y << C)
 | |
|             Builder->CreateShl(Op0BO->getOperand(0), Op1,
 | |
|                                          Op0BO->getName());
 | |
|           // X & (CC << C)
 | |
|           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
 | |
|                                          V1->getName()+".mask");
 | |
|           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
 | |
|         }
 | |
|         LLVM_FALLTHROUGH;
 | |
|       }
 | |
| 
 | |
|       case Instruction::Sub: {
 | |
|         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | |
|             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
 | |
|                   m_Specific(Op1)))) {
 | |
|           Value *YS =  // (Y << C)
 | |
|             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
 | |
|           // (X + (Y << C))
 | |
|           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
 | |
|                                           Op0BO->getOperand(0)->getName());
 | |
|           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
 | |
| 
 | |
|           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
 | |
|           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
 | |
|           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
 | |
|             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
 | |
|           return BinaryOperator::CreateAnd(X, Mask);
 | |
|         }
 | |
| 
 | |
|         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
 | |
|         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | |
|             match(Op0BO->getOperand(0),
 | |
|                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
 | |
|                         m_ConstantInt(CC))) && V2 == Op1) {
 | |
|           Value *YS = // (Y << C)
 | |
|             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
 | |
|           // X & (CC << C)
 | |
|           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
 | |
|                                          V1->getName()+".mask");
 | |
| 
 | |
|           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
| 
 | |
| 
 | |
|       // If the operand is a bitwise operator with a constant RHS, and the
 | |
|       // shift is the only use, we can pull it out of the shift.
 | |
|       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | |
|         bool isValid = true;     // Valid only for And, Or, Xor
 | |
|         bool highBitSet = false; // Transform if high bit of constant set?
 | |
| 
 | |
|         switch (Op0BO->getOpcode()) {
 | |
|         default: isValid = false; break;   // Do not perform transform!
 | |
|         case Instruction::Add:
 | |
|           isValid = isLeftShift;
 | |
|           break;
 | |
|         case Instruction::Or:
 | |
|         case Instruction::Xor:
 | |
|           highBitSet = false;
 | |
|           break;
 | |
|         case Instruction::And:
 | |
|           highBitSet = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // If this is a signed shift right, and the high bit is modified
 | |
|         // by the logical operation, do not perform the transformation.
 | |
|         // The highBitSet boolean indicates the value of the high bit of
 | |
|         // the constant which would cause it to be modified for this
 | |
|         // operation.
 | |
|         //
 | |
|         if (isValid && I.getOpcode() == Instruction::AShr)
 | |
|           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
 | |
| 
 | |
|         if (isValid) {
 | |
|           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
 | |
| 
 | |
|           Value *NewShift =
 | |
|             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
 | |
|           NewShift->takeName(Op0BO);
 | |
| 
 | |
|           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
 | |
|                                         NewRHS);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitShl(BinaryOperator &I) {
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   if (Value *V = SimplifyShlInst(Op0, Op1, I.hasNoSignedWrap(),
 | |
|                                  I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Instruction *V = commonShiftTransforms(I))
 | |
|     return V;
 | |
| 
 | |
|   const APInt *ShAmtAPInt;
 | |
|   if (match(Op1, m_APInt(ShAmtAPInt))) {
 | |
|     unsigned ShAmt = ShAmtAPInt->getZExtValue();
 | |
|     unsigned BitWidth = I.getType()->getScalarSizeInBits();
 | |
|     Type *Ty = I.getType();
 | |
| 
 | |
|     // shl (zext X), ShAmt --> zext (shl X, ShAmt)
 | |
|     // This is only valid if X would have zeros shifted out.
 | |
|     Value *X;
 | |
|     if (match(Op0, m_ZExt(m_Value(X)))) {
 | |
|       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
 | |
|       if (ShAmt < SrcWidth &&
 | |
|           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
 | |
|         return new ZExtInst(Builder->CreateShl(X, ShAmt), Ty);
 | |
|     }
 | |
| 
 | |
|     // (X >>u C) << C --> X & (-1 << C)
 | |
|     if (match(Op0, m_LShr(m_Value(X), m_Specific(Op1)))) {
 | |
|       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
 | |
|       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
 | |
|     }
 | |
| 
 | |
|     // Be careful about hiding shl instructions behind bit masks. They are used
 | |
|     // to represent multiplies by a constant, and it is important that simple
 | |
|     // arithmetic expressions are still recognizable by scalar evolution.
 | |
|     // The inexact versions are deferred to DAGCombine, so we don't hide shl
 | |
|     // behind a bit mask.
 | |
|     const APInt *ShOp1;
 | |
|     if (match(Op0, m_CombineOr(m_Exact(m_LShr(m_Value(X), m_APInt(ShOp1))),
 | |
|                                m_Exact(m_AShr(m_Value(X), m_APInt(ShOp1)))))) {
 | |
|       unsigned ShrAmt = ShOp1->getZExtValue();
 | |
|       if (ShrAmt < ShAmt) {
 | |
|         // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
 | |
|         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
 | |
|         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
 | |
|         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | |
|         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
 | |
|         return NewShl;
 | |
|       }
 | |
|       if (ShrAmt > ShAmt) {
 | |
|         // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
 | |
|         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
 | |
|         auto *NewShr = BinaryOperator::Create(
 | |
|             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
 | |
|         NewShr->setIsExact(true);
 | |
|         return NewShr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
 | |
|       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
 | |
|       // Oversized shifts are simplified to zero in InstSimplify.
 | |
|       if (AmtSum < BitWidth)
 | |
|         // (X << C1) << C2 --> X << (C1 + C2)
 | |
|         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
 | |
|     }
 | |
| 
 | |
|     // If the shifted-out value is known-zero, then this is a NUW shift.
