3239 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3239 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // InstructionCombining - Combine instructions to form fewer, simple
 | |
| // instructions.  This pass does not modify the CFG.  This pass is where
 | |
| // algebraic simplification happens.
 | |
| //
 | |
| // This pass combines things like:
 | |
| //    %Y = add i32 %X, 1
 | |
| //    %Z = add i32 %Y, 1
 | |
| // into:
 | |
| //    %Z = add i32 %X, 2
 | |
| //
 | |
| // This is a simple worklist driven algorithm.
 | |
| //
 | |
| // This pass guarantees that the following canonicalizations are performed on
 | |
| // the program:
 | |
| //    1. If a binary operator has a constant operand, it is moved to the RHS
 | |
| //    2. Bitwise operators with constant operands are always grouped so that
 | |
| //       shifts are performed first, then or's, then and's, then xor's.
 | |
| //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | |
| //    4. All cmp instructions on boolean values are replaced with logical ops
 | |
| //    5. add X, X is represented as (X*2) => (X << 1)
 | |
| //    6. Multiplies with a power-of-two constant argument are transformed into
 | |
| //       shifts.
 | |
| //   ... etc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/InstCombine/InstCombine.h"
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm-c/Initialization.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| #include <climits>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| STATISTIC(NumCombined , "Number of insts combined");
 | |
| STATISTIC(NumConstProp, "Number of constant folds");
 | |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | |
| STATISTIC(NumSunkInst , "Number of instructions sunk");
 | |
| STATISTIC(NumExpand,    "Number of expansions");
 | |
| STATISTIC(NumFactor   , "Number of factorizations");
 | |
| STATISTIC(NumReassoc  , "Number of reassociations");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableExpensiveCombines("expensive-combines",
 | |
|                         cl::desc("Enable expensive instruction combines"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxArraySize("instcombine-maxarray-size", cl::init(1024),
 | |
|              cl::desc("Maximum array size considered when doing a combine"));
 | |
| 
 | |
| Value *InstCombiner::EmitGEPOffset(User *GEP) {
 | |
|   return llvm::EmitGEPOffset(Builder, DL, GEP);
 | |
| }
 | |
| 
 | |
| /// Return true if it is desirable to convert an integer computation from a
 | |
| /// given bit width to a new bit width.
 | |
| /// We don't want to convert from a legal to an illegal type or from a smaller
 | |
| /// to a larger illegal type. A width of '1' is always treated as a legal type
 | |
| /// because i1 is a fundamental type in IR, and there are many specialized
 | |
| /// optimizations for i1 types.
 | |
| bool InstCombiner::shouldChangeType(unsigned FromWidth,
 | |
|                                     unsigned ToWidth) const {
 | |
|   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
 | |
|   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
 | |
| 
 | |
|   // If this is a legal integer from type, and the result would be an illegal
 | |
|   // type, don't do the transformation.
 | |
|   if (FromLegal && !ToLegal)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, if both are illegal, do not increase the size of the result. We
 | |
|   // do allow things like i160 -> i64, but not i64 -> i160.
 | |
|   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if it is desirable to convert a computation from 'From' to 'To'.
 | |
| /// We don't want to convert from a legal to an illegal type or from a smaller
 | |
| /// to a larger illegal type. i1 is always treated as a legal type because it is
 | |
| /// a fundamental type in IR, and there are many specialized optimizations for
 | |
| /// i1 types.
 | |
| bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
 | |
|   assert(From->isIntegerTy() && To->isIntegerTy());
 | |
| 
 | |
|   unsigned FromWidth = From->getPrimitiveSizeInBits();
 | |
|   unsigned ToWidth = To->getPrimitiveSizeInBits();
 | |
|   return shouldChangeType(FromWidth, ToWidth);
 | |
| }
 | |
| 
 | |
| // Return true, if No Signed Wrap should be maintained for I.
 | |
| // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
 | |
| // where both B and C should be ConstantInts, results in a constant that does
 | |
| // not overflow. This function only handles the Add and Sub opcodes. For
 | |
| // all other opcodes, the function conservatively returns false.
 | |
| static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
 | |
|   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
 | |
|   if (!OBO || !OBO->hasNoSignedWrap())
 | |
|     return false;
 | |
| 
 | |
|   // We reason about Add and Sub Only.
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
 | |
|     return false;
 | |
| 
 | |
|   const APInt *BVal, *CVal;
 | |
|   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
 | |
|     return false;
 | |
| 
 | |
|   bool Overflow = false;
 | |
|   if (Opcode == Instruction::Add)
 | |
|     BVal->sadd_ov(*CVal, Overflow);
 | |
|   else
 | |
|     BVal->ssub_ov(*CVal, Overflow);
 | |
| 
 | |
|   return !Overflow;
 | |
| }
 | |
| 
 | |
| /// Conservatively clears subclassOptionalData after a reassociation or
 | |
| /// commutation. We preserve fast-math flags when applicable as they can be
 | |
| /// preserved.
 | |
| static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
 | |
|   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
 | |
|   if (!FPMO) {
 | |
|     I.clearSubclassOptionalData();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FastMathFlags FMF = I.getFastMathFlags();
 | |
|   I.clearSubclassOptionalData();
 | |
|   I.setFastMathFlags(FMF);
 | |
| }
 | |
| 
 | |
| /// Combine constant operands of associative operations either before or after a
 | |
| /// cast to eliminate one of the associative operations:
 | |
| /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
 | |
| /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
 | |
| static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
 | |
|   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
 | |
|   if (!Cast || !Cast->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // TODO: Enhance logic for other casts and remove this check.
 | |
|   auto CastOpcode = Cast->getOpcode();
 | |
|   if (CastOpcode != Instruction::ZExt)
 | |
|     return false;
 | |
| 
 | |
|   // TODO: Enhance logic for other BinOps and remove this check.
 | |
|   if (!BinOp1->isBitwiseLogicOp())
 | |
|     return false;
 | |
| 
 | |
|   auto AssocOpcode = BinOp1->getOpcode();
 | |
|   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
 | |
|   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
 | |
|     return false;
 | |
| 
 | |
|   Constant *C1, *C2;
 | |
|   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
 | |
|       !match(BinOp2->getOperand(1), m_Constant(C2)))
 | |
|     return false;
 | |
| 
 | |
|   // TODO: This assumes a zext cast.
 | |
|   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
 | |
|   // to the destination type might lose bits.
 | |
| 
 | |
|   // Fold the constants together in the destination type:
 | |
|   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
 | |
|   Type *DestTy = C1->getType();
 | |
|   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
 | |
|   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
 | |
|   Cast->setOperand(0, BinOp2->getOperand(0));
 | |
|   BinOp1->setOperand(1, FoldedC);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This performs a few simplifications for operators that are associative or
 | |
| /// commutative:
 | |
| ///
 | |
| ///  Commutative operators:
 | |
| ///
 | |
| ///  1. Order operands such that they are listed from right (least complex) to
 | |
| ///     left (most complex).  This puts constants before unary operators before
 | |
| ///     binary operators.
 | |
| ///
 | |
| ///  Associative operators:
 | |
| ///
 | |
| ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | |
| ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | |
| ///
 | |
| ///  Associative and commutative operators:
 | |
| ///
 | |
| ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | |
| ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | |
| ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | |
| ///     if C1 and C2 are constants.
 | |
| bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   bool Changed = false;
 | |
| 
 | |
|   do {
 | |
|     // Order operands such that they are listed from right (least complex) to
 | |
|     // left (most complex).  This puts constants before unary operators before
 | |
|     // binary operators.
 | |
|     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
 | |
|         getComplexity(I.getOperand(1)))
 | |
|       Changed = !I.swapOperands();
 | |
| 
 | |
|     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
 | |
|     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
 | |
| 
 | |
|     if (I.isAssociative()) {
 | |
|       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | |
|       if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|         Value *A = Op0->getOperand(0);
 | |
|         Value *B = Op0->getOperand(1);
 | |
|         Value *C = I.getOperand(1);
 | |
| 
 | |
|         // Does "B op C" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
 | |
|           // It simplifies to V.  Form "A op V".
 | |
|           I.setOperand(0, A);
 | |
|           I.setOperand(1, V);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           if (MaintainNoSignedWrap(I, B, C) &&
 | |
|               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
 | |
|             // Note: this is only valid because SimplifyBinOp doesn't look at
 | |
|             // the operands to Op0.
 | |
|             I.clearSubclassOptionalData();
 | |
|             I.setHasNoSignedWrap(true);
 | |
|           } else {
 | |
|             ClearSubclassDataAfterReassociation(I);
 | |
|           }
 | |
| 
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | |
|       if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|         Value *A = I.getOperand(0);
 | |
|         Value *B = Op1->getOperand(0);
 | |
|         Value *C = Op1->getOperand(1);
 | |
| 
 | |
|         // Does "A op B" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
 | |
|           // It simplifies to V.  Form "V op C".
 | |
|           I.setOperand(0, V);
 | |
|           I.setOperand(1, C);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           ClearSubclassDataAfterReassociation(I);
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (I.isAssociative() && I.isCommutative()) {
 | |
|       if (simplifyAssocCastAssoc(&I)) {
 | |
|         Changed = true;
 | |
|         ++NumReassoc;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | |
|       if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|         Value *A = Op0->getOperand(0);
 | |
|         Value *B = Op0->getOperand(1);
 | |
|         Value *C = I.getOperand(1);
 | |
| 
 | |
|         // Does "C op A" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
 | |
|           // It simplifies to V.  Form "V op B".
 | |
|           I.setOperand(0, V);
 | |
|           I.setOperand(1, B);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           ClearSubclassDataAfterReassociation(I);
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | |
|       if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|         Value *A = I.getOperand(0);
 | |
|         Value *B = Op1->getOperand(0);
 | |
|         Value *C = Op1->getOperand(1);
 | |
| 
 | |
|         // Does "C op A" simplify?
 | |
|         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
 | |
|           // It simplifies to V.  Form "B op V".
 | |
|           I.setOperand(0, B);
 | |
|           I.setOperand(1, V);
 | |
|           // Conservatively clear the optional flags, since they may not be
 | |
|           // preserved by the reassociation.
 | |
|           ClearSubclassDataAfterReassociation(I);
 | |
|           Changed = true;
 | |
|           ++NumReassoc;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | |
|       // if C1 and C2 are constants.
 | |
|       if (Op0 && Op1 &&
 | |
|           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
 | |
|           isa<Constant>(Op0->getOperand(1)) &&
 | |
|           isa<Constant>(Op1->getOperand(1)) &&
 | |
|           Op0->hasOneUse() && Op1->hasOneUse()) {
 | |
|         Value *A = Op0->getOperand(0);
 | |
|         Constant *C1 = cast<Constant>(Op0->getOperand(1));
 | |
|         Value *B = Op1->getOperand(0);
 | |
|         Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | |
| 
 | |
|         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
 | |
|         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
 | |
|         if (isa<FPMathOperator>(New)) {
 | |
|           FastMathFlags Flags = I.getFastMathFlags();
 | |
|           Flags &= Op0->getFastMathFlags();
 | |
|           Flags &= Op1->getFastMathFlags();
 | |
|           New->setFastMathFlags(Flags);
 | |
|         }
 | |
|         InsertNewInstWith(New, I);
 | |
|         New->takeName(Op1);
 | |
|         I.setOperand(0, New);
 | |
|         I.setOperand(1, Folded);
 | |
|         // Conservatively clear the optional flags, since they may not be
 | |
|         // preserved by the reassociation.
 | |
|         ClearSubclassDataAfterReassociation(I);
 | |
| 
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // No further simplifications.
 | |
|     return Changed;
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// Return whether "X LOp (Y ROp Z)" is always equal to
 | |
| /// "(X LOp Y) ROp (X LOp Z)".
 | |
| static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
 | |
|                                      Instruction::BinaryOps ROp) {
 | |
|   switch (LOp) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case Instruction::And:
 | |
|     // And distributes over Or and Xor.
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|     // Multiplication distributes over addition and subtraction.
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   case Instruction::Or:
 | |
|     // Or distributes over And.
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::And:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return whether "(X LOp Y) ROp Z" is always equal to
 | |
| /// "(X ROp Z) LOp (Y ROp Z)".
 | |
| static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
 | |
|                                      Instruction::BinaryOps ROp) {
 | |
|   if (Instruction::isCommutative(ROp))
 | |
|     return LeftDistributesOverRight(ROp, LOp);
 | |
| 
 | |
|   switch (LOp) {
 | |
|   default:
 | |
|     return false;
 | |
|   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
 | |
|   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
 | |
|   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     switch (ROp) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
 | |
|   // but this requires knowing that the addition does not overflow and other
 | |
|   // such subtleties.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This function returns identity value for given opcode, which can be used to
 | |
| /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
 | |
| static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
 | |
|   if (isa<Constant>(V))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (OpCode == Instruction::Mul)
 | |
|     return ConstantInt::get(V->getType(), 1);
 | |
| 
 | |
|   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// This function factors binary ops which can be combined using distributive
 | |
| /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
 | |
| /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
 | |
| /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
 | |
| /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
 | |
| /// RHS to 4.
 | |
| static Instruction::BinaryOps
 | |
| getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
 | |
|                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
 | |
|   if (!Op)
 | |
|     return Instruction::BinaryOpsEnd;
 | |
| 
 | |
|   LHS = Op->getOperand(0);
 | |
|   RHS = Op->getOperand(1);
 | |
| 
 | |
|   switch (TopLevelOpcode) {
 | |
|   default:
 | |
|     return Op->getOpcode();
 | |
| 
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|     if (Op->getOpcode() == Instruction::Shl) {
 | |
|       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
 | |
|         // The multiplier is really 1 << CST.
 | |
|         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
 | |
|         return Instruction::Mul;
 | |
|       }
 | |
|     }
 | |
|     return Op->getOpcode();
 | |
|   }
 | |
| 
 | |
|   // TODO: We can add other conversions e.g. shr => div etc.
 | |
| }
 | |
| 
 | |
| /// This tries to simplify binary operations by factorizing out common terms
 | |
| /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
 | |
| static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
 | |
|                                const DataLayout &DL, BinaryOperator &I,
 | |
|                                Instruction::BinaryOps InnerOpcode, Value *A,
 | |
|                                Value *B, Value *C, Value *D) {
 | |
| 
 | |
|   // If any of A, B, C, D are null, we can not factor I, return early.
 | |
|   // Checking A and C should be enough.
 | |
|   if (!A || !C || !B || !D)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V = nullptr;
 | |
|   Value *SimplifiedInst = nullptr;
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
 | |
| 
 | |
|   // Does "X op' Y" always equal "Y op' X"?
 | |
|   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
 | |
| 
 | |
|   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
 | |
|   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
 | |
|     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
 | |
|     // commutative case, "(A op' B) op (C op' A)"?
 | |
|     if (A == C || (InnerCommutative && A == D)) {
 | |
|       if (A != C)
 | |
|         std::swap(C, D);
 | |
|       // Consider forming "A op' (B op D)".
 | |
|       // If "B op D" simplifies then it can be formed with no cost.
 | |
|       V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
 | |
|       // If "B op D" doesn't simplify then only go on if both of the existing
 | |
|       // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | |
|       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
 | |
|         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
 | |
|       if (V) {
 | |
|         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
 | |
|   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
 | |
|     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
 | |
|     // commutative case, "(A op' B) op (B op' D)"?
 | |
|     if (B == D || (InnerCommutative && B == C)) {
 | |
|       if (B != D)
 | |
|         std::swap(C, D);
 | |
|       // Consider forming "(A op C) op' B".
 | |
|       // If "A op C" simplifies then it can be formed with no cost.
 | |
|       V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
 | |
| 
 | |
|       // If "A op C" doesn't simplify then only go on if both of the existing
 | |
|       // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | |
|       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
 | |
|         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
 | |
|       if (V) {
 | |
|         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (SimplifiedInst) {
 | |
|     ++NumFactor;
 | |
|     SimplifiedInst->takeName(&I);
 | |
| 
 | |
|     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
 | |
|     // TODO: Check for NUW.
