2367 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2367 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the machine instruction level if-conversion pass, which
 | 
						|
// tries to convert conditional branches into predicated instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "BranchFolding.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/ScopeExit.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/SparseSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/CodeGen/LivePhysRegs.h"
 | 
						|
#include "llvm/CodeGen/MBFIWrapper.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSchedule.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <functional>
 | 
						|
#include <iterator>
 | 
						|
#include <memory>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "if-converter"
 | 
						|
 | 
						|
// Hidden options for help debugging.
 | 
						|
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
 | 
						|
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
 | 
						|
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
 | 
						|
                                   cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
 | 
						|
                                    cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
 | 
						|
                                     cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
 | 
						|
                                      cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
 | 
						|
                                      cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
 | 
						|
                                       cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
 | 
						|
                                    cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
 | 
						|
                                        cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
 | 
						|
                                     cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumSimple,       "Number of simple if-conversions performed");
 | 
						|
STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
 | 
						|
STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
 | 
						|
STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
 | 
						|
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
 | 
						|
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
 | 
						|
STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
 | 
						|
STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
 | 
						|
STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
 | 
						|
STATISTIC(NumDupBBs,       "Number of duplicated blocks");
 | 
						|
STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class IfConverter : public MachineFunctionPass {
 | 
						|
    enum IfcvtKind {
 | 
						|
      ICNotClassfied,  // BB data valid, but not classified.
 | 
						|
      ICSimpleFalse,   // Same as ICSimple, but on the false path.
 | 
						|
      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
 | 
						|
      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
 | 
						|
      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
 | 
						|
      ICTriangleFalse, // Same as ICTriangle, but on the false path.
 | 
						|
      ICTriangle,      // BB is entry of a triangle sub-CFG.
 | 
						|
      ICDiamond,       // BB is entry of a diamond sub-CFG.
 | 
						|
      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
 | 
						|
                       // common tail that can be shared.
 | 
						|
    };
 | 
						|
 | 
						|
    /// One per MachineBasicBlock, this is used to cache the result
 | 
						|
    /// if-conversion feasibility analysis. This includes results from
 | 
						|
    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
 | 
						|
    /// classification, and common tail block of its successors (if it's a
 | 
						|
    /// diamond shape), its size, whether it's predicable, and whether any
 | 
						|
    /// instruction can clobber the 'would-be' predicate.
 | 
						|
    ///
 | 
						|
    /// IsDone          - True if BB is not to be considered for ifcvt.
 | 
						|
    /// IsBeingAnalyzed - True if BB is currently being analyzed.
 | 
						|
    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
 | 
						|
    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
 | 
						|
    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
 | 
						|
    /// HasFallThrough  - True if BB may fallthrough to the following BB.
 | 
						|
    /// IsUnpredicable  - True if BB is known to be unpredicable.
 | 
						|
    /// ClobbersPred    - True if BB could modify predicates (e.g. has
 | 
						|
    ///                   cmp, call, etc.)
 | 
						|
    /// NonPredSize     - Number of non-predicated instructions.
 | 
						|
    /// ExtraCost       - Extra cost for multi-cycle instructions.
 | 
						|
    /// ExtraCost2      - Some instructions are slower when predicated
 | 
						|
    /// BB              - Corresponding MachineBasicBlock.
 | 
						|
    /// TrueBB / FalseBB- See analyzeBranch().
 | 
						|
    /// BrCond          - Conditions for end of block conditional branches.
 | 
						|
    /// Predicate       - Predicate used in the BB.
 | 
						|
    struct BBInfo {
 | 
						|
      bool IsDone          : 1;
 | 
						|
      bool IsBeingAnalyzed : 1;
 | 
						|
      bool IsAnalyzed      : 1;
 | 
						|
      bool IsEnqueued      : 1;
 | 
						|
      bool IsBrAnalyzable  : 1;
 | 
						|
      bool IsBrReversible  : 1;
 | 
						|
      bool HasFallThrough  : 1;
 | 
						|
      bool IsUnpredicable  : 1;
 | 
						|
      bool CannotBeCopied  : 1;
 | 
						|
      bool ClobbersPred    : 1;
 | 
						|
      unsigned NonPredSize = 0;
 | 
						|
      unsigned ExtraCost = 0;
 | 
						|
      unsigned ExtraCost2 = 0;
 | 
						|
      MachineBasicBlock *BB = nullptr;
 | 
						|
      MachineBasicBlock *TrueBB = nullptr;
 | 
						|
      MachineBasicBlock *FalseBB = nullptr;
 | 
						|
      SmallVector<MachineOperand, 4> BrCond;
 | 
						|
      SmallVector<MachineOperand, 4> Predicate;
 | 
						|
 | 
						|
      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
 | 
						|
                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
 | 
						|
                 IsBrReversible(false), HasFallThrough(false),
 | 
						|
                 IsUnpredicable(false), CannotBeCopied(false),
 | 
						|
                 ClobbersPred(false) {}
 | 
						|
    };
 | 
						|
 | 
						|
    /// Record information about pending if-conversions to attempt:
 | 
						|
    /// BBI             - Corresponding BBInfo.
 | 
						|
    /// Kind            - Type of block. See IfcvtKind.
 | 
						|
    /// NeedSubsumption - True if the to-be-predicated BB has already been
 | 
						|
    ///                   predicated.
 | 
						|
    /// NumDups      - Number of instructions that would be duplicated due
 | 
						|
    ///                   to this if-conversion. (For diamonds, the number of
 | 
						|
    ///                   identical instructions at the beginnings of both
 | 
						|
    ///                   paths).
 | 
						|
    /// NumDups2     - For diamonds, the number of identical instructions
 | 
						|
    ///                   at the ends of both paths.
 | 
						|
    struct IfcvtToken {
 | 
						|
      BBInfo &BBI;
 | 
						|
      IfcvtKind Kind;
 | 
						|
      unsigned NumDups;
 | 
						|
      unsigned NumDups2;
 | 
						|
      bool NeedSubsumption : 1;
 | 
						|
      bool TClobbersPred : 1;
 | 
						|
      bool FClobbersPred : 1;
 | 
						|
 | 
						|
      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
 | 
						|
                 bool tc = false, bool fc = false)
 | 
						|
        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
 | 
						|
          TClobbersPred(tc), FClobbersPred(fc) {}
 | 
						|
    };
 | 
						|
 | 
						|
    /// Results of if-conversion feasibility analysis indexed by basic block
 | 
						|
    /// number.
