3213 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3213 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tablegen backend emits a target specifier matcher for converting parsed
 | |
| // assembly operands in the MCInst structures. It also emits a matcher for
 | |
| // custom operand parsing.
 | |
| //
 | |
| // Converting assembly operands into MCInst structures
 | |
| // ---------------------------------------------------
 | |
| //
 | |
| // The input to the target specific matcher is a list of literal tokens and
 | |
| // operands. The target specific parser should generally eliminate any syntax
 | |
| // which is not relevant for matching; for example, comma tokens should have
 | |
| // already been consumed and eliminated by the parser. Most instructions will
 | |
| // end up with a single literal token (the instruction name) and some number of
 | |
| // operands.
 | |
| //
 | |
| // Some example inputs, for X86:
 | |
| //   'addl' (immediate ...) (register ...)
 | |
| //   'add' (immediate ...) (memory ...)
 | |
| //   'call' '*' %epc
 | |
| //
 | |
| // The assembly matcher is responsible for converting this input into a precise
 | |
| // machine instruction (i.e., an instruction with a well defined encoding). This
 | |
| // mapping has several properties which complicate matching:
 | |
| //
 | |
| //  - It may be ambiguous; many architectures can legally encode particular
 | |
| //    variants of an instruction in different ways (for example, using a smaller
 | |
| //    encoding for small immediates). Such ambiguities should never be
 | |
| //    arbitrarily resolved by the assembler, the assembler is always responsible
 | |
| //    for choosing the "best" available instruction.
 | |
| //
 | |
| //  - It may depend on the subtarget or the assembler context. Instructions
 | |
| //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
 | |
| //    an SSE instruction in a file being assembled for i486) should be accepted
 | |
| //    and rejected by the assembler front end. However, if the proper encoding
 | |
| //    for an instruction is dependent on the assembler context then the matcher
 | |
| //    is responsible for selecting the correct machine instruction for the
 | |
| //    current mode.
 | |
| //
 | |
| // The core matching algorithm attempts to exploit the regularity in most
 | |
| // instruction sets to quickly determine the set of possibly matching
 | |
| // instructions, and the simplify the generated code. Additionally, this helps
 | |
| // to ensure that the ambiguities are intentionally resolved by the user.
 | |
| //
 | |
| // The matching is divided into two distinct phases:
 | |
| //
 | |
| //   1. Classification: Each operand is mapped to the unique set which (a)
 | |
| //      contains it, and (b) is the largest such subset for which a single
 | |
| //      instruction could match all members.
 | |
| //
 | |
| //      For register classes, we can generate these subgroups automatically. For
 | |
| //      arbitrary operands, we expect the user to define the classes and their
 | |
| //      relations to one another (for example, 8-bit signed immediates as a
 | |
| //      subset of 32-bit immediates).
 | |
| //
 | |
| //      By partitioning the operands in this way, we guarantee that for any
 | |
| //      tuple of classes, any single instruction must match either all or none
 | |
| //      of the sets of operands which could classify to that tuple.
 | |
| //
 | |
| //      In addition, the subset relation amongst classes induces a partial order
 | |
| //      on such tuples, which we use to resolve ambiguities.
 | |
| //
 | |
| //   2. The input can now be treated as a tuple of classes (static tokens are
 | |
| //      simple singleton sets). Each such tuple should generally map to a single
 | |
| //      instruction (we currently ignore cases where this isn't true, whee!!!),
 | |
| //      which we can emit a simple matcher for.
 | |
| //
 | |
| // Custom Operand Parsing
 | |
| // ----------------------
 | |
| //
 | |
| //  Some targets need a custom way to parse operands, some specific instructions
 | |
| //  can contain arguments that can represent processor flags and other kinds of
 | |
| //  identifiers that need to be mapped to specific values in the final encoded
 | |
| //  instructions. The target specific custom operand parsing works in the
 | |
| //  following way:
 | |
| //
 | |
| //   1. A operand match table is built, each entry contains a mnemonic, an
 | |
| //      operand class, a mask for all operand positions for that same
 | |
| //      class/mnemonic and target features to be checked while trying to match.
 | |
| //
 | |
| //   2. The operand matcher will try every possible entry with the same
 | |
| //      mnemonic and will check if the target feature for this mnemonic also
 | |
| //      matches. After that, if the operand to be matched has its index
 | |
| //      present in the mask, a successful match occurs. Otherwise, fallback
 | |
| //      to the regular operand parsing.
 | |
| //
 | |
| //   3. For a match success, each operand class that has a 'ParserMethod'
 | |
| //      becomes part of a switch from where the custom method is called.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenTarget.h"
 | |
| #include "SubtargetFeatureInfo.h"
 | |
| #include "Types.h"
 | |
| #include "llvm/ADT/CachedHashString.h"
 | |
| #include "llvm/ADT/PointerUnion.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include "llvm/TableGen/StringMatcher.h"
 | |
| #include "llvm/TableGen/StringToOffsetTable.h"
 | |
| #include "llvm/TableGen/TableGenBackend.h"
 | |
| #include <cassert>
 | |
| #include <cctype>
 | |
| #include <forward_list>
 | |
| #include <map>
 | |
| #include <set>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "asm-matcher-emitter"
 | |
| 
 | |
| static cl::opt<std::string>
 | |
| MatchPrefix("match-prefix", cl::init(""),
 | |
|             cl::desc("Only match instructions with the given prefix"));
 | |
| 
 | |
| namespace {
 | |
| class AsmMatcherInfo;
 | |
| 
 | |
| // Register sets are used as keys in some second-order sets TableGen creates
 | |
| // when generating its data structures. This means that the order of two
 | |
| // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
 | |
| // can even affect compiler output (at least seen in diagnostics produced when
 | |
| // all matches fail). So we use a type that sorts them consistently.
 | |
| typedef std::set<Record*, LessRecordByID> RegisterSet;
 | |
| 
 | |
| class AsmMatcherEmitter {
 | |
|   RecordKeeper &Records;
 | |
| public:
 | |
|   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
 | |
| 
 | |
|   void run(raw_ostream &o);
 | |
| };
 | |
| 
 | |
| /// ClassInfo - Helper class for storing the information about a particular
 | |
| /// class of operands which can be matched.
 | |
| struct ClassInfo {
 | |
|   enum ClassInfoKind {
 | |
|     /// Invalid kind, for use as a sentinel value.
 | |
|     Invalid = 0,
 | |
| 
 | |
|     /// The class for a particular token.
 | |
|     Token,
 | |
| 
 | |
|     /// The (first) register class, subsequent register classes are
 | |
|     /// RegisterClass0+1, and so on.
 | |
|     RegisterClass0,
 | |
| 
 | |
|     /// The (first) user defined class, subsequent user defined classes are
 | |
|     /// UserClass0+1, and so on.
 | |
|     UserClass0 = 1<<16
 | |
|   };
 | |
| 
 | |
|   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
 | |
|   /// N) for the Nth user defined class.
 | |
|   unsigned Kind;
 | |
| 
 | |
|   /// SuperClasses - The super classes of this class. Note that for simplicities
 | |
|   /// sake user operands only record their immediate super class, while register
 | |
|   /// operands include all superclasses.
 | |
|   std::vector<ClassInfo*> SuperClasses;
 | |
| 
 | |
|   /// Name - The full class name, suitable for use in an enum.
 | |
|   std::string Name;
 | |
| 
 | |
|   /// ClassName - The unadorned generic name for this class (e.g., Token).
 | |
|   std::string ClassName;
 | |
| 
 | |
|   /// ValueName - The name of the value this class represents; for a token this
 | |
|   /// is the literal token string, for an operand it is the TableGen class (or
 | |
|   /// empty if this is a derived class).
 | |
|   std::string ValueName;
 | |
| 
 | |
|   /// PredicateMethod - The name of the operand method to test whether the
 | |
|   /// operand matches this class; this is not valid for Token or register kinds.
 | |
|   std::string PredicateMethod;
 | |
| 
 | |
|   /// RenderMethod - The name of the operand method to add this operand to an
 | |
|   /// MCInst; this is not valid for Token or register kinds.
 | |
|   std::string RenderMethod;
 | |
| 
 | |
|   /// ParserMethod - The name of the operand method to do a target specific
 | |
|   /// parsing on the operand.
 | |
|   std::string ParserMethod;
 | |
| 
 | |
|   /// For register classes: the records for all the registers in this class.
 | |
|   RegisterSet Registers;
 | |
| 
 | |
|   /// For custom match classes: the diagnostic kind for when the predicate fails.
 | |
|   std::string DiagnosticType;
 | |
| 
 | |
|   /// Is this operand optional and not always required.
 | |
|   bool IsOptional;
 | |
| 
 | |
|   /// DefaultMethod - The name of the method that returns the default operand
 | |
|   /// for optional operand
 | |
|   std::string DefaultMethod;
 | |
| 
 | |
| public:
 | |
|   /// isRegisterClass() - Check if this is a register class.
 | |
|   bool isRegisterClass() const {
 | |
|     return Kind >= RegisterClass0 && Kind < UserClass0;
 | |
|   }
 | |
| 
 | |
|   /// isUserClass() - Check if this is a user defined class.
 | |
|   bool isUserClass() const {
 | |
|     return Kind >= UserClass0;
 | |
|   }
 | |
| 
 | |
|   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
 | |
|   /// are related if they are in the same class hierarchy.
 | |
|   bool isRelatedTo(const ClassInfo &RHS) const {
 | |
|     // Tokens are only related to tokens.
 | |
|     if (Kind == Token || RHS.Kind == Token)
 | |
|       return Kind == Token && RHS.Kind == Token;
 | |
| 
 | |
|     // Registers classes are only related to registers classes, and only if
 | |
|     // their intersection is non-empty.
 | |
|     if (isRegisterClass() || RHS.isRegisterClass()) {
 | |
|       if (!isRegisterClass() || !RHS.isRegisterClass())
 | |
|         return false;
 | |
| 
 | |
|       RegisterSet Tmp;
 | |
|       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
 | |
|       std::set_intersection(Registers.begin(), Registers.end(),
 | |
|                             RHS.Registers.begin(), RHS.Registers.end(),
 | |
|                             II, LessRecordByID());
 | |
| 
 | |
|       return !Tmp.empty();
 | |
|     }
 | |
| 
 | |
|     // Otherwise we have two users operands; they are related if they are in the
 | |
|     // same class hierarchy.
 | |
|     //
 | |
|     // FIXME: This is an oversimplification, they should only be related if they
 | |
|     // intersect, however we don't have that information.
 | |
|     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
 | |
|     const ClassInfo *Root = this;
 | |
|     while (!Root->SuperClasses.empty())
 | |
|       Root = Root->SuperClasses.front();
 | |
| 
 | |
|     const ClassInfo *RHSRoot = &RHS;
 | |
|     while (!RHSRoot->SuperClasses.empty())
 | |
|       RHSRoot = RHSRoot->SuperClasses.front();
 | |
| 
 | |
|     return Root == RHSRoot;
 | |
|   }
 | |
| 
 | |
|   /// isSubsetOf - Test whether this class is a subset of \p RHS.
 | |
|   bool isSubsetOf(const ClassInfo &RHS) const {
 | |
|     // This is a subset of RHS if it is the same class...
 | |
|     if (this == &RHS)
 | |
|       return true;
 | |
| 
 | |
|     // ... or if any of its super classes are a subset of RHS.
 | |
|     for (const ClassInfo *CI : SuperClasses)
 | |
|       if (CI->isSubsetOf(RHS))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   int getTreeDepth() const {
 | |
|     int Depth = 0;
 | |
|     const ClassInfo *Root = this;
 | |
|     while (!Root->SuperClasses.empty()) {
 | |
|       Depth++;
 | |
|       Root = Root->SuperClasses.front();
 | |
|     }
 | |
|     return Depth;
 | |
|   }
 | |
| 
 | |
|   const ClassInfo *findRoot() const {
 | |
|     const ClassInfo *Root = this;
 | |
|     while (!Root->SuperClasses.empty())
 | |
|       Root = Root->SuperClasses.front();
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   /// Compare two classes. This does not produce a total ordering, but does
 | |
|   /// guarantee that subclasses are sorted before their parents, and that the
 | |
|   /// ordering is transitive.
 | |
|   bool operator<(const ClassInfo &RHS) const {
 | |
|     if (this == &RHS)
 | |
|       return false;
 | |
| 
 | |
|     // First, enforce the ordering between the three different types of class.
 | |
|     // Tokens sort before registers, which sort before user classes.
 | |
|     if (Kind == Token) {
 | |
|       if (RHS.Kind != Token)
 | |
|         return true;
 | |
|       assert(RHS.Kind == Token);
 | |
|     } else if (isRegisterClass()) {
 | |
|       if (RHS.Kind == Token)
 | |
|         return false;
 | |
|       else if (RHS.isUserClass())
 | |
|         return true;
 | |
|       assert(RHS.isRegisterClass());
 | |
|     } else if (isUserClass()) {
 | |
|       if (!RHS.isUserClass())
 | |
|         return false;
 | |
|       assert(RHS.isUserClass());
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown ClassInfoKind");
 | |
|     }
 | |
| 
 | |
|     if (Kind == Token || isUserClass()) {
 | |
|       // Related tokens and user classes get sorted by depth in the inheritence
 | |
|       // tree (so that subclasses are before their parents).
 | |
|       if (isRelatedTo(RHS)) {
 | |
|         if (getTreeDepth() > RHS.getTreeDepth())
 | |
|           return true;
 | |
|         if (getTreeDepth() < RHS.getTreeDepth())
 | |
|           return false;
 | |
|       } else {
 | |
|         // Unrelated tokens and user classes are ordered by the name of their
 | |
|         // root nodes, so that there is a consistent ordering between
 | |
|         // unconnected trees.
 | |
|         return findRoot()->ValueName < RHS.findRoot()->ValueName;
 | |
|       }
 | |
|     } else if (isRegisterClass()) {
 | |
|       // For register sets, sort by number of registers. This guarantees that
 | |
|       // a set will always sort before all of it's strict supersets.
 | |
|       if (Registers.size() != RHS.Registers.size())
 | |
|         return Registers.size() < RHS.Registers.size();
 | |
|     } else {
 | |
|       llvm_unreachable("Unknown ClassInfoKind");
 | |
|     }
 | |
| 
 | |
|     // FIXME: We should be able to just return false here, as we only need a
 | |
|     // partial order (we use stable sorts, so this is deterministic) and the
 | |
|     // name of a class shouldn't be significant. However, some of the backends
 | |
|     // accidentally rely on this behaviour, so it will have to stay like this
 | |
|     // until they are fixed.
 | |
|     return ValueName < RHS.ValueName;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class AsmVariantInfo {
 | |
| public:
 | |
|   std::string RegisterPrefix;
 | |
|   std::string TokenizingCharacters;
 | |
|   std::string SeparatorCharacters;
 | |
|   std::string BreakCharacters;
 | |
|   std::string Name;
 | |
|   int AsmVariantNo;
 | |
| };
 | |
| 
 | |
| /// MatchableInfo - Helper class for storing the necessary information for an
 | |
| /// instruction or alias which is capable of being matched.
 | |
| struct MatchableInfo {
 | |
|   struct AsmOperand {
 | |
|     /// Token - This is the token that the operand came from.
 | |
|     StringRef Token;
 | |
| 
 | |
|     /// The unique class instance this operand should match.
 | |
|     ClassInfo *Class;
 | |
| 
 | |
|     /// The operand name this is, if anything.
 | |
|     StringRef SrcOpName;
 | |
| 
 | |
|     /// The suboperand index within SrcOpName, or -1 for the entire operand.
 | |
|     int SubOpIdx;
 | |
| 
 | |
|     /// Whether the token is "isolated", i.e., it is preceded and followed
 | |
|     /// by separators.