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
 | |
|       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
 | |
|         bool HasNSW = false;
 | |
|         if (isa<OverflowingBinaryOperator>(&I))
 | |
|           HasNSW = I.hasNoSignedWrap();
 | |
| 
 | |
|         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
 | |
|           HasNSW &= LOBO->hasNoSignedWrap();
 | |
| 
 | |
|         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
 | |
|           HasNSW &= ROBO->hasNoSignedWrap();
 | |
| 
 | |
|         // We can propagate 'nsw' if we know that
 | |
|         //  %Y = mul nsw i16 %X, C
 | |
|         //  %Z = add nsw i16 %Y, %X
 | |
|         // =>
 | |
|         //  %Z = mul nsw i16 %X, C+1
 | |
|         //
 | |
|         // iff C+1 isn't INT_MIN
 | |
|         const APInt *CInt;
 | |
|         if (TopLevelOpcode == Instruction::Add &&
 | |
|             InnerOpcode == Instruction::Mul)
 | |
|           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
 | |
|             BO->setHasNoSignedWrap(HasNSW);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SimplifiedInst;
 | |
| }
 | |
| 
 | |
| /// This tries to simplify binary operations which some other binary operation
 | |
| /// distributes over either by factorizing out common terms
 | |
| /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
 | |
| /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
 | |
| /// Returns the simplified value, or null if it didn't simplify.
 | |
| Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
| 
 | |
|   // Factorization.
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|   auto TopLevelOpcode = I.getOpcode();
 | |
|   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
 | |
|   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
 | |
| 
 | |
|   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
 | |
|   // a common term.
 | |
|   if (LHSOpcode == RHSOpcode) {
 | |
|     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
 | |
|       return V;
 | |
|   }
 | |
| 
 | |
|   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
 | |
|   // term.
 | |
|   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
 | |
|                                   getIdentityValue(LHSOpcode, RHS)))
 | |
|     return V;
 | |
| 
 | |
|   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
 | |
|   // term.
 | |
|   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
 | |
|                                   getIdentityValue(RHSOpcode, LHS), C, D))
 | |
|     return V;
 | |
| 
 | |
|   // Expansion.
 | |
|   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
 | |
|     // The instruction has the form "(A op' B) op C".  See if expanding it out
 | |
|     // to "(A op C) op' (B op C)" results in simplifications.
 | |
|     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | |
|     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 | |
| 
 | |
|     // Do "A op C" and "B op C" both simplify?
 | |
|     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
 | |
|       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
 | |
|         // They do! Return "L op' R".
 | |
|         ++NumExpand;
 | |
|         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | |
|         if ((L == A && R == B) ||
 | |
|             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
 | |
|           return Op0;
 | |
|         // Otherwise return "L op' R" if it simplifies.
 | |
|         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
 | |
|           return V;
 | |
|         // Otherwise, create a new instruction.
 | |
|         C = Builder->CreateBinOp(InnerOpcode, L, R);
 | |
|         C->takeName(&I);
 | |
|         return C;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
 | |
|     // The instruction has the form "A op (B op' C)".  See if expanding it out
 | |
|     // to "(A op B) op' (A op C)" results in simplifications.
 | |
|     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | |
|     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
 | |
| 
 | |
|     // Do "A op B" and "A op C" both simplify?
 | |
|     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
 | |
|       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
 | |
|         // They do! Return "L op' R".
 | |
|         ++NumExpand;
 | |
|         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | |
|         if ((L == B && R == C) ||
 | |
|             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
 | |
|           return Op1;
 | |
|         // Otherwise return "L op' R" if it simplifies.
 | |
|         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
 | |
|           return V;
 | |
|         // Otherwise, create a new instruction.
 | |
|         A = Builder->CreateBinOp(InnerOpcode, L, R);
 | |
|         A->takeName(&I);
 | |
|         return A;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
 | |
|   // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
 | |
|   if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
 | |
|     if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
 | |
|       if (SI0->getCondition() == SI1->getCondition()) {
 | |
|         Value *SI = nullptr;
 | |
|         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
 | |
|                                      SI1->getFalseValue(), DL, &TLI, &DT, &AC))
 | |
|           SI = Builder->CreateSelect(SI0->getCondition(),
 | |
|                                      Builder->CreateBinOp(TopLevelOpcode,
 | |
|                                                           SI0->getTrueValue(),
 | |
|                                                           SI1->getTrueValue()),
 | |
|                                      V);
 | |
|         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
 | |
|                                      SI1->getTrueValue(), DL, &TLI, &DT, &AC))
 | |
|           SI = Builder->CreateSelect(
 | |
|               SI0->getCondition(), V,
 | |
|               Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
 | |
|                                    SI1->getFalseValue()));
 | |
|         if (SI) {
 | |
|           SI->takeName(&I);
 | |
|           return SI;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
 | |
| /// constant zero (which is the 'negate' form).
 | |
| Value *InstCombiner::dyn_castNegVal(Value *V) const {
 | |
|   if (BinaryOperator::isNeg(V))
 | |
|     return BinaryOperator::getNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
 | |
|     if (C->getType()->getElementType()->isIntegerTy())
 | |
|       return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
 | |
| /// a constant negative zero (which is the 'negate' form).
 | |
| Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
 | |
|   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
 | |
|     return BinaryOperator::getFNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
 | |
|     return ConstantExpr::getFNeg(C);
 | |
| 
 | |
|   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
 | |
|     if (C->getType()->getElementType()->isFloatingPointTy())
 | |
|       return ConstantExpr::getFNeg(C);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | |
|                                              InstCombiner *IC) {
 | |
|   if (auto *Cast = dyn_cast<CastInst>(&I))
 | |
|     return IC->Builder->CreateCast(Cast->getOpcode(), SO, I.getType());
 | |
| 
 | |
|   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
 | |
| 
 | |
|   // Figure out if the constant is the left or the right argument.
 | |
|   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | |
|   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | |
| 
 | |
|   if (auto *SOC = dyn_cast<Constant>(SO)) {
 | |
|     if (ConstIsRHS)
 | |
|       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | |
|     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = SO, *Op1 = ConstOperand;
 | |
|   if (!ConstIsRHS)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   auto *BO = cast<BinaryOperator>(&I);
 | |
|   Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
 | |
|                                        SO->getName() + ".op");
 | |
|   auto *FPInst = dyn_cast<Instruction>(RI);
 | |
|   if (FPInst && isa<FPMathOperator>(FPInst))
 | |
|     FPInst->copyFastMathFlags(BO);
 | |
|   return RI;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
 | |
|   // Don't modify shared select instructions.
 | |
|   if (!SI->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *TV = SI->getTrueValue();
 | |
|   Value *FV = SI->getFalseValue();
 | |
|   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Bool selects with constant operands can be folded to logical ops.
 | |
|   if (SI->getType()->getScalarType()->isIntegerTy(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If it's a bitcast involving vectors, make sure it has the same number of
 | |
|   // elements on both sides.
 | |
|   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
 | |
|     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
 | |
|     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
 | |
| 
 | |
|     // Verify that either both or neither are vectors.
 | |
|     if ((SrcTy == nullptr) != (DestTy == nullptr))
 | |
|       return nullptr;
 | |
| 
 | |
|     // If vectors, verify that they have the same number of elements.
 | |
|     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Test if a CmpInst instruction is used exclusively by a select as
 | |
|   // part of a minimum or maximum operation. If so, refrain from doing
 | |
|   // any other folding. This helps out other analyses which understand
 | |
|   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | |
|   // and CodeGen. And in this case, at least one of the comparison
 | |
|   // operands has at least one user besides the compare (the select),
 | |
|   // which would often largely negate the benefit of folding anyway.
 | |
|   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
 | |
|     if (CI->hasOneUse()) {
 | |
|       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | |
|       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
 | |
|           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, this);
 | |
|   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, this);
 | |
|   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
 | |
|   PHINode *PN = cast<PHINode>(I.getOperand(0));
 | |
|   unsigned NumPHIValues = PN->getNumIncomingValues();
 | |
|   if (NumPHIValues == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We normally only transform phis with a single use.  However, if a PHI has
 | |
|   // multiple uses and they are all the same operation, we can fold *all* of the
 | |
|   // uses into the PHI.
 | |
|   if (!PN->hasOneUse()) {
 | |
|     // Walk the use list for the instruction, comparing them to I.
 | |
|     for (User *U : PN->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
|       if (UI != &I && !I.isIdenticalTo(UI))
 | |
|         return nullptr;
 | |
|     }
 | |
|     // Otherwise, we can replace *all* users with the new PHI we form.
 | |
|   }
 | |
| 
 | |
|   // Check to see if all of the operands of the PHI are simple constants
 | |
|   // (constantint/constantfp/undef).  If there is one non-constant value,
 | |
|   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
 | |
|   // bail out.  We don't do arbitrary constant expressions here because moving
 | |
|   // their computation can be expensive without a cost model.
 | |
|   BasicBlock *NonConstBB = nullptr;
 | |
|   for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|     Value *InVal = PN->getIncomingValue(i);
 | |
|     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
 | |
|       continue;
 | |
| 
 | |
|     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
 | |
|     if (NonConstBB) return nullptr;  // More than one non-const value.
 | |
| 
 | |
|     NonConstBB = PN->getIncomingBlock(i);
 | |
| 
 | |
|     // If the InVal is an invoke at the end of the pred block, then we can't
 | |
|     // insert a computation after it without breaking the edge.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
 | |
|       if (II->getParent() == NonConstBB)
 | |
|         return nullptr;
 | |
| 
 | |
|     // If the incoming non-constant value is in I's block, we will remove one
 | |
|     // instruction, but insert another equivalent one, leading to infinite
 | |
|     // instcombine.
 | |
|     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If there is exactly one non-constant value, we can insert a copy of the
 | |
|   // operation in that block.  However, if this is a critical edge, we would be
 | |
|   // inserting the computation on some other paths (e.g. inside a loop).  Only
 | |
|   // do this if the pred block is unconditionally branching into the phi block.
 | |
|   if (NonConstBB != nullptr) {
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional()) return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can do the transformation: create the new PHI node.
 | |
|   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
 | |
|   InsertNewInstBefore(NewPN, *PN);
 | |
|   NewPN->takeName(PN);
 | |
| 
 | |
|   // If we are going to have to insert a new computation, do so right before the
 | |
|   // predecessor's terminator.
 | |
|   if (NonConstBB)
 | |
|     Builder->SetInsertPoint(NonConstBB->getTerminator());
 | |
| 
 | |
|   // Next, add all of the operands to the PHI.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
 | |
|     // We only currently try to fold the condition of a select when it is a phi,
 | |
|     // not the true/false values.
 | |
|     Value *TrueV = SI->getTrueValue();
 | |
|     Value *FalseV = SI->getFalseValue();
 | |
|     BasicBlock *PhiTransBB = PN->getParent();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       BasicBlock *ThisBB = PN->getIncomingBlock(i);
 | |
|       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
 | |
|       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
 | |
|       Value *InV = nullptr;
 | |
|       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
 | |
|       // even if currently isNullValue gives false.
 | |
|       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
 | |
|       if (InC && !isa<ConstantExpr>(InC))
 | |
|         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
 | |
|       else
 | |
|         InV = Builder->CreateSelect(PN->getIncomingValue(i),
 | |
|                                     TrueVInPred, FalseVInPred, "phitmp");
 | |
|       NewPN->addIncoming(InV, ThisBB);
 | |
|     }
 | |
|   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV = nullptr;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | |
|       else if (isa<ICmpInst>(CI))
 | |
|         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
 | |
|                                   C, "phitmp");
 | |
|       else
 | |
|         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
 | |
|                                   C, "phitmp");
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else if (I.getNumOperands() == 2) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV = nullptr;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | |
|       else
 | |
|         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
 | |
|                                    PN->getIncomingValue(i), C, "phitmp");
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else {
 | |
|     CastInst *CI = cast<CastInst>(&I);
 | |
|     Type *RetTy = CI->getType();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | |
|         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | |
|       else
 | |
|         InV = Builder->CreateCast(CI->getOpcode(),
 | |
|                                 PN->getIncomingValue(i), I.getType(), "phitmp");
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     if (User == &I) continue;
 | |
|     replaceInstUsesWith(*User, NewPN);
 | |
|     eraseInstFromFunction(*User);
 | |
|   }
 | |
|   return replaceInstUsesWith(I, NewPN);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldOpWithConstantIntoOperand(Instruction &I) {
 | |
|   assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type");
 | |
| 
 | |
|   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
 | |
|     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
 | |
|       return NewSel;
 | |
|   } else if (isa<PHINode>(I.getOperand(0))) {
 | |
|     if (Instruction *NewPhi = FoldOpIntoPhi(I))
 | |
|       return NewPhi;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given a pointer type and a constant offset, determine whether or not there
 | |
| /// is a sequence of GEP indices into the pointed type that will land us at the
 | |
| /// specified offset. If so, fill them into NewIndices and return the resultant
 | |
| /// element type, otherwise return null.
