491 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the interface between the inliner and a learned model.
 | 
						|
// It delegates model evaluation to either the AOT compiled model (the
 | 
						|
// 'release' mode) or a runtime-loaded model (the 'development' case).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "llvm/Analysis/MLInlineAdvisor.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/InlineModelFeatureMaps.h"
 | 
						|
#include "llvm/Analysis/LazyCallGraph.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MLModelRunner.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
 | 
						|
#include "llvm/Analysis/ReleaseModeModelRunner.h"
 | 
						|
// codegen-ed file
 | 
						|
#include "InlinerSizeModel.h" // NOLINT
 | 
						|
 | 
						|
std::unique_ptr<InlineAdvisor>
 | 
						|
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
 | 
						|
  auto AOTRunner =
 | 
						|
      std::make_unique<ReleaseModeModelRunner<llvm::InlinerSizeModel>>(
 | 
						|
          M.getContext(), FeatureMap, DecisionName);
 | 
						|
  return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#define DEBUG_TYPE "inline-ml"
 | 
						|
 | 
						|
static cl::opt<float> SizeIncreaseThreshold(
 | 
						|
    "ml-advisor-size-increase-threshold", cl::Hidden,
 | 
						|
    cl::desc("Maximum factor by which expected native size may increase before "
 | 
						|
             "blocking any further inlining."),
 | 
						|
    cl::init(2.0));
 | 
						|
 | 
						|
static cl::opt<bool> KeepFPICache(
 | 
						|
    "ml-advisor-keep-fpi-cache", cl::Hidden,
 | 
						|
    cl::desc(
 | 
						|
        "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
// clang-format off
 | 
						|
const std::array<TensorSpec, NumberOfFeatures> llvm::FeatureMap{
 | 
						|
#define POPULATE_NAMES(_, NAME) TensorSpec::createSpec<int64_t>(NAME, {1} ),
 | 
						|
// InlineCost features - these must come first
 | 
						|
  INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
 | 
						|
#undef POPULATE_NAMES
 | 
						|
 | 
						|
// Non-cost features
 | 
						|
#define POPULATE_NAMES(_, NAME, __) TensorSpec::createSpec<int64_t>(NAME, {1} ),
 | 
						|
  INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
 | 
						|
#undef POPULATE_NAMES
 | 
						|
};
 | 
						|
// clang-format on
 | 
						|
 | 
						|
const char *const llvm::DecisionName = "inlining_decision";
 | 
						|
const char *const llvm::DefaultDecisionName = "inlining_default";
 | 
						|
const char *const llvm::RewardName = "delta_size";
 | 
						|
 | 
						|
CallBase *getInlinableCS(Instruction &I) {
 | 
						|
  if (auto *CS = dyn_cast<CallBase>(&I))
 | 
						|
    if (Function *Callee = CS->getCalledFunction()) {
 | 
						|
      if (!Callee->isDeclaration()) {
 | 
						|
        return CS;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
 | 
						|
                                 std::unique_ptr<MLModelRunner> Runner)
 | 
						|
    : InlineAdvisor(
 | 
						|
          M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
 | 
						|
      ModelRunner(std::move(Runner)),
 | 
						|
      CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
 | 
						|
      InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
 | 
						|
  assert(ModelRunner);
 | 
						|
 | 
						|
  // Extract the 'call site height' feature - the position of a call site
 | 
						|
  // relative to the farthest statically reachable SCC node. We don't mutate
 | 
						|
  // this value while inlining happens. Empirically, this feature proved
 | 
						|
  // critical in behavioral cloning - i.e. training a model to mimic the manual
 | 
						|
  // heuristic's decisions - and, thus, equally important for training for
 | 
						|
  // improvement.