 | |
|     bool IsIsolatedToken;
 | |
| 
 | |
|     /// Register record if this token is singleton register.
 | |
|     Record *SingletonReg;
 | |
| 
 | |
|     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
 | |
|         : Token(T), Class(nullptr), SubOpIdx(-1),
 | |
|           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
 | |
|   };
 | |
| 
 | |
|   /// ResOperand - This represents a single operand in the result instruction
 | |
|   /// generated by the match.  In cases (like addressing modes) where a single
 | |
|   /// assembler operand expands to multiple MCOperands, this represents the
 | |
|   /// single assembler operand, not the MCOperand.
 | |
|   struct ResOperand {
 | |
|     enum {
 | |
|       /// RenderAsmOperand - This represents an operand result that is
 | |
|       /// generated by calling the render method on the assembly operand.  The
 | |
|       /// corresponding AsmOperand is specified by AsmOperandNum.
 | |
|       RenderAsmOperand,
 | |
| 
 | |
|       /// TiedOperand - This represents a result operand that is a duplicate of
 | |
|       /// a previous result operand.
 | |
|       TiedOperand,
 | |
| 
 | |
|       /// ImmOperand - This represents an immediate value that is dumped into
 | |
|       /// the operand.
 | |
|       ImmOperand,
 | |
| 
 | |
|       /// RegOperand - This represents a fixed register that is dumped in.
 | |
|       RegOperand
 | |
|     } Kind;
 | |
| 
 | |
|     union {
 | |
|       /// This is the operand # in the AsmOperands list that this should be
 | |
|       /// copied from.
 | |
|       unsigned AsmOperandNum;
 | |
| 
 | |
|       /// TiedOperandNum - This is the (earlier) result operand that should be
 | |
|       /// copied from.
 | |
|       unsigned TiedOperandNum;
 | |
| 
 | |
|       /// ImmVal - This is the immediate value added to the instruction.
 | |
|       int64_t ImmVal;
 | |
| 
 | |
|       /// Register - This is the register record.
 | |
|       Record *Register;
 | |
|     };
 | |
| 
 | |
|     /// MINumOperands - The number of MCInst operands populated by this
 | |
|     /// operand.
 | |
|     unsigned MINumOperands;
 | |
| 
 | |
|     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
 | |
|       ResOperand X;
 | |
|       X.Kind = RenderAsmOperand;
 | |
|       X.AsmOperandNum = AsmOpNum;
 | |
|       X.MINumOperands = NumOperands;
 | |
|       return X;
 | |
|     }
 | |
| 
 | |
|     static ResOperand getTiedOp(unsigned TiedOperandNum) {
 | |
|       ResOperand X;
 | |
|       X.Kind = TiedOperand;
 | |
|       X.TiedOperandNum = TiedOperandNum;
 | |
|       X.MINumOperands = 1;
 | |
|       return X;
 | |
|     }
 | |
| 
 | |
|     static ResOperand getImmOp(int64_t Val) {
 | |
|       ResOperand X;
 | |
|       X.Kind = ImmOperand;
 | |
|       X.ImmVal = Val;
 | |
|       X.MINumOperands = 1;
 | |
|       return X;
 | |
|     }
 | |
| 
 | |
|     static ResOperand getRegOp(Record *Reg) {
 | |
|       ResOperand X;
 | |
|       X.Kind = RegOperand;
 | |
|       X.Register = Reg;
 | |
|       X.MINumOperands = 1;
 | |
|       return X;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// AsmVariantID - Target's assembly syntax variant no.
 | |
|   int AsmVariantID;
 | |
| 
 | |
|   /// AsmString - The assembly string for this instruction (with variants
 | |
|   /// removed), e.g. "movsx $src, $dst".
 | |
|   std::string AsmString;
 | |
| 
 | |
|   /// TheDef - This is the definition of the instruction or InstAlias that this
 | |
|   /// matchable came from.
 | |
|   Record *const TheDef;
 | |
| 
 | |
|   /// DefRec - This is the definition that it came from.
 | |
|   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
 | |
| 
 | |
|   const CodeGenInstruction *getResultInst() const {
 | |
|     if (DefRec.is<const CodeGenInstruction*>())
 | |
|       return DefRec.get<const CodeGenInstruction*>();
 | |
|     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
 | |
|   }
 | |
| 
 | |
|   /// ResOperands - This is the operand list that should be built for the result
 | |
|   /// MCInst.
 | |
|   SmallVector<ResOperand, 8> ResOperands;
 | |
| 
 | |
|   /// Mnemonic - This is the first token of the matched instruction, its
 | |
|   /// mnemonic.
 | |
|   StringRef Mnemonic;
 | |
| 
 | |
|   /// AsmOperands - The textual operands that this instruction matches,
 | |
|   /// annotated with a class and where in the OperandList they were defined.
 | |
|   /// This directly corresponds to the tokenized AsmString after the mnemonic is
 | |
|   /// removed.
 | |
|   SmallVector<AsmOperand, 8> AsmOperands;
 | |
| 
 | |
|   /// Predicates - The required subtarget features to match this instruction.
 | |
|   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
 | |
| 
 | |
|   /// ConversionFnKind - The enum value which is passed to the generated
 | |
|   /// convertToMCInst to convert parsed operands into an MCInst for this
 | |
|   /// function.
 | |
|   std::string ConversionFnKind;
 | |
| 
 | |
|   /// If this instruction is deprecated in some form.
 | |
|   bool HasDeprecation;
 | |
| 
 | |
|   /// If this is an alias, this is use to determine whether or not to using
 | |
|   /// the conversion function defined by the instruction's AsmMatchConverter
 | |
|   /// or to use the function generated by the alias.
 | |
|   bool UseInstAsmMatchConverter;
 | |
| 
 | |
|   MatchableInfo(const CodeGenInstruction &CGI)
 | |
|     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
 | |
|       UseInstAsmMatchConverter(true) {
 | |
|   }
 | |
| 
 | |
|   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
 | |
|     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
 | |
|       DefRec(Alias.release()),
 | |
|       UseInstAsmMatchConverter(
 | |
|         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
 | |
|   }
 | |
| 
 | |
|   // Could remove this and the dtor if PointerUnion supported unique_ptr
 | |
|   // elements with a dynamic failure/assertion (like the one below) in the case
 | |
|   // where it was copied while being in an owning state.
 | |
|   MatchableInfo(const MatchableInfo &RHS)
 | |
|       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
 | |
|         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
 | |
|         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
 | |
|         RequiredFeatures(RHS.RequiredFeatures),
 | |
|         ConversionFnKind(RHS.ConversionFnKind),
 | |
|         HasDeprecation(RHS.HasDeprecation),
 | |
|         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
 | |
|     assert(!DefRec.is<const CodeGenInstAlias *>());
 | |
|   }
 | |
| 
 | |
|   ~MatchableInfo() {
 | |
|     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
 | |
|   }
 | |
| 
 | |
|   // Two-operand aliases clone from the main matchable, but mark the second
 | |
|   // operand as a tied operand of the first for purposes of the assembler.
 | |
|   void formTwoOperandAlias(StringRef Constraint);
 | |
| 
 | |
|   void initialize(const AsmMatcherInfo &Info,
 | |
|                   SmallPtrSetImpl<Record*> &SingletonRegisters,
 | |
|                   AsmVariantInfo const &Variant,
 | |
|                   bool HasMnemonicFirst);
 | |
| 
 | |
|   /// validate - Return true if this matchable is a valid thing to match against
 | |
|   /// and perform a bunch of validity checking.
 | |
|   bool validate(StringRef CommentDelimiter, bool Hack) const;
 | |
| 
 | |
|   /// findAsmOperand - Find the AsmOperand with the specified name and
 | |
|   /// suboperand index.
 | |
|   int findAsmOperand(StringRef N, int SubOpIdx) const {
 | |
|     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
 | |
|       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
 | |
|     });
 | |
|     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
 | |
|   }
 | |
| 
 | |
|   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
 | |
|   /// This does not check the suboperand index.
 | |
|   int findAsmOperandNamed(StringRef N) const {
 | |
|     auto I = find_if(AsmOperands,
 | |
|                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
 | |
|     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
 | |
|   }
 | |
| 
 | |
|   void buildInstructionResultOperands();
 | |
|   void buildAliasResultOperands();
 | |
| 
 | |
|   /// operator< - Compare two matchables.
 | |
|   bool operator<(const MatchableInfo &RHS) const {
 | |
|     // The primary comparator is the instruction mnemonic.
 | |
|     if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
 | |
|       return Cmp == -1;
 | |
| 
 | |
|     if (AsmOperands.size() != RHS.AsmOperands.size())
 | |
|       return AsmOperands.size() < RHS.AsmOperands.size();
 | |
| 
 | |
|     // Compare lexicographically by operand. The matcher validates that other
 | |
|     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
 | |
|         return true;
 | |
|       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Give matches that require more features higher precedence. This is useful
 | |
|     // because we cannot define AssemblerPredicates with the negation of
 | |
|     // processor features. For example, ARM v6 "nop" may be either a HINT or
 | |
|     // MOV. With v6, we want to match HINT. The assembler has no way to
 | |
|     // predicate MOV under "NoV6", but HINT will always match first because it
 | |
|     // requires V6 while MOV does not.
 | |
|     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
 | |
|       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// couldMatchAmbiguouslyWith - Check whether this matchable could
 | |
|   /// ambiguously match the same set of operands as \p RHS (without being a
 | |
|   /// strictly superior match).
 | |
|   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
 | |
|     // The primary comparator is the instruction mnemonic.
 | |
|     if (Mnemonic != RHS.Mnemonic)
 | |
|       return false;
 | |
| 
 | |
|     // The number of operands is unambiguous.
 | |
|     if (AsmOperands.size() != RHS.AsmOperands.size())
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, make sure the ordering of the two instructions is unambiguous
 | |
|     // by checking that either (a) a token or operand kind discriminates them,
 | |
|     // or (b) the ordering among equivalent kinds is consistent.
 | |
| 
 | |
|     // Tokens and operand kinds are unambiguous (assuming a correct target
 | |
|     // specific parser).
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
 | |
|       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
 | |
|           AsmOperands[i].Class->Kind == ClassInfo::Token)
 | |
|         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
 | |
|             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | |
|           return false;
 | |
| 
 | |
|     // Otherwise, this operand could commute if all operands are equivalent, or
 | |
|     // there is a pair of operands that compare less than and a pair that
 | |
|     // compare greater than.
 | |
|     bool HasLT = false, HasGT = false;
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
 | |
|         HasLT = true;
 | |
|       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | |
|         HasGT = true;
 | |
|     }
 | |
| 
 | |
|     return HasLT == HasGT;
 | |
|   }
 | |
| 
 | |
|   void dump() const;
 | |
| 
 | |
| private:
 | |
|   void tokenizeAsmString(AsmMatcherInfo const &Info,
 | |
|                          AsmVariantInfo const &Variant);
 | |
|   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
 | |
| };
 | |
| 
 | |
| struct OperandMatchEntry {
 | |
|   unsigned OperandMask;
 | |
|   const MatchableInfo* MI;
 | |
|   ClassInfo *CI;
 | |
| 
 | |
|   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
 | |
|                                   unsigned opMask) {
 | |
|     OperandMatchEntry X;
 | |
|     X.OperandMask = opMask;
 | |
|     X.CI = ci;
 | |
|     X.MI = mi;
 | |
|     return X;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class AsmMatcherInfo {
 | |
| public:
 | |
|   /// Tracked Records
 | |
|   RecordKeeper &Records;
 | |
| 
 | |
|   /// The tablegen AsmParser record.
 | |
|   Record *AsmParser;
 | |
| 
 | |
|   /// Target - The target information.
 | |
|   CodeGenTarget &Target;
 | |
| 
 | |
|   /// The classes which are needed for matching.
 | |
|   std::forward_list<ClassInfo> Classes;
 | |
| 
 | |
|   /// The information on the matchables to match.
 | |
|   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
 | |
| 
 | |
|   /// Info for custom matching operands by user defined methods.
 | |
|   std::vector<OperandMatchEntry> OperandMatchInfo;
 | |
| 
 | |
|   /// Map of Register records to their class information.
 | |
|   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
 | |
|   RegisterClassesTy RegisterClasses;
 | |
| 
 | |
|   /// Map of Predicate records to their subtarget information.
 | |
|   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
 | |
| 
 | |
|   /// Map of AsmOperandClass records to their class information.
 | |
|   std::map<Record*, ClassInfo*> AsmOperandClasses;
 | |
| 
 | |
| private:
 | |
|   /// Map of token to class information which has already been constructed.
 | |
|   std::map<std::string, ClassInfo*> TokenClasses;
 | |
| 
 | |
|   /// Map of RegisterClass records to their class information.
 | |
|   std::map<Record*, ClassInfo*> RegisterClassClasses;
 | |
| 
 | |
| private:
 | |
|   /// getTokenClass - Lookup or create the class for the given token.
 | |
|   ClassInfo *getTokenClass(StringRef Token);
 | |
| 
 | |
|   /// getOperandClass - Lookup or create the class for the given operand.
 | |
|   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
 | |
|                              int SubOpIdx);
 | |
|   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
 | |
| 
 | |
|   /// buildRegisterClasses - Build the ClassInfo* instances for register
 | |
|   /// classes.
 | |
|   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
 | |
| 
 | |
|   /// buildOperandClasses - Build the ClassInfo* instances for user defined
 | |
|   /// operand classes.
 | |
|   void buildOperandClasses();
 | |
| 
 | |
|   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
 | |
|                                         unsigned AsmOpIdx);
 | |
|   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
 | |
|                                   MatchableInfo::AsmOperand &Op);
 | |
| 
 | |
| public:
 | |
|   AsmMatcherInfo(Record *AsmParser,
 | |
|                  CodeGenTarget &Target,
 | |
|                  RecordKeeper &Records);
 | |
| 
 | |
|   /// Construct the various tables used during matching.
 | |
|   void buildInfo();
 | |
| 
 | |
|   /// buildOperandMatchInfo - Build the necessary information to handle user
 | |
|   /// defined operand parsing methods.
 | |
|   void buildOperandMatchInfo();
 | |
| 
 | |
|   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
 | |
|   /// given operand.
 | |
|   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
 | |
|     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
 | |
|     const auto &I = SubtargetFeatures.find(Def);
 | |
|     return I == SubtargetFeatures.end() ? nullptr : &I->second;
 | |
|   }
 | |
| 
 | |
|   RecordKeeper &getRecords() const {
 | |
|     return Records;
 | |
|   }
 | |
| 
 | |
|   bool hasOptionalOperands() const {
 | |
|     return find_if(Classes, [](const ClassInfo &Class) {
 | |
|              return Class.IsOptional;
 | |
|            }) != Classes.end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void MatchableInfo::dump() const {
 | |
|   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
 | |
| 
 | |
|   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|     const AsmOperand &Op = AsmOperands[i];
 | |
|     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
 | |
|     errs() << '\"' << Op.Token << "\"\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| static std::pair<StringRef, StringRef>
 | |
| parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
 | |
|   // Split via the '='.
 | |
|   std::pair<StringRef, StringRef> Ops = S.split('=');
 | |
|   if (Ops.second == "")
 | |
|     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
 | |
|   // Trim whitespace and the leading '$' on the operand names.
 | |
|   size_t start = Ops.first.find_first_of('$');
 | |
|   if (start == std::string::npos)
 | |
|     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
 | |
|   Ops.first = Ops.first.slice(start + 1, std::string::npos);
 | |
|   size_t end = Ops.first.find_last_of(" \t");
 | |
|   Ops.first = Ops.first.slice(0, end);
 | |
|   // Now the second operand.