 | |
| Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
 | |
|                                         SmallVectorImpl<Value *> &NewIndices) {
 | |
|   Type *Ty = PtrTy->getElementType();
 | |
|   if (!Ty->isSized())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Start with the index over the outer type.  Note that the type size
 | |
|   // might be zero (even if the offset isn't zero) if the indexed type
 | |
|   // is something like [0 x {int, int}]
 | |
|   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
 | |
|   int64_t FirstIdx = 0;
 | |
|   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
 | |
|     FirstIdx = Offset/TySize;
 | |
|     Offset -= FirstIdx*TySize;
 | |
| 
 | |
|     // Handle hosts where % returns negative instead of values [0..TySize).
 | |
|     if (Offset < 0) {
 | |
|       --FirstIdx;
 | |
|       Offset += TySize;
 | |
|       assert(Offset >= 0);
 | |
|     }
 | |
|     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
 | |
|   }
 | |
| 
 | |
|   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
 | |
| 
 | |
|   // Index into the types.  If we fail, set OrigBase to null.
 | |
|   while (Offset) {
 | |
|     // Indexing into tail padding between struct/array elements.
 | |
|     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|       const StructLayout *SL = DL.getStructLayout(STy);
 | |
|       assert(Offset < (int64_t)SL->getSizeInBytes() &&
 | |
|              "Offset must stay within the indexed type");
 | |
| 
 | |
|       unsigned Elt = SL->getElementContainingOffset(Offset);
 | |
|       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | |
|                                             Elt));
 | |
| 
 | |
|       Offset -= SL->getElementOffset(Elt);
 | |
|       Ty = STy->getElementType(Elt);
 | |
|     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | |
|       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
 | |
|       assert(EltSize && "Cannot index into a zero-sized array");
 | |
|       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
 | |
|       Offset %= EltSize;
 | |
|       Ty = AT->getElementType();
 | |
|     } else {
 | |
|       // Otherwise, we can't index into the middle of this atomic type, bail.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
 | |
|   // If this GEP has only 0 indices, it is the same pointer as
 | |
|   // Src. If Src is not a trivial GEP too, don't combine
 | |
|   // the indices.
 | |
|   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
 | |
|       !Src.hasOneUse())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return a value X such that Val = X * Scale, or null if none.
 | |
| /// If the multiplication is known not to overflow, then NoSignedWrap is set.
 | |
| Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
 | |
|   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
 | |
|   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
 | |
|          Scale.getBitWidth() && "Scale not compatible with value!");
 | |
| 
 | |
|   // If Val is zero or Scale is one then Val = Val * Scale.
 | |
|   if (match(Val, m_Zero()) || Scale == 1) {
 | |
|     NoSignedWrap = true;
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   // If Scale is zero then it does not divide Val.
 | |
|   if (Scale.isMinValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look through chains of multiplications, searching for a constant that is
 | |
|   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
 | |
|   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
 | |
|   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
 | |
|   // down from Val:
 | |
|   //
 | |
|   //     Val = M1 * X          ||   Analysis starts here and works down
 | |
|   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
 | |
|   //      M2 =  Z * 4          \/   than one use
 | |
|   //
 | |
|   // Then to modify a term at the bottom:
 | |
|   //
 | |
|   //     Val = M1 * X
 | |
|   //      M1 =  Z * Y          ||   Replaced M2 with Z
 | |
|   //
 | |
|   // Then to work back up correcting nsw flags.
 | |
| 
 | |
|   // Op - the term we are currently analyzing.  Starts at Val then drills down.
 | |
|   // Replaced with its descaled value before exiting from the drill down loop.
 | |
|   Value *Op = Val;
 | |
| 
 | |
|   // Parent - initially null, but after drilling down notes where Op came from.
 | |
|   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
 | |
|   // 0'th operand of Val.
 | |
|   std::pair<Instruction*, unsigned> Parent;
 | |
| 
 | |
|   // Set if the transform requires a descaling at deeper levels that doesn't
 | |
|   // overflow.
 | |
|   bool RequireNoSignedWrap = false;
 | |
| 
 | |
|   // Log base 2 of the scale. Negative if not a power of 2.
 | |
|   int32_t logScale = Scale.exactLogBase2();
 | |
| 
 | |
|   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|       // If Op is a constant divisible by Scale then descale to the quotient.
 | |
|       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
 | |
|       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
 | |
|       if (!Remainder.isMinValue())
 | |
|         // Not divisible by Scale.
 | |
|         return nullptr;
 | |
|       // Replace with the quotient in the parent.
 | |
|       Op = ConstantInt::get(CI->getType(), Quotient);
 | |
|       NoSignedWrap = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
 | |
| 
 | |
|       if (BO->getOpcode() == Instruction::Mul) {
 | |
|         // Multiplication.
 | |
|         NoSignedWrap = BO->hasNoSignedWrap();
 | |
|         if (RequireNoSignedWrap && !NoSignedWrap)
 | |
|           return nullptr;
 | |
| 
 | |
|         // There are three cases for multiplication: multiplication by exactly
 | |
|         // the scale, multiplication by a constant different to the scale, and
 | |
|         // multiplication by something else.
 | |
|         Value *LHS = BO->getOperand(0);
 | |
|         Value *RHS = BO->getOperand(1);
 | |
| 
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|           // Multiplication by a constant.
 | |
|           if (CI->getValue() == Scale) {
 | |
|             // Multiplication by exactly the scale, replace the multiplication
 | |
|             // by its left-hand side in the parent.
 | |
|             Op = LHS;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Otherwise drill down into the constant.
 | |
|           if (!Op->hasOneUse())
 | |
|             return nullptr;
 | |
| 
 | |
|           Parent = std::make_pair(BO, 1);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Multiplication by something else. Drill down into the left-hand side
 | |
|         // since that's where the reassociate pass puts the good stuff.
 | |
|         if (!Op->hasOneUse())
 | |
|           return nullptr;
 | |
| 
 | |
|         Parent = std::make_pair(BO, 0);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
 | |
|           isa<ConstantInt>(BO->getOperand(1))) {
 | |
|         // Multiplication by a power of 2.
 | |
|         NoSignedWrap = BO->hasNoSignedWrap();
 | |
|         if (RequireNoSignedWrap && !NoSignedWrap)
 | |
|           return nullptr;
 | |
| 
 | |
|         Value *LHS = BO->getOperand(0);
 | |
|         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
 | |
|           getLimitedValue(Scale.getBitWidth());
 | |
|         // Op = LHS << Amt.
 | |
| 
 | |
|         if (Amt == logScale) {
 | |
|           // Multiplication by exactly the scale, replace the multiplication
 | |
|           // by its left-hand side in the parent.
 | |
|           Op = LHS;
 | |
|           break;
 | |
|         }
 | |
|         if (Amt < logScale || !Op->hasOneUse())
 | |
|           return nullptr;
 | |
| 
 | |
|         // Multiplication by more than the scale.  Reduce the multiplying amount
 | |
|         // by the scale in the parent.
 | |
|         Parent = std::make_pair(BO, 1);
 | |
|         Op = ConstantInt::get(BO->getType(), Amt - logScale);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Op->hasOneUse())
 | |
|       return nullptr;
 | |
| 
 | |
|     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
 | |
|       if (Cast->getOpcode() == Instruction::SExt) {
 | |
|         // Op is sign-extended from a smaller type, descale in the smaller type.
 | |
|         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
 | |
|         APInt SmallScale = Scale.trunc(SmallSize);
 | |
|         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
 | |
|         // descale Op as (sext Y) * Scale.  In order to have
 | |
|         //   sext (Y * SmallScale) = (sext Y) * Scale
 | |
|         // some conditions need to hold however: SmallScale must sign-extend to
 | |
|         // Scale and the multiplication Y * SmallScale should not overflow.
 | |
|         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
 | |
|           // SmallScale does not sign-extend to Scale.
 | |
|           return nullptr;
 | |
|         assert(SmallScale.exactLogBase2() == logScale);
 | |
|         // Require that Y * SmallScale must not overflow.
 | |
|         RequireNoSignedWrap = true;
 | |
| 
 | |
|         // Drill down through the cast.
 | |
|         Parent = std::make_pair(Cast, 0);
 | |
|         Scale = SmallScale;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Cast->getOpcode() == Instruction::Trunc) {
 | |
|         // Op is truncated from a larger type, descale in the larger type.
 | |
|         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
 | |
|         //   trunc (Y * sext Scale) = (trunc Y) * Scale
 | |
|         // always holds.  However (trunc Y) * Scale may overflow even if
 | |
|         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
 | |
|         // from this point up in the expression (see later).
 | |
|         if (RequireNoSignedWrap)
 | |
|           return nullptr;
 | |
| 
 | |
|         // Drill down through the cast.
 | |
|         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
 | |
|         Parent = std::make_pair(Cast, 0);
 | |
|         Scale = Scale.sext(LargeSize);
 | |
|         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
 | |
|           logScale = -1;
 | |
|         assert(Scale.exactLogBase2() == logScale);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Unsupported expression, bail out.
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If Op is zero then Val = Op * Scale.
 | |
|   if (match(Op, m_Zero())) {
 | |
|     NoSignedWrap = true;
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // We know that we can successfully descale, so from here on we can safely
 | |
|   // modify the IR.  Op holds the descaled version of the deepest term in the
 | |
|   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
 | |
|   // not to overflow.
 | |
| 
 | |
|   if (!Parent.first)
 | |
|     // The expression only had one term.
 | |
|     return Op;
 | |
| 
 | |
|   // Rewrite the parent using the descaled version of its operand.
 | |
|   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
 | |
|   assert(Op != Parent.first->getOperand(Parent.second) &&
 | |
|          "Descaling was a no-op?");
 | |
|   Parent.first->setOperand(Parent.second, Op);
 | |
|   Worklist.Add(Parent.first);
 | |
| 
 | |
|   // Now work back up the expression correcting nsw flags.  The logic is based
 | |
|   // on the following observation: if X * Y is known not to overflow as a signed
 | |
|   // multiplication, and Y is replaced by a value Z with smaller absolute value,
 | |
|   // then X * Z will not overflow as a signed multiplication either.  As we work
 | |
|   // our way up, having NoSignedWrap 'true' means that the descaled value at the
 | |
|   // current level has strictly smaller absolute value than the original.
 | |
|   Instruction *Ancestor = Parent.first;
 | |
|   do {
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
 | |
|       // If the multiplication wasn't nsw then we can't say anything about the
 | |
|       // value of the descaled multiplication, and we have to clear nsw flags
 | |
|       // from this point on up.
 | |
|       bool OpNoSignedWrap = BO->hasNoSignedWrap();
 | |
|       NoSignedWrap &= OpNoSignedWrap;
 | |
|       if (NoSignedWrap != OpNoSignedWrap) {
 | |
|         BO->setHasNoSignedWrap(NoSignedWrap);
 | |
|         Worklist.Add(Ancestor);
 | |
|       }
 | |
|     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
 | |
|       // The fact that the descaled input to the trunc has smaller absolute
 | |
|       // value than the original input doesn't tell us anything useful about
 | |
|       // the absolute values of the truncations.
 | |
|       NoSignedWrap = false;
 | |
|     }
 | |
|     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
 | |
|            "Failed to keep proper track of nsw flags while drilling down?");
 | |
| 
 | |
|     if (Ancestor == Val)
 | |
|       // Got to the top, all done!
 | |
|       return Val;
 | |
| 
 | |
|     // Move up one level in the expression.
 | |
|     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
 | |
|     Ancestor = Ancestor->user_back();
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// \brief Creates node of binary operation with the same attributes as the
 | |
| /// specified one but with other operands.
 | |
| static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
 | |
|                                  InstCombiner::BuilderTy *B) {
 | |
|   Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
 | |
|   // If LHS and RHS are constant, BO won't be a binary operator.
 | |
|   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
 | |
|     NewBO->copyIRFlags(&Inst);
 | |
|   return BO;
 | |
| }
 | |
| 
 | |
| /// \brief Makes transformation of binary operation specific for vector types.
 | |
| /// \param Inst Binary operator to transform.
 | |
| /// \return Pointer to node that must replace the original binary operator, or
 | |
| ///         null pointer if no transformation was made.
 | |
| Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
 | |
|   if (!Inst.getType()->isVectorTy()) return nullptr;
 | |
| 
 | |
|   // It may not be safe to reorder shuffles and things like div, urem, etc.
 | |
|   // because we may trap when executing those ops on unknown vector elements.
 | |
|   // See PR20059.
 | |
|   if (!isSafeToSpeculativelyExecute(&Inst))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
 | |
|   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
 | |
|   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
 | |
|   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
 | |
| 
 | |
|   // If both arguments of the binary operation are shuffles that use the same
 | |
|   // mask and shuffle within a single vector, move the shuffle after the binop:
 | |
|   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
 | |
|   auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS);
 | |
|   auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS);
 | |
|   if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() &&
 | |
|       isa<UndefValue>(LShuf->getOperand(1)) &&
 | |
|       isa<UndefValue>(RShuf->getOperand(1)) &&
 | |
|       LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) {
 | |
|     Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
 | |
|                                       RShuf->getOperand(0), Builder);
 | |
|     return Builder->CreateShuffleVector(
 | |
|         NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask());
 | |
|   }
 | |
| 
 | |
|   // If one argument is a shuffle within one vector, the other is a constant,
 | |
|   // try moving the shuffle after the binary operation.
 | |
|   ShuffleVectorInst *Shuffle = nullptr;
 | |
|   Constant *C1 = nullptr;
 | |
|   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
 | |
|   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
 | |
|   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
 | |
|   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
 | |
|   if (Shuffle && C1 &&
 | |
|       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
 | |
|       isa<UndefValue>(Shuffle->getOperand(1)) &&
 | |
|       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
 | |
|     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
 | |
|     // Find constant C2 that has property:
 | |
|     //   shuffle(C2, ShMask) = C1
 | |
|     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
 | |
|     // reorder is not possible.