 | 
						|
    std::vector<BBInfo> BBAnalysis;
 | 
						|
    TargetSchedModel SchedModel;
 | 
						|
 | 
						|
    const TargetLoweringBase *TLI;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const MachineBranchProbabilityInfo *MBPI;
 | 
						|
    MachineRegisterInfo *MRI;
 | 
						|
 | 
						|
    LivePhysRegs Redefs;
 | 
						|
 | 
						|
    bool PreRegAlloc;
 | 
						|
    bool MadeChange;
 | 
						|
    int FnNum = -1;
 | 
						|
    std::function<bool(const MachineFunction &)> PredicateFtor;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
 | 
						|
        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
 | 
						|
      initializeIfConverterPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<MachineBlockFrequencyInfo>();
 | 
						|
      AU.addRequired<MachineBranchProbabilityInfo>();
 | 
						|
      AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
      return MachineFunctionProperties().set(
 | 
						|
          MachineFunctionProperties::Property::NoVRegs);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool reverseBranchCondition(BBInfo &BBI) const;
 | 
						|
    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
 | 
						|
                     BranchProbability Prediction) const;
 | 
						|
    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
                       bool FalseBranch, unsigned &Dups,
 | 
						|
                       BranchProbability Prediction) const;
 | 
						|
    bool CountDuplicatedInstructions(
 | 
						|
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
 | 
						|
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
 | 
						|
        unsigned &Dups1, unsigned &Dups2,
 | 
						|
        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
 | 
						|
        bool SkipUnconditionalBranches) const;
 | 
						|
    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
                      unsigned &Dups1, unsigned &Dups2,
 | 
						|
                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
 | 
						|
    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
                            unsigned &Dups1, unsigned &Dups2,
 | 
						|
                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
 | 
						|
    void AnalyzeBranches(BBInfo &BBI);
 | 
						|
    void ScanInstructions(BBInfo &BBI,
 | 
						|
                          MachineBasicBlock::iterator &Begin,
 | 
						|
                          MachineBasicBlock::iterator &End,
 | 
						|
                          bool BranchUnpredicable = false) const;
 | 
						|
    bool RescanInstructions(
 | 
						|
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
 | 
						|
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
 | 
						|
        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
 | 
						|
    void AnalyzeBlock(MachineBasicBlock &MBB,
 | 
						|
                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
 | 
						|
    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
 | 
						|
                             bool isTriangle = false, bool RevBranch = false,
 | 
						|
                             bool hasCommonTail = false);
 | 
						|
    void AnalyzeBlocks(MachineFunction &MF,
 | 
						|
                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
 | 
						|
    void InvalidatePreds(MachineBasicBlock &MBB);
 | 
						|
    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
 | 
						|
    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
 | 
						|
    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
                                unsigned NumDups1, unsigned NumDups2,
 | 
						|
                                bool TClobbersPred, bool FClobbersPred,
 | 
						|
                                bool RemoveBranch, bool MergeAddEdges);
 | 
						|
    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
 | 
						|
                          unsigned NumDups1, unsigned NumDups2,
 | 
						|
                          bool TClobbers, bool FClobbers);
 | 
						|
    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
 | 
						|
                              unsigned NumDups1, unsigned NumDups2,
 | 
						|
                              bool TClobbers, bool FClobbers);
 | 
						|
    void PredicateBlock(BBInfo &BBI,
 | 
						|
                        MachineBasicBlock::iterator E,
 | 
						|
                        SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                        SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
 | 
						|
    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
 | 
						|
                               SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                               bool IgnoreBr = false);
 | 
						|
    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
 | 
						|
 | 
						|
    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
 | 
						|
                            unsigned Cycle, unsigned Extra,
 | 
						|
                            BranchProbability Prediction) const {
 | 
						|
      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
 | 
						|
                                                   Prediction);
 | 
						|
    }
 | 
						|
 | 
						|
    bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
 | 
						|
                            MachineBasicBlock &CommBB, unsigned Dups,
 | 
						|
                            BranchProbability Prediction, bool Forked) const {
 | 
						|
      const MachineFunction &MF = *TBBInfo.BB->getParent();
 | 
						|
      if (MF.getFunction().hasMinSize()) {
 | 
						|
        MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
 | 
						|
        MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
 | 
						|
        MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
 | 
						|
        MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
 | 
						|
 | 
						|
        unsigned Dups1 = 0, Dups2 = 0;
 | 
						|
        if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
 | 
						|
                                         *TBBInfo.BB, *FBBInfo.BB,
 | 
						|
                                         /*SkipUnconditionalBranches*/ true))
 | 
						|
          llvm_unreachable("should already have been checked by ValidDiamond");
 | 
						|
 | 
						|
        unsigned BranchBytes = 0;
 | 
						|
        unsigned CommonBytes = 0;
 | 
						|
 | 
						|
        // Count common instructions at the start of the true and false blocks.
 | 
						|
        for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | 
						|
          CommonBytes += TII->getInstSizeInBytes(I);
 | 
						|
        }
 | 
						|
        for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | 
						|
          CommonBytes += TII->getInstSizeInBytes(I);
 | 
						|
        }
 | 
						|
 | 
						|
        // Count instructions at the end of the true and false blocks, after
 | 
						|
        // the ones we plan to predicate. Analyzable branches will be removed
 | 
						|
        // (unless this is a forked diamond), and all other instructions are
 | 
						|
        // common between the two blocks.
 | 
						|
        for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
 | 
						|
          if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
 | 
						|
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
 | 
						|
          } else {
 | 
						|
            LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | 
						|
            CommonBytes += TII->getInstSizeInBytes(I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
 | 
						|
          if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
 | 
						|
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
 | 
						|
          } else {
 | 
						|
            LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | 
						|
            CommonBytes += TII->getInstSizeInBytes(I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for (auto &I : CommBB.terminators()) {
 | 
						|
          if (I.isBranch()) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
 | 
						|
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // The common instructions in one branch will be eliminated, halving
 | 
						|
        // their code size.
 | 
						|
        CommonBytes /= 2;
 | 
						|
 | 
						|
        // Count the instructions which we need to predicate.
 | 
						|
        unsigned NumPredicatedInstructions = 0;
 | 
						|
        for (auto &I : make_range(TIB, TIE)) {
 | 
						|
          if (!I.isDebugInstr()) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Predicating: " << I);
 | 
						|
            NumPredicatedInstructions++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for (auto &I : make_range(FIB, FIE)) {
 | 
						|
          if (!I.isDebugInstr()) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Predicating: " << I);
 | 
						|
            NumPredicatedInstructions++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Even though we're optimising for size at the expense of performance,
 | 
						|
        // avoid creating really long predicated blocks.