 | 
						|
  CallGraph CGraph(M);
 | 
						|
  for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
 | 
						|
    const std::vector<CallGraphNode *> &CGNodes = *I;
 | 
						|
    unsigned Level = 0;
 | 
						|
    for (auto *CGNode : CGNodes) {
 | 
						|
      Function *F = CGNode->getFunction();
 | 
						|
      if (!F || F->isDeclaration())
 | 
						|
        continue;
 | 
						|
      for (auto &I : instructions(F)) {
 | 
						|
        if (auto *CS = getInlinableCS(I)) {
 | 
						|
          auto *Called = CS->getCalledFunction();
 | 
						|
          auto Pos = FunctionLevels.find(&CG.get(*Called));
 | 
						|
          // In bottom up traversal, an inlinable callee is either in the
 | 
						|
          // same SCC, or to a function in a visited SCC. So not finding its
 | 
						|
          // level means we haven't visited it yet, meaning it's in this SCC.
 | 
						|
          if (Pos == FunctionLevels.end())
 | 
						|
            continue;
 | 
						|
          Level = std::max(Level, Pos->second + 1);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (auto *CGNode : CGNodes) {
 | 
						|
      Function *F = CGNode->getFunction();
 | 
						|
      if (F && !F->isDeclaration())
 | 
						|
        FunctionLevels[&CG.get(*F)] = Level;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (auto KVP : FunctionLevels) {
 | 
						|
    AllNodes.insert(KVP.first);
 | 
						|
    EdgeCount += getLocalCalls(KVP.first->getFunction());
 | 
						|
  }
 | 
						|
  NodeCount = AllNodes.size();
 | 
						|
}
 | 
						|
 | 
						|
unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
 | 
						|
  return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *LastSCC) {
 | 
						|
  if (!LastSCC || ForceStop)
 | 
						|
    return;
 | 
						|
  FPICache.clear();
 | 
						|
  // Function passes executed between InlinerPass runs may have changed the
 | 
						|
  // module-wide features.
 | 
						|
  // The cgscc pass manager rules are such that:
 | 
						|
  // - if a pass leads to merging SCCs, then the pipeline is restarted on the
 | 
						|
  // merged SCC
 | 
						|
  // - if a pass leads to splitting the SCC, then we continue with one of the
 | 
						|
  // splits
 | 
						|
  // This means that the NodesInLastSCC is a superset (not strict) of the nodes
 | 
						|
  // that subsequent passes would have processed
 | 
						|
  // - in addition, if new Nodes were created by a pass (e.g. CoroSplit),
 | 
						|
  // they'd be adjacent to Nodes in the last SCC. So we just need to check the
 | 
						|
  // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't
 | 
						|
  // care about the nature of the Edge (call or ref).
 | 
						|
  NodeCount -= static_cast<int64_t>(NodesInLastSCC.size());
 | 
						|
  while (!NodesInLastSCC.empty()) {
 | 
						|
    const auto *N = *NodesInLastSCC.begin();
 | 
						|
    NodesInLastSCC.erase(N);
 | 
						|
    // The Function wrapped by N could have been deleted since we last saw it.
 | 
						|
    if (N->isDead()) {
 | 
						|
      assert(!N->getFunction().isDeclaration());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    ++NodeCount;
 | 
						|
    EdgeCount += getLocalCalls(N->getFunction());
 | 
						|
    for (const auto &E : *(*N)) {
 | 
						|
      const auto *AdjNode = &E.getNode();
 | 
						|
      assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
 | 
						|
      auto I = AllNodes.insert(AdjNode);
 | 
						|
      if (I.second)
 | 
						|
        NodesInLastSCC.insert(AdjNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  EdgeCount -= EdgesOfLastSeenNodes;
 | 
						|
  EdgesOfLastSeenNodes = 0;
 | 
						|
 | 
						|
  // (Re)use NodesInLastSCC to remember the nodes in the SCC right now,
 | 
						|
  // in case the SCC is split before onPassExit and some nodes are split out
 | 
						|
  assert(NodesInLastSCC.empty());
 | 
						|
  for (const auto &N : *LastSCC)
 | 
						|
    NodesInLastSCC.insert(&N);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) {
 | 
						|
  // No need to keep this around - function passes will invalidate it.