 | |
|     SmallVector<Constant*, 16> C2M(VWidth,
 | |
|                                UndefValue::get(C1->getType()->getScalarType()));
 | |
|     bool MayChange = true;
 | |
|     for (unsigned I = 0; I < VWidth; ++I) {
 | |
|       if (ShMask[I] >= 0) {
 | |
|         assert(ShMask[I] < (int)VWidth);
 | |
|         if (!isa<UndefValue>(C2M[ShMask[I]])) {
 | |
|           MayChange = false;
 | |
|           break;
 | |
|         }
 | |
|         C2M[ShMask[I]] = C1->getAggregateElement(I);
 | |
|       }
 | |
|     }
 | |
|     if (MayChange) {
 | |
|       Constant *C2 = ConstantVector::get(C2M);
 | |
|       Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
 | |
|       Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
 | |
|       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
 | |
|       return Builder->CreateShuffleVector(NewBO,
 | |
|           UndefValue::get(Inst.getType()), Shuffle->getMask());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 | |
| 
 | |
|   if (Value *V =
 | |
|           SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(GEP, V);
 | |
| 
 | |
|   Value *PtrOp = GEP.getOperand(0);
 | |
| 
 | |
|   // Eliminate unneeded casts for indices, and replace indices which displace
 | |
|   // by multiples of a zero size type with zero.
 | |
|   bool MadeChange = false;
 | |
|   Type *IntPtrTy =
 | |
|     DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
 | |
| 
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
 | |
|        ++I, ++GTI) {
 | |
|     // Skip indices into struct types.
 | |
|     if (GTI.isStruct())
 | |
|       continue;
 | |
| 
 | |
|     // Index type should have the same width as IntPtr
 | |
|     Type *IndexTy = (*I)->getType();
 | |
|     Type *NewIndexType = IndexTy->isVectorTy() ?
 | |
|       VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
 | |
| 
 | |
|     // If the element type has zero size then any index over it is equivalent
 | |
|     // to an index of zero, so replace it with zero if it is not zero already.
 | |
|     Type *EltTy = GTI.getIndexedType();
 | |
|     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
 | |
|       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
 | |
|         *I = Constant::getNullValue(NewIndexType);
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|     if (IndexTy != NewIndexType) {
 | |
|       // If we are using a wider index than needed for this platform, shrink
 | |
|       // it to what we need.  If narrower, sign-extend it to what we need.
 | |
|       // This explicit cast can make subsequent optimizations more obvious.
 | |
|       *I = Builder->CreateIntCast(*I, NewIndexType, true);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
|   if (MadeChange)
 | |
|     return &GEP;
 | |
| 
 | |
|   // Check to see if the inputs to the PHI node are getelementptr instructions.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
 | |
|     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
 | |
|     if (!Op1)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Don't fold a GEP into itself through a PHI node. This can only happen
 | |
|     // through the back-edge of a loop. Folding a GEP into itself means that
 | |
|     // the value of the previous iteration needs to be stored in the meantime,
 | |
|     // thus requiring an additional register variable to be live, but not
 | |
|     // actually achieving anything (the GEP still needs to be executed once per
 | |
|     // loop iteration).
 | |
|     if (Op1 == &GEP)
 | |
|       return nullptr;
 | |
| 
 | |
|     int DI = -1;
 | |
| 
 | |
|     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
 | |
|       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
 | |
|       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
 | |
|         return nullptr;
 | |
| 
 | |
|       // As for Op1 above, don't try to fold a GEP into itself.
 | |
|       if (Op2 == &GEP)
 | |
|         return nullptr;
 | |
| 
 | |
|       // Keep track of the type as we walk the GEP.
 | |
|       Type *CurTy = nullptr;
 | |
| 
 | |
|       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
 | |
|         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
 | |
|           return nullptr;
 | |
| 
 | |
|         if (Op1->getOperand(J) != Op2->getOperand(J)) {
 | |
|           if (DI == -1) {
 | |
|             // We have not seen any differences yet in the GEPs feeding the
 | |
|             // PHI yet, so we record this one if it is allowed to be a
 | |
|             // variable.
 | |
| 
 | |
|             // The first two arguments can vary for any GEP, the rest have to be
 | |
|             // static for struct slots
 | |
|             if (J > 1 && CurTy->isStructTy())
 | |
|               return nullptr;
 | |
| 
 | |
|             DI = J;
 | |
|           } else {
 | |
|             // The GEP is different by more than one input. While this could be
 | |
|             // extended to support GEPs that vary by more than one variable it
 | |
|             // doesn't make sense since it greatly increases the complexity and
 | |
|             // would result in an R+R+R addressing mode which no backend
 | |
|             // directly supports and would need to be broken into several
 | |
|             // simpler instructions anyway.
 | |
|             return nullptr;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Sink down a layer of the type for the next iteration.
 | |
|         if (J > 0) {
 | |
|           if (J == 1) {
 | |
|             CurTy = Op1->getSourceElementType();
 | |
|           } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
 | |
|             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
 | |
|           } else {
 | |
|             CurTy = nullptr;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If not all GEPs are identical we'll have to create a new PHI node.
 | |
|     // Check that the old PHI node has only one use so that it will get
 | |
|     // removed.
 | |
|     if (DI != -1 && !PN->hasOneUse())
 | |
|       return nullptr;
 | |
| 
 | |
|     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
 | |
|     if (DI == -1) {
 | |
|       // All the GEPs feeding the PHI are identical. Clone one down into our
 | |
|       // BB so that it can be merged with the current GEP.
 | |
|       GEP.getParent()->getInstList().insert(
 | |
|           GEP.getParent()->getFirstInsertionPt(), NewGEP);
 | |
|     } else {
 | |
|       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
 | |
|       // into the current block so it can be merged, and create a new PHI to
 | |
|       // set that index.
 | |
|       PHINode *NewPN;
 | |
|       {
 | |
|         IRBuilderBase::InsertPointGuard Guard(*Builder);
 | |
|         Builder->SetInsertPoint(PN);
 | |
|         NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
 | |
|                                    PN->getNumOperands());
 | |
|       }
 | |
| 
 | |
|       for (auto &I : PN->operands())
 | |
|         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
 | |
|                            PN->getIncomingBlock(I));
 | |
| 
 | |
|       NewGEP->setOperand(DI, NewPN);
 | |
|       GEP.getParent()->getInstList().insert(
 | |
|           GEP.getParent()->getFirstInsertionPt(), NewGEP);
 | |
|       NewGEP->setOperand(DI, NewPN);
 | |
|     }
 | |
| 
 | |
|     GEP.setOperand(0, NewGEP);
 | |
|     PtrOp = NewGEP;
 | |
|   }
 | |
| 
 | |
|   // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|   // is a getelementptr instruction, combine the indices of the two
 | |
|   // getelementptr instructions into a single instruction.
 | |
|   //
 | |
|   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
 | |
|     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Note that if our source is a gep chain itself then we wait for that
 | |
|     // chain to be resolved before we perform this transformation.  This
 | |
|     // avoids us creating a TON of code in some cases.
 | |
|     if (GEPOperator *SrcGEP =
 | |
|           dyn_cast<GEPOperator>(Src->getOperand(0)))
 | |
|       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
 | |
|         return nullptr;   // Wait until our source is folded to completion.
 | |
| 
 | |
|     SmallVector<Value*, 8> Indices;
 | |
| 
 | |
|     // Find out whether the last index in the source GEP is a sequential idx.
 | |
|     bool EndsWithSequential = false;
 | |
|     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
 | |
|          I != E; ++I)
 | |
|       EndsWithSequential = I.isSequential();
 | |
| 
 | |
|     // Can we combine the two pointer arithmetics offsets?
 | |
|     if (EndsWithSequential) {
 | |
|       // Replace: gep (gep %P, long B), long A, ...
 | |
|       // With:    T = long A+B; gep %P, T, ...
 | |
|       //
 | |
|       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
 | |
|       Value *GO1 = GEP.getOperand(1);
 | |
| 
 | |
|       // If they aren't the same type, then the input hasn't been processed
 | |
|       // by the loop above yet (which canonicalizes sequential index types to
 | |
|       // intptr_t).  Just avoid transforming this until the input has been
 | |
|       // normalized.
 | |
|       if (SO1->getType() != GO1->getType())
 | |
|         return nullptr;
 | |
| 
 | |
|       Value* Sum = SimplifyAddInst(GO1, SO1, false, false, DL, &TLI, &DT, &AC);
 | |
|       // Only do the combine when we are sure the cost after the
 | |
|       // merge is never more than that before the merge.
 | |
|       if (Sum == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|       // Update the GEP in place if possible.
 | |
|       if (Src->getNumOperands() == 2) {
 | |
|         GEP.setOperand(0, Src->getOperand(0));
 | |
|         GEP.setOperand(1, Sum);
 | |
|         return &GEP;
 | |
|       }
 | |
|       Indices.append(Src->op_begin()+1, Src->op_end()-1);
 | |
|       Indices.push_back(Sum);
 | |
|       Indices.append(GEP.op_begin()+2, GEP.op_end());
 | |
|     } else if (isa<Constant>(*GEP.idx_begin()) &&
 | |
|                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | |
|                Src->getNumOperands() != 1) {
 | |
|       // Otherwise we can do the fold if the first index of the GEP is a zero
 | |
|       Indices.append(Src->op_begin()+1, Src->op_end());
 | |
|       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
 | |
|     }
 | |
| 
 | |
|     if (!Indices.empty())
 | |
|       return GEP.isInBounds() && Src->isInBounds()
 | |
|                  ? GetElementPtrInst::CreateInBounds(
 | |
|                        Src->getSourceElementType(), Src->getOperand(0), Indices,
 | |
|                        GEP.getName())
 | |
|                  : GetElementPtrInst::Create(Src->getSourceElementType(),
 | |
|                                              Src->getOperand(0), Indices,
 | |
|                                              GEP.getName());
 | |
|   }
 | |
| 
 | |
|   if (GEP.getNumIndices() == 1) {
 | |
|     unsigned AS = GEP.getPointerAddressSpace();
 | |
|     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
 | |
|         DL.getPointerSizeInBits(AS)) {
 | |
|       Type *Ty = GEP.getSourceElementType();
 | |
|       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
 | |
| 
 | |
|       bool Matched = false;
 | |
|       uint64_t C;
 | |
|       Value *V = nullptr;
 | |
|       if (TyAllocSize == 1) {
 | |
|         V = GEP.getOperand(1);
 | |
|         Matched = true;
 | |
|       } else if (match(GEP.getOperand(1),
 | |
|                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
 | |
|         if (TyAllocSize == 1ULL << C)
 | |
|           Matched = true;
 | |
|       } else if (match(GEP.getOperand(1),
 | |
|                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
 | |
|         if (TyAllocSize == C)
 | |
|           Matched = true;
 | |
|       }
 | |
| 
 | |
|       if (Matched) {
 | |
|         // Canonicalize (gep i8* X, -(ptrtoint Y))
 | |
|         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
 | |
|         // The GEP pattern is emitted by the SCEV expander for certain kinds of
 | |
|         // pointer arithmetic.
 | |
|         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
 | |
|           Operator *Index = cast<Operator>(V);
 | |
|           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
 | |
|           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
 | |
|           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
 | |
|         }
 | |
|         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
 | |
|         // to (bitcast Y)
 | |
|         Value *Y;
 | |
|         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
 | |
|                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
 | |
|           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
 | |
|                                                                GEP.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
 | |
|   Value *StrippedPtr = PtrOp->stripPointerCasts();
 | |
|   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
 | |
| 
 | |
|   // We do not handle pointer-vector geps here.
 | |
|   if (!StrippedPtrTy)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (StrippedPtr != PtrOp) {
 | |
|     bool HasZeroPointerIndex = false;
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
 | |
|       HasZeroPointerIndex = C->isZero();
 | |
| 
 | |
|     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
 | |
|     // into     : GEP [10 x i8]* X, i32 0, ...
 | |
|     //
 | |
|     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
 | |
|     //           into     : GEP i8* X, ...
 | |
|     //
 | |
|     // This occurs when the program declares an array extern like "int X[];"
 | |
|     if (HasZeroPointerIndex) {
 | |
|       if (ArrayType *CATy =
 | |
|           dyn_cast<ArrayType>(GEP.getSourceElementType())) {
 | |
|         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
 | |
|         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
 | |
|           // -> GEP i8* X, ...
 | |
|           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
 | |
|           GetElementPtrInst *Res = GetElementPtrInst::Create(
 | |
|               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
 | |
|           Res->setIsInBounds(GEP.isInBounds());
 | |
|           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
 | |
|             return Res;
 | |
|           // Insert Res, and create an addrspacecast.
 | |
|           // e.g.,
 | |
|           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
 | |
|           // ->
 | |
|           // %0 = GEP i8 addrspace(1)* X, ...
 | |
|           // addrspacecast i8 addrspace(1)* %0 to i8*
 | |
|           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
 | |
|         }
 | |
| 
 | |
|         if (ArrayType *XATy =
 | |
|               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
 | |
|           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
 | |
|           if (CATy->getElementType() == XATy->getElementType()) {
 | |
|             // -> GEP [10 x i8]* X, i32 0, ...
 | |
|             // At this point, we know that the cast source type is a pointer
 | |
|             // to an array of the same type as the destination pointer
 | |
|             // array.  Because the array type is never stepped over (there
 | |
|             // is a leading zero) we can fold the cast into this GEP.
 | |
|             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
 | |
|               GEP.setOperand(0, StrippedPtr);
 | |
|               GEP.setSourceElementType(XATy);
 | |
|               return &GEP;
 | |
|             }
 | |
|             // Cannot replace the base pointer directly because StrippedPtr's
 | |
|             // address space is different. Instead, create a new GEP followed by
 | |
|             // an addrspacecast.
 | |
|             // e.g.,
 | |
|             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
 | |
|             //   i32 0, ...
 | |
|             // ->
 | |
|             // %0 = GEP [10 x i8] addrspace(1)* X, ...