 | 
						|
        if (NumPredicatedInstructions > 15)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Some targets (e.g. Thumb2) need to insert extra instructions to
 | 
						|
        // start predicated blocks.
 | 
						|
        unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
 | 
						|
            MF, NumPredicatedInstructions);
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
 | 
						|
                          << ", CommonBytes=" << CommonBytes
 | 
						|
                          << ", NumPredicatedInstructions="
 | 
						|
                          << NumPredicatedInstructions
 | 
						|
                          << ", ExtraPredicateBytes=" << ExtraPredicateBytes
 | 
						|
                          << ")\n");
 | 
						|
        return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
 | 
						|
      } else {
 | 
						|
        unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
 | 
						|
        unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
 | 
						|
        bool Res = TCycle > 0 && FCycle > 0 &&
 | 
						|
                   TII->isProfitableToIfCvt(
 | 
						|
                       *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
 | 
						|
                       FCycle, FBBInfo.ExtraCost2, Prediction);
 | 
						|
        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
 | 
						|
                          << ", FCycle=" << FCycle
 | 
						|
                          << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
 | 
						|
                          << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
 | 
						|
        return Res;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Returns true if Block ends without a terminator.
 | 
						|
    bool blockAlwaysFallThrough(BBInfo &BBI) const {
 | 
						|
      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Used to sort if-conversion candidates.
 | 
						|
    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
 | 
						|
                              const std::unique_ptr<IfcvtToken> &C2) {
 | 
						|
      int Incr1 = (C1->Kind == ICDiamond)
 | 
						|
        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
 | 
						|
      int Incr2 = (C2->Kind == ICDiamond)
 | 
						|
        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
 | 
						|
      if (Incr1 > Incr2)
 | 
						|
        return true;
 | 
						|
      else if (Incr1 == Incr2) {
 | 
						|
        // Favors subsumption.
 | 
						|
        if (!C1->NeedSubsumption && C2->NeedSubsumption)
 | 
						|
          return true;
 | 
						|
        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
 | 
						|
          // Favors diamond over triangle, etc.
 | 
						|
          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
 | 
						|
            return true;
 | 
						|
          else if (C1->Kind == C2->Kind)
 | 
						|
            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char IfConverter::ID = 0;
 | 
						|
 | 
						|
char &llvm::IfConverterID = IfConverter::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
 | 
						|
 | 
						|
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST = MF.getSubtarget();
 | 
						|
  TLI = ST.getTargetLowering();
 | 
						|
  TII = ST.getInstrInfo();
 | 
						|
  TRI = ST.getRegisterInfo();
 | 
						|
  MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
 | 
						|
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
 | 
						|
  ProfileSummaryInfo *PSI =
 | 
						|
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  SchedModel.init(&ST);
 | 
						|
 | 
						|
  if (!TII) return false;
 | 
						|
 | 
						|
  PreRegAlloc = MRI->isSSA();
 | 
						|
 | 
						|
  bool BFChange = false;
 | 
						|
  if (!PreRegAlloc) {
 | 
						|
    // Tail merge tend to expose more if-conversion opportunities.
 | 
						|
    BranchFolder BF(true, false, MBFI, *MBPI, PSI);
 | 
						|
    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
 | 
						|
                    << MF.getName() << "\'");
 | 
						|
 | 
						|
  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
 | 
						|
    LLVM_DEBUG(dbgs() << " skipped\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
  MF.RenumberBlocks();
 | 
						|
  BBAnalysis.resize(MF.getNumBlockIDs());
 | 
						|
 | 
						|
  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
 | 
						|
  MadeChange = false;
 | 
						|
  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
 | 
						|
    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
 | 
						|
  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
 | 
						|
    // Do an initial analysis for each basic block and find all the potential
 | 
						|
    // candidates to perform if-conversion.
 | 
						|
    bool Change = false;
 | 
						|
    AnalyzeBlocks(MF, Tokens);
 | 
						|
    while (!Tokens.empty()) {
 | 
						|
      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
 | 
						|
      Tokens.pop_back();
 | 
						|
      BBInfo &BBI = Token->BBI;
 | 
						|
      IfcvtKind Kind = Token->Kind;
 | 
						|
      unsigned NumDups = Token->NumDups;
 | 
						|
      unsigned NumDups2 = Token->NumDups2;
 | 
						|
 | 
						|
      // If the block has been evicted out of the queue or it has already been
 | 
						|
      // marked dead (due to it being predicated), then skip it.