 | 
						|
  if (!KeepFPICache)
 | 
						|
    FPICache.clear();
 | 
						|
  if (!LastSCC || ForceStop)
 | 
						|
    return;
 | 
						|
  // Keep track of the nodes and edges we last saw. Then, in onPassEntry,
 | 
						|
  // we update the node count and edge count from the subset of these nodes that
 | 
						|
  // survived.
 | 
						|
  EdgesOfLastSeenNodes = 0;
 | 
						|
 | 
						|
  // Check on nodes that were in SCC onPassEntry
 | 
						|
  for (auto I = NodesInLastSCC.begin(); I != NodesInLastSCC.end();) {
 | 
						|
    if ((*I)->isDead())
 | 
						|
      NodesInLastSCC.erase(*I++);
 | 
						|
    else
 | 
						|
      EdgesOfLastSeenNodes += getLocalCalls((*I++)->getFunction());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check on nodes that may have got added to SCC
 | 
						|
  for (const auto &N : *LastSCC) {
 | 
						|
    assert(!N.isDead());
 | 
						|
    auto I = NodesInLastSCC.insert(&N);
 | 
						|
    if (I.second)
 | 
						|
      EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
 | 
						|
  }
 | 
						|
  assert(NodeCount >= NodesInLastSCC.size());
 | 
						|
  assert(EdgeCount >= EdgesOfLastSeenNodes);
 | 
						|
}
 | 
						|
 | 
						|
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
 | 
						|
  return getCachedFPI(F).DirectCallsToDefinedFunctions;
 | 
						|
}
 | 
						|
 | 
						|
// Update the internal state of the advisor, and force invalidate feature
 | 
						|
// analysis. Currently, we maintain minimal (and very simple) global state - the
 | 
						|
// number of functions and the number of static calls. We also keep track of the
 | 
						|
// total IR size in this module, to stop misbehaving policies at a certain bloat
 | 
						|
// factor (SizeIncreaseThreshold)
 | 
						|
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
 | 
						|
                                           bool CalleeWasDeleted) {
 | 
						|
  assert(!ForceStop);
 | 
						|
  Function *Caller = Advice.getCaller();
 | 
						|
  Function *Callee = Advice.getCallee();
 | 
						|
  // The caller features aren't valid anymore.
 | 
						|
  {
 | 
						|
    PreservedAnalyses PA = PreservedAnalyses::all();
 | 
						|
    PA.abandon<FunctionPropertiesAnalysis>();
 | 
						|
    PA.abandon<DominatorTreeAnalysis>();
 | 
						|
    PA.abandon<LoopAnalysis>();
 | 
						|
    FAM.invalidate(*Caller, PA);
 | 
						|
  }
 | 
						|
  Advice.updateCachedCallerFPI(FAM);
 | 
						|
  int64_t IRSizeAfter =
 | 
						|
      getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
 | 
						|
  CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
 | 
						|
  if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
 | 
						|
    ForceStop = true;
 | 
						|
 | 
						|
  // We can delta-update module-wide features. We know the inlining only changed
 | 
						|
  // the caller, and maybe the callee (by deleting the latter).
 | 
						|
  // Nodes are simple to update.
 | 
						|
  // For edges, we 'forget' the edges that the caller and callee used to have
 | 
						|
  // before inlining, and add back what they currently have together.