 | |
|             // addrspacecast i8 addrspace(1)* %0 to i8*
 | |
|             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
 | |
|             Value *NewGEP = GEP.isInBounds()
 | |
|                                 ? Builder->CreateInBoundsGEP(
 | |
|                                       nullptr, StrippedPtr, Idx, GEP.getName())
 | |
|                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
 | |
|                                                      GEP.getName());
 | |
|             return new AddrSpaceCastInst(NewGEP, GEP.getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (GEP.getNumOperands() == 2) {
 | |
|       // Transform things like:
 | |
|       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
 | |
|       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
 | |
|       Type *SrcElTy = StrippedPtrTy->getElementType();
 | |
|       Type *ResElTy = GEP.getSourceElementType();
 | |
|       if (SrcElTy->isArrayTy() &&
 | |
|           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
 | |
|               DL.getTypeAllocSize(ResElTy)) {
 | |
|         Type *IdxType = DL.getIntPtrType(GEP.getType());
 | |
|         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
 | |
|         Value *NewGEP =
 | |
|             GEP.isInBounds()
 | |
|                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
 | |
|                                              GEP.getName())
 | |
|                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
 | |
| 
 | |
|         // V and GEP are both pointer types --> BitCast
 | |
|         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
 | |
|                                                              GEP.getType());
 | |
|       }
 | |
| 
 | |
|       // Transform things like:
 | |
|       // %V = mul i64 %N, 4
 | |
|       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
 | |
|       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
 | |
|       if (ResElTy->isSized() && SrcElTy->isSized()) {
 | |
|         // Check that changing the type amounts to dividing the index by a scale
 | |
|         // factor.
 | |
|         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
 | |
|         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
 | |
|         if (ResSize && SrcSize % ResSize == 0) {
 | |
|           Value *Idx = GEP.getOperand(1);
 | |
|           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
 | |
|           uint64_t Scale = SrcSize / ResSize;
 | |
| 
 | |
|           // Earlier transforms ensure that the index has type IntPtrType, which
 | |
|           // considerably simplifies the logic by eliminating implicit casts.
 | |
|           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
 | |
|                  "Index not cast to pointer width?");
 | |
| 
 | |
|           bool NSW;
 | |
|           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
 | |
|             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
 | |
|             // If the multiplication NewIdx * Scale may overflow then the new
 | |
|             // GEP may not be "inbounds".
 | |
|             Value *NewGEP =
 | |
|                 GEP.isInBounds() && NSW
 | |
|                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
 | |
|                                                  GEP.getName())
 | |
|                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
 | |
|                                          GEP.getName());
 | |
| 
 | |
|             // The NewGEP must be pointer typed, so must the old one -> BitCast
 | |
|             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
 | |
|                                                                  GEP.getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Similarly, transform things like:
 | |
|       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
 | |
|       //   (where tmp = 8*tmp2) into:
 | |
|       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
 | |
|       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
 | |
|         // Check that changing to the array element type amounts to dividing the
 | |
|         // index by a scale factor.
 | |
|         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
 | |
|         uint64_t ArrayEltSize =
 | |
|             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
 | |
|         if (ResSize && ArrayEltSize % ResSize == 0) {
 | |
|           Value *Idx = GEP.getOperand(1);
 | |
|           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
 | |
|           uint64_t Scale = ArrayEltSize / ResSize;
 | |
| 
 | |
|           // Earlier transforms ensure that the index has type IntPtrType, which
 | |
|           // considerably simplifies the logic by eliminating implicit casts.
 | |
|           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
 | |
|                  "Index not cast to pointer width?");
 | |
| 
 | |
|           bool NSW;
 | |
|           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
 | |
|             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
 | |
|             // If the multiplication NewIdx * Scale may overflow then the new
 | |
|             // GEP may not be "inbounds".
 | |
|             Value *Off[2] = {
 | |
|                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
 | |
|                 NewIdx};
 | |
| 
 | |
|             Value *NewGEP = GEP.isInBounds() && NSW
 | |
|                                 ? Builder->CreateInBoundsGEP(
 | |
|                                       SrcElTy, StrippedPtr, Off, GEP.getName())
 | |
|                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
 | |
|                                                      GEP.getName());
 | |
|             // The NewGEP must be pointer typed, so must the old one -> BitCast
 | |
|             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
 | |
|                                                                  GEP.getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // addrspacecast between types is canonicalized as a bitcast, then an
 | |
|   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
 | |
|   // through the addrspacecast.
 | |
|   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
 | |
|     //   X = bitcast A addrspace(1)* to B addrspace(1)*
 | |
|     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
 | |
|     //   Z = gep Y, <...constant indices...>
 | |
|     // Into an addrspacecasted GEP of the struct.
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
 | |
|       PtrOp = BC;
 | |
|   }
 | |
| 
 | |
|   /// See if we can simplify:
 | |
|   ///   X = bitcast A* to B*
 | |
|   ///   Y = gep X, <...constant indices...>
 | |
|   /// into a gep of the original struct.  This is important for SROA and alias
 | |
|   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
 | |
|     Value *Operand = BCI->getOperand(0);
 | |
|     PointerType *OpType = cast<PointerType>(Operand->getType());
 | |
|     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
 | |
|     APInt Offset(OffsetBits, 0);
 | |
|     if (!isa<BitCastInst>(Operand) &&
 | |
|         GEP.accumulateConstantOffset(DL, Offset)) {
 | |
| 
 | |
|       // If this GEP instruction doesn't move the pointer, just replace the GEP
 | |
|       // with a bitcast of the real input to the dest type.
 | |
|       if (!Offset) {
 | |
|         // If the bitcast is of an allocation, and the allocation will be
 | |
|         // converted to match the type of the cast, don't touch this.
 | |
|         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) {
 | |
|           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
 | |
|           if (Instruction *I = visitBitCast(*BCI)) {
 | |
|             if (I != BCI) {
 | |
|               I->takeName(BCI);
 | |
|               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
 | |
|               replaceInstUsesWith(*BCI, I);
 | |
|             }
 | |
|             return &GEP;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
 | |
|           return new AddrSpaceCastInst(Operand, GEP.getType());
 | |
|         return new BitCastInst(Operand, GEP.getType());
 | |
|       }
 | |
| 
 | |
|       // Otherwise, if the offset is non-zero, we need to find out if there is a
 | |
|       // field at Offset in 'A's type.  If so, we can pull the cast through the
 | |
|       // GEP.
 | |
|       SmallVector<Value*, 8> NewIndices;
 | |
|       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
 | |
|         Value *NGEP =
 | |
|             GEP.isInBounds()
 | |
|                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
 | |
|                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
 | |
| 
 | |
|         if (NGEP->getType() == GEP.getType())
 | |
|           return replaceInstUsesWith(GEP, NGEP);
 | |
|         NGEP->takeName(&GEP);
 | |
| 
 | |
|         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
 | |
|           return new AddrSpaceCastInst(NGEP, GEP.getType());
 | |
|         return new BitCastInst(NGEP, GEP.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!GEP.isInBounds()) {
 | |
|     unsigned PtrWidth =
 | |
|         DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace());
 | |
|     APInt BasePtrOffset(PtrWidth, 0);
 | |
|     Value *UnderlyingPtrOp =
 | |
|             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
 | |
|                                                              BasePtrOffset);
 | |
|     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
 | |
|       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
 | |
|           BasePtrOffset.isNonNegative()) {
 | |
|         APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
 | |
|         if (BasePtrOffset.ule(AllocSize)) {
 | |
|           return GetElementPtrInst::CreateInBounds(
 | |
|               PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
 | |
|                                          Instruction *AI) {
 | |
|   if (isa<ConstantPointerNull>(V))
 | |
|     return true;
 | |
|   if (auto *LI = dyn_cast<LoadInst>(V))
 | |
|     return isa<GlobalVariable>(LI->getPointerOperand());
 | |
|   // Two distinct allocations will never be equal.
 | |
|   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
 | |
|   // through bitcasts of V can cause
 | |
|   // the result statement below to be true, even when AI and V (ex:
 | |
|   // i8* ->i32* ->i8* of AI) are the same allocations.
 | |
|   return isAllocLikeFn(V, TLI) && V != AI;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
 | |
|                      const TargetLibraryInfo *TLI) {
 | |
|   SmallVector<Instruction*, 4> Worklist;
 | |
|   Worklist.push_back(AI);
 | |
| 
 | |
|   do {
 | |
|     Instruction *PI = Worklist.pop_back_val();
 | |
|     for (User *U : PI->users()) {
 | |
|       Instruction *I = cast<Instruction>(U);
 | |
|       switch (I->getOpcode()) {
 | |
|       default:
 | |
|         // Give up the moment we see something we can't handle.
 | |
|         return false;
 | |
| 
 | |
|       case Instruction::BitCast:
 | |
|       case Instruction::GetElementPtr:
 | |
|         Users.emplace_back(I);
 | |
|         Worklist.push_back(I);
 | |
|         continue;
 | |
| 
 | |
|       case Instruction::ICmp: {
 | |
|         ICmpInst *ICI = cast<ICmpInst>(I);
 | |
|         // We can fold eq/ne comparisons with null to false/true, respectively.
 | |
|         // We also fold comparisons in some conditions provided the alloc has
 | |
|         // not escaped (see isNeverEqualToUnescapedAlloc).
 | |
|         if (!ICI->isEquality())
 | |
|           return false;
 | |
|         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
 | |
|         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
 | |
|           return false;
 | |
|         Users.emplace_back(I);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       case Instruction::Call:
 | |
|         // Ignore no-op and store intrinsics.
 | |
|         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|           switch (II->getIntrinsicID()) {
 | |
|           default:
 | |
|             return false;
 | |
| 
 | |
|           case Intrinsic::memmove:
 | |
|           case Intrinsic::memcpy:
 | |
|           case Intrinsic::memset: {
 | |
|             MemIntrinsic *MI = cast<MemIntrinsic>(II);
 | |
|             if (MI->isVolatile() || MI->getRawDest() != PI)
 | |
|               return false;
 | |
|             LLVM_FALLTHROUGH;
 | |
|           }
 | |
|           case Intrinsic::dbg_declare:
 | |
|           case Intrinsic::dbg_value:
 | |
|           case Intrinsic::invariant_start:
 | |
|           case Intrinsic::invariant_end:
 | |
|           case Intrinsic::lifetime_start:
 | |
|           case Intrinsic::lifetime_end:
 | |
|           case Intrinsic::objectsize:
 | |
|             Users.emplace_back(I);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (isFreeCall(I, TLI)) {
 | |
|           Users.emplace_back(I);
 | |
|           continue;
 | |
|         }
 | |
|         return false;
 | |
| 
 | |
|       case Instruction::Store: {
 | |
|         StoreInst *SI = cast<StoreInst>(I);
 | |
|         if (SI->isVolatile() || SI->getPointerOperand() != PI)
 | |
|           return false;
 | |
|         Users.emplace_back(I);
 | |
|         continue;
 | |
|       }
 | |
|       }
 | |
|       llvm_unreachable("missing a return?");
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
 | |
|   // If we have a malloc call which is only used in any amount of comparisons
 | |
|   // to null and free calls, delete the calls and replace the comparisons with
 | |
|   // true or false as appropriate.
 | |
|   SmallVector<WeakVH, 64> Users;
 | |
|   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
 | |
|     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
 | |
|       // Lowering all @llvm.objectsize calls first because they may
 | |
|       // use a bitcast/GEP of the alloca we are removing.
 | |
|       if (!Users[i])
 | |
|        continue;
 | |
| 
 | |
|       Instruction *I = cast<Instruction>(&*Users[i]);
 | |
| 
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::objectsize) {
 | |
|           ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
 | |
|                                                     /*MustSucceed=*/true);
 | |
|           replaceInstUsesWith(*I, Result);
 | |
|           eraseInstFromFunction(*I);
 | |
|           Users[i] = nullptr; // Skip examining in the next loop.
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
 | |
|       if (!Users[i])
 | |
|         continue;
 | |
| 
 | |
|       Instruction *I = cast<Instruction>(&*Users[i]);
 | |
| 
 | |
|       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
 | |
|         replaceInstUsesWith(*C,
 | |
|                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
 | |
|                                              C->isFalseWhenEqual()));
 | |
|       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
 | |
|         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
 | |
|       }
 | |
|       eraseInstFromFunction(*I);
 | |
|     }
 | |
| 
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
 | |
|       // Replace invoke with a NOP intrinsic to maintain the original CFG
 | |
|       Module *M = II->getModule();
 | |
|       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
 | |
|       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
 | |
|                          None, "", II->getParent());
 | |
|     }
 | |
|     return eraseInstFromFunction(MI);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Move the call to free before a NULL test.
 | |
| ///
 | |
| /// Check if this free is accessed after its argument has been test
 | |
| /// against NULL (property 0).
 | |
| /// If yes, it is legal to move this call in its predecessor block.
 | |
| ///
 | |
| /// The move is performed only if the block containing the call to free
 | |
| /// will be removed, i.e.:
 | |
| /// 1. it has only one predecessor P, and P has two successors
 | |
| /// 2. it contains the call and an unconditional branch
 | |
| /// 3. its successor is the same as its predecessor's successor
 | |
| ///
 | |
| /// The profitability is out-of concern here and this function should
 | |
| /// be called only if the caller knows this transformation would be
 | |
| /// profitable (e.g., for code size).
 | |
| static Instruction *
 | |
| tryToMoveFreeBeforeNullTest(CallInst &FI) {
 | |
|   Value *Op = FI.getArgOperand(0);
 | |
|   BasicBlock *FreeInstrBB = FI.getParent();
 | |
|   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
 | |
| 
 | |
|   // Validate part of constraint #1: Only one predecessor
 | |
|   // FIXME: We can extend the number of predecessor, but in that case, we
 | |
|   //        would duplicate the call to free in each predecessor and it may
 | |
|   //        not be profitable even for code size.
 | |
|   if (!PredBB)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Validate constraint #2: Does this block contains only the call to
 | |
|   //                         free and an unconditional branch?
 | |
|   // FIXME: We could check if we can speculate everything in the
 | |
|   //        predecessor block
 | |
|   if (FreeInstrBB->size() != 2)
 | |
|     return nullptr;
 | |
|   BasicBlock *SuccBB;
 | |
|   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Validate the rest of constraint #1 by matching on the pred branch.