 | |
|   start = Ops.second.find_first_of('$');
 | |
|   if (start == std::string::npos)
 | |
|     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
 | |
|   Ops.second = Ops.second.slice(start + 1, std::string::npos);
 | |
|   end = Ops.second.find_last_of(" \t");
 | |
|   Ops.first = Ops.first.slice(0, end);
 | |
|   return Ops;
 | |
| }
 | |
| 
 | |
| void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
 | |
|   // Figure out which operands are aliased and mark them as tied.
 | |
|   std::pair<StringRef, StringRef> Ops =
 | |
|     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
 | |
| 
 | |
|   // Find the AsmOperands that refer to the operands we're aliasing.
 | |
|   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
 | |
|   int DstAsmOperand = findAsmOperandNamed(Ops.second);
 | |
|   if (SrcAsmOperand == -1)
 | |
|     PrintFatalError(TheDef->getLoc(),
 | |
|                     "unknown source two-operand alias operand '" + Ops.first +
 | |
|                     "'.");
 | |
|   if (DstAsmOperand == -1)
 | |
|     PrintFatalError(TheDef->getLoc(),
 | |
|                     "unknown destination two-operand alias operand '" +
 | |
|                     Ops.second + "'.");
 | |
| 
 | |
|   // Find the ResOperand that refers to the operand we're aliasing away
 | |
|   // and update it to refer to the combined operand instead.
 | |
|   for (ResOperand &Op : ResOperands) {
 | |
|     if (Op.Kind == ResOperand::RenderAsmOperand &&
 | |
|         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
 | |
|       Op.AsmOperandNum = DstAsmOperand;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // Remove the AsmOperand for the alias operand.
 | |
|   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
 | |
|   // Adjust the ResOperand references to any AsmOperands that followed
 | |
|   // the one we just deleted.
 | |
|   for (ResOperand &Op : ResOperands) {
 | |
|     switch(Op.Kind) {
 | |
|     default:
 | |
|       // Nothing to do for operands that don't reference AsmOperands.
 | |
|       break;
 | |
|     case ResOperand::RenderAsmOperand:
 | |
|       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
 | |
|         --Op.AsmOperandNum;
 | |
|       break;
 | |
|     case ResOperand::TiedOperand:
 | |
|       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
 | |
|         --Op.TiedOperandNum;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// extractSingletonRegisterForAsmOperand - Extract singleton register,
 | |
| /// if present, from specified token.
 | |
| static void
 | |
| extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
 | |
|                                       const AsmMatcherInfo &Info,
 | |
|                                       StringRef RegisterPrefix) {
 | |
|   StringRef Tok = Op.Token;
 | |
| 
 | |
|   // If this token is not an isolated token, i.e., it isn't separated from
 | |
|   // other tokens (e.g. with whitespace), don't interpret it as a register name.
 | |
|   if (!Op.IsIsolatedToken)
 | |
|     return;
 | |
| 
 | |
|   if (RegisterPrefix.empty()) {
 | |
|     std::string LoweredTok = Tok.lower();
 | |
|     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
 | |
|       Op.SingletonReg = Reg->TheDef;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!Tok.startswith(RegisterPrefix))
 | |
|     return;
 | |
| 
 | |
|   StringRef RegName = Tok.substr(RegisterPrefix.size());
 | |
|   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
 | |
|     Op.SingletonReg = Reg->TheDef;
 | |
| 
 | |
|   // If there is no register prefix (i.e. "%" in "%eax"), then this may
 | |
|   // be some random non-register token, just ignore it.
 | |
| }
 | |
| 
 | |
| void MatchableInfo::initialize(const AsmMatcherInfo &Info,
 | |
|                                SmallPtrSetImpl<Record*> &SingletonRegisters,
 | |
|                                AsmVariantInfo const &Variant,
 | |
|                                bool HasMnemonicFirst) {
 | |
|   AsmVariantID = Variant.AsmVariantNo;
 | |
|   AsmString =
 | |
|     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
 | |
|                                                  Variant.AsmVariantNo);
 | |
| 
 | |
|   tokenizeAsmString(Info, Variant);
 | |
| 
 | |
|   // The first token of the instruction is the mnemonic, which must be a
 | |
|   // simple string, not a $foo variable or a singleton register.
 | |
|   if (AsmOperands.empty())
 | |
|     PrintFatalError(TheDef->getLoc(),
 | |
|                   "Instruction '" + TheDef->getName() + "' has no tokens");
 | |
| 
 | |
|   assert(!AsmOperands[0].Token.empty());
 | |
|   if (HasMnemonicFirst) {
 | |
|     Mnemonic = AsmOperands[0].Token;
 | |
|     if (Mnemonic[0] == '$')
 | |
|       PrintFatalError(TheDef->getLoc(),
 | |
|                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
 | |
| 
 | |
|     // Remove the first operand, it is tracked in the mnemonic field.
 | |
|     AsmOperands.erase(AsmOperands.begin());
 | |
|   } else if (AsmOperands[0].Token[0] != '$')
 | |
|     Mnemonic = AsmOperands[0].Token;
 | |
| 
 | |
|   // Compute the require features.
 | |
|   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
 | |
|     if (const SubtargetFeatureInfo *Feature =
 | |
|             Info.getSubtargetFeature(Predicate))
 | |
|       RequiredFeatures.push_back(Feature);
 | |
| 
 | |
|   // Collect singleton registers, if used.
 | |
|   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
 | |
|     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
 | |
|     if (Record *Reg = Op.SingletonReg)
 | |
|       SingletonRegisters.insert(Reg);
 | |
|   }
 | |
| 
 | |
|   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
 | |
|   if (!DepMask)
 | |
|     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
 | |
| 
 | |
|   HasDeprecation =
 | |
|       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
 | |
| }
 | |
| 
 | |
| /// Append an AsmOperand for the given substring of AsmString.
 | |
| void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
 | |
|   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
 | |
| }
 | |
| 
 | |
| /// tokenizeAsmString - Tokenize a simplified assembly string.
 | |
| void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
 | |
|                                       AsmVariantInfo const &Variant) {
 | |
|   StringRef String = AsmString;
 | |
|   size_t Prev = 0;
 | |
|   bool InTok = false;
 | |
|   bool IsIsolatedToken = true;
 | |
|   for (size_t i = 0, e = String.size(); i != e; ++i) {
 | |
|     char Char = String[i];
 | |
|     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
 | |
|       if (InTok) {
 | |
|         addAsmOperand(String.slice(Prev, i), false);
 | |
|         Prev = i;
 | |
|         IsIsolatedToken = false;
 | |
|       }
 | |
|       InTok = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
 | |
|       if (InTok) {
 | |
|         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
 | |
|         InTok = false;
 | |
|         IsIsolatedToken = false;
 | |
|       }
 | |
|       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
 | |
|       Prev = i + 1;
 | |
|       IsIsolatedToken = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
 | |
|       if (InTok) {
 | |
|         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
 | |
|         InTok = false;
 | |
|       }
 | |
|       Prev = i + 1;
 | |
|       IsIsolatedToken = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (Char) {
 | |
|     case '\\':
 | |
|       if (InTok) {
 | |
|         addAsmOperand(String.slice(Prev, i), false);
 | |
|         InTok = false;
 | |
|         IsIsolatedToken = false;
 | |
|       }
 | |
|       ++i;
 | |
|       assert(i != String.size() && "Invalid quoted character");
 | |
|       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
 | |
|       Prev = i + 1;
 | |
|       IsIsolatedToken = false;
 | |
|       break;
 | |
| 
 | |
|     case '$': {
 | |
|       if (InTok) {
 | |
|         addAsmOperand(String.slice(Prev, i), false);
 | |
|         InTok = false;
 | |
|         IsIsolatedToken = false;
 | |
|       }
 | |
| 
 | |
|       // If this isn't "${", start new identifier looking like "$xxx"
 | |
|       if (i + 1 == String.size() || String[i + 1] != '{') {
 | |
|         Prev = i;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       size_t EndPos = String.find('}', i);
 | |
|       assert(EndPos != StringRef::npos &&
 | |
|              "Missing brace in operand reference!");
 | |
|       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
 | |
|       Prev = EndPos + 1;
 | |
|       i = EndPos;
 | |
|       IsIsolatedToken = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       InTok = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (InTok && Prev != String.size())
 | |
|     addAsmOperand(String.substr(Prev), IsIsolatedToken);
 | |
| }
 | |
| 
 | |
| bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
 | |
|   // Reject matchables with no .s string.
 | |
|   if (AsmString.empty())
 | |
|     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
 | |
| 
 | |
|   // Reject any matchables with a newline in them, they should be marked
 | |
|   // isCodeGenOnly if they are pseudo instructions.
 | |
|   if (AsmString.find('\n') != std::string::npos)
 | |
|     PrintFatalError(TheDef->getLoc(),
 | |
|                   "multiline instruction is not valid for the asmparser, "
 | |
|                   "mark it isCodeGenOnly");
 | |
| 
 | |
|   // Remove comments from the asm string.  We know that the asmstring only
 | |
|   // has one line.
 | |
|   if (!CommentDelimiter.empty() &&
 | |
|       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
 | |
|     PrintFatalError(TheDef->getLoc(),
 | |
|                   "asmstring for instruction has comment character in it, "
 | |
|                   "mark it isCodeGenOnly");
 | |
| 
 | |
|   // Reject matchables with operand modifiers, these aren't something we can
 | |
|   // handle, the target should be refactored to use operands instead of
 | |
|   // modifiers.
 | |
|   //
 | |
|   // Also, check for instructions which reference the operand multiple times;
 | |
|   // this implies a constraint we would not honor.
 | |
|   std::set<std::string> OperandNames;
 | |
|   for (const AsmOperand &Op : AsmOperands) {
 | |
|     StringRef Tok = Op.Token;
 | |
|     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
 | |
|       PrintFatalError(TheDef->getLoc(),
 | |
|                       "matchable with operand modifier '" + Tok +
 | |
|                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
 | |
| 
 | |
|     // Verify that any operand is only mentioned once.
 | |
|     // We reject aliases and ignore instructions for now.
 | |
|     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
 | |
|       if (!Hack)
 | |
|         PrintFatalError(TheDef->getLoc(),
 | |
|                         "ERROR: matchable with tied operand '" + Tok +
 | |
|                         "' can never be matched!");
 | |
|       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
 | |
|       // bunch of instructions.  It is unclear what the right answer is.
 | |
|       DEBUG({
 | |
|         errs() << "warning: '" << TheDef->getName() << "': "
 | |
|                << "ignoring instruction with tied operand '"
 | |
|                << Tok << "'\n";
 | |
|       });
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static std::string getEnumNameForToken(StringRef Str) {
 | |
|   std::string Res;
 | |
| 
 | |
|   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
 | |
|     switch (*it) {
 | |
|     case '*': Res += "_STAR_"; break;
 | |
|     case '%': Res += "_PCT_"; break;
 | |
|     case ':': Res += "_COLON_"; break;
 | |
|     case '!': Res += "_EXCLAIM_"; break;
 | |
|     case '.': Res += "_DOT_"; break;
 | |
|     case '<': Res += "_LT_"; break;
 | |
|     case '>': Res += "_GT_"; break;
 | |
|     case '-': Res += "_MINUS_"; break;
 | |
|     default:
 | |
|       if ((*it >= 'A' && *it <= 'Z') ||
 | |
|           (*it >= 'a' && *it <= 'z') ||
 | |
|           (*it >= '0' && *it <= '9'))
 | |
|         Res += *it;
 | |
|       else
 | |
|         Res += "_" + utostr((unsigned) *it) + "_";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
 | |
|   ClassInfo *&Entry = TokenClasses[Token];
 | |
| 
 | |
|   if (!Entry) {
 | |
|     Classes.emplace_front();
 | |
|     Entry = &Classes.front();
 | |
|     Entry->Kind = ClassInfo::Token;
 | |
|     Entry->ClassName = "Token";
 | |
|     Entry->Name = "MCK_" + getEnumNameForToken(Token);
 | |
|     Entry->ValueName = Token;
 | |
|     Entry->PredicateMethod = "<invalid>";
 | |
|     Entry->RenderMethod = "<invalid>";
 | |
|     Entry->ParserMethod = "";
 | |
|     Entry->DiagnosticType = "";
 | |
|     Entry->IsOptional = false;
 | |
|     Entry->DefaultMethod = "<invalid>";
 | |
|   }
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| ClassInfo *
 | |
| AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
 | |
|                                 int SubOpIdx) {
 | |
|   Record *Rec = OI.Rec;
 | |
|   if (SubOpIdx != -1)
 | |
|     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
 | |
|   return getOperandClass(Rec, SubOpIdx);
 | |
| }
 | |
| 
 | |
| ClassInfo *
 | |
| AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
 | |
|   if (Rec->isSubClassOf("RegisterOperand")) {
 | |
|     // RegisterOperand may have an associated ParserMatchClass. If it does,
 | |
|     // use it, else just fall back to the underlying register class.
 | |
|     const RecordVal *R = Rec->getValue("ParserMatchClass");
 | |
|     if (!R || !R->getValue())
 | |
|       PrintFatalError("Record `" + Rec->getName() +
 | |
|         "' does not have a ParserMatchClass!\n");
 | |
| 
 | |
|     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
 | |
|       Record *MatchClass = DI->getDef();
 | |
|       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
 | |
|         return CI;
 | |
|     }
 | |
| 
 | |
|     // No custom match class. Just use the register class.
 | |
|     Record *ClassRec = Rec->getValueAsDef("RegClass");
 | |
|     if (!ClassRec)
 | |
|       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
 | |
|                     "' has no associated register class!\n");
 | |
|     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
 | |
|       return CI;
 | |
|     PrintFatalError(Rec->getLoc(), "register class has no class info!");
 | |
|   }
 | |
| 
 | |
|   if (Rec->isSubClassOf("RegisterClass")) {
 | |
|     if (ClassInfo *CI = RegisterClassClasses[Rec])
 | |
|       return CI;
 | |
|     PrintFatalError(Rec->getLoc(), "register class has no class info!");
 | |
|   }
 | |
| 
 | |
|   if (!Rec->isSubClassOf("Operand"))
 | |
|     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
 | |
|                   "' does not derive from class Operand!\n");
 | |
|   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
 | |
|   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
 | |
|     return CI;
 | |
| 
 | |
|   PrintFatalError(Rec->getLoc(), "operand has no match class!");
 | |
| }
 | |
| 
 | |
| struct LessRegisterSet {
 | |
|   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
 | |
|     // std::set<T> defines its own compariso "operator<", but it
 | |
|     // performs a lexicographical comparison by T's innate comparison
 | |
|     // for some reason. We don't want non-deterministic pointer
 | |
|     // comparisons so use this instead.
 | |
|     return std::lexicographical_compare(LHS.begin(), LHS.end(),
 | |
|                                         RHS.begin(), RHS.end(),
 | |
|                                         LessRecordByID());
 | |
|   }
 | |
| };
 | |
| 
 | |
| void AsmMatcherInfo::
 | |
| buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
 | |
|   const auto &Registers = Target.getRegBank().getRegisters();
 | |
|   auto &RegClassList = Target.getRegBank().getRegClasses();
 | |
| 
 | |
|   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
 | |
| 
 | |
|   // The register sets used for matching.
 | |
|   RegisterSetSet RegisterSets;
 | |
| 
 | |
|   // Gather the defined sets.
 | |
|   for (const CodeGenRegisterClass &RC : RegClassList)
 | |
|     RegisterSets.insert(
 | |
|         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
 | |
| 
 | |
|   // Add any required singleton sets.
 | |
|   for (Record *Rec : SingletonRegisters) {
 | |
|     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
 | |
|   }
 | |
| 
 | |
|   // Introduce derived sets where necessary (when a register does not determine
 | |
|   // a unique register set class), and build the mapping of registers to the set
 | |
|   // they should classify to.