 | 
						|
      if (BBI.IsDone)
 | 
						|
        BBI.IsEnqueued = false;
 | 
						|
      if (!BBI.IsEnqueued)
 | 
						|
        continue;
 | 
						|
 | 
						|
      BBI.IsEnqueued = false;
 | 
						|
 | 
						|
      bool RetVal = false;
 | 
						|
      switch (Kind) {
 | 
						|
      default: llvm_unreachable("Unexpected!");
 | 
						|
      case ICSimple:
 | 
						|
      case ICSimpleFalse: {
 | 
						|
        bool isFalse = Kind == ICSimpleFalse;
 | 
						|
        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
 | 
						|
        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
 | 
						|
                          << (Kind == ICSimpleFalse ? " false" : "")
 | 
						|
                          << "): " << printMBBReference(*BBI.BB) << " ("
 | 
						|
                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
 | 
						|
                                                      : BBI.TrueBB->getNumber())
 | 
						|
                          << ") ");
 | 
						|
        RetVal = IfConvertSimple(BBI, Kind);
 | 
						|
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | 
						|
        if (RetVal) {
 | 
						|
          if (isFalse) ++NumSimpleFalse;
 | 
						|
          else         ++NumSimple;
 | 
						|
        }
 | 
						|
       break;
 | 
						|
      }
 | 
						|
      case ICTriangle:
 | 
						|
      case ICTriangleRev:
 | 
						|
      case ICTriangleFalse:
 | 
						|
      case ICTriangleFRev: {
 | 
						|
        bool isFalse = Kind == ICTriangleFalse;
 | 
						|
        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
 | 
						|
        if (DisableTriangle && !isFalse && !isRev) break;
 | 
						|
        if (DisableTriangleR && !isFalse && isRev) break;
 | 
						|
        if (DisableTriangleF && isFalse && !isRev) break;
 | 
						|
        if (DisableTriangleFR && isFalse && isRev) break;
 | 
						|
        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
 | 
						|
        if (isFalse)
 | 
						|
          LLVM_DEBUG(dbgs() << " false");
 | 
						|
        if (isRev)
 | 
						|
          LLVM_DEBUG(dbgs() << " rev");
 | 
						|
        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
 | 
						|
                          << " (T:" << BBI.TrueBB->getNumber()
 | 
						|
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
 | 
						|
        RetVal = IfConvertTriangle(BBI, Kind);
 | 
						|
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | 
						|
        if (RetVal) {
 | 
						|
          if (isFalse) {
 | 
						|
            if (isRev) ++NumTriangleFRev;
 | 
						|
            else       ++NumTriangleFalse;
 | 
						|
          } else {
 | 
						|
            if (isRev) ++NumTriangleRev;
 | 
						|
            else       ++NumTriangle;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ICDiamond:
 | 
						|
        if (DisableDiamond) break;
 | 
						|
        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
 | 
						|
                          << " (T:" << BBI.TrueBB->getNumber()
 | 
						|
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
 | 
						|
        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
 | 
						|
                                  Token->TClobbersPred,
 | 
						|
                                  Token->FClobbersPred);
 | 
						|
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | 
						|
        if (RetVal) ++NumDiamonds;
 | 
						|
        break;
 | 
						|
      case ICForkedDiamond:
 | 
						|
        if (DisableForkedDiamond) break;
 | 
						|
        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
 | 
						|
                          << printMBBReference(*BBI.BB)
 | 
						|
                          << " (T:" << BBI.TrueBB->getNumber()
 | 
						|
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
 | 
						|
        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
 | 
						|
                                      Token->TClobbersPred,
 | 
						|
                                      Token->FClobbersPred);
 | 
						|
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | 
						|
        if (RetVal) ++NumForkedDiamonds;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (RetVal && MRI->tracksLiveness())
 | 
						|
        recomputeLivenessFlags(*BBI.BB);
 | 
						|
 | 
						|
      Change |= RetVal;
 | 
						|
 | 
						|
      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
 | 
						|
        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
 | 
						|
      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Change)
 | 
						|
      break;
 | 
						|
    MadeChange |= Change;
 | 
						|
  }
 | 
						|
 | 
						|
  Tokens.clear();
 | 
						|
  BBAnalysis.clear();
 | 
						|
 | 
						|
  if (MadeChange && IfCvtBranchFold) {
 | 
						|
    BranchFolder BF(false, false, MBFI, *MBPI, PSI);
 | 
						|
    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  MadeChange |= BFChange;
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
 | 
						|
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
 | 
						|
                                         MachineBasicBlock *TrueBB) {
 | 
						|
  for (MachineBasicBlock *SuccBB : BB->successors()) {
 | 
						|
    if (SuccBB != TrueBB)
 | 
						|
      return SuccBB;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Reverse the condition of the end of the block branch. Swap block's 'true'
 | 
						|
/// and 'false' successors.
 | 
						|
bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
 | 
						|
  DebugLoc dl;  // FIXME: this is nowhere
 | 
						|
  if (!TII->reverseBranchCondition(BBI.BrCond)) {
 | 
						|
    TII->removeBranch(*BBI.BB);
 | 
						|
    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
 | 
						|
    std::swap(BBI.TrueBB, BBI.FalseBB);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the next block in the function blocks ordering. If it is the end,
 | 
						|
/// returns NULL.
 | 
						|
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
 | 
						|
  MachineFunction::iterator I = MBB.getIterator();
 | 
						|
  MachineFunction::iterator E = MBB.getParent()->end();
 | 
						|
  if (++I == E)
 | 
						|
    return nullptr;
 | 
						|
  return &*I;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the 'true' block (along with its predecessor) forms a valid
 | 
						|
/// simple shape for ifcvt. It also returns the number of instructions that the
 | 
						|
/// ifcvt would need to duplicate if performed in Dups.
 | 
						|
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
 | 
						|
                              BranchProbability Prediction) const {
 | 
						|
  Dups = 0;
 | 
						|
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TrueBBI.IsBrAnalyzable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TrueBBI.BB->pred_size() > 1) {
 | 
						|
    if (TrueBBI.CannotBeCopied ||
 | 
						|
        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
 | 
						|
                                        Prediction))
 | 
						|
      return false;
 | 
						|
    Dups = TrueBBI.NonPredSize;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the 'true' and 'false' blocks (along with their common
 | 
						|
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
 | 
						|
/// true, it checks if 'true' block's false branch branches to the 'false' block
 | 
						|
/// rather than the other way around. It also returns the number of instructions
 | 
						|
/// that the ifcvt would need to duplicate if performed in 'Dups'.
 | 
						|
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
                                bool FalseBranch, unsigned &Dups,
 | 
						|
                                BranchProbability Prediction) const {
 | 
						|
  Dups = 0;
 | 
						|
  if (TrueBBI.BB == FalseBBI.BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TrueBBI.BB->pred_size() > 1) {
 | 
						|
    if (TrueBBI.CannotBeCopied)
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned Size = TrueBBI.NonPredSize;
 | 
						|
    if (TrueBBI.IsBrAnalyzable) {
 | 
						|
      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
 | 
						|
        // Ends with an unconditional branch. It will be removed.
 | 
						|
        --Size;
 | 
						|
      else {
 | 
						|
        MachineBasicBlock *FExit = FalseBranch
 | 
						|
          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
 | 
						|
        if (FExit)
 | 
						|
          // Require a conditional branch
 | 
						|
          ++Size;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
 | 
						|
      return false;
 | 
						|
    Dups = Size;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
 | 
						|
  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
 | 
						|
    MachineFunction::iterator I = TrueBBI.BB->getIterator();
 | 
						|
    if (++I == TrueBBI.BB->getParent()->end())
 | 
						|
      return false;
 | 
						|
    TExit = &*I;
 | 
						|
  }
 | 
						|
  return TExit && TExit == FalseBBI.BB;
 | 
						|
}
 | 
						|
 | 
						|
/// Count duplicated instructions and move the iterators to show where they
 | 
						|
/// are.
 | 
						|
/// @param TIB True Iterator Begin
 | 
						|
/// @param FIB False Iterator Begin
 | 
						|
/// These two iterators initially point to the first instruction of the two
 | 
						|
/// blocks, and finally point to the first non-shared instruction.