 | |
|   TerminatorInst *TI = PredBB->getTerminator();
 | |
|   BasicBlock *TrueBB, *FalseBB;
 | |
|   ICmpInst::Predicate Pred;
 | |
|   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
 | |
|     return nullptr;
 | |
|   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Validate constraint #3: Ensure the null case just falls through.
 | |
|   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
 | |
|     return nullptr;
 | |
|   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
 | |
|          "Broken CFG: missing edge from predecessor to successor");
 | |
| 
 | |
|   FI.moveBefore(TI);
 | |
|   return &FI;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitFree(CallInst &FI) {
 | |
|   Value *Op = FI.getArgOperand(0);
 | |
| 
 | |
|   // free undef -> unreachable.
 | |
|   if (isa<UndefValue>(Op)) {
 | |
|     // Insert a new store to null because we cannot modify the CFG here.
 | |
|     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
 | |
|                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
 | |
|     return eraseInstFromFunction(FI);
 | |
|   }
 | |
| 
 | |
|   // If we have 'free null' delete the instruction.  This can happen in stl code
 | |
|   // when lots of inlining happens.
 | |
|   if (isa<ConstantPointerNull>(Op))
 | |
|     return eraseInstFromFunction(FI);
 | |
| 
 | |
|   // If we optimize for code size, try to move the call to free before the null
 | |
|   // test so that simplify cfg can remove the empty block and dead code
 | |
|   // elimination the branch. I.e., helps to turn something like:
 | |
|   // if (foo) free(foo);
 | |
|   // into
 | |
|   // free(foo);
 | |
|   if (MinimizeSize)
 | |
|     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
 | |
|       return I;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
 | |
|   if (RI.getNumOperands() == 0) // ret void
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *ResultOp = RI.getOperand(0);
 | |
|   Type *VTy = ResultOp->getType();
 | |
|   if (!VTy->isIntegerTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // There might be assume intrinsics dominating this return that completely
 | |
|   // determine the value. If so, constant fold it.
 | |
|   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
 | |
|   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
 | |
|   if ((KnownZero|KnownOne).isAllOnesValue())
 | |
|     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | |
|   // Change br (not X), label True, label False to: br X, label False, True
 | |
|   Value *X = nullptr;
 | |
|   BasicBlock *TrueDest;
 | |
|   BasicBlock *FalseDest;
 | |
|   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // Swap Destinations and condition...
 | |
|     BI.setCondition(X);
 | |
|     BI.swapSuccessors();
 | |
|     return &BI;
 | |
|   }
 | |
| 
 | |
|   // If the condition is irrelevant, remove the use so that other
 | |
|   // transforms on the condition become more effective.
 | |
|   if (BI.isConditional() &&
 | |
|       BI.getSuccessor(0) == BI.getSuccessor(1) &&
 | |
|       !isa<UndefValue>(BI.getCondition())) {
 | |
|     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
 | |
|     return &BI;
 | |
|   }
 | |
| 
 | |
|   // Canonicalize fcmp_one -> fcmp_oeq
 | |
|   FCmpInst::Predicate FPred; Value *Y;
 | |
|   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
 | |
|                              TrueDest, FalseDest)) &&
 | |
|       BI.getCondition()->hasOneUse())
 | |
|     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
 | |
|         FPred == FCmpInst::FCMP_OGE) {
 | |
|       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
 | |
|       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
 | |
| 
 | |
|       // Swap Destinations and condition.
 | |
|       BI.swapSuccessors();
 | |
|       Worklist.Add(Cond);
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   // Canonicalize icmp_ne -> icmp_eq
 | |
|   ICmpInst::Predicate IPred;
 | |
|   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
 | |
|                       TrueDest, FalseDest)) &&
 | |
|       BI.getCondition()->hasOneUse())
 | |
|     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
 | |
|         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
 | |
|         IPred == ICmpInst::ICMP_SGE) {
 | |
|       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
 | |
|       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
 | |
|       // Swap Destinations and condition.
 | |
|       BI.swapSuccessors();
 | |
|       Worklist.Add(Cond);
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | |
|   Value *Cond = SI.getCondition();
 | |
|   Value *Op0;
 | |
|   ConstantInt *AddRHS;
 | |
|   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
 | |
|     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
 | |
|     for (SwitchInst::CaseIt CaseIter : SI.cases()) {
 | |
|       Constant *NewCase = ConstantExpr::getSub(CaseIter.getCaseValue(), AddRHS);
 | |
|       assert(isa<ConstantInt>(NewCase) &&
 | |
|              "Result of expression should be constant");
 | |
|       CaseIter.setValue(cast<ConstantInt>(NewCase));
 | |
|     }
 | |
|     SI.setCondition(Op0);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
 | |
|   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
 | |
|   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
 | |
|   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
 | |
| 
 | |
|   // Compute the number of leading bits we can ignore.
 | |
|   // TODO: A better way to determine this would use ComputeNumSignBits().
 | |
|   for (auto &C : SI.cases()) {
 | |
|     LeadingKnownZeros = std::min(
 | |
|         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
 | |
|     LeadingKnownOnes = std::min(
 | |
|         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
 | |
|   }
 | |
| 
 | |
|   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
 | |
| 
 | |
|   // Shrink the condition operand if the new type is smaller than the old type.
 | |
|   // This may produce a non-standard type for the switch, but that's ok because
 | |
|   // the backend should extend back to a legal type for the target.
 | |
|   if (NewWidth > 0 && NewWidth < BitWidth) {
 | |
|     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
 | |
|     Builder->SetInsertPoint(&SI);
 | |
|     Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
 | |
|     SI.setCondition(NewCond);
 | |
| 
 | |
|     for (SwitchInst::CaseIt CaseIter : SI.cases()) {
 | |
|       APInt TruncatedCase = CaseIter.getCaseValue()->getValue().trunc(NewWidth);
 | |
|       CaseIter.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
 | |
|     }
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
 | |
|   Value *Agg = EV.getAggregateOperand();
 | |
| 
 | |
|   if (!EV.hasIndices())
 | |
|     return replaceInstUsesWith(EV, Agg);
 | |
| 
 | |
|   if (Value *V =
 | |
|           SimplifyExtractValueInst(Agg, EV.getIndices(), DL, &TLI, &DT, &AC))
 | |
|     return replaceInstUsesWith(EV, V);
 | |
| 
 | |
|   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
 | |
|     // We're extracting from an insertvalue instruction, compare the indices
 | |
|     const unsigned *exti, *exte, *insi, *inse;
 | |
|     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
 | |
|          exte = EV.idx_end(), inse = IV->idx_end();
 | |
|          exti != exte && insi != inse;
 | |
|          ++exti, ++insi) {
 | |
|       if (*insi != *exti)
 | |
|         // The insert and extract both reference distinctly different elements.
 | |
|         // This means the extract is not influenced by the insert, and we can
 | |
|         // replace the aggregate operand of the extract with the aggregate
 | |
|         // operand of the insert. i.e., replace
 | |
|         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | |
|         // %E = extractvalue { i32, { i32 } } %I, 0
 | |
|         // with
 | |
|         // %E = extractvalue { i32, { i32 } } %A, 0
 | |
|         return ExtractValueInst::Create(IV->getAggregateOperand(),
 | |
|                                         EV.getIndices());
 | |
|     }
 | |
|     if (exti == exte && insi == inse)
 | |
|       // Both iterators are at the end: Index lists are identical. Replace
 | |
|       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | |
|       // %C = extractvalue { i32, { i32 } } %B, 1, 0
 | |
|       // with "i32 42"
 | |
|       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
 | |
|     if (exti == exte) {
 | |
|       // The extract list is a prefix of the insert list. i.e. replace
 | |
|       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | |
|       // %E = extractvalue { i32, { i32 } } %I, 1
 | |
|       // with
 | |
|       // %X = extractvalue { i32, { i32 } } %A, 1
 | |
|       // %E = insertvalue { i32 } %X, i32 42, 0
 | |
|       // by switching the order of the insert and extract (though the
 | |
|       // insertvalue should be left in, since it may have other uses).
 | |
|       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
 | |
|                                                  EV.getIndices());
 | |
|       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
 | |
|                                      makeArrayRef(insi, inse));
 | |
|     }
 | |
|     if (insi == inse)
 | |
|       // The insert list is a prefix of the extract list
 | |
|       // We can simply remove the common indices from the extract and make it
 | |
|       // operate on the inserted value instead of the insertvalue result.
 | |
|       // i.e., replace
 | |
|       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | |
|       // %E = extractvalue { i32, { i32 } } %I, 1, 0
 | |
|       // with
 | |
|       // %E extractvalue { i32 } { i32 42 }, 0
 | |
|       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
 | |
|                                       makeArrayRef(exti, exte));
 | |
|   }
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
 | |
|     // We're extracting from an intrinsic, see if we're the only user, which
 | |
|     // allows us to simplify multiple result intrinsics to simpler things that
 | |
|     // just get one value.
 | |
|     if (II->hasOneUse()) {
 | |
|       // Check if we're grabbing the overflow bit or the result of a 'with
 | |
|       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
 | |
|       // and replace it with a traditional binary instruction.
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       case Intrinsic::uadd_with_overflow:
 | |
|       case Intrinsic::sadd_with_overflow:
 | |
|         if (*EV.idx_begin() == 0) {  // Normal result.
 | |
|           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | |
|           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
|           eraseInstFromFunction(*II);
 | |
|           return BinaryOperator::CreateAdd(LHS, RHS);
 | |
|         }
 | |
| 
 | |
|         // If the normal result of the add is dead, and the RHS is a constant,
 | |
|         // we can transform this into a range comparison.
 | |
|         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
 | |
|         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
 | |
|             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
 | |
|                                 ConstantExpr::getNot(CI));
 | |
|         break;
 | |
|       case Intrinsic::usub_with_overflow:
 | |
|       case Intrinsic::ssub_with_overflow:
 | |
|         if (*EV.idx_begin() == 0) {  // Normal result.
 | |
|           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | |
|           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
|           eraseInstFromFunction(*II);
 | |
|           return BinaryOperator::CreateSub(LHS, RHS);
 | |
|         }
 | |
|         break;
 | |
|       case Intrinsic::umul_with_overflow:
 | |
|       case Intrinsic::smul_with_overflow:
 | |
|         if (*EV.idx_begin() == 0) {  // Normal result.
 | |
|           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | |
|           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | |
|           eraseInstFromFunction(*II);
 | |
|           return BinaryOperator::CreateMul(LHS, RHS);
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
 | |
|     // If the (non-volatile) load only has one use, we can rewrite this to a
 | |
|     // load from a GEP. This reduces the size of the load. If a load is used
 | |
|     // only by extractvalue instructions then this either must have been
 | |
|     // optimized before, or it is a struct with padding, in which case we
 | |
|     // don't want to do the transformation as it loses padding knowledge.
 | |
|     if (L->isSimple() && L->hasOneUse()) {
 | |
|       // extractvalue has integer indices, getelementptr has Value*s. Convert.
 | |
|       SmallVector<Value*, 4> Indices;
 | |
|       // Prefix an i32 0 since we need the first element.
 | |
|       Indices.push_back(Builder->getInt32(0));
 | |
|       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
 | |
|             I != E; ++I)
 | |
|         Indices.push_back(Builder->getInt32(*I));
 | |
| 
 | |
|       // We need to insert these at the location of the old load, not at that of
 | |
|       // the extractvalue.
 | |
|       Builder->SetInsertPoint(L);
 | |
|       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
 | |
|                                               L->getPointerOperand(), Indices);
 | |
|       // Returning the load directly will cause the main loop to insert it in
 | |
|       // the wrong spot, so use replaceInstUsesWith().
 | |
|       return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
 | |
|     }
 | |
|   // We could simplify extracts from other values. Note that nested extracts may
 | |
|   // already be simplified implicitly by the above: extract (extract (insert) )
 | |
|   // will be translated into extract ( insert ( extract ) ) first and then just
 | |
|   // the value inserted, if appropriate. Similarly for extracts from single-use
 | |
|   // loads: extract (extract (load)) will be translated to extract (load (gep))
 | |
|   // and if again single-use then via load (gep (gep)) to load (gep).
 | |
|   // However, double extracts from e.g. function arguments or return values
 | |
|   // aren't handled yet.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return 'true' if the given typeinfo will match anything.
 | |
| static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
 | |
|   switch (Personality) {
 | |
|   case EHPersonality::GNU_C:
 | |
|   case EHPersonality::GNU_C_SjLj:
 | |
|   case EHPersonality::Rust:
 | |
|     // The GCC C EH and Rust personality only exists to support cleanups, so
 | |
|     // it's not clear what the semantics of catch clauses are.
 | |
|     return false;
 | |
|   case EHPersonality::Unknown:
 | |
|     return false;
 | |
|   case EHPersonality::GNU_Ada:
 | |
|     // While __gnat_all_others_value will match any Ada exception, it doesn't
 | |
|     // match foreign exceptions (or didn't, before gcc-4.7).
 | |
|     return false;
 | |
|   case EHPersonality::GNU_CXX:
 | |
|   case EHPersonality::GNU_CXX_SjLj:
 | |
|   case EHPersonality::GNU_ObjC:
 | |
|   case EHPersonality::MSVC_X86SEH:
 | |
|   case EHPersonality::MSVC_Win64SEH:
 | |
|   case EHPersonality::MSVC_CXX:
 | |
|   case EHPersonality::CoreCLR:
 | |
|     return TypeInfo->isNullValue();
 | |
|   }
 | |
|   llvm_unreachable("invalid enum");
 | |
| }
 | |
| 
 | |
| static bool shorter_filter(const Value *LHS, const Value *RHS) {
 | |
|   return
 | |
|     cast<ArrayType>(LHS->getType())->getNumElements()
 | |
|   <
 | |
|     cast<ArrayType>(RHS->getType())->getNumElements();
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
 | |
|   // The logic here should be correct for any real-world personality function.
 | |
|   // However if that turns out not to be true, the offending logic can always
 | |
|   // be conditioned on the personality function, like the catch-all logic is.
 | |
|   EHPersonality Personality =
 | |
|       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
 | |
| 
 | |
|   // Simplify the list of clauses, eg by removing repeated catch clauses
 | |
|   // (these are often created by inlining).