 | 
						|
  int64_t NewCallerAndCalleeEdges =
 | 
						|
      getCachedFPI(*Caller).DirectCallsToDefinedFunctions;
 | 
						|
 | 
						|
  if (CalleeWasDeleted)
 | 
						|
    --NodeCount;
 | 
						|
  else
 | 
						|
    NewCallerAndCalleeEdges +=
 | 
						|
        getCachedFPI(*Callee).DirectCallsToDefinedFunctions;
 | 
						|
  EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
 | 
						|
  assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
 | 
						|
}
 | 
						|
 | 
						|
int64_t MLInlineAdvisor::getModuleIRSize() const {
 | 
						|
  int64_t Ret = 0;
 | 
						|
  for (auto &F : M)
 | 
						|
    if (!F.isDeclaration())
 | 
						|
      Ret += getIRSize(F);
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const {
 | 
						|
  auto InsertPair =
 | 
						|
      FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo()));
 | 
						|
  if (!InsertPair.second)
 | 
						|
    return InsertPair.first->second;
 | 
						|
  InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F);
 | 
						|
  return InsertPair.first->second;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
 | 
						|
  if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
 | 
						|
    return Skip;
 | 
						|
 | 
						|
  auto &Caller = *CB.getCaller();
 | 
						|
  auto &Callee = *CB.getCalledFunction();
 | 
						|
 | 
						|
  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
 | 
						|
    return FAM.getResult<AssumptionAnalysis>(F);
 | 
						|
  };
 | 
						|
  auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
 | 
						|
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
 | 
						|
 | 
						|
  auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
 | 
						|
  // If this is a "never inline" case, there won't be any changes to internal
 | 
						|
  // state we need to track, so we can just return the base InlineAdvice, which
 | 
						|
  // will do nothing interesting.
 | 
						|
  // Same thing if this is a recursive case.
 | 
						|
  if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
 | 
						|
      &Caller == &Callee)
 | 
						|
    return getMandatoryAdvice(CB, false);
 | 
						|
 | 
						|
  bool Mandatory =
 | 
						|
      MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
 | 
						|
 | 
						|
  // If we need to stop, we won't want to track anymore any state changes, so
 | 
						|
  // we just return the base InlineAdvice, which acts as a noop.
 | 
						|
  if (ForceStop) {
 | 
						|
    ORE.emit([&] {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
 | 
						|
             << "Won't attempt inlining because module size grew too much.";
 | 
						|
    });
 | 
						|
    return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
 | 
						|
  }
 | 
						|
 | 
						|
  int CostEstimate = 0;
 | 
						|
  if (!Mandatory) {
 | 
						|
    auto IsCallSiteInlinable =
 | 
						|
        llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
 | 
						|
    if (!IsCallSiteInlinable) {
 | 
						|
      // We can't inline this for correctness reasons, so return the base
 | 
						|
      // InlineAdvice, as we don't care about tracking any state changes (which
 | 
						|
      // won't happen).
 | 
						|
      return std::make_unique<InlineAdvice>(this, CB, ORE, false);
 | 
						|
    }
 | 
						|
    CostEstimate = *IsCallSiteInlinable;
 | 
						|
  }
 | 
						|
 | 
						|
  const auto CostFeatures =
 | 
						|
      llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
 | 
						|
  if (!CostFeatures) {
 | 
						|
    return std::make_unique<InlineAdvice>(this, CB, ORE, false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Mandatory)
 | 
						|
    return getMandatoryAdvice(CB, true);
 | 
						|
 | 
						|
  auto NrCtantParams = 0;
 | 
						|
  for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
 | 
						|
    NrCtantParams += (isa<Constant>(*I));
 | 
						|
  }
 | 
						|
 | 
						|
  auto &CallerBefore = getCachedFPI(Caller);
 | 
						|
  auto &CalleeBefore = getCachedFPI(Callee);
 | 
						|
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeBasicBlockCount) =
 | 
						|
      CalleeBefore.BasicBlockCount;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::CallSiteHeight) =
 | 
						|
      getInitialFunctionLevel(Caller);
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::NodeCount) = NodeCount;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::NrCtantParams) = NrCtantParams;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::EdgeCount) = EdgeCount;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::CallerUsers) =
 | 
						|
      CallerBefore.Uses;
 | 
						|
  *ModelRunner->getTensor<int64_t>(
 | 
						|
      FeatureIndex::CallerConditionallyExecutedBlocks) =
 | 
						|
      CallerBefore.BlocksReachedFromConditionalInstruction;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::CallerBasicBlockCount) =
 | 
						|
      CallerBefore.BasicBlockCount;
 | 
						|
  *ModelRunner->getTensor<int64_t>(
 | 
						|
      FeatureIndex::CalleeConditionallyExecutedBlocks) =
 | 
						|
      CalleeBefore.BlocksReachedFromConditionalInstruction;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeUsers) =
 | 
						|
      CalleeBefore.Uses;
 | 
						|
  *ModelRunner->getTensor<int64_t>(FeatureIndex::CostEstimate) = CostEstimate;
 | 
						|
 | 
						|
  // Add the cost features
 | 
						|
  for (size_t I = 0;
 | 
						|
       I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
 | 
						|
    *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
 | 
						|
        static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
 | 
						|
  }
 | 
						|
 | 
						|
  return getAdviceFromModel(CB, ORE);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<MLInlineAdvice>
 | 
						|
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
 | 
						|
                                    OptimizationRemarkEmitter &ORE) {
 | 
						|
  return std::make_unique<MLInlineAdvice>(
 | 
						|
      this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<InlineAdvice>
 | 
						|
MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) {
 | 
						|
  if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller())
 | 
						|
           .isReachableFromEntry(CB.getParent()))
 | 
						|
    return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
 | 
						|
                                                                  bool Advice) {
 | 
						|
  // Make sure we track inlinings in all cases - mandatory or not.