 | 
						|
/// @param TIE True Iterator End
 | 
						|
/// @param FIE False Iterator End
 | 
						|
/// These two iterators initially point to End() for the two blocks() and
 | 
						|
/// finally point to the first shared instruction in the tail.
 | 
						|
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
 | 
						|
/// two blocks.
 | 
						|
/// @param Dups1 count of duplicated instructions at the beginning of the 2
 | 
						|
/// blocks.
 | 
						|
/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
 | 
						|
/// @param SkipUnconditionalBranches if true, Don't make sure that
 | 
						|
/// unconditional branches at the end of the blocks are the same. True is
 | 
						|
/// passed when the blocks are analyzable to allow for fallthrough to be
 | 
						|
/// handled.
 | 
						|
/// @return false if the shared portion prevents if conversion.
 | 
						|
bool IfConverter::CountDuplicatedInstructions(
 | 
						|
    MachineBasicBlock::iterator &TIB,
 | 
						|
    MachineBasicBlock::iterator &FIB,
 | 
						|
    MachineBasicBlock::iterator &TIE,
 | 
						|
    MachineBasicBlock::iterator &FIE,
 | 
						|
    unsigned &Dups1, unsigned &Dups2,
 | 
						|
    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
 | 
						|
    bool SkipUnconditionalBranches) const {
 | 
						|
  while (TIB != TIE && FIB != FIE) {
 | 
						|
    // Skip dbg_value instructions. These do not count.
 | 
						|
    TIB = skipDebugInstructionsForward(TIB, TIE, false);
 | 
						|
    FIB = skipDebugInstructionsForward(FIB, FIE, false);
 | 
						|
    if (TIB == TIE || FIB == FIE)
 | 
						|
      break;
 | 
						|
    if (!TIB->isIdenticalTo(*FIB))
 | 
						|
      break;
 | 
						|
    // A pred-clobbering instruction in the shared portion prevents
 | 
						|
    // if-conversion.
 | 
						|
    std::vector<MachineOperand> PredDefs;
 | 
						|
    if (TII->ClobbersPredicate(*TIB, PredDefs, false))
 | 
						|
      return false;
 | 
						|
    // If we get all the way to the branch instructions, don't count them.
 | 
						|
    if (!TIB->isBranch())
 | 
						|
      ++Dups1;
 | 
						|
    ++TIB;
 | 
						|
    ++FIB;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for already containing all of the block.
 | 
						|
  if (TIB == TIE || FIB == FIE)
 | 
						|
    return true;
 | 
						|
  // Now, in preparation for counting duplicate instructions at the ends of the
 | 
						|
  // blocks, switch to reverse_iterators. Note that getReverse() returns an
 | 
						|
  // iterator that points to the same instruction, unlike std::reverse_iterator.
 | 
						|
  // We have to do our own shifting so that we get the same range.
 | 
						|
  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
 | 
						|
  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
 | 
						|
  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
 | 
						|
  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
 | 
						|
 | 
						|
  if (!TBB.succ_empty() || !FBB.succ_empty()) {
 | 
						|
    if (SkipUnconditionalBranches) {
 | 
						|
      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
 | 
						|
        ++RTIE;
 | 
						|
      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
 | 
						|
        ++RFIE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Count duplicate instructions at the ends of the blocks.
 | 
						|
  while (RTIE != RTIB && RFIE != RFIB) {
 | 
						|
    // Skip dbg_value instructions. These do not count.
 | 
						|
    // Note that these are reverse iterators going forward.
 | 
						|
    RTIE = skipDebugInstructionsForward(RTIE, RTIB, false);
 | 
						|
    RFIE = skipDebugInstructionsForward(RFIE, RFIB, false);
 | 
						|
    if (RTIE == RTIB || RFIE == RFIB)
 | 
						|
      break;
 | 
						|
    if (!RTIE->isIdenticalTo(*RFIE))
 | 
						|
      break;
 | 
						|
    // We have to verify that any branch instructions are the same, and then we
 | 
						|
    // don't count them toward the # of duplicate instructions.
 | 
						|
    if (!RTIE->isBranch())
 | 
						|
      ++Dups2;
 | 
						|
    ++RTIE;
 | 
						|
    ++RFIE;
 | 
						|
  }
 | 
						|
  TIE = std::next(RTIE.getReverse());
 | 
						|
  FIE = std::next(RFIE.getReverse());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// RescanInstructions - Run ScanInstructions on a pair of blocks.
 | 
						|
/// @param TIB - True Iterator Begin, points to first non-shared instruction
 | 
						|
/// @param FIB - False Iterator Begin, points to first non-shared instruction
 | 
						|
/// @param TIE - True Iterator End, points past last non-shared instruction
 | 
						|
/// @param FIE - False Iterator End, points past last non-shared instruction
 | 
						|
/// @param TrueBBI  - BBInfo to update for the true block.
 | 
						|
/// @param FalseBBI - BBInfo to update for the false block.
 | 
						|
/// @returns - false if either block cannot be predicated or if both blocks end
 | 
						|
///   with a predicate-clobbering instruction.
 | 
						|
bool IfConverter::RescanInstructions(
 | 
						|
    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
 | 
						|
    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
 | 
						|
    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
 | 
						|
  bool BranchUnpredicable = true;
 | 
						|
  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
 | 
						|
  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
 | 
						|
  if (TrueBBI.IsUnpredicable)
 | 
						|
    return false;
 | 
						|
  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
 | 
						|
  if (FalseBBI.IsUnpredicable)
 | 
						|
    return false;
 | 
						|
  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static void verifySameBranchInstructions(
 | 
						|
    MachineBasicBlock *MBB1,
 | 
						|
    MachineBasicBlock *MBB2) {
 | 
						|
  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
 | 
						|
  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
 | 
						|
  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
 | 
						|
  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
 | 
						|
  while (E1 != B1 && E2 != B2) {
 | 
						|
    skipDebugInstructionsForward(E1, B1, false);
 | 
						|
    skipDebugInstructionsForward(E2, B2, false);
 | 
						|
    if (E1 == B1 && E2 == B2)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (E1 == B1) {
 | 
						|
      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (E2 == B2) {
 | 
						|
      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (E1->isBranch() || E2->isBranch())
 | 
						|
      assert(E1->isIdenticalTo(*E2) &&
 | 
						|
             "Branch mis-match, branch instructions don't match.");
 | 
						|
    else
 | 
						|
      break;
 | 
						|
    ++E1;
 | 
						|
    ++E2;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
 | 
						|
/// with their common predecessor) form a diamond if a common tail block is
 | 
						|
/// extracted.