 | |
|   bool MakeNewInstruction = false; // If true, recreate using the following:
 | |
|   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
 | |
|   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
 | |
| 
 | |
|   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
 | |
|   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
 | |
|     bool isLastClause = i + 1 == e;
 | |
|     if (LI.isCatch(i)) {
 | |
|       // A catch clause.
 | |
|       Constant *CatchClause = LI.getClause(i);
 | |
|       Constant *TypeInfo = CatchClause->stripPointerCasts();
 | |
| 
 | |
|       // If we already saw this clause, there is no point in having a second
 | |
|       // copy of it.
 | |
|       if (AlreadyCaught.insert(TypeInfo).second) {
 | |
|         // This catch clause was not already seen.
 | |
|         NewClauses.push_back(CatchClause);
 | |
|       } else {
 | |
|         // Repeated catch clause - drop the redundant copy.
 | |
|         MakeNewInstruction = true;
 | |
|       }
 | |
| 
 | |
|       // If this is a catch-all then there is no point in keeping any following
 | |
|       // clauses or marking the landingpad as having a cleanup.
 | |
|       if (isCatchAll(Personality, TypeInfo)) {
 | |
|         if (!isLastClause)
 | |
|           MakeNewInstruction = true;
 | |
|         CleanupFlag = false;
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       // A filter clause.  If any of the filter elements were already caught
 | |
|       // then they can be dropped from the filter.  It is tempting to try to
 | |
|       // exploit the filter further by saying that any typeinfo that does not
 | |
|       // occur in the filter can't be caught later (and thus can be dropped).
 | |
|       // However this would be wrong, since typeinfos can match without being
 | |
|       // equal (for example if one represents a C++ class, and the other some
 | |
|       // class derived from it).
 | |
|       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
 | |
|       Constant *FilterClause = LI.getClause(i);
 | |
|       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
 | |
|       unsigned NumTypeInfos = FilterType->getNumElements();
 | |
| 
 | |
|       // An empty filter catches everything, so there is no point in keeping any
 | |
|       // following clauses or marking the landingpad as having a cleanup.  By
 | |
|       // dealing with this case here the following code is made a bit simpler.
 | |
|       if (!NumTypeInfos) {
 | |
|         NewClauses.push_back(FilterClause);
 | |
|         if (!isLastClause)
 | |
|           MakeNewInstruction = true;
 | |
|         CleanupFlag = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       bool MakeNewFilter = false; // If true, make a new filter.
 | |
|       SmallVector<Constant *, 16> NewFilterElts; // New elements.
 | |
|       if (isa<ConstantAggregateZero>(FilterClause)) {
 | |
|         // Not an empty filter - it contains at least one null typeinfo.
 | |
|         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
 | |
|         Constant *TypeInfo =
 | |
|           Constant::getNullValue(FilterType->getElementType());
 | |
|         // If this typeinfo is a catch-all then the filter can never match.
 | |
|         if (isCatchAll(Personality, TypeInfo)) {
 | |
|           // Throw the filter away.
 | |
|           MakeNewInstruction = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // There is no point in having multiple copies of this typeinfo, so
 | |
|         // discard all but the first copy if there is more than one.
 | |
|         NewFilterElts.push_back(TypeInfo);
 | |
|         if (NumTypeInfos > 1)
 | |
|           MakeNewFilter = true;
 | |
|       } else {
 | |
|         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
 | |
|         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
 | |
|         NewFilterElts.reserve(NumTypeInfos);
 | |
| 
 | |
|         // Remove any filter elements that were already caught or that already
 | |
|         // occurred in the filter.  While there, see if any of the elements are
 | |
|         // catch-alls.  If so, the filter can be discarded.
 | |
|         bool SawCatchAll = false;
 | |
|         for (unsigned j = 0; j != NumTypeInfos; ++j) {
 | |
|           Constant *Elt = Filter->getOperand(j);
 | |
|           Constant *TypeInfo = Elt->stripPointerCasts();
 | |
|           if (isCatchAll(Personality, TypeInfo)) {
 | |
|             // This element is a catch-all.  Bail out, noting this fact.
 | |
|             SawCatchAll = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Even if we've seen a type in a catch clause, we don't want to
 | |
|           // remove it from the filter.  An unexpected type handler may be
 | |
|           // set up for a call site which throws an exception of the same
 | |
|           // type caught.  In order for the exception thrown by the unexpected
 | |
|           // handler to propagate correctly, the filter must be correctly
 | |
|           // described for the call site.
 | |
|           //
 | |
|           // Example:
 | |
|           //
 | |
|           // void unexpected() { throw 1;}
 | |
|           // void foo() throw (int) {
 | |
|           //   std::set_unexpected(unexpected);
 | |
|           //   try {
 | |
|           //     throw 2.0;
 | |
|           //   } catch (int i) {}
 | |
|           // }
 | |
| 
 | |
|           // There is no point in having multiple copies of the same typeinfo in
 | |
|           // a filter, so only add it if we didn't already.
 | |
|           if (SeenInFilter.insert(TypeInfo).second)
 | |
|             NewFilterElts.push_back(cast<Constant>(Elt));
 | |
|         }
 | |
|         // A filter containing a catch-all cannot match anything by definition.
 | |
|         if (SawCatchAll) {
 | |
|           // Throw the filter away.
 | |
|           MakeNewInstruction = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If we dropped something from the filter, make a new one.
 | |
|         if (NewFilterElts.size() < NumTypeInfos)
 | |
|           MakeNewFilter = true;
 | |
|       }
 | |
|       if (MakeNewFilter) {
 | |
|         FilterType = ArrayType::get(FilterType->getElementType(),
 | |
|                                     NewFilterElts.size());
 | |
|         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
 | |
|         MakeNewInstruction = true;
 | |
|       }
 | |
| 
 | |
|       NewClauses.push_back(FilterClause);
 | |
| 
 | |
|       // If the new filter is empty then it will catch everything so there is
 | |
|       // no point in keeping any following clauses or marking the landingpad
 | |
|       // as having a cleanup.  The case of the original filter being empty was
 | |
|       // already handled above.
 | |
|       if (MakeNewFilter && !NewFilterElts.size()) {
 | |
|         assert(MakeNewInstruction && "New filter but not a new instruction!");
 | |
|         CleanupFlag = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If several filters occur in a row then reorder them so that the shortest
 | |
|   // filters come first (those with the smallest number of elements).  This is
 | |
|   // advantageous because shorter filters are more likely to match, speeding up
 | |
|   // unwinding, but mostly because it increases the effectiveness of the other
 | |
|   // filter optimizations below.
 | |
|   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
 | |
|     unsigned j;
 | |
|     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
 | |
|     for (j = i; j != e; ++j)
 | |
|       if (!isa<ArrayType>(NewClauses[j]->getType()))
 | |
|         break;
 | |
| 
 | |
|     // Check whether the filters are already sorted by length.  We need to know
 | |
|     // if sorting them is actually going to do anything so that we only make a
 | |
|     // new landingpad instruction if it does.
 | |
|     for (unsigned k = i; k + 1 < j; ++k)
 | |
|       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
 | |
|         // Not sorted, so sort the filters now.  Doing an unstable sort would be
 | |
|         // correct too but reordering filters pointlessly might confuse users.
 | |
|         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
 | |
|                          shorter_filter);
 | |
|         MakeNewInstruction = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // Look for the next batch of filters.
 | |
|     i = j + 1;
 | |
|   }
 | |
| 
 | |
|   // If typeinfos matched if and only if equal, then the elements of a filter L
 | |
|   // that occurs later than a filter F could be replaced by the intersection of
 | |
|   // the elements of F and L.  In reality two typeinfos can match without being
 | |
|   // equal (for example if one represents a C++ class, and the other some class
 | |
|   // derived from it) so it would be wrong to perform this transform in general.
 | |
|   // However the transform is correct and useful if F is a subset of L.  In that
 | |
|   // case L can be replaced by F, and thus removed altogether since repeating a
 | |
|   // filter is pointless.  So here we look at all pairs of filters F and L where
 | |
|   // L follows F in the list of clauses, and remove L if every element of F is
 | |
|   // an element of L.  This can occur when inlining C++ functions with exception
 | |
|   // specifications.
 | |
|   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
 | |
|     // Examine each filter in turn.
 | |
|     Value *Filter = NewClauses[i];
 | |
|     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
 | |
|     if (!FTy)
 | |
|       // Not a filter - skip it.
 | |
|       continue;
 | |
|     unsigned FElts = FTy->getNumElements();
 | |
|     // Examine each filter following this one.  Doing this backwards means that
 | |
|     // we don't have to worry about filters disappearing under us when removed.
 | |
|     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
 | |
|       Value *LFilter = NewClauses[j];
 | |
|       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
 | |
|       if (!LTy)
 | |
|         // Not a filter - skip it.
 | |
|         continue;
 | |
|       // If Filter is a subset of LFilter, i.e. every element of Filter is also
 | |
|       // an element of LFilter, then discard LFilter.
 | |
|       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
 | |
|       // If Filter is empty then it is a subset of LFilter.
 | |
|       if (!FElts) {
 | |
|         // Discard LFilter.
 | |
|         NewClauses.erase(J);
 | |
|         MakeNewInstruction = true;
 | |
|         // Move on to the next filter.
 | |
|         continue;
 | |
|       }
 | |
|       unsigned LElts = LTy->getNumElements();
 | |
|       // If Filter is longer than LFilter then it cannot be a subset of it.
 | |
|       if (FElts > LElts)
 | |
|         // Move on to the next filter.
 | |
|         continue;
 | |
|       // At this point we know that LFilter has at least one element.
 | |
|       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
 | |
|         // Filter is a subset of LFilter iff Filter contains only zeros (as we
 | |
|         // already know that Filter is not longer than LFilter).
 | |
|         if (isa<ConstantAggregateZero>(Filter)) {
 | |
|           assert(FElts <= LElts && "Should have handled this case earlier!");
 | |
|           // Discard LFilter.
 | |
|           NewClauses.erase(J);
 | |
|           MakeNewInstruction = true;
 | |
|         }
 | |
|         // Move on to the next filter.
 | |
|         continue;
 | |
|       }
 | |
|       ConstantArray *LArray = cast<ConstantArray>(LFilter);
 | |
|       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
 | |
|         // Since Filter is non-empty and contains only zeros, it is a subset of
 | |
|         // LFilter iff LFilter contains a zero.
 | |
|         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
 | |
|         for (unsigned l = 0; l != LElts; ++l)
 | |
|           if (LArray->getOperand(l)->isNullValue()) {
 | |
|             // LFilter contains a zero - discard it.
 | |
|             NewClauses.erase(J);
 | |
|             MakeNewInstruction = true;
 | |
|             break;
 | |
|           }
 | |
|         // Move on to the next filter.
 | |
|         continue;
 | |
|       }
 | |
|       // At this point we know that both filters are ConstantArrays.  Loop over
 | |
|       // operands to see whether every element of Filter is also an element of
 | |
|       // LFilter.  Since filters tend to be short this is probably faster than
 | |
|       // using a method that scales nicely.
 | |
|       ConstantArray *FArray = cast<ConstantArray>(Filter);
 | |
|       bool AllFound = true;
 | |
|       for (unsigned f = 0; f != FElts; ++f) {
 | |
|         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
 | |
|         AllFound = false;
 | |
|         for (unsigned l = 0; l != LElts; ++l) {
 | |
|           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
 | |
|           if (LTypeInfo == FTypeInfo) {
 | |
|             AllFound = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (!AllFound)
 | |
|           break;
 | |
|       }
 | |
|       if (AllFound) {
 | |
|         // Discard LFilter.
 | |
|         NewClauses.erase(J);
 | |
|         MakeNewInstruction = true;
 | |
|       }
 | |
|       // Move on to the next filter.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we changed any of the clauses, replace the old landingpad instruction
 | |
|   // with a new one.
 | |
|   if (MakeNewInstruction) {
 | |
|     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
 | |
|                                                  NewClauses.size());
 | |
|     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
 | |
|       NLI->addClause(NewClauses[i]);
 | |
|     // A landing pad with no clauses must have the cleanup flag set.  It is
 | |
|     // theoretically possible, though highly unlikely, that we eliminated all
 | |
|     // clauses.  If so, force the cleanup flag to true.
 | |
|     if (NewClauses.empty())
 | |
|       CleanupFlag = true;
 | |
|     NLI->setCleanup(CleanupFlag);
 | |
|     return NLI;
 | |
|   }
 | |
| 
 | |
|   // Even if none of the clauses changed, we may nonetheless have understood
 | |
|   // that the cleanup flag is pointless.  Clear it if so.
 | |
|   if (LI.isCleanup() != CleanupFlag) {
 | |
|     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
 | |
|     LI.setCleanup(CleanupFlag);
 | |
|     return &LI;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to move the specified instruction from its current block into the
 | |
| /// beginning of DestBlock, which can only happen if it's safe to move the
 | |
| /// instruction past all of the instructions between it and the end of its
 | |
| /// block.
 | |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | |
|   assert(I->hasOneUse() && "Invariants didn't hold!");
 | |
| 
 | |
|   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | |
|   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
 | |
|       isa<TerminatorInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   // Do not sink alloca instructions out of the entry block.
 | |
|   if (isa<AllocaInst>(I) && I->getParent() ==
 | |
|         &DestBlock->getParent()->getEntryBlock())
 | |
|     return false;
 | |
| 
 | |
|   // Do not sink into catchswitch blocks.
 | |
|   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
 | |
|     return false;
 | |
| 
 | |
|   // Do not sink convergent call instructions.
 | |
|   if (auto *CI = dyn_cast<CallInst>(I)) {
 | |
|     if (CI->isConvergent())
 | |
|       return false;
 | |
|   }
 | |
|   // We can only sink load instructions if there is nothing between the load and
 | |
|   // the end of block that could change the value.
 | |
|   if (I->mayReadFromMemory()) {
 | |
|     for (BasicBlock::iterator Scan = I->getIterator(),
 | |
|                               E = I->getParent()->end();
 | |
|          Scan != E; ++Scan)
 | |
|       if (Scan->mayWriteToMemory())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
 | |
|   I->moveBefore(&*InsertPos);
 | |
|   ++NumSunkInst;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InstCombiner::run() {
 | |
|   while (!Worklist.isEmpty()) {
 | |
|     Instruction *I = Worklist.RemoveOne();
 | |
|     if (I == nullptr) continue;  // skip null values.