 | |
|   std::map<Record*, RegisterSet> RegisterMap;
 | |
|   for (const CodeGenRegister &CGR : Registers) {
 | |
|     // Compute the intersection of all sets containing this register.
 | |
|     RegisterSet ContainingSet;
 | |
| 
 | |
|     for (const RegisterSet &RS : RegisterSets) {
 | |
|       if (!RS.count(CGR.TheDef))
 | |
|         continue;
 | |
| 
 | |
|       if (ContainingSet.empty()) {
 | |
|         ContainingSet = RS;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       RegisterSet Tmp;
 | |
|       std::swap(Tmp, ContainingSet);
 | |
|       std::insert_iterator<RegisterSet> II(ContainingSet,
 | |
|                                            ContainingSet.begin());
 | |
|       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
 | |
|                             LessRecordByID());
 | |
|     }
 | |
| 
 | |
|     if (!ContainingSet.empty()) {
 | |
|       RegisterSets.insert(ContainingSet);
 | |
|       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Construct the register classes.
 | |
|   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
 | |
|   unsigned Index = 0;
 | |
|   for (const RegisterSet &RS : RegisterSets) {
 | |
|     Classes.emplace_front();
 | |
|     ClassInfo *CI = &Classes.front();
 | |
|     CI->Kind = ClassInfo::RegisterClass0 + Index;
 | |
|     CI->ClassName = "Reg" + utostr(Index);
 | |
|     CI->Name = "MCK_Reg" + utostr(Index);
 | |
|     CI->ValueName = "";
 | |
|     CI->PredicateMethod = ""; // unused
 | |
|     CI->RenderMethod = "addRegOperands";
 | |
|     CI->Registers = RS;
 | |
|     // FIXME: diagnostic type.
 | |
|     CI->DiagnosticType = "";
 | |
|     CI->IsOptional = false;
 | |
|     CI->DefaultMethod = ""; // unused
 | |
|     RegisterSetClasses.insert(std::make_pair(RS, CI));
 | |
|     ++Index;
 | |
|   }
 | |
| 
 | |
|   // Find the superclasses; we could compute only the subgroup lattice edges,
 | |
|   // but there isn't really a point.
 | |
|   for (const RegisterSet &RS : RegisterSets) {
 | |
|     ClassInfo *CI = RegisterSetClasses[RS];
 | |
|     for (const RegisterSet &RS2 : RegisterSets)
 | |
|       if (RS != RS2 &&
 | |
|           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
 | |
|                         LessRecordByID()))
 | |
|         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
 | |
|   }
 | |
| 
 | |
|   // Name the register classes which correspond to a user defined RegisterClass.
 | |
|   for (const CodeGenRegisterClass &RC : RegClassList) {
 | |
|     // Def will be NULL for non-user defined register classes.
 | |
|     Record *Def = RC.getDef();
 | |
|     if (!Def)
 | |
|       continue;
 | |
|     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
 | |
|                                                    RC.getOrder().end())];
 | |
|     if (CI->ValueName.empty()) {
 | |
|       CI->ClassName = RC.getName();
 | |
|       CI->Name = "MCK_" + RC.getName();
 | |
|       CI->ValueName = RC.getName();
 | |
|     } else
 | |
|       CI->ValueName = CI->ValueName + "," + RC.getName();
 | |
| 
 | |
|     RegisterClassClasses.insert(std::make_pair(Def, CI));
 | |
|   }
 | |
| 
 | |
|   // Populate the map for individual registers.
 | |
|   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
 | |
|          ie = RegisterMap.end(); it != ie; ++it)
 | |
|     RegisterClasses[it->first] = RegisterSetClasses[it->second];
 | |
| 
 | |
|   // Name the register classes which correspond to singleton registers.
 | |
|   for (Record *Rec : SingletonRegisters) {
 | |
|     ClassInfo *CI = RegisterClasses[Rec];
 | |
|     assert(CI && "Missing singleton register class info!");
 | |
| 
 | |
|     if (CI->ValueName.empty()) {
 | |
|       CI->ClassName = Rec->getName();
 | |
|       CI->Name = "MCK_" + Rec->getName().str();
 | |
|       CI->ValueName = Rec->getName();
 | |
|     } else
 | |
|       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::buildOperandClasses() {
 | |
|   std::vector<Record*> AsmOperands =
 | |
|     Records.getAllDerivedDefinitions("AsmOperandClass");
 | |
| 
 | |
|   // Pre-populate AsmOperandClasses map.
 | |
|   for (Record *Rec : AsmOperands) {
 | |
|     Classes.emplace_front();
 | |
|     AsmOperandClasses[Rec] = &Classes.front();
 | |
|   }
 | |
| 
 | |
|   unsigned Index = 0;
 | |
|   for (Record *Rec : AsmOperands) {
 | |
|     ClassInfo *CI = AsmOperandClasses[Rec];
 | |
|     CI->Kind = ClassInfo::UserClass0 + Index;
 | |
| 
 | |
|     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
 | |
|     for (Init *I : Supers->getValues()) {
 | |
|       DefInit *DI = dyn_cast<DefInit>(I);
 | |
|       if (!DI) {
 | |
|         PrintError(Rec->getLoc(), "Invalid super class reference!");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
 | |
|       if (!SC)
 | |
|         PrintError(Rec->getLoc(), "Invalid super class reference!");
 | |
|       else
 | |
|         CI->SuperClasses.push_back(SC);
 | |
|     }
 | |
|     CI->ClassName = Rec->getValueAsString("Name");
 | |
|     CI->Name = "MCK_" + CI->ClassName;
 | |
|     CI->ValueName = Rec->getName();
 | |
| 
 | |
|     // Get or construct the predicate method name.
 | |
|     Init *PMName = Rec->getValueInit("PredicateMethod");
 | |
|     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
 | |
|       CI->PredicateMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
 | |
|       CI->PredicateMethod = "is" + CI->ClassName;
 | |
|     }
 | |
| 
 | |
|     // Get or construct the render method name.
 | |
|     Init *RMName = Rec->getValueInit("RenderMethod");
 | |
|     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
 | |
|       CI->RenderMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
 | |
|       CI->RenderMethod = "add" + CI->ClassName + "Operands";
 | |
|     }
 | |
| 
 | |
|     // Get the parse method name or leave it as empty.
 | |
|     Init *PRMName = Rec->getValueInit("ParserMethod");
 | |
|     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
 | |
|       CI->ParserMethod = SI->getValue();
 | |
| 
 | |
|     // Get the diagnostic type or leave it as empty.
 | |
|     // Get the parse method name or leave it as empty.
 | |
|     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
 | |
|     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
 | |
|       CI->DiagnosticType = SI->getValue();
 | |
| 
 | |
|     Init *IsOptional = Rec->getValueInit("IsOptional");
 | |
|     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
 | |
|       CI->IsOptional = BI->getValue();
 | |
| 
 | |
|     // Get or construct the default method name.
 | |
|     Init *DMName = Rec->getValueInit("DefaultMethod");
 | |
|     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
 | |
|       CI->DefaultMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
 | |
|       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
 | |
|     }
 | |
| 
 | |
|     ++Index;
 | |
|   }
 | |
| }
 | |
| 
 | |
| AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
 | |
|                                CodeGenTarget &target,
 | |
|                                RecordKeeper &records)
 | |
|   : Records(records), AsmParser(asmParser), Target(target) {
 | |
| }
 | |
| 
 | |
| /// buildOperandMatchInfo - Build the necessary information to handle user
 | |
| /// defined operand parsing methods.
 | |
| void AsmMatcherInfo::buildOperandMatchInfo() {
 | |
| 
 | |
|   /// Map containing a mask with all operands indices that can be found for
 | |
|   /// that class inside a instruction.
 | |
|   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
 | |
|   OpClassMaskTy OpClassMask;
 | |
| 
 | |
|   for (const auto &MI : Matchables) {
 | |
|     OpClassMask.clear();
 | |
| 
 | |
|     // Keep track of all operands of this instructions which belong to the
 | |
|     // same class.
 | |
|     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
 | |
|       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
 | |
|       if (Op.Class->ParserMethod.empty())
 | |
|         continue;
 | |
|       unsigned &OperandMask = OpClassMask[Op.Class];
 | |
|       OperandMask |= (1 << i);
 | |
|     }
 | |
| 
 | |
|     // Generate operand match info for each mnemonic/operand class pair.
 | |
|     for (const auto &OCM : OpClassMask) {
 | |
|       unsigned OpMask = OCM.second;
 | |
|       ClassInfo *CI = OCM.first;
 | |
|       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
 | |
|                                                            OpMask));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::buildInfo() {
 | |
|   // Build information about all of the AssemblerPredicates.
 | |
|   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
 | |
|       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
 | |
|   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
 | |
|                            SubtargetFeaturePairs.end());
 | |
| #ifndef NDEBUG
 | |
|   for (const auto &Pair : SubtargetFeatures)
 | |
|     DEBUG(Pair.second.dump());
 | |
| #endif // NDEBUG
 | |
|   assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
 | |
| 
 | |
|   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
 | |
| 
 | |
|   // Parse the instructions; we need to do this first so that we can gather the
 | |
|   // singleton register classes.
 | |
|   SmallPtrSet<Record*, 16> SingletonRegisters;
 | |
|   unsigned VariantCount = Target.getAsmParserVariantCount();
 | |
|   for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | |
|     Record *AsmVariant = Target.getAsmParserVariant(VC);
 | |
|     std::string CommentDelimiter =
 | |
|       AsmVariant->getValueAsString("CommentDelimiter");
 | |
|     AsmVariantInfo Variant;
 | |
|     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
 | |
|     Variant.TokenizingCharacters =
 | |
|         AsmVariant->getValueAsString("TokenizingCharacters");
 | |
|     Variant.SeparatorCharacters =
 | |
|         AsmVariant->getValueAsString("SeparatorCharacters");
 | |
|     Variant.BreakCharacters =
 | |
|         AsmVariant->getValueAsString("BreakCharacters");
 | |
|     Variant.Name = AsmVariant->getValueAsString("Name");
 | |
|     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | |
| 
 | |
|     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
 | |
| 
 | |
|       // If the tblgen -match-prefix option is specified (for tblgen hackers),
 | |
|       // filter the set of instructions we consider.
 | |
|       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
 | |
|         continue;
 | |
| 
 | |
|       // Ignore "codegen only" instructions.
 | |
|       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
 | |
|         continue;
 | |
| 
 | |
|       // Ignore instructions for different instructions
 | |
|       const std::string V = CGI->TheDef->getValueAsString("AsmVariantName");
 | |
|       if (!V.empty() && V != Variant.Name)
 | |
|         continue;
 | |
| 
 | |
|       auto II = llvm::make_unique<MatchableInfo>(*CGI);
 | |
| 
 | |
|       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
 | |
| 
 | |
|       // Ignore instructions which shouldn't be matched and diagnose invalid
 | |
|       // instruction definitions with an error.
 | |
|       if (!II->validate(CommentDelimiter, true))
 | |
|         continue;
 | |
| 
 | |
|       Matchables.push_back(std::move(II));
 | |
|     }
 | |
| 
 | |
|     // Parse all of the InstAlias definitions and stick them in the list of
 | |
|     // matchables.
 | |
|     std::vector<Record*> AllInstAliases =
 | |
|       Records.getAllDerivedDefinitions("InstAlias");
 | |
|     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
 | |
|       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
 | |
|                                                        Variant.AsmVariantNo,
 | |
|                                                        Target);
 | |
| 
 | |
|       // If the tblgen -match-prefix option is specified (for tblgen hackers),
 | |
|       // filter the set of instruction aliases we consider, based on the target
 | |
|       // instruction.
 | |
|       if (!StringRef(Alias->ResultInst->TheDef->getName())
 | |
|             .startswith( MatchPrefix))
 | |
|         continue;
 | |
| 
 | |
|       const std::string V = Alias->TheDef->getValueAsString("AsmVariantName");
 | |
|       if (!V.empty() && V != Variant.Name)
 | |
|         continue;
 | |
| 
 | |
|       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
 | |
| 
 | |
|       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
 | |
| 
 | |
|       // Validate the alias definitions.
 | |
|       II->validate(CommentDelimiter, false);
 | |
| 
 | |
|       Matchables.push_back(std::move(II));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Build info for the register classes.
 | |
|   buildRegisterClasses(SingletonRegisters);
 | |
| 
 | |
|   // Build info for the user defined assembly operand classes.
 | |
|   buildOperandClasses();
 | |
| 
 | |
|   // Build the information about matchables, now that we have fully formed
 | |
|   // classes.
 | |
|   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
 | |
|   for (auto &II : Matchables) {
 | |
|     // Parse the tokens after the mnemonic.
 | |
|     // Note: buildInstructionOperandReference may insert new AsmOperands, so
 | |
|     // don't precompute the loop bound.
 | |
|     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
 | |
|       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
 | |
|       StringRef Token = Op.Token;
 | |
| 
 | |
|       // Check for singleton registers.
 | |
|       if (Record *RegRecord = Op.SingletonReg) {
 | |
|         Op.Class = RegisterClasses[RegRecord];
 | |
|         assert(Op.Class && Op.Class->Registers.size() == 1 &&
 | |
|                "Unexpected class for singleton register");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check for simple tokens.
 | |
|       if (Token[0] != '$') {
 | |
|         Op.Class = getTokenClass(Token);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Token.size() > 1 && isdigit(Token[1])) {
 | |
|         Op.Class = getTokenClass(Token);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise this is an operand reference.
 | |
|       StringRef OperandName;
 | |
|       if (Token[1] == '{')
 | |
|         OperandName = Token.substr(2, Token.size() - 3);
 | |
|       else
 | |
|         OperandName = Token.substr(1);
 | |
| 
 | |
|       if (II->DefRec.is<const CodeGenInstruction*>())
 | |
|         buildInstructionOperandReference(II.get(), OperandName, i);
 | |
|       else
 | |
|         buildAliasOperandReference(II.get(), OperandName, Op);
 | |
|     }
 | |
| 
 | |
|     if (II->DefRec.is<const CodeGenInstruction*>()) {
 | |
|       II->buildInstructionResultOperands();
 | |
|       // If the instruction has a two-operand alias, build up the
 | |
|       // matchable here. We'll add them in bulk at the end to avoid
 | |
|       // confusing this loop.
 | |
|       std::string Constraint =
 | |
|         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
 | |
|       if (Constraint != "") {
 | |
|         // Start by making a copy of the original matchable.
 | |
|         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
 | |
| 
 | |
|         // Adjust it to be a two-operand alias.
 | |
|         AliasII->formTwoOperandAlias(Constraint);
 | |
| 
 | |
|         // Add the alias to the matchables list.
 | |
|         NewMatchables.push_back(std::move(AliasII));
 | |
|       }
 | |
|     } else
 | |
|       II->buildAliasResultOperands();
 | |
|   }
 | |
|   if (!NewMatchables.empty())
 | |
|     Matchables.insert(Matchables.end(),
 | |
|                       std::make_move_iterator(NewMatchables.begin()),
 | |
|                       std::make_move_iterator(NewMatchables.end()));
 | |
| 
 | |
|   // Process token alias definitions and set up the associated superclass
 | |
|   // information.
 | |
|   std::vector<Record*> AllTokenAliases =
 | |
|     Records.getAllDerivedDefinitions("TokenAlias");
 | |
|   for (Record *Rec : AllTokenAliases) {
 | |
|     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
 | |
|     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
 | |
|     if (FromClass == ToClass)
 | |
|       PrintFatalError(Rec->getLoc(),
 | |
|                     "error: Destination value identical to source value.");
 | |
|     FromClass->SuperClasses.push_back(ToClass);
 | |
|   }
 | |
| 
 | |
|   // Reorder classes so that classes precede super classes.