 | 
						|
/// While not strictly a diamond, this pattern would form a diamond if
 | 
						|
/// tail-merging had merged the shared tails.
 | 
						|
///           EBB
 | 
						|
///         _/   \_
 | 
						|
///         |     |
 | 
						|
///        TBB   FBB
 | 
						|
///        /  \ /   \
 | 
						|
///  FalseBB TrueBB FalseBB
 | 
						|
/// Currently only handles analyzable branches.
 | 
						|
/// Specifically excludes actual diamonds to avoid overlap.
 | 
						|
bool IfConverter::ValidForkedDiamond(
 | 
						|
    BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
    unsigned &Dups1, unsigned &Dups2,
 | 
						|
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
 | 
						|
  Dups1 = Dups2 = 0;
 | 
						|
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
 | 
						|
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
 | 
						|
    return false;
 | 
						|
  // Don't IfConvert blocks that can't be folded into their predecessor.
 | 
						|
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This function is specifically looking for conditional tails, as
 | 
						|
  // unconditional tails are already handled by the standard diamond case.
 | 
						|
  if (TrueBBI.BrCond.size() == 0 ||
 | 
						|
      FalseBBI.BrCond.size() == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock *TT = TrueBBI.TrueBB;
 | 
						|
  MachineBasicBlock *TF = TrueBBI.FalseBB;
 | 
						|
  MachineBasicBlock *FT = FalseBBI.TrueBB;
 | 
						|
  MachineBasicBlock *FF = FalseBBI.FalseBB;
 | 
						|
 | 
						|
  if (!TT)
 | 
						|
    TT = getNextBlock(*TrueBBI.BB);
 | 
						|
  if (!TF)
 | 
						|
    TF = getNextBlock(*TrueBBI.BB);
 | 
						|
  if (!FT)
 | 
						|
    FT = getNextBlock(*FalseBBI.BB);
 | 
						|
  if (!FF)
 | 
						|
    FF = getNextBlock(*FalseBBI.BB);
 | 
						|
 | 
						|
  if (!TT || !TF)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check successors. If they don't match, bail.
 | 
						|
  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool FalseReversed = false;
 | 
						|
  if (TF == FT && TT == FF) {
 | 
						|
    // If the branches are opposing, but we can't reverse, don't do it.
 | 
						|
    if (!FalseBBI.IsBrReversible)
 | 
						|
      return false;
 | 
						|
    FalseReversed = true;
 | 
						|
    reverseBranchCondition(FalseBBI);
 | 
						|
  }
 | 
						|
  auto UnReverseOnExit = make_scope_exit([&]() {
 | 
						|
    if (FalseReversed)
 | 
						|
      reverseBranchCondition(FalseBBI);
 | 
						|
  });
 | 
						|
 | 
						|
  // Count duplicate instructions at the beginning of the true and false blocks.
 | 
						|
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
 | 
						|
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
 | 
						|
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
 | 
						|
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
 | 
						|
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
 | 
						|
                                  *TrueBBI.BB, *FalseBBI.BB,
 | 
						|
                                  /* SkipUnconditionalBranches */ true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  TrueBBICalc.BB = TrueBBI.BB;
 | 
						|
  FalseBBICalc.BB = FalseBBI.BB;
 | 
						|
  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
 | 
						|
  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
 | 
						|
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The size is used to decide whether to if-convert, and the shared portions
 | 
						|
  // are subtracted off. Because of the subtraction, we just use the size that
 | 
						|
  // was calculated by the original ScanInstructions, as it is correct.
 | 
						|
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
 | 
						|
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
 | 
						|
/// with their common predecessor) forms a valid diamond shape for ifcvt.
 | 
						|
bool IfConverter::ValidDiamond(
 | 
						|
    BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
    unsigned &Dups1, unsigned &Dups2,
 | 
						|
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
 | 
						|
  Dups1 = Dups2 = 0;
 | 
						|
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
 | 
						|
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the True and False BBs are equal we're dealing with a degenerate case
 | 
						|
  // that we don't treat as a diamond.
 | 
						|
  if (TrueBBI.BB == FalseBBI.BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock *TT = TrueBBI.TrueBB;
 | 
						|
  MachineBasicBlock *FT = FalseBBI.TrueBB;
 | 
						|
 | 
						|
  if (!TT && blockAlwaysFallThrough(TrueBBI))
 | 
						|
    TT = getNextBlock(*TrueBBI.BB);
 | 
						|
  if (!FT && blockAlwaysFallThrough(FalseBBI))
 | 
						|
    FT = getNextBlock(*FalseBBI.BB);
 | 
						|
  if (TT != FT)
 | 
						|
    return false;
 | 
						|
  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
 | 
						|
    return false;
 | 
						|
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Allow true block to have an early exit?
 | 
						|
  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Count duplicate instructions at the beginning and end of the true and
 | 
						|
  // false blocks.
 | 
						|
  // Skip unconditional branches only if we are considering an analyzable
 | 
						|
  // diamond. Otherwise the branches must be the same.
 | 
						|
  bool SkipUnconditionalBranches =
 | 
						|
      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
 | 
						|
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
 | 
						|
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
 | 
						|
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
 | 
						|
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
 | 
						|
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
 | 
						|
                                  *TrueBBI.BB, *FalseBBI.BB,
 | 
						|
                                  SkipUnconditionalBranches))
 | 
						|
    return false;
 | 
						|
 | 
						|
  TrueBBICalc.BB = TrueBBI.BB;
 | 
						|
  FalseBBICalc.BB = FalseBBI.BB;
 | 
						|
  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
 | 
						|
  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
 | 
						|
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
 | 
						|
    return false;
 | 
						|
  // The size is used to decide whether to if-convert, and the shared portions
 | 
						|
  // are subtracted off. Because of the subtraction, we just use the size that
 | 
						|
  // was calculated by the original ScanInstructions, as it is correct.
 | 
						|
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
 | 
						|
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeBranches - Look at the branches at the end of a block to determine if
 | 
						|
/// the block is predicable.