 | |
| 
 | |
|     // Check to see if we can DCE the instruction.
 | |
|     if (isInstructionTriviallyDead(I, &TLI)) {
 | |
|       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
 | |
|       eraseInstFromFunction(*I);
 | |
|       ++NumDeadInst;
 | |
|       MadeIRChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Instruction isn't dead, see if we can constant propagate it.
 | |
|     if (!I->use_empty() &&
 | |
|         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
 | |
|       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
 | |
|         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
 | |
| 
 | |
|         // Add operands to the worklist.
 | |
|         replaceInstUsesWith(*I, C);
 | |
|         ++NumConstProp;
 | |
|         if (isInstructionTriviallyDead(I, &TLI))
 | |
|           eraseInstFromFunction(*I);
 | |
|         MadeIRChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // In general, it is possible for computeKnownBits to determine all bits in
 | |
|     // a value even when the operands are not all constants.
 | |
|     Type *Ty = I->getType();
 | |
|     if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
 | |
|       unsigned BitWidth = Ty->getScalarSizeInBits();
 | |
|       APInt KnownZero(BitWidth, 0);
 | |
|       APInt KnownOne(BitWidth, 0);
 | |
|       computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
 | |
|       if ((KnownZero | KnownOne).isAllOnesValue()) {
 | |
|         Constant *C = ConstantInt::get(Ty, KnownOne);
 | |
|         DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
 | |
|                         " from: " << *I << '\n');
 | |
| 
 | |
|         // Add operands to the worklist.
 | |
|         replaceInstUsesWith(*I, C);
 | |
|         ++NumConstProp;
 | |
|         if (isInstructionTriviallyDead(I, &TLI))
 | |
|           eraseInstFromFunction(*I);
 | |
|         MadeIRChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // See if we can trivially sink this instruction to a successor basic block.
 | |
|     if (I->hasOneUse()) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       Instruction *UserInst = cast<Instruction>(*I->user_begin());
 | |
|       BasicBlock *UserParent;
 | |
| 
 | |
|       // Get the block the use occurs in.
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | |
|         UserParent = PN->getIncomingBlock(*I->use_begin());
 | |
|       else
 | |
|         UserParent = UserInst->getParent();
 | |
| 
 | |
|       if (UserParent != BB) {
 | |
|         bool UserIsSuccessor = false;
 | |
|         // See if the user is one of our successors.
 | |
|         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|           if (*SI == UserParent) {
 | |
|             UserIsSuccessor = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // If the user is one of our immediate successors, and if that successor
 | |
|         // only has us as a predecessors (we'd have to split the critical edge
 | |
|         // otherwise), we can keep going.
 | |
|         if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
 | |
|           // Okay, the CFG is simple enough, try to sink this instruction.
 | |
|           if (TryToSinkInstruction(I, UserParent)) {
 | |
|             DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
 | |
|             MadeIRChange = true;
 | |
|             // We'll add uses of the sunk instruction below, but since sinking
 | |
|             // can expose opportunities for it's *operands* add them to the
 | |
|             // worklist
 | |
|             for (Use &U : I->operands())
 | |
|               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
 | |
|                 Worklist.Add(OpI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have an instruction, try combining it to simplify it.
 | |
|     Builder->SetInsertPoint(I);
 | |
|     Builder->SetCurrentDebugLocation(I->getDebugLoc());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     std::string OrigI;
 | |
| #endif
 | |
|     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
 | |
|     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
 | |
| 
 | |
|     if (Instruction *Result = visit(*I)) {
 | |
|       ++NumCombined;
 | |
|       // Should we replace the old instruction with a new one?
 | |
|       if (Result != I) {
 | |
|         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
 | |
|                      << "    New = " << *Result << '\n');
 | |
| 
 | |
|         if (I->getDebugLoc())
 | |
|           Result->setDebugLoc(I->getDebugLoc());
 | |
|         // Everything uses the new instruction now.
 | |
|         I->replaceAllUsesWith(Result);
 | |
| 
 | |
|         // Move the name to the new instruction first.
 | |
|         Result->takeName(I);
 | |
| 
 | |
|         // Push the new instruction and any users onto the worklist.
 | |
|         Worklist.Add(Result);
 | |
|         Worklist.AddUsersToWorkList(*Result);
 | |
| 
 | |
|         // Insert the new instruction into the basic block...
 | |
|         BasicBlock *InstParent = I->getParent();
 | |
|         BasicBlock::iterator InsertPos = I->getIterator();
 | |
| 
 | |
|         // If we replace a PHI with something that isn't a PHI, fix up the
 | |
|         // insertion point.
 | |
|         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
 | |
|           InsertPos = InstParent->getFirstInsertionPt();
 | |
| 
 | |
|         InstParent->getInstList().insert(InsertPos, Result);
 | |
| 
 | |
|         eraseInstFromFunction(*I);
 | |
|       } else {
 | |
|         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
 | |
|                      << "    New = " << *I << '\n');
 | |
| 
 | |
|         // If the instruction was modified, it's possible that it is now dead.
 | |
|         // if so, remove it.
 | |
|         if (isInstructionTriviallyDead(I, &TLI)) {
 | |
|           eraseInstFromFunction(*I);
 | |
|         } else {
 | |
|           Worklist.Add(I);
 | |
|           Worklist.AddUsersToWorkList(*I);
 | |
|         }
 | |
|       }
 | |
|       MadeIRChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Worklist.Zap();
 | |
|   return MadeIRChange;
 | |
| }
 | |
| 
 | |
| /// Walk the function in depth-first order, adding all reachable code to the
 | |
| /// worklist.
 | |
| ///
 | |
| /// This has a couple of tricks to make the code faster and more powerful.  In
 | |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding
 | |
| /// them to the worklist (this significantly speeds up instcombine on code where
 | |
| /// many instructions are dead or constant).  Additionally, if we find a branch
 | |
| /// whose condition is a known constant, we only visit the reachable successors.
 | |
| ///
 | |
| static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
 | |
|                                        SmallPtrSetImpl<BasicBlock *> &Visited,
 | |
|                                        InstCombineWorklist &ICWorklist,
 | |
|                                        const TargetLibraryInfo *TLI) {
 | |
|   bool MadeIRChange = false;
 | |
|   SmallVector<BasicBlock*, 256> Worklist;
 | |
|   Worklist.push_back(BB);
 | |
| 
 | |
|   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
 | |
|   DenseMap<Constant *, Constant *> FoldedConstants;
 | |
| 
 | |
|   do {
 | |
|     BB = Worklist.pop_back_val();
 | |
| 
 | |
|     // We have now visited this block!  If we've already been here, ignore it.
 | |
|     if (!Visited.insert(BB).second)
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|       Instruction *Inst = &*BBI++;
 | |
| 
 | |
|       // DCE instruction if trivially dead.
 | |
|       if (isInstructionTriviallyDead(Inst, TLI)) {
 | |
|         ++NumDeadInst;
 | |
|         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
 | |
|         Inst->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // ConstantProp instruction if trivially constant.
 | |
|       if (!Inst->use_empty() &&
 | |
|           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
 | |
|         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
 | |
|           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
 | |
|                        << *Inst << '\n');
 | |
|           Inst->replaceAllUsesWith(C);
 | |
|           ++NumConstProp;
 | |
|           if (isInstructionTriviallyDead(Inst, TLI))
 | |
|             Inst->eraseFromParent();
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|       // See if we can constant fold its operands.
 | |
|       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
 | |
|            ++i) {
 | |
|         if (!isa<ConstantVector>(i) && !isa<ConstantExpr>(i))
 | |
|           continue;
 | |
| 
 | |
|         auto *C = cast<Constant>(i);
 | |
|         Constant *&FoldRes = FoldedConstants[C];
 | |
|         if (!FoldRes)
 | |
|           FoldRes = ConstantFoldConstant(C, DL, TLI);
 | |
|         if (!FoldRes)
 | |
|           FoldRes = C;
 | |
| 
 | |
|         if (FoldRes != C) {
 | |
|           DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst << "\n    Old = " << *C
 | |
|                        << "\n    New = " << *FoldRes << '\n');
 | |
|           *i = FoldRes;
 | |
|           MadeIRChange = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       InstrsForInstCombineWorklist.push_back(Inst);
 | |
|     }
 | |
| 
 | |
|     // Recursively visit successors.  If this is a branch or switch on a
 | |
|     // constant, only visit the reachable successor.
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | |
|         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | |
|         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
 | |
|         Worklist.push_back(ReachableBB);
 | |
|         continue;
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | |
|         // See if this is an explicit destination.
 | |
|         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|              i != e; ++i)
 | |
|           if (i.getCaseValue() == Cond) {
 | |
|             BasicBlock *ReachableBB = i.getCaseSuccessor();
 | |
|             Worklist.push_back(ReachableBB);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|         // Otherwise it is the default destination.
 | |
|         Worklist.push_back(SI->getDefaultDest());
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (BasicBlock *SuccBB : TI->successors())
 | |
|       Worklist.push_back(SuccBB);
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // Once we've found all of the instructions to add to instcombine's worklist,
 | |
|   // add them in reverse order.  This way instcombine will visit from the top
 | |
|   // of the function down.  This jives well with the way that it adds all uses
 | |
|   // of instructions to the worklist after doing a transformation, thus avoiding
 | |
|   // some N^2 behavior in pathological cases.
 | |
|   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
 | |
| 
 | |
|   return MadeIRChange;
 | |
| }
 | |
| 
 | |
| /// \brief Populate the IC worklist from a function, and prune any dead basic
 | |
| /// blocks discovered in the process.
 | |
| ///
 | |
| /// This also does basic constant propagation and other forward fixing to make
 | |
| /// the combiner itself run much faster.
 | |
| static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
 | |
|                                           TargetLibraryInfo *TLI,
 | |
|                                           InstCombineWorklist &ICWorklist) {
 | |
|   bool MadeIRChange = false;
 | |
| 
 | |
|   // Do a depth-first traversal of the function, populate the worklist with
 | |
|   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | |
|   // track of which blocks we visit.
 | |
|   SmallPtrSet<BasicBlock *, 32> Visited;
 | |
|   MadeIRChange |=
 | |
|       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
 | |
| 
 | |
|   // Do a quick scan over the function.  If we find any blocks that are
 | |
|   // unreachable, remove any instructions inside of them.  This prevents
 | |
|   // the instcombine code from having to deal with some bad special cases.
 | |
|   for (BasicBlock &BB : F) {
 | |
|     if (Visited.count(&BB))
 | |
|       continue;
 | |
| 
 | |
|     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
 | |
|     MadeIRChange |= NumDeadInstInBB > 0;
 | |
|     NumDeadInst += NumDeadInstInBB;
 | |
|   }
 | |
| 
 | |
|   return MadeIRChange;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
 | |
|                                 AliasAnalysis *AA, AssumptionCache &AC,
 | |
|                                 TargetLibraryInfo &TLI, DominatorTree &DT,
 | |
|                                 bool ExpensiveCombines = true,
 | |
|                                 LoopInfo *LI = nullptr) {
 | |
|   auto &DL = F.getParent()->getDataLayout();
 | |
|   ExpensiveCombines |= EnableExpensiveCombines;
 | |
| 
 | |
|   /// Builder - This is an IRBuilder that automatically inserts new
 | |
|   /// instructions into the worklist when they are created.
 | |
|   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
 | |
|       F.getContext(), TargetFolder(DL),
 | |
|       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
 | |
|         Worklist.Add(I);
 | |
| 
 | |
|         using namespace llvm::PatternMatch;
 | |
|         if (match(I, m_Intrinsic<Intrinsic::assume>()))
 | |
|           AC.registerAssumption(cast<CallInst>(I));
 | |
|       }));
 | |
| 
 | |
|   // Lower dbg.declare intrinsics otherwise their value may be clobbered
 | |
|   // by instcombiner.
 | |
|   bool DbgDeclaresChanged = LowerDbgDeclare(F);
 | |
| 
 | |
|   // Iterate while there is work to do.
 | |
|   int Iteration = 0;
 | |
|   for (;;) {
 | |
|     ++Iteration;
 | |
|     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
 | |
|                  << F.getName() << "\n");
 | |
| 
 | |
|     bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
 | |
| 
 | |
|     InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
 | |
|                     AA, AC, TLI, DT, DL, LI);
 | |
|     IC.MaxArraySizeForCombine = MaxArraySize;
 | |
|     Changed |= IC.run();
 | |
| 
 | |
|     if (!Changed)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return DbgDeclaresChanged || Iteration > 1;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses InstCombinePass::run(Function &F,
 | |
|                                        FunctionAnalysisManager &AM) {
 | |
|   auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | |
| 
 | |
|   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
 | |
| 
 | |
|   // FIXME: The AliasAnalysis is not yet supported in the new pass manager
 | |
|   if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
 | |
|                                        ExpensiveCombines, LI))
 | |
|     // No changes, all analyses are preserved.
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   // Mark all the analyses that instcombine updates as preserved.
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   PA.preserve<AAManager>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   AU.addPreserved<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<BasicAAWrapperPass>();
 | |
|   AU.addPreserved<GlobalsAAWrapperPass>();
 | |
| }
 | |
| 
 | |
| bool InstructionCombiningPass::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   // Required analyses.
 | |
|   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   // Optional analyses.
 | |
|   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | |
|   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | |
| 
 | |
|   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
 | |
|                                          ExpensiveCombines, LI);
 | |
| }
 | |
| 
 | |
| char InstructionCombiningPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
 | |
|                       "Combine redundant instructions", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
 | |
|                     "Combine redundant instructions", false, false)
 | |
| 
 | |
| // Initialization Routines
 | |
| void llvm::initializeInstCombine(PassRegistry &Registry) {
 | |
|   initializeInstructionCombiningPassPass(Registry);
 | |
| }
 | |
| 
 | |
| void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
 | |
|   initializeInstructionCombiningPassPass(*unwrap(R));
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
 | |
|   return new InstructionCombiningPass(ExpensiveCombines);
 | |
| }
 |