 | |
|   Classes.sort();
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   // Verify that the table is sorted and operator < works transitively.
 | |
|   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
 | |
|     for (auto J = I; J != E; ++J) {
 | |
|       assert(!(*J < *I));
 | |
|       assert(I == J || !J->isSubsetOf(*I));
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// buildInstructionOperandReference - The specified operand is a reference to a
 | |
| /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
 | |
| void AsmMatcherInfo::
 | |
| buildInstructionOperandReference(MatchableInfo *II,
 | |
|                                  StringRef OperandName,
 | |
|                                  unsigned AsmOpIdx) {
 | |
|   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
 | |
|   const CGIOperandList &Operands = CGI.Operands;
 | |
|   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
 | |
| 
 | |
|   // Map this token to an operand.
 | |
|   unsigned Idx;
 | |
|   if (!Operands.hasOperandNamed(OperandName, Idx))
 | |
|     PrintFatalError(II->TheDef->getLoc(),
 | |
|                     "error: unable to find operand: '" + OperandName + "'");
 | |
| 
 | |
|   // If the instruction operand has multiple suboperands, but the parser
 | |
|   // match class for the asm operand is still the default "ImmAsmOperand",
 | |
|   // then handle each suboperand separately.
 | |
|   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
 | |
|     Record *Rec = Operands[Idx].Rec;
 | |
|     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
 | |
|     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
 | |
|     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
 | |
|       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
 | |
|       StringRef Token = Op->Token; // save this in case Op gets moved
 | |
|       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
 | |
|         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
 | |
|         NewAsmOp.SubOpIdx = SI;
 | |
|         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
 | |
|       }
 | |
|       // Replace Op with first suboperand.
 | |
|       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
 | |
|       Op->SubOpIdx = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Set up the operand class.
 | |
|   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
 | |
| 
 | |
|   // If the named operand is tied, canonicalize it to the untied operand.
 | |
|   // For example, something like:
 | |
|   //   (outs GPR:$dst), (ins GPR:$src)
 | |
|   // with an asmstring of
 | |
|   //   "inc $src"
 | |
|   // we want to canonicalize to:
 | |
|   //   "inc $dst"
 | |
|   // so that we know how to provide the $dst operand when filling in the result.
 | |
|   int OITied = -1;
 | |
|   if (Operands[Idx].MINumOperands == 1)
 | |
|     OITied = Operands[Idx].getTiedRegister();
 | |
|   if (OITied != -1) {
 | |
|     // The tied operand index is an MIOperand index, find the operand that
 | |
|     // contains it.
 | |
|     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
 | |
|     OperandName = Operands[Idx.first].Name;
 | |
|     Op->SubOpIdx = Idx.second;
 | |
|   }
 | |
| 
 | |
|   Op->SrcOpName = OperandName;
 | |
| }
 | |
| 
 | |
| /// buildAliasOperandReference - When parsing an operand reference out of the
 | |
| /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
 | |
| /// operand reference is by looking it up in the result pattern definition.
 | |
| void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
 | |
|                                                 StringRef OperandName,
 | |
|                                                 MatchableInfo::AsmOperand &Op) {
 | |
|   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
 | |
| 
 | |
|   // Set up the operand class.
 | |
|   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
 | |
|     if (CGA.ResultOperands[i].isRecord() &&
 | |
|         CGA.ResultOperands[i].getName() == OperandName) {
 | |
|       // It's safe to go with the first one we find, because CodeGenInstAlias
 | |
|       // validates that all operands with the same name have the same record.
 | |
|       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
 | |
|       // Use the match class from the Alias definition, not the
 | |
|       // destination instruction, as we may have an immediate that's
 | |
|       // being munged by the match class.
 | |
|       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
 | |
|                                  Op.SubOpIdx);
 | |
|       Op.SrcOpName = OperandName;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   PrintFatalError(II->TheDef->getLoc(),
 | |
|                   "error: unable to find operand: '" + OperandName + "'");
 | |
| }
 | |
| 
 | |
| void MatchableInfo::buildInstructionResultOperands() {
 | |
|   const CodeGenInstruction *ResultInst = getResultInst();
 | |
| 
 | |
|   // Loop over all operands of the result instruction, determining how to
 | |
|   // populate them.
 | |
|   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
 | |
|     // If this is a tied operand, just copy from the previously handled operand.
 | |
|     int TiedOp = -1;
 | |
|     if (OpInfo.MINumOperands == 1)
 | |
|       TiedOp = OpInfo.getTiedRegister();
 | |
|     if (TiedOp != -1) {
 | |
|       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Find out what operand from the asmparser this MCInst operand comes from.
 | |
|     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
 | |
|     if (OpInfo.Name.empty() || SrcOperand == -1) {
 | |
|       // This may happen for operands that are tied to a suboperand of a
 | |
|       // complex operand.  Simply use a dummy value here; nobody should
 | |
|       // use this operand slot.
 | |
|       // FIXME: The long term goal is for the MCOperand list to not contain
 | |
|       // tied operands at all.
 | |
|       ResOperands.push_back(ResOperand::getImmOp(0));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check if the one AsmOperand populates the entire operand.
 | |
|     unsigned NumOperands = OpInfo.MINumOperands;
 | |
|     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
 | |
|       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Add a separate ResOperand for each suboperand.
 | |
|     for (unsigned AI = 0; AI < NumOperands; ++AI) {
 | |
|       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
 | |
|              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
 | |
|              "unexpected AsmOperands for suboperands");
 | |
|       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MatchableInfo::buildAliasResultOperands() {
 | |
|   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
 | |
|   const CodeGenInstruction *ResultInst = getResultInst();
 | |
| 
 | |
|   // Loop over all operands of the result instruction, determining how to
 | |
|   // populate them.
 | |
|   unsigned AliasOpNo = 0;
 | |
|   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
 | |
|   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
 | |
|     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
 | |
| 
 | |
|     // If this is a tied operand, just copy from the previously handled operand.
 | |
|     int TiedOp = -1;
 | |
|     if (OpInfo->MINumOperands == 1)
 | |
|       TiedOp = OpInfo->getTiedRegister();
 | |
|     if (TiedOp != -1) {
 | |
|       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle all the suboperands for this operand.
 | |
|     const std::string &OpName = OpInfo->Name;
 | |
|     for ( ; AliasOpNo <  LastOpNo &&
 | |
|             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
 | |
|       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
 | |
| 
 | |
|       // Find out what operand from the asmparser that this MCInst operand
 | |
|       // comes from.
 | |
|       switch (CGA.ResultOperands[AliasOpNo].Kind) {
 | |
|       case CodeGenInstAlias::ResultOperand::K_Record: {
 | |
|         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
 | |
|         int SrcOperand = findAsmOperand(Name, SubIdx);
 | |
|         if (SrcOperand == -1)
 | |
|           PrintFatalError(TheDef->getLoc(), "Instruction '" +
 | |
|                         TheDef->getName() + "' has operand '" + OpName +
 | |
|                         "' that doesn't appear in asm string!");
 | |
|         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
 | |
|         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
 | |
|                                                         NumOperands));
 | |
|         break;
 | |
|       }
 | |
|       case CodeGenInstAlias::ResultOperand::K_Imm: {
 | |
|         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
 | |
|         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
 | |
|         break;
 | |
|       }
 | |
|       case CodeGenInstAlias::ResultOperand::K_Reg: {
 | |
|         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
 | |
|         ResOperands.push_back(ResOperand::getRegOp(Reg));
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| getConverterOperandID(const std::string &Name,
 | |
|                       SmallSetVector<CachedHashString, 16> &Table,
 | |
|                       bool &IsNew) {
 | |
|   IsNew = Table.insert(CachedHashString(Name));
 | |
| 
 | |
|   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
 | |
| 
 | |
|   assert(ID < Table.size());
 | |
| 
 | |
|   return ID;
 | |
| }
 | |
| 
 | |
| static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
 | |
|                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
 | |
|                              bool HasMnemonicFirst, bool HasOptionalOperands,
 | |
|                              raw_ostream &OS) {
 | |
|   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
 | |
|   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
 | |
|   std::vector<std::vector<uint8_t> > ConversionTable;
 | |
|   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
 | |
| 
 | |
|   // TargetOperandClass - This is the target's operand class, like X86Operand.
 | |
|   std::string TargetOperandClass = Target.getName().str() + "Operand";
 | |
| 
 | |
|   // Write the convert function to a separate stream, so we can drop it after
 | |
|   // the enum. We'll build up the conversion handlers for the individual
 | |
|   // operand types opportunistically as we encounter them.
 | |
|   std::string ConvertFnBody;
 | |
|   raw_string_ostream CvtOS(ConvertFnBody);
 | |
|   // Start the unified conversion function.
 | |
|   if (HasOptionalOperands) {
 | |
|     CvtOS << "void " << Target.getName() << ClassName << "::\n"
 | |
|           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
 | |
|           << "unsigned Opcode,\n"
 | |
|           << "                const OperandVector &Operands,\n"
 | |
|           << "                const SmallBitVector &OptionalOperandsMask) {\n";
 | |
|   } else {
 | |
|     CvtOS << "void " << Target.getName() << ClassName << "::\n"
 | |
|           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
 | |
|           << "unsigned Opcode,\n"
 | |
|           << "                const OperandVector &Operands) {\n";
 | |
|   }
 | |
|   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
 | |
|   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     CvtOS << "  unsigned NumDefaults = 0;\n";
 | |
|   }
 | |
|   CvtOS << "  unsigned OpIdx;\n";
 | |
|   CvtOS << "  Inst.setOpcode(Opcode);\n";
 | |
|   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     CvtOS << "    OpIdx = *(p + 1) - NumDefaults;\n";
 | |
|   } else {
 | |
|     CvtOS << "    OpIdx = *(p + 1);\n";
 | |
|   }
 | |
|   CvtOS << "    switch (*p) {\n";
 | |
|   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
 | |
|   CvtOS << "    case CVT_Reg:\n";
 | |
|   CvtOS << "      static_cast<" << TargetOperandClass
 | |
|         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
 | |
|   CvtOS << "      break;\n";
 | |
|   CvtOS << "    case CVT_Tied:\n";
 | |
|   CvtOS << "      Inst.addOperand(Inst.getOperand(OpIdx));\n";
 | |
|   CvtOS << "      break;\n";
 | |
| 
 | |
|   std::string OperandFnBody;
 | |
|   raw_string_ostream OpOS(OperandFnBody);
 | |
|   // Start the operand number lookup function.
 | |
|   OpOS << "void " << Target.getName() << ClassName << "::\n"
 | |
|        << "convertToMapAndConstraints(unsigned Kind,\n";
 | |
|   OpOS.indent(27);
 | |
|   OpOS << "const OperandVector &Operands) {\n"
 | |
|        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
 | |
|        << "  unsigned NumMCOperands = 0;\n"
 | |
|        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
 | |
|        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
 | |
|        << "    switch (*p) {\n"
 | |
|        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
 | |
|        << "    case CVT_Reg:\n"
 | |
|        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
 | |
|        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
 | |
|        << "      ++NumMCOperands;\n"
 | |
|        << "      break;\n"
 | |
|        << "    case CVT_Tied:\n"
 | |
|        << "      ++NumMCOperands;\n"
 | |
|        << "      break;\n";
 | |
| 
 | |
|   // Pre-populate the operand conversion kinds with the standard always
 | |
|   // available entries.
 | |
|   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
 | |
|   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
 | |
|   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
 | |
|   enum { CVT_Done, CVT_Reg, CVT_Tied };
 | |
| 
 | |
|   for (auto &II : Infos) {
 | |
|     // Check if we have a custom match function.
 | |
|     std::string AsmMatchConverter =
 | |
|       II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
 | |
|     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
 | |
|       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
 | |
|       II->ConversionFnKind = Signature;
 | |
| 
 | |
|       // Check if we have already generated this signature.
 | |
|       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
 | |
|         continue;
 | |
| 
 | |
|       // Remember this converter for the kind enum.
 | |
|       unsigned KindID = OperandConversionKinds.size();
 | |
|       OperandConversionKinds.insert(
 | |
|           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
 | |
| 
 | |
|       // Add the converter row for this instruction.
 | |
|       ConversionTable.emplace_back();
 | |
|       ConversionTable.back().push_back(KindID);
 | |
|       ConversionTable.back().push_back(CVT_Done);
 | |
| 
 | |
|       // Add the handler to the conversion driver function.
 | |
|       CvtOS << "    case CVT_"
 | |
|             << getEnumNameForToken(AsmMatchConverter) << ":\n"
 | |
|             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
 | |
|             << "      break;\n";
 | |
| 
 | |
|       // FIXME: Handle the operand number lookup for custom match functions.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Build the conversion function signature.
 | |
|     std::string Signature = "Convert";
 | |
| 
 | |
|     std::vector<uint8_t> ConversionRow;
 | |
| 
 | |
|     // Compute the convert enum and the case body.
 | |
|     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
 | |
| 
 | |
|     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
 | |
|       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
 | |
| 
 | |
|       // Generate code to populate each result operand.
 | |
|       switch (OpInfo.Kind) {
 | |
|       case MatchableInfo::ResOperand::RenderAsmOperand: {
 | |
|         // This comes from something we parsed.
 | |
|         const MatchableInfo::AsmOperand &Op =
 | |
|           II->AsmOperands[OpInfo.AsmOperandNum];
 | |
| 
 | |
|         // Registers are always converted the same, don't duplicate the
 | |
|         // conversion function based on them.
 | |
|         Signature += "__";
 | |
|         std::string Class;
 | |
|         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
 | |
|         Signature += Class;
 | |
|         Signature += utostr(OpInfo.MINumOperands);
 | |
|         Signature += "_" + itostr(OpInfo.AsmOperandNum);
 | |
| 
 | |
|         // Add the conversion kind, if necessary, and get the associated ID
 | |
|         // the index of its entry in the vector).
 | |
|         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
 | |
|                                      Op.Class->RenderMethod);
 | |
|         if (Op.Class->IsOptional) {
 | |
|           // For optional operands we must also care about DefaultMethod
 | |
|           assert(HasOptionalOperands);
 | |
|           Name += "_" + Op.Class->DefaultMethod;
 | |
|         }
 | |
|         Name = getEnumNameForToken(Name);
 | |
| 
 | |
|         bool IsNewConverter = false;
 | |
|         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
 | |
|                                             IsNewConverter);
 | |
| 
 | |
|         // Add the operand entry to the instruction kind conversion row.
 | |
|         ConversionRow.push_back(ID);
 | |
|         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
 | |
| 
 | |
|         if (!IsNewConverter)
 | |
|           break;
 | |
| 
 | |
|         // This is a new operand kind. Add a handler for it to the
 | |
|         // converter driver.
 | |
|         CvtOS << "    case " << Name << ":\n";
 | |
|         if (Op.Class->IsOptional) {
 | |
|           // If optional operand is not present in actual instruction then we
 | |
|           // should call its DefaultMethod before RenderMethod
 | |
|           assert(HasOptionalOperands);
 | |
|           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
 | |
|                 << "        " << Op.Class->DefaultMethod << "()"
 | |
|                 << "->" << Op.Class->RenderMethod << "(Inst, "
 | |
|                 << OpInfo.MINumOperands << ");\n"
 | |
|                 << "        ++NumDefaults;\n"
 | |
|                 << "      } else {\n"
 | |
|                 << "        static_cast<" << TargetOperandClass
 | |
|                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
 | |
|                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
 | |
|                 << "      }\n";
 | |
|         } else {
 | |
|           CvtOS << "      static_cast<" << TargetOperandClass
 | |
|                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
 | |
|                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
 | |
|         }
 | |
|         CvtOS << "      break;\n";
 | |
| 
 | |
|         // Add a handler for the operand number lookup.