 | 
						|
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
 | 
						|
  if (BBI.IsDone)
 | 
						|
    return;
 | 
						|
 | 
						|
  BBI.TrueBB = BBI.FalseBB = nullptr;
 | 
						|
  BBI.BrCond.clear();
 | 
						|
  BBI.IsBrAnalyzable =
 | 
						|
      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
 | 
						|
  if (!BBI.IsBrAnalyzable) {
 | 
						|
    BBI.TrueBB = nullptr;
 | 
						|
    BBI.FalseBB = nullptr;
 | 
						|
    BBI.BrCond.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
 | 
						|
  BBI.IsBrReversible = (RevCond.size() == 0) ||
 | 
						|
      !TII->reverseBranchCondition(RevCond);
 | 
						|
  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
 | 
						|
 | 
						|
  if (BBI.BrCond.size()) {
 | 
						|
    // No false branch. This BB must end with a conditional branch and a
 | 
						|
    // fallthrough.
 | 
						|
    if (!BBI.FalseBB)
 | 
						|
      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
 | 
						|
    if (!BBI.FalseBB) {
 | 
						|
      // Malformed bcc? True and false blocks are the same?
 | 
						|
      BBI.IsUnpredicable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScanInstructions - Scan all the instructions in the block to determine if
 | 
						|
/// the block is predicable. In most cases, that means all the instructions
 | 
						|
/// in the block are isPredicable(). Also checks if the block contains any
 | 
						|
/// instruction which can clobber a predicate (e.g. condition code register).
 | 
						|
/// If so, the block is not predicable unless it's the last instruction.
 | 
						|
void IfConverter::ScanInstructions(BBInfo &BBI,
 | 
						|
                                   MachineBasicBlock::iterator &Begin,
 | 
						|
                                   MachineBasicBlock::iterator &End,
 | 
						|
                                   bool BranchUnpredicable) const {
 | 
						|
  if (BBI.IsDone || BBI.IsUnpredicable)
 | 
						|
    return;
 | 
						|
 | 
						|
  bool AlreadyPredicated = !BBI.Predicate.empty();
 | 
						|
 | 
						|
  BBI.NonPredSize = 0;
 | 
						|
  BBI.ExtraCost = 0;
 | 
						|
  BBI.ExtraCost2 = 0;
 | 
						|
  BBI.ClobbersPred = false;
 | 
						|
  for (MachineInstr &MI : make_range(Begin, End)) {
 | 
						|
    if (MI.isDebugInstr())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // It's unsafe to duplicate convergent instructions in this context, so set
 | 
						|
    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
 | 
						|
    // following CFG, which is subject to our "simple" transformation.
 | 
						|
    //
 | 
						|
    //    BB0     // if (c1) goto BB1; else goto BB2;
 | 
						|
    //   /   \
 | 
						|
    //  BB1   |
 | 
						|
    //   |   BB2  // if (c2) goto TBB; else goto FBB;
 | 
						|
    //   |   / |
 | 
						|
    //   |  /  |
 | 
						|
    //   TBB   |
 | 
						|
    //    |    |
 | 
						|
    //    |   FBB
 | 
						|
    //    |
 | 
						|
    //    exit
 | 
						|
    //
 | 
						|
    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
 | 
						|
    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
 | 
						|
    // TBB contains a convergent instruction.  This is safe iff doing so does
 | 
						|
    // not add a control-flow dependency to the convergent instruction -- i.e.,
 | 
						|
    // it's safe iff the set of control flows that leads us to the convergent
 | 
						|
    // instruction does not get smaller after the transformation.
 | 
						|
    //
 | 
						|
    // Originally we executed TBB if c1 || c2.  After the transformation, there
 | 
						|
    // are two copies of TBB's instructions.  We get to the first if c1, and we
 | 
						|
    // get to the second if !c1 && c2.
 | 
						|
    //
 | 
						|
    // There are clearly fewer ways to satisfy the condition "c1" than
 | 
						|
    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
 | 
						|
    // our convergent instruction, the transformation is unsafe.
 | 
						|
    if (MI.isNotDuplicable() || MI.isConvergent())
 | 
						|
      BBI.CannotBeCopied = true;
 | 
						|
 | 
						|
    bool isPredicated = TII->isPredicated(MI);
 | 
						|
    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
 | 
						|
 | 
						|
    if (BranchUnpredicable && MI.isBranch()) {
 | 
						|
      BBI.IsUnpredicable = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // A conditional branch is not predicable, but it may be eliminated.
 | 
						|
    if (isCondBr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!isPredicated) {
 | 
						|
      BBI.NonPredSize++;
 | 
						|
      unsigned ExtraPredCost = TII->getPredicationCost(MI);
 | 
						|
      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
 | 
						|
      if (NumCycles > 1)
 | 
						|
        BBI.ExtraCost += NumCycles-1;
 | 
						|
      BBI.ExtraCost2 += ExtraPredCost;
 | 
						|
    } else if (!AlreadyPredicated) {
 | 
						|
      // FIXME: This instruction is already predicated before the
 | 
						|
      // if-conversion pass. It's probably something like a conditional move.
 | 
						|
      // Mark this block unpredicable for now.
 | 
						|
      BBI.IsUnpredicable = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BBI.ClobbersPred && !isPredicated) {
 | 
						|
      // Predicate modification instruction should end the block (except for
 | 
						|
      // already predicated instructions and end of block branches).
 | 
						|
      // Predicate may have been modified, the subsequent (currently)
 | 
						|
      // unpredicated instructions cannot be correctly predicated.
 | 
						|
      BBI.IsUnpredicable = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
 | 
						|
    // still potentially predicable.
 | 
						|
    std::vector<MachineOperand> PredDefs;
 | 
						|
    if (TII->ClobbersPredicate(MI, PredDefs, true))
 | 
						|
      BBI.ClobbersPred = true;
 | 
						|
 | 
						|
    if (!TII->isPredicable(MI)) {
 | 
						|
      BBI.IsUnpredicable = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the block is a suitable candidate to be predicated by the
 | 
						|
/// specified predicate.
 | 
						|
/// @param BBI BBInfo for the block to check
 | 
						|
/// @param Pred Predicate array for the branch that leads to BBI
 | 
						|
/// @param isTriangle true if the Analysis is for a triangle
 | 
						|
/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
 | 
						|
///        case
 | 
						|
/// @param hasCommonTail true if BBI shares a tail with a sibling block that
 | 
						|
///        contains any instruction that would make the block unpredicable.
 | 
						|
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
 | 
						|
                                      SmallVectorImpl<MachineOperand> &Pred,
 | 
						|
                                      bool isTriangle, bool RevBranch,
 | 
						|
                                      bool hasCommonTail) {
 | 
						|
  // If the block is dead or unpredicable, then it cannot be predicated.