 | 
						|
  if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
 | 
						|
    return Skip;
 | 
						|
  if (Advice && !ForceStop)
 | 
						|
    return getMandatoryAdviceImpl(CB);
 | 
						|
 | 
						|
  // If this is a "never inline" case, there won't be any changes to internal
 | 
						|
  // state we need to track, so we can just return the base InlineAdvice, which
 | 
						|
  // will do nothing interesting.
 | 
						|
  // Same if we are forced to stop - we don't track anymore.
 | 
						|
  return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<MLInlineAdvice>
 | 
						|
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
 | 
						|
  return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvisor::print(raw_ostream &OS) const {
 | 
						|
  OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount
 | 
						|
     << " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n";
 | 
						|
  OS << "[MLInlineAdvisor] FPI:\n";
 | 
						|
  for (auto I : FPICache) {
 | 
						|
    OS << I.getFirst()->getName() << ":\n";
 | 
						|
    I.getSecond().print(OS);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
 | 
						|
                               OptimizationRemarkEmitter &ORE,
 | 
						|
                               bool Recommendation)
 | 
						|
    : InlineAdvice(Advisor, CB, ORE, Recommendation),
 | 
						|
      CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)),
 | 
						|
      CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)),
 | 
						|
      CallerAndCalleeEdges(Advisor->isForcedToStop()
 | 
						|
                               ? 0
 | 
						|
                               : (Advisor->getLocalCalls(*Caller) +
 | 
						|
                                  Advisor->getLocalCalls(*Callee))),
 | 
						|
      PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) {
 | 
						|
  if (Recommendation)
 | 
						|
    FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::reportContextForRemark(
 | 
						|
    DiagnosticInfoOptimizationBase &OR) {
 | 
						|
  using namespace ore;
 | 
						|
  OR << NV("Callee", Callee->getName());
 | 
						|
  for (size_t I = 0; I < NumberOfFeatures; ++I)
 | 
						|
    OR << NV(FeatureMap[I].name(),
 | 
						|
             *getAdvisor()->getModelRunner().getTensor<int64_t>(I));
 | 
						|
  OR << NV("ShouldInline", isInliningRecommended());
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const {
 | 
						|
  FPU->finish(FAM);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::recordInliningImpl() {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
 | 
						|
                         Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
 | 
						|
}
 | 
						|
 | 
						|
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
 | 
						|
    const InlineResult &Result) {
 | 
						|
  getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI;
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
 | 
						|
                               DLoc, Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
}
 | 
						|
void MLInlineAdvice::recordUnattemptedInliningImpl() {
 | 
						|
  assert(!FPU);
 | 
						|
  ORE.emit([&]() {
 | 
						|
    OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
 | 
						|
    reportContextForRemark(R);
 | 
						|
    return R;
 | 
						|
  });
 | 
						|
}
 |