 | |
|     if (!I.hasNoUnsignedWrap() &&
 | |
|         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
 | |
|       I.setHasNoUnsignedWrap();
 | |
|       return &I;
 | |
|     }
 | |
| 
 | |
|     // If the shifted-out value is all signbits, then this is a NSW shift.
 | |
|     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
 | |
|       I.setHasNoSignedWrap();
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Constant *C1;
 | |
|   if (match(Op1, m_Constant(C1))) {
 | |
|     Constant *C2;
 | |
|     Value *X;
 | |
|     // (C2 << X) << C1 --> (C2 << C1) << X
 | |
|     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
 | |
|       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
 | |
| 
 | |
|     // (X * C2) << C1 --> X * (C2 << C1)
 | |
|     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
 | |
|       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   if (Value *V = SimplifyLShrInst(Op0, Op1, I.isExact(), DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Instruction *R = commonShiftTransforms(I))
 | |
|     return R;
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
|   const APInt *ShAmtAPInt;
 | |
|   if (match(Op1, m_APInt(ShAmtAPInt))) {
 | |
|     unsigned ShAmt = ShAmtAPInt->getZExtValue();
 | |
|     unsigned BitWidth = Ty->getScalarSizeInBits();
 | |
|     auto *II = dyn_cast<IntrinsicInst>(Op0);
 | |
|     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
 | |
|         (II->getIntrinsicID() == Intrinsic::ctlz ||
 | |
|          II->getIntrinsicID() == Intrinsic::cttz ||
 | |
|          II->getIntrinsicID() == Intrinsic::ctpop)) {
 | |
|       // ctlz.i32(x)>>5  --> zext(x == 0)
 | |
|       // cttz.i32(x)>>5  --> zext(x == 0)
 | |
|       // ctpop.i32(x)>>5 --> zext(x == -1)
 | |
|       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
 | |
|       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
 | |
|       Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
 | |
|       return new ZExtInst(Cmp, Ty);
 | |
|     }
 | |
| 
 | |
|     Value *X;
 | |
|     const APInt *ShOp1;
 | |
|     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
 | |
|       unsigned ShlAmt = ShOp1->getZExtValue();
 | |
|       if (ShlAmt < ShAmt) {
 | |
|         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
 | |
|         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
 | |
|           // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
 | |
|           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
 | |
|           NewLShr->setIsExact(I.isExact());
 | |
|           return NewLShr;
 | |
|         }
 | |
|         // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
 | |
|         Value *NewLShr = Builder->CreateLShr(X, ShiftDiff, "", I.isExact());
 | |
|         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
 | |
|         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
 | |
|       }
 | |
|       if (ShlAmt > ShAmt) {
 | |
|         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
 | |
|         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
 | |
|           // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
 | |
|           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
 | |
|           NewShl->setHasNoUnsignedWrap(true);
 | |
|           return NewShl;
 | |
|         }
 | |
|         // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
 | |
|         Value *NewShl = Builder->CreateShl(X, ShiftDiff);
 | |
|         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
 | |
|         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
 | |
|       }
 | |
|       assert(ShlAmt == ShAmt);
 | |
|       // (X << C) >>u C --> X & (-1 >>u C)
 | |
|       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
 | |
|       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
 | |
|     }
 | |
| 
 | |
|     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
 | |
|       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
 | |
|       // Oversized shifts are simplified to zero in InstSimplify.
 | |
|       if (AmtSum < BitWidth)
 | |
|         // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
 | |
|         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
 | |
|     }
 | |
| 
 | |
|     // If the shifted-out value is known-zero, then this is an exact shift.
 | |
|     if (!I.isExact() &&
 | |
|         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
 | |
|       I.setIsExact();
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   if (Value *V = SimplifyAShrInst(Op0, Op1, I.isExact(), DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Instruction *R = commonShiftTransforms(I))
 | |
|     return R;
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
|   unsigned BitWidth = Ty->getScalarSizeInBits();
 | |
|   const APInt *ShAmtAPInt;
 | |
|   if (match(Op1, m_APInt(ShAmtAPInt))) {
 | |
|     unsigned ShAmt = ShAmtAPInt->getZExtValue();
 | |
| 
 | |
|     // If the shift amount equals the difference in width of the destination
 | |
|     // and source scalar types:
 | |
|     // ashr (shl (zext X), C), C --> sext X
 | |
|     Value *X;
 | |
|     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
 | |
|         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
 | |
|       return new SExtInst(X, Ty);
 | |
| 
 | |
|     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
 | |
|     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
 | |
|     const APInt *ShOp1;
 | |
|     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1)))) {
 | |
|       unsigned ShlAmt = ShOp1->getZExtValue();
 | |
|       if (ShlAmt < ShAmt) {
 | |
|         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
 | |
|         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
 | |
|         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
 | |
|         NewAShr->setIsExact(I.isExact());
 | |
|         return NewAShr;
 | |
|       }
 | |
|       if (ShlAmt > ShAmt) {
 | |
|         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
 | |
|         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
 | |
|         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
 | |
|         NewShl->setHasNoSignedWrap(true);
 | |
|         return NewShl;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1)))) {
 | |
|       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
 | |
|       // Oversized arithmetic shifts replicate the sign bit.
 | |
|       AmtSum = std::min(AmtSum, BitWidth - 1);
 | |
|       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
 | |
|       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
 | |
|     }
 | |
| 
 | |
|     // If the shifted-out value is known-zero, then this is an exact shift.
 | |
|     if (!I.isExact() &&
 | |
|         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
 | |
|       I.setIsExact();
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we can turn a signed shr into an unsigned shr.
 | |
|   if (MaskedValueIsZero(Op0, APInt::getSignBit(BitWidth), 0, &I))
 | |
|     return BinaryOperator::CreateLShr(Op0, Op1);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 |