 | |
|         OpOS << "    case " << Name << ":\n"
 | |
|              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
 | |
| 
 | |
|         if (Op.Class->isRegisterClass())
 | |
|           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
 | |
|         else
 | |
|           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
 | |
|         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
 | |
|              << "      break;\n";
 | |
|         break;
 | |
|       }
 | |
|       case MatchableInfo::ResOperand::TiedOperand: {
 | |
|         // If this operand is tied to a previous one, just copy the MCInst
 | |
|         // operand from the earlier one.We can only tie single MCOperand values.
 | |
|         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
 | |
|         unsigned TiedOp = OpInfo.TiedOperandNum;
 | |
|         assert(i > TiedOp && "Tied operand precedes its target!");
 | |
|         Signature += "__Tie" + utostr(TiedOp);
 | |
|         ConversionRow.push_back(CVT_Tied);
 | |
|         ConversionRow.push_back(TiedOp);
 | |
|         break;
 | |
|       }
 | |
|       case MatchableInfo::ResOperand::ImmOperand: {
 | |
|         int64_t Val = OpInfo.ImmVal;
 | |
|         std::string Ty = "imm_" + itostr(Val);
 | |
|         Ty = getEnumNameForToken(Ty);
 | |
|         Signature += "__" + Ty;
 | |
| 
 | |
|         std::string Name = "CVT_" + Ty;
 | |
|         bool IsNewConverter = false;
 | |
|         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
 | |
|                                             IsNewConverter);
 | |
|         // Add the operand entry to the instruction kind conversion row.
 | |
|         ConversionRow.push_back(ID);
 | |
|         ConversionRow.push_back(0);
 | |
| 
 | |
|         if (!IsNewConverter)
 | |
|           break;
 | |
| 
 | |
|         CvtOS << "    case " << Name << ":\n"
 | |
|               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
 | |
|               << "      break;\n";
 | |
| 
 | |
|         OpOS << "    case " << Name << ":\n"
 | |
|              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
 | |
|              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
 | |
|              << "      ++NumMCOperands;\n"
 | |
|              << "      break;\n";
 | |
|         break;
 | |
|       }
 | |
|       case MatchableInfo::ResOperand::RegOperand: {
 | |
|         std::string Reg, Name;
 | |
|         if (!OpInfo.Register) {
 | |
|           Name = "reg0";
 | |
|           Reg = "0";
 | |
|         } else {
 | |
|           Reg = getQualifiedName(OpInfo.Register);
 | |
|           Name = "reg" + OpInfo.Register->getName().str();
 | |
|         }
 | |
|         Signature += "__" + Name;
 | |
|         Name = "CVT_" + Name;
 | |
|         bool IsNewConverter = false;
 | |
|         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
 | |
|                                             IsNewConverter);
 | |
|         // Add the operand entry to the instruction kind conversion row.
 | |
|         ConversionRow.push_back(ID);
 | |
|         ConversionRow.push_back(0);
 | |
| 
 | |
|         if (!IsNewConverter)
 | |
|           break;
 | |
|         CvtOS << "    case " << Name << ":\n"
 | |
|               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
 | |
|               << "      break;\n";
 | |
| 
 | |
|         OpOS << "    case " << Name << ":\n"
 | |
|              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
 | |
|              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
 | |
|              << "      ++NumMCOperands;\n"
 | |
|              << "      break;\n";
 | |
|       }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If there were no operands, add to the signature to that effect
 | |
|     if (Signature == "Convert")
 | |
|       Signature += "_NoOperands";
 | |
| 
 | |
|     II->ConversionFnKind = Signature;
 | |
| 
 | |
|     // Save the signature. If we already have it, don't add a new row
 | |
|     // to the table.
 | |
|     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
 | |
|       continue;
 | |
| 
 | |
|     // Add the row to the table.
 | |
|     ConversionTable.push_back(std::move(ConversionRow));
 | |
|   }
 | |
| 
 | |
|   // Finish up the converter driver function.
 | |
|   CvtOS << "    }\n  }\n}\n\n";
 | |
| 
 | |
|   // Finish up the operand number lookup function.
 | |
|   OpOS << "    }\n  }\n}\n\n";
 | |
| 
 | |
|   OS << "namespace {\n";
 | |
| 
 | |
|   // Output the operand conversion kind enum.
 | |
|   OS << "enum OperatorConversionKind {\n";
 | |
|   for (const auto &Converter : OperandConversionKinds)
 | |
|     OS << "  " << Converter << ",\n";
 | |
|   OS << "  CVT_NUM_CONVERTERS\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   // Output the instruction conversion kind enum.
 | |
|   OS << "enum InstructionConversionKind {\n";
 | |
|   for (const auto &Signature : InstructionConversionKinds)
 | |
|     OS << "  " << Signature << ",\n";
 | |
|   OS << "  CVT_NUM_SIGNATURES\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << "} // end anonymous namespace\n\n";
 | |
| 
 | |
|   // Output the conversion table.
 | |
|   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
 | |
|      << MaxRowLength << "] = {\n";
 | |
| 
 | |
|   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
 | |
|     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
 | |
|     OS << "  // " << InstructionConversionKinds[Row] << "\n";
 | |
|     OS << "  { ";
 | |
|     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
 | |
|       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
 | |
|          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
 | |
|     OS << "CVT_Done },\n";
 | |
|   }
 | |
| 
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   // Spit out the conversion driver function.
 | |
|   OS << CvtOS.str();
 | |
| 
 | |
|   // Spit out the operand number lookup function.
 | |
|   OS << OpOS.str();
 | |
| }
 | |
| 
 | |
| /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
 | |
| static void emitMatchClassEnumeration(CodeGenTarget &Target,
 | |
|                                       std::forward_list<ClassInfo> &Infos,
 | |
|                                       raw_ostream &OS) {
 | |
|   OS << "namespace {\n\n";
 | |
| 
 | |
|   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
 | |
|      << "/// instruction matching.\n";
 | |
|   OS << "enum MatchClassKind {\n";
 | |
|   OS << "  InvalidMatchClass = 0,\n";
 | |
|   OS << "  OptionalMatchClass = 1,\n";
 | |
|   for (const auto &CI : Infos) {
 | |
|     OS << "  " << CI.Name << ", // ";
 | |
|     if (CI.Kind == ClassInfo::Token) {
 | |
|       OS << "'" << CI.ValueName << "'\n";
 | |
|     } else if (CI.isRegisterClass()) {
 | |
|       if (!CI.ValueName.empty())
 | |
|         OS << "register class '" << CI.ValueName << "'\n";
 | |
|       else
 | |
|         OS << "derived register class\n";
 | |
|     } else {
 | |
|       OS << "user defined class '" << CI.ValueName << "'\n";
 | |
|     }
 | |
|   }
 | |
|   OS << "  NumMatchClassKinds\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// emitValidateOperandClass - Emit the function to validate an operand class.
 | |
| static void emitValidateOperandClass(AsmMatcherInfo &Info,
 | |
|                                      raw_ostream &OS) {
 | |
|   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
 | |
|      << "MatchClassKind Kind) {\n";
 | |
|   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
 | |
|      << Info.Target.getName() << "Operand&)GOp;\n";
 | |
| 
 | |
|   // The InvalidMatchClass is not to match any operand.
 | |
|   OS << "  if (Kind == InvalidMatchClass)\n";
 | |
|   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
 | |
| 
 | |
|   // Check for Token operands first.
 | |
|   // FIXME: Use a more specific diagnostic type.
 | |
|   OS << "  if (Operand.isToken())\n";
 | |
|   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
 | |
|      << "             MCTargetAsmParser::Match_Success :\n"
 | |
|      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
 | |
| 
 | |
|   // Check the user classes. We don't care what order since we're only
 | |
|   // actually matching against one of them.
 | |
|   OS << "  switch (Kind) {\n"
 | |
|         "  default: break;\n";
 | |
|   for (const auto &CI : Info.Classes) {
 | |
|     if (!CI.isUserClass())
 | |
|       continue;
 | |
| 
 | |
|     OS << "  // '" << CI.ClassName << "' class\n";
 | |
|     OS << "  case " << CI.Name << ":\n";
 | |
|     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
 | |
|     OS << "      return MCTargetAsmParser::Match_Success;\n";
 | |
|     if (!CI.DiagnosticType.empty())
 | |
|       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
 | |
|          << CI.DiagnosticType << ";\n";
 | |
|     else
 | |
|       OS << "    break;\n";
 | |
|   }
 | |
|   OS << "  } // end switch (Kind)\n\n";
 | |
| 
 | |
|   // Check for register operands, including sub-classes.
 | |
|   OS << "  if (Operand.isReg()) {\n";
 | |
|   OS << "    MatchClassKind OpKind;\n";
 | |
|   OS << "    switch (Operand.getReg()) {\n";
 | |
|   OS << "    default: OpKind = InvalidMatchClass; break;\n";
 | |
|   for (const auto &RC : Info.RegisterClasses)
 | |
|     OS << "    case " << Info.Target.getName() << "::"
 | |
|        << RC.first->getName() << ": OpKind = " << RC.second->Name
 | |
|        << "; break;\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    return isSubclass(OpKind, Kind) ? "
 | |
|      << "MCTargetAsmParser::Match_Success :\n                             "
 | |
|      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
 | |
| 
 | |
|   // Generic fallthrough match failure case for operands that don't have
 | |
|   // specialized diagnostic types.
 | |
|   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// emitIsSubclass - Emit the subclass predicate function.
 | |
| static void emitIsSubclass(CodeGenTarget &Target,
 | |
|                            std::forward_list<ClassInfo> &Infos,
 | |
|                            raw_ostream &OS) {
 | |
|   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
 | |
|   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
 | |
|   OS << "  if (A == B)\n";
 | |
|   OS << "    return true;\n\n";
 | |
| 
 | |
|   bool EmittedSwitch = false;
 | |
|   for (const auto &A : Infos) {
 | |
|     std::vector<StringRef> SuperClasses;
 | |
|     if (A.IsOptional)
 | |
|       SuperClasses.push_back("OptionalMatchClass");
 | |
|     for (const auto &B : Infos) {
 | |
|       if (&A != &B && A.isSubsetOf(B))
 | |
|         SuperClasses.push_back(B.Name);
 | |
|     }
 | |
| 
 | |
|     if (SuperClasses.empty())
 | |
|       continue;
 | |
| 
 | |
|     // If this is the first SuperClass, emit the switch header.
 | |
|     if (!EmittedSwitch) {
 | |
|       OS << "  switch (A) {\n";
 | |
|       OS << "  default:\n";
 | |
|       OS << "    return false;\n";
 | |
|       EmittedSwitch = true;
 | |
|     }
 | |
| 
 | |
|     OS << "\n  case " << A.Name << ":\n";
 | |
| 
 | |
|     if (SuperClasses.size() == 1) {
 | |
|       OS << "    return B == " << SuperClasses.back() << ";\n";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!SuperClasses.empty()) {
 | |
|       OS << "    switch (B) {\n";
 | |
|       OS << "    default: return false;\n";
 | |
|       for (StringRef SC : SuperClasses)
 | |
|         OS << "    case " << SC << ": return true;\n";
 | |
|       OS << "    }\n";
 | |
|     } else {
 | |
|       // No case statement to emit
 | |
|       OS << "    return false;\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there were case statements emitted into the string stream write the
 | |
|   // default.
 | |
|   if (EmittedSwitch)
 | |
|     OS << "  }\n";
 | |
|   else
 | |
|     OS << "  return false;\n";
 | |
| 
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// emitMatchTokenString - Emit the function to match a token string to the
 | |
| /// appropriate match class value.
 | |
| static void emitMatchTokenString(CodeGenTarget &Target,
 | |
|                                  std::forward_list<ClassInfo> &Infos,
 | |
|                                  raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringMatcher::StringPair> Matches;
 | |
|   for (const auto &CI : Infos) {
 | |
|     if (CI.Kind == ClassInfo::Token)
 | |
|       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
 | |
|   }
 | |
| 
 | |
|   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
 | |
| 
 | |
|   StringMatcher("Name", Matches, OS).Emit();
 | |
| 
 | |
|   OS << "  return InvalidMatchClass;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// emitMatchRegisterName - Emit the function to match a string to the target
 | |
| /// specific register enum.
 | |
| static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
 | |
|                                   raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringMatcher::StringPair> Matches;
 | |
|   const auto &Regs = Target.getRegBank().getRegisters();
 | |
|   for (const CodeGenRegister &Reg : Regs) {
 | |
|     if (Reg.TheDef->getValueAsString("AsmName").empty())
 | |
|       continue;
 | |
| 
 | |
|     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
 | |
|                          "return " + utostr(Reg.EnumValue) + ";");
 | |
|   }
 | |
| 
 | |
|   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
 | |
| 
 | |
|   StringMatcher("Name", Matches, OS).Emit();
 | |
| 
 | |
|   OS << "  return 0;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// Emit the function to match a string to the target
 | |
| /// specific register enum.
 | |
| static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
 | |
|                                      raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringMatcher::StringPair> Matches;
 | |
|   const auto &Regs = Target.getRegBank().getRegisters();
 | |
|   for (const CodeGenRegister &Reg : Regs) {
 | |
| 
 | |
|     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
 | |
| 
 | |
|     for (auto AltName : AltNames) {
 | |
|       AltName = StringRef(AltName).trim();
 | |
| 
 | |
|       // don't handle empty alternative names
 | |
|       if (AltName.empty())
 | |
|         continue;
 | |
| 
 | |
|       Matches.emplace_back(AltName,
 | |
|                            "return " + utostr(Reg.EnumValue) + ";");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
 | |
| 
 | |
|   StringMatcher("Name", Matches, OS).Emit();
 | |
| 
 | |
|   OS << "  return 0;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
 | |
| static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
 | |
|   // Get the set of diagnostic types from all of the operand classes.
 | |
|   std::set<StringRef> Types;
 | |
|   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
 | |
|     if (!OpClassEntry.second->DiagnosticType.empty())
 | |
|       Types.insert(OpClassEntry.second->DiagnosticType);
 | |
|   }
 | |
| 
 | |
|   if (Types.empty()) return;
 | |
| 
 | |
|   // Now emit the enum entries.
 | |
|   for (StringRef Type : Types)
 | |
|     OS << "  Match_" << Type << ",\n";
 | |
|   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
 | |
| }
 | |
| 
 | |
| /// emitGetSubtargetFeatureName - Emit the helper function to get the
 | |
| /// user-level name for a subtarget feature.
 | |
| static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
 | |
|   OS << "// User-level names for subtarget features that participate in\n"
 | |
|      << "// instruction matching.\n"
 | |
|      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
 | |
|   if (!Info.SubtargetFeatures.empty()) {
 | |
|     OS << "  switch(Val) {\n";
 | |
|     for (const auto &SF : Info.SubtargetFeatures) {
 | |
|       const SubtargetFeatureInfo &SFI = SF.second;
 | |
|       // FIXME: Totally just a placeholder name to get the algorithm working.
 | |
|       OS << "  case " << SFI.getEnumName() << ": return \""
 | |
|          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
 | |
|     }
 | |
|     OS << "  default: return \"(unknown)\";\n";
 | |
|     OS << "  }\n";
 | |
|   } else {
 | |
|     // Nothing to emit, so skip the switch
 | |
|     OS << "  return \"(unknown)\";\n";
 | |
|   }
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| static std::string GetAliasRequiredFeatures(Record *R,
 | |
|                                             const AsmMatcherInfo &Info) {
 | |
|   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
 | |
|   std::string Result;
 | |
|   unsigned NumFeatures = 0;
 | |
|   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
 | |
|     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
 | |
| 
 | |
|     if (!F)
 | |
|       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
 | |
|                     "' is not marked as an AssemblerPredicate!");
 | |
| 
 | |
|     if (NumFeatures)
 | |
|       Result += '|';
 | |
| 
 | |
|     Result += F->getEnumName();
 | |
|     ++NumFeatures;
 | |
|   }
 | |
| 
 | |
|   if (NumFeatures > 1)
 | |
|     Result = '(' + Result + ')';
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
 | |
|                                      std::vector<Record*> &Aliases,
 | |
|                                      unsigned Indent = 0,
 | |
|                                   StringRef AsmParserVariantName = StringRef()){
 | |
|   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
 | |
|   // iteration order of the map is stable.