 | 
						|
  // Two blocks may share a common unpredicable tail, but this doesn't prevent
 | 
						|
  // them from being if-converted. The non-shared portion is assumed to have
 | 
						|
  // been checked
 | 
						|
  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If it is already predicated but we couldn't analyze its terminator, the
 | 
						|
  // latter might fallthrough, but we can't determine where to.
 | 
						|
  // Conservatively avoid if-converting again.
 | 
						|
  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If it is already predicated, check if the new predicate subsumes
 | 
						|
  // its predicate.
 | 
						|
  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!hasCommonTail && BBI.BrCond.size()) {
 | 
						|
    if (!isTriangle)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Test predicate subsumption.
 | 
						|
    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
 | 
						|
    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
 | 
						|
    if (RevBranch) {
 | 
						|
      if (TII->reverseBranchCondition(Cond))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    if (TII->reverseBranchCondition(RevPred) ||
 | 
						|
        !TII->SubsumesPredicate(Cond, RevPred))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the structure of the sub-CFG starting from the specified block.
 | 
						|
/// Record its successors and whether it looks like an if-conversion candidate.
 | 
						|
void IfConverter::AnalyzeBlock(
 | 
						|
    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
 | 
						|
  struct BBState {
 | 
						|
    BBState(MachineBasicBlock &MBB) : MBB(&MBB) {}
 | 
						|
    MachineBasicBlock *MBB;
 | 
						|
 | 
						|
    /// This flag is true if MBB's successors have been analyzed.
 | 
						|
    bool SuccsAnalyzed = false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Push MBB to the stack.
 | 
						|
  SmallVector<BBState, 16> BBStack(1, MBB);
 | 
						|
 | 
						|
  while (!BBStack.empty()) {
 | 
						|
    BBState &State = BBStack.back();
 | 
						|
    MachineBasicBlock *BB = State.MBB;
 | 
						|
    BBInfo &BBI = BBAnalysis[BB->getNumber()];
 | 
						|
 | 
						|
    if (!State.SuccsAnalyzed) {
 | 
						|
      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
 | 
						|
        BBStack.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      BBI.BB = BB;
 | 
						|
      BBI.IsBeingAnalyzed = true;
 | 
						|
 | 
						|
      AnalyzeBranches(BBI);
 | 
						|
      MachineBasicBlock::iterator Begin = BBI.BB->begin();
 | 
						|
      MachineBasicBlock::iterator End = BBI.BB->end();
 | 
						|
      ScanInstructions(BBI, Begin, End);
 | 
						|
 | 
						|
      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
 | 
						|
      // not considered for ifcvt anymore.
 | 
						|
      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
 | 
						|
        BBI.IsBeingAnalyzed = false;
 | 
						|
        BBI.IsAnalyzed = true;
 | 
						|
        BBStack.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Do not ifcvt if either path is a back edge to the entry block.
 | 
						|
      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
 | 
						|
        BBI.IsBeingAnalyzed = false;
 | 
						|
        BBI.IsAnalyzed = true;
 | 
						|
        BBStack.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Do not ifcvt if true and false fallthrough blocks are the same.
 | 
						|
      if (!BBI.FalseBB) {
 | 
						|
        BBI.IsBeingAnalyzed = false;
 | 
						|
        BBI.IsAnalyzed = true;
 | 
						|
        BBStack.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Push the False and True blocks to the stack.
 | 
						|
      State.SuccsAnalyzed = true;
 | 
						|
      BBStack.push_back(*BBI.FalseBB);
 | 
						|
      BBStack.push_back(*BBI.TrueBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
 | 
						|
    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | 
						|
 | 
						|
    if (TrueBBI.IsDone && FalseBBI.IsDone) {
 | 
						|
      BBI.IsBeingAnalyzed = false;
 | 
						|
      BBI.IsAnalyzed = true;
 | 
						|
      BBStack.pop_back();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<MachineOperand, 4>
 | 
						|
        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
 | 
						|
    bool CanRevCond = !TII->reverseBranchCondition(RevCond);
 | 
						|
 | 
						|
    unsigned Dups = 0;
 | 
						|
    unsigned Dups2 = 0;
 | 
						|
    bool TNeedSub = !TrueBBI.Predicate.empty();
 | 
						|
    bool FNeedSub = !FalseBBI.Predicate.empty();
 | 
						|
    bool Enqueued = false;
 | 
						|
 | 
						|
    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
 | 
						|
 | 
						|
    if (CanRevCond) {
 | 
						|
      BBInfo TrueBBICalc, FalseBBICalc;
 | 
						|
      auto feasibleDiamond = [&](bool Forked) {
 | 
						|
        bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
 | 
						|
                                            Dups + Dups2, Prediction, Forked);
 | 
						|
        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
 | 
						|
                                                /* IsTriangle */ false, /* RevCond */ false,
 | 
						|
                                                /* hasCommonTail */ true);
 | 
						|
        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
 | 
						|
                                                 /* IsTriangle */ false, /* RevCond */ false,
 | 
						|
                                                 /* hasCommonTail */ true);
 | 
						|
        return MeetsSize && TrueFeasible && FalseFeasible;
 | 
						|
      };
 | 
						|
 | 
						|
      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
 | 
						|
                       TrueBBICalc, FalseBBICalc)) {
 | 
						|
        if (feasibleDiamond(false)) {
 | 
						|
          // Diamond:
 | 
						|
          //   EBB
 | 
						|
          //   / \_
 | 
						|
          //  |   |
 | 
						|
          // TBB FBB
 | 
						|
          //   \ /
 | 
						|
          //  TailBB
 | 
						|
          // Note TailBB can be empty.
 | 
						|
          Tokens.push_back(std::make_unique<IfcvtToken>(
 | 
						|
              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
 | 
						|
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
 | 
						|
          Enqueued = true;
 | 
						|
        }
 | 
						|
      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
 | 
						|
                                    TrueBBICalc, FalseBBICalc)) {
 | 
						|
        if (feasibleDiamond(true)) {
 | 
						|
          // ForkedDiamond:
 | 
						|
          // if TBB and FBB have a common tail that includes their conditional
 | 
						|
          // branch instructions, then we can If Convert this pattern.
 | 
						|
          //          EBB
 | 
						|
          //         _/ \_
 | 
						|
          //         |   |
 | 
						|
          //        TBB  FBB
 | 
						|
          //        / \ /   \
 | 
						|
          //  FalseBB