 | |
|   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
 | |
| 
 | |
|   for (Record *R : Aliases) {
 | |
|     // FIXME: Allow AssemblerVariantName to be a comma separated list.
 | |
|     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
 | |
|     if (AsmVariantName != AsmParserVariantName)
 | |
|       continue;
 | |
|     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
 | |
|   }
 | |
|   if (AliasesFromMnemonic.empty())
 | |
|     return;
 | |
| 
 | |
|   // Process each alias a "from" mnemonic at a time, building the code executed
 | |
|   // by the string remapper.
 | |
|   std::vector<StringMatcher::StringPair> Cases;
 | |
|   for (const auto &AliasEntry : AliasesFromMnemonic) {
 | |
|     const std::vector<Record*> &ToVec = AliasEntry.second;
 | |
| 
 | |
|     // Loop through each alias and emit code that handles each case.  If there
 | |
|     // are two instructions without predicates, emit an error.  If there is one,
 | |
|     // emit it last.
 | |
|     std::string MatchCode;
 | |
|     int AliasWithNoPredicate = -1;
 | |
| 
 | |
|     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
 | |
|       Record *R = ToVec[i];
 | |
|       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
 | |
| 
 | |
|       // If this unconditionally matches, remember it for later and diagnose
 | |
|       // duplicates.
 | |
|       if (FeatureMask.empty()) {
 | |
|         if (AliasWithNoPredicate != -1) {
 | |
|           // We can't have two aliases from the same mnemonic with no predicate.
 | |
|           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
 | |
|                      "two MnemonicAliases with the same 'from' mnemonic!");
 | |
|           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
 | |
|         }
 | |
| 
 | |
|         AliasWithNoPredicate = i;
 | |
|         continue;
 | |
|       }
 | |
|       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
 | |
|         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
 | |
| 
 | |
|       if (!MatchCode.empty())
 | |
|         MatchCode += "else ";
 | |
|       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
 | |
|       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
 | |
|     }
 | |
| 
 | |
|     if (AliasWithNoPredicate != -1) {
 | |
|       Record *R = ToVec[AliasWithNoPredicate];
 | |
|       if (!MatchCode.empty())
 | |
|         MatchCode += "else\n  ";
 | |
|       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
 | |
|     }
 | |
| 
 | |
|     MatchCode += "return;";
 | |
| 
 | |
|     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
 | |
|   }
 | |
|   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
 | |
| }
 | |
| 
 | |
| /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
 | |
| /// emit a function for them and return true, otherwise return false.
 | |
| static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
 | |
|                                 CodeGenTarget &Target) {
 | |
|   // Ignore aliases when match-prefix is set.
 | |
|   if (!MatchPrefix.empty())
 | |
|     return false;
 | |
| 
 | |
|   std::vector<Record*> Aliases =
 | |
|     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
 | |
|   if (Aliases.empty()) return false;
 | |
| 
 | |
|   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
 | |
|     "uint64_t Features, unsigned VariantID) {\n";
 | |
|   OS << "  switch (VariantID) {\n";
 | |
|   unsigned VariantCount = Target.getAsmParserVariantCount();
 | |
|   for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | |
|     Record *AsmVariant = Target.getAsmParserVariant(VC);
 | |
|     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
 | |
|     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
 | |
|     OS << "    case " << AsmParserVariantNo << ":\n";
 | |
|     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
 | |
|                              AsmParserVariantName);
 | |
|     OS << "    break;\n";
 | |
|   }
 | |
|   OS << "  }\n";
 | |
| 
 | |
|   // Emit aliases that apply to all variants.
 | |
|   emitMnemonicAliasVariant(OS, Info, Aliases);
 | |
| 
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
 | |
|                               const AsmMatcherInfo &Info, StringRef ClassName,
 | |
|                               StringToOffsetTable &StringTable,
 | |
|                               unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
 | |
|   unsigned MaxMask = 0;
 | |
|   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
 | |
|     MaxMask |= OMI.OperandMask;
 | |
|   }
 | |
| 
 | |
|   // Emit the static custom operand parsing table;
 | |
|   OS << "namespace {\n";
 | |
|   OS << "  struct OperandMatchEntry {\n";
 | |
|   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
 | |
|                << " RequiredFeatures;\n";
 | |
|   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
 | |
|                << " Mnemonic;\n";
 | |
|   OS << "    " << getMinimalTypeForRange(std::distance(
 | |
|                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
 | |
|   OS << "    " << getMinimalTypeForRange(MaxMask)
 | |
|                << " OperandMask;\n\n";
 | |
|   OS << "    StringRef getMnemonic() const {\n";
 | |
|   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
 | |
|   OS << "                       MnemonicTable[Mnemonic]);\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  };\n\n";
 | |
| 
 | |
|   OS << "  // Predicate for searching for an opcode.\n";
 | |
|   OS << "  struct LessOpcodeOperand {\n";
 | |
|   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
 | |
|   OS << "      return LHS.getMnemonic()  < RHS;\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
 | |
|   OS << "      return LHS < RHS.getMnemonic();\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    bool operator()(const OperandMatchEntry &LHS,";
 | |
|   OS << " const OperandMatchEntry &RHS) {\n";
 | |
|   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  };\n";
 | |
| 
 | |
|   OS << "} // end anonymous namespace.\n\n";
 | |
| 
 | |
|   OS << "static const OperandMatchEntry OperandMatchTable["
 | |
|      << Info.OperandMatchInfo.size() << "] = {\n";
 | |
| 
 | |
|   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
 | |
|   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
 | |
|     const MatchableInfo &II = *OMI.MI;
 | |
| 
 | |
|     OS << "  { ";
 | |
| 
 | |
|     // Write the required features mask.
 | |
|     if (!II.RequiredFeatures.empty()) {
 | |
|       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
 | |
|         if (i) OS << "|";
 | |
|         OS << II.RequiredFeatures[i]->getEnumName();
 | |
|       }
 | |
|     } else
 | |
|       OS << "0";
 | |
| 
 | |
|     // Store a pascal-style length byte in the mnemonic.
 | |
|     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
 | |
|     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
 | |
|        << " /* " << II.Mnemonic << " */, ";
 | |
| 
 | |
|     OS << OMI.CI->Name;
 | |
| 
 | |
|     OS << ", " << OMI.OperandMask;
 | |
|     OS << " /* ";
 | |
|     bool printComma = false;
 | |
|     for (int i = 0, e = 31; i !=e; ++i)
 | |
|       if (OMI.OperandMask & (1 << i)) {
 | |
|         if (printComma)
 | |
|           OS << ", ";
 | |
|         OS << i;
 | |
|         printComma = true;
 | |
|       }
 | |
|     OS << " */";
 | |
| 
 | |
|     OS << " },\n";
 | |
|   }
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   // Emit the operand class switch to call the correct custom parser for
 | |
|   // the found operand class.
 | |
|   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
 | |
|      << "tryCustomParseOperand(OperandVector"
 | |
|      << " &Operands,\n                      unsigned MCK) {\n\n"
 | |
|      << "  switch(MCK) {\n";
 | |
| 
 | |
|   for (const auto &CI : Info.Classes) {
 | |
|     if (CI.ParserMethod.empty())
 | |
|       continue;
 | |
|     OS << "  case " << CI.Name << ":\n"
 | |
|        << "    return " << CI.ParserMethod << "(Operands);\n";
 | |
|   }
 | |
| 
 | |
|   OS << "  default:\n";
 | |
|   OS << "    return MatchOperand_NoMatch;\n";
 | |
|   OS << "  }\n";
 | |
|   OS << "  return MatchOperand_NoMatch;\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   // Emit the static custom operand parser. This code is very similar with
 | |
|   // the other matcher. Also use MatchResultTy here just in case we go for
 | |
|   // a better error handling.
 | |
|   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
 | |
|      << "MatchOperandParserImpl(OperandVector"
 | |
|      << " &Operands,\n                       StringRef Mnemonic) {\n";
 | |
| 
 | |
|   // Emit code to get the available features.
 | |
|   OS << "  // Get the current feature set.\n";
 | |
|   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
 | |
| 
 | |
|   OS << "  // Get the next operand index.\n";
 | |
|   OS << "  unsigned NextOpNum = Operands.size()"
 | |
|      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
 | |
| 
 | |
|   // Emit code to search the table.
 | |
|   OS << "  // Search the table.\n";
 | |
|   if (HasMnemonicFirst) {
 | |
|     OS << "  auto MnemonicRange =\n";
 | |
|     OS << "    std::equal_range(std::begin(OperandMatchTable), "
 | |
|           "std::end(OperandMatchTable),\n";
 | |
|     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
 | |
|   } else {
 | |
|     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
 | |
|           " std::end(OperandMatchTable));\n";
 | |
|     OS << "  if (!Mnemonic.empty())\n";
 | |
|     OS << "    MnemonicRange =\n";
 | |
|     OS << "      std::equal_range(std::begin(OperandMatchTable), "
 | |
|           "std::end(OperandMatchTable),\n";
 | |
|     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
 | |
|   }
 | |
| 
 | |
|   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
 | |
|   OS << "    return MatchOperand_NoMatch;\n\n";
 | |
| 
 | |
|   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
 | |
|      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
 | |
| 
 | |
|   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
 | |
|   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
 | |
| 
 | |
|   // Emit check that the required features are available.
 | |
|   OS << "    // check if the available features match\n";
 | |
|   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
 | |
|      << "!= it->RequiredFeatures) {\n";
 | |
|   OS << "      continue;\n";
 | |
|   OS << "    }\n\n";
 | |
| 
 | |
|   // Emit check to ensure the operand number matches.
 | |
|   OS << "    // check if the operand in question has a custom parser.\n";
 | |
|   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
 | |
|   OS << "      continue;\n\n";
 | |
| 
 | |
|   // Emit call to the custom parser method
 | |
|   OS << "    // call custom parse method to handle the operand\n";
 | |
|   OS << "    OperandMatchResultTy Result = ";
 | |
|   OS << "tryCustomParseOperand(Operands, it->Class);\n";
 | |
|   OS << "    if (Result != MatchOperand_NoMatch)\n";
 | |
|   OS << "      return Result;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  // Okay, we had no match.\n";
 | |
|   OS << "  return MatchOperand_NoMatch;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| void AsmMatcherEmitter::run(raw_ostream &OS) {
 | |
|   CodeGenTarget Target(Records);
 | |
|   Record *AsmParser = Target.getAsmParser();
 | |
|   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
 | |
| 
 | |
|   // Compute the information on the instructions to match.
 | |
|   AsmMatcherInfo Info(AsmParser, Target, Records);
 | |
|   Info.buildInfo();
 | |
| 
 | |
|   // Sort the instruction table using the partial order on classes. We use
 | |
|   // stable_sort to ensure that ambiguous instructions are still
 | |
|   // deterministically ordered.
 | |
|   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
 | |
|                    [](const std::unique_ptr<MatchableInfo> &a,
 | |
|                       const std::unique_ptr<MatchableInfo> &b){
 | |
|                      return *a < *b;});
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   // Verify that the table is sorted and operator < works transitively.
 | |
|   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
 | |
|        ++I) {
 | |
|     for (auto J = I; J != E; ++J) {
 | |
|       assert(!(**J < **I));
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   DEBUG_WITH_TYPE("instruction_info", {
 | |
|       for (const auto &MI : Info.Matchables)
 | |
|         MI->dump();
 | |
|     });
 | |
| 
 | |
|   // Check for ambiguous matchables.
 | |
|   DEBUG_WITH_TYPE("ambiguous_instrs", {
 | |
|     unsigned NumAmbiguous = 0;
 | |
|     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
 | |
|          ++I) {
 | |
|       for (auto J = std::next(I); J != E; ++J) {
 | |
|         const MatchableInfo &A = **I;
 | |
|         const MatchableInfo &B = **J;
 | |
| 
 | |
|         if (A.couldMatchAmbiguouslyWith(B)) {
 | |
|           errs() << "warning: ambiguous matchables:\n";
 | |
|           A.dump();
 | |
|           errs() << "\nis incomparable with:\n";
 | |
|           B.dump();
 | |
|           errs() << "\n\n";
 | |
|           ++NumAmbiguous;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (NumAmbiguous)
 | |
|       errs() << "warning: " << NumAmbiguous
 | |
|              << " ambiguous matchables!\n";
 | |
|   });
 | |
| 
 | |
|   // Compute the information on the custom operand parsing.
 | |
|   Info.buildOperandMatchInfo();
 | |
| 
 | |
|   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
 | |
|   bool HasOptionalOperands = Info.hasOptionalOperands();
 | |
| 
 | |
|   // Write the output.
 | |
| 
 | |
|   // Information for the class declaration.
 | |
|   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
 | |
|   OS << "#undef GET_ASSEMBLER_HEADER\n";
 | |
|   OS << "  // This should be included into the middle of the declaration of\n";
 | |
|   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
 | |
|   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
 | |
|        << "unsigned Opcode,\n"
 | |
|        << "                       const OperandVector &Operands,\n"
 | |
|        << "                       const SmallBitVector &OptionalOperandsMask);\n";
 | |
|   } else {
 | |
|     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
 | |
|        << "unsigned Opcode,\n"
 | |
|        << "                       const OperandVector &Operands);\n";
 | |
|   }
 | |
|   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
 | |
|   OS << "           const OperandVector &Operands) override;\n";
 | |
|   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
 | |
|      << "                                MCInst &Inst,\n"
 | |
|      << "                                uint64_t &ErrorInfo,"
 | |
|      << " bool matchingInlineAsm,\n"
 | |
|      << "                                unsigned VariantID = 0);\n";
 | |
| 
 | |
|   if (!Info.OperandMatchInfo.empty()) {
 | |
|     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
 | |
|     OS << "    OperandVector &Operands,\n";
 | |
|     OS << "    StringRef Mnemonic);\n";
 | |
| 
 | |
|     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
 | |
|     OS << "    OperandVector &Operands,\n";
 | |
|     OS << "    unsigned MCK);\n\n";
 | |
|   }
 | |
| 
 | |
|   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
 | |
| 
 | |
|   // Emit the operand match diagnostic enum names.
 | |
|   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
 | |
|   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
 | |
|   emitOperandDiagnosticTypes(Info, OS);
 | |
|   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
 | |
| 
 | |
|   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
 | |
|   OS << "#undef GET_REGISTER_MATCHER\n\n";
 | |
| 
 | |
|   // Emit the subtarget feature enumeration.
 | |
|   SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
 | |
|       Info.SubtargetFeatures, OS);
 | |
| 
 | |
|   // Emit the function to match a register name to number.
 | |
|   // This should be omitted for Mips target
 | |
|   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
 | |
|     emitMatchRegisterName(Target, AsmParser, OS);
 | |
| 
 | |
|   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
 | |
|     emitMatchRegisterAltName(Target, AsmParser, OS);
 | |
| 
 | |
|   OS << "#endif // GET_REGISTER_MATCHER\n\n";
 | |
| 
 | |
|   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
 | |
|   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
 | |
| 
 | |
|   // Generate the helper function to get the names for subtarget features.
 | |
|   emitGetSubtargetFeatureName(Info, OS);
 | |
| 
 | |
|   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
 | |
| 
 | |
|   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
 | |
|   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
 | |
| 
 | |
|   // Generate the function that remaps for mnemonic aliases.
 | |
|   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
 | |
| 
 | |
|   // Generate the convertToMCInst function to convert operands into an MCInst.
 | |
|   // Also, generate the convertToMapAndConstraints function for MS-style inline
 | |
|   // assembly.  The latter doesn't actually generate a MCInst.
 | |
|   emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
 | |
|                    HasOptionalOperands, OS);
 | |
| 
 | |
|   // Emit the enumeration for classes which participate in matching.
 | |
|   emitMatchClassEnumeration(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the routine to match token strings to their match class.
 | |
|   emitMatchTokenString(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the subclass predicate routine.
 | |
|   emitIsSubclass(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the routine to validate an operand against a match class.
 | |
|   emitValidateOperandClass(Info, OS);
 | |
| 
 | |
|   // Emit the available features compute function.
 | |
|   SubtargetFeatureInfo::emitComputeAvailableFeatures(
 | |
|       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
 | |
|       Info.SubtargetFeatures, OS);
 | |
| 
 | |
|   StringToOffsetTable StringTable;
 | |
| 
 | |
|   size_t MaxNumOperands = 0;
 | |
|   unsigned MaxMnemonicIndex = 0;
 | |
|   bool HasDeprecation = false;
 | |
|   for (const auto &MI : Info.Matchables) {
 | |
|     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
 | |
|     HasDeprecation |= MI->HasDeprecation;
 | |
| 
 | |
|     // Store a pascal-style length byte in the mnemonic.
 | |
|     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
 | |
|     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
 | |
|                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
 | |
|   }
 | |
| 
 | |
|   OS << "static const char *const MnemonicTable =\n";
 | |
|   StringTable.EmitString(OS);
 | |
|   OS << ";\n\n";
 | |
| 
 | |
|   // Emit the static match table; unused classes get initalized to 0 which is
 | |
|   // guaranteed to be InvalidMatchClass.
 | |
|   //
 | |
|   // FIXME: We can reduce the size of this table very easily. First, we change
 | |
|   // it so that store the kinds in separate bit-fields for each index, which
 | |
|   // only needs to be the max width used for classes at that index (we also need
 | |
|   // to reject based on this during classification). If we then make sure to
 | |
|   // order the match kinds appropriately (putting mnemonics last), then we
 | |
|   // should only end up using a few bits for each class, especially the ones
 | |
|   // following the mnemonic.
 | |
|   OS << "namespace {\n";
 | |
|   OS << "  struct MatchEntry {\n";
 | |
|   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
 | |
|                << " Mnemonic;\n";
 | |
|   OS << "    uint16_t Opcode;\n";
 | |
|   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
 | |
|                << " ConvertFn;\n";
 | |
|   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
 | |
|                << " RequiredFeatures;\n";
 | |
|   OS << "    " << getMinimalTypeForRange(
 | |
|                       std::distance(Info.Classes.begin(), Info.Classes.end()))
 | |
|      << " Classes[" << MaxNumOperands << "];\n";
 | |
|   OS << "    StringRef getMnemonic() const {\n";
 | |
|   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
 | |
|   OS << "                       MnemonicTable[Mnemonic]);\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  };\n\n";
 | |
| 
 | |
|   OS << "  // Predicate for searching for an opcode.\n";
 | |
|   OS << "  struct LessOpcode {\n";
 | |
|   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
 | |
|   OS << "      return LHS.getMnemonic() < RHS;\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
 | |
|   OS << "      return LHS < RHS.getMnemonic();\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
 | |
|   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  };\n";
 | |
| 
 | |
|   OS << "} // end anonymous namespace.\n\n";
 | |
| 
 | |
|   unsigned VariantCount = Target.getAsmParserVariantCount();
 | |
|   for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | |
|     Record *AsmVariant = Target.getAsmParserVariant(VC);
 | |
|     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | |
| 
 | |
|     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
 | |
| 
 | |
|     for (const auto &MI : Info.Matchables) {
 | |
|       if (MI->AsmVariantID != AsmVariantNo)
 | |
|         continue;
 | |
| 
 | |
|       // Store a pascal-style length byte in the mnemonic.
 | |
|       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
 | |
|       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
 | |
|          << " /* " << MI->Mnemonic << " */, "
 | |
|          << Target.getName() << "::"
 | |
|          << MI->getResultInst()->TheDef->getName() << ", "
 | |
|          << MI->ConversionFnKind << ", ";
 | |
| 
 | |
|       // Write the required features mask.
 | |
|       if (!MI->RequiredFeatures.empty()) {
 | |
|         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
 | |
|           if (i) OS << "|";
 | |
|           OS << MI->RequiredFeatures[i]->getEnumName();
 | |
|         }
 | |
|       } else
 | |
|         OS << "0";
 | |
| 
 | |
|       OS << ", { ";
 | |
|       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
 | |
|         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
 | |
| 
 | |
|         if (i) OS << ", ";
 | |
|         OS << Op.Class->Name;
 | |
|       }
 | |
|       OS << " }, },\n";
 | |
|     }
 | |
| 
 | |
|     OS << "};\n\n";
 | |
|   }
 | |
| 
 | |
|   // Finally, build the match function.
 | |
|   OS << "unsigned " << Target.getName() << ClassName << "::\n"
 | |
|      << "MatchInstructionImpl(const OperandVector &Operands,\n";
 | |
|   OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
 | |
|      << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
 | |
| 
 | |
|   OS << "  // Eliminate obvious mismatches.\n";
 | |
|   OS << "  if (Operands.size() > "
 | |
|      << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
 | |
|   OS << "    ErrorInfo = "
 | |
|      << (MaxNumOperands + HasMnemonicFirst) << ";\n";
 | |
|   OS << "    return Match_InvalidOperand;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   // Emit code to get the available features.
 | |
|   OS << "  // Get the current feature set.\n";
 | |
|   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
 | |
| 
 | |
|   OS << "  // Get the instruction mnemonic, which is the first token.\n";
 | |
|   if (HasMnemonicFirst) {
 | |
|     OS << "  StringRef Mnemonic = ((" << Target.getName()
 | |
|        << "Operand&)*Operands[0]).getToken();\n\n";
 | |
|   } else {
 | |
|     OS << "  StringRef Mnemonic;\n";
 | |
|     OS << "  if (Operands[0]->isToken())\n";
 | |
|     OS << "    Mnemonic = ((" << Target.getName()
 | |
|        << "Operand&)*Operands[0]).getToken();\n\n";
 | |
|   }
 | |
| 
 | |
|   if (HasMnemonicAliases) {
 | |
|     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
 | |
|     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
 | |
|   }
 | |
| 
 | |
|   // Emit code to compute the class list for this operand vector.
 | |
|   OS << "  // Some state to try to produce better error messages.\n";
 | |
|   OS << "  bool HadMatchOtherThanFeatures = false;\n";
 | |
|   OS << "  bool HadMatchOtherThanPredicate = false;\n";
 | |
|   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
 | |
|   OS << "  uint64_t MissingFeatures = ~0ULL;\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
 | |
|   }
 | |
|   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
 | |
|   OS << "  // wrong for all instances of the instruction.\n";
 | |
|   OS << "  ErrorInfo = ~0ULL;\n";
 | |
| 
 | |
|   // Emit code to search the table.
 | |
|   OS << "  // Find the appropriate table for this asm variant.\n";
 | |
|   OS << "  const MatchEntry *Start, *End;\n";
 | |
|   OS << "  switch (VariantID) {\n";
 | |
|   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
 | |
|   for (unsigned VC = 0; VC != VariantCount; ++VC) {
 | |
|     Record *AsmVariant = Target.getAsmParserVariant(VC);
 | |
|     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
 | |
|     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
 | |
|        << "); End = std::end(MatchTable" << VC << "); break;\n";
 | |
|   }
 | |
|   OS << "  }\n";
 | |
| 
 | |
|   OS << "  // Search the table.\n";
 | |
|   if (HasMnemonicFirst) {
 | |
|     OS << "  auto MnemonicRange = "
 | |
|           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
 | |
|   } else {
 | |
|     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
 | |
|     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
 | |
|     OS << "  if (!Mnemonic.empty())\n";
 | |
|     OS << "    MnemonicRange = "
 | |
|           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
 | |
|   }
 | |
| 
 | |
|   OS << "  // Return a more specific error code if no mnemonics match.\n";
 | |
|   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
 | |
|   OS << "    return Match_MnemonicFail;\n\n";
 | |
| 
 | |
|   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
 | |
|      << "*ie = MnemonicRange.second;\n";
 | |
|   OS << "       it != ie; ++it) {\n";
 | |
| 
 | |
|   if (HasMnemonicFirst) {
 | |
|     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
 | |
|     OS << "    assert(Mnemonic == it->getMnemonic());\n";
 | |
|   }
 | |
| 
 | |
|   // Emit check that the subclasses match.
 | |
|   OS << "    bool OperandsValid = true;\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
 | |
|   }
 | |
|   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
 | |
|      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
 | |
|      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
 | |
|   OS << "      auto Formal = "
 | |
|      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
 | |
|   OS << "      if (ActualIdx >= Operands.size()) {\n";
 | |
|   OS << "        OperandsValid = (Formal == " <<"InvalidMatchClass) || "
 | |
|                                  "isSubclass(Formal, OptionalMatchClass);\n";
 | |
|   OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
 | |
|        << ");\n";
 | |
|   }
 | |
|   OS << "        break;\n";
 | |
|   OS << "      }\n";
 | |
|   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
 | |
|   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
 | |
|   OS << "      if (Diag == Match_Success) {\n";
 | |
|   OS << "        ++ActualIdx;\n";
 | |
|   OS << "        continue;\n";
 | |
|   OS << "      }\n";
 | |
|   OS << "      // If the generic handler indicates an invalid operand\n";
 | |
|   OS << "      // failure, check for a special case.\n";
 | |
|   OS << "      if (Diag == Match_InvalidOperand) {\n";
 | |
|   OS << "        Diag = validateTargetOperandClass(Actual, Formal);\n";
 | |
|   OS << "        if (Diag == Match_Success) {\n";
 | |
|   OS << "          ++ActualIdx;\n";
 | |
|   OS << "          continue;\n";
 | |
|   OS << "        }\n";
 | |
|   OS << "      }\n";
 | |
|   OS << "      // If current formal operand wasn't matched and it is optional\n"
 | |
|      << "      // then try to match next formal operand\n";
 | |
|   OS << "      if (Diag == Match_InvalidOperand "
 | |
|      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
 | |
|   }
 | |
|   OS << "        continue;\n";
 | |
|   OS << "      }\n";
 | |
|   OS << "      // If this operand is broken for all of the instances of this\n";
 | |
|   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
 | |
|   OS << "      // If we already had a match that only failed due to a\n";
 | |
|   OS << "      // target predicate, that diagnostic is preferred.\n";
 | |
|   OS << "      if (!HadMatchOtherThanPredicate &&\n";
 | |
|   OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
 | |
|   OS << "        ErrorInfo = ActualIdx;\n";
 | |
|   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
 | |
|   OS << "        if (Diag != Match_InvalidOperand)\n";
 | |
|   OS << "          RetCode = Diag;\n";
 | |
|   OS << "      }\n";
 | |
|   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
 | |
|   OS << "      OperandsValid = false;\n";
 | |
|   OS << "      break;\n";
 | |
|   OS << "    }\n\n";
 | |
| 
 | |
|   OS << "    if (!OperandsValid) continue;\n";
 | |
| 
 | |
|   // Emit check that the required features are available.
 | |
|   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
 | |
|      << "!= it->RequiredFeatures) {\n";
 | |
|   OS << "      HadMatchOtherThanFeatures = true;\n";
 | |
|   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
 | |
|         "~AvailableFeatures;\n";
 | |
|   OS << "      if (countPopulation(NewMissingFeatures) <=\n"
 | |
|         "          countPopulation(MissingFeatures))\n";
 | |
|   OS << "        MissingFeatures = NewMissingFeatures;\n";
 | |
|   OS << "      continue;\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "\n";
 | |
|   OS << "    Inst.clear();\n\n";
 | |
|   OS << "    Inst.setOpcode(it->Opcode);\n";
 | |
|   // Verify the instruction with the target-specific match predicate function.
 | |
|   OS << "    // We have a potential match but have not rendered the operands.\n"
 | |
|      << "    // Check the target predicate to handle any context sensitive\n"
 | |
|         "    // constraints.\n"
 | |
|      << "    // For example, Ties that are referenced multiple times must be\n"
 | |
|         "    // checked here to ensure the input is the same for each match\n"
 | |
|         "    // constraints. If we leave it any later the ties will have been\n"
 | |
|         "    // canonicalized\n"
 | |
|      << "    unsigned MatchResult;\n"
 | |
|      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
 | |
|         "Operands)) != Match_Success) {\n"
 | |
|      << "      Inst.clear();\n"
 | |
|      << "      RetCode = MatchResult;\n"
 | |
|      << "      HadMatchOtherThanPredicate = true;\n"
 | |
|      << "      continue;\n"
 | |
|      << "    }\n\n";
 | |
|   OS << "    if (matchingInlineAsm) {\n";
 | |
|   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
 | |
|   OS << "      return Match_Success;\n";
 | |
|   OS << "    }\n\n";
 | |
|   OS << "    // We have selected a definite instruction, convert the parsed\n"
 | |
|      << "    // operands into the appropriate MCInst.\n";
 | |
|   if (HasOptionalOperands) {
 | |
|     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
 | |
|        << "                    OptionalOperandsMask);\n";
 | |
|   } else {
 | |
|     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
 | |
|   }
 | |
|   OS << "\n";
 | |
| 
 | |
|   // Verify the instruction with the target-specific match predicate function.
 | |
|   OS << "    // We have a potential match. Check the target predicate to\n"
 | |
|      << "    // handle any context sensitive constraints.\n"
 | |
|      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
 | |
|      << " Match_Success) {\n"
 | |
|      << "      Inst.clear();\n"
 | |
|      << "      RetCode = MatchResult;\n"
 | |
|      << "      HadMatchOtherThanPredicate = true;\n"
 | |
|      << "      continue;\n"
 | |
|      << "    }\n\n";
 | |
| 
 | |
|   // Call the post-processing function, if used.
 | |
|   std::string InsnCleanupFn =
 | |
|     AsmParser->getValueAsString("AsmParserInstCleanup");
 | |
|   if (!InsnCleanupFn.empty())
 | |
|     OS << "    " << InsnCleanupFn << "(Inst);\n";
 | |
| 
 | |
|   if (HasDeprecation) {
 | |
|     OS << "    std::string Info;\n";
 | |
|     OS << "    if (!getParser().getTargetParser().\n";
 | |
|     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
 | |
|     OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
 | |
|     OS << "      SMLoc Loc = ((" << Target.getName()
 | |
|        << "Operand&)*Operands[0]).getStartLoc();\n";
 | |
|     OS << "      getParser().Warning(Loc, Info, None);\n";
 | |
|     OS << "    }\n";
 | |
|   }
 | |
| 
 | |
|   OS << "    return Match_Success;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
 | |
|   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
 | |
|   OS << "    return RetCode;\n\n";
 | |
|   OS << "  // Missing feature matches return which features were missing\n";
 | |
|   OS << "  ErrorInfo = MissingFeatures;\n";
 | |
|   OS << "  return Match_MissingFeature;\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   if (!Info.OperandMatchInfo.empty())
 | |
|     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
 | |
|                              MaxMnemonicIndex, HasMnemonicFirst);
 | |
| 
 | |
|   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
 | |
|   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
 | |
|   AsmMatcherEmitter(RK).run(OS);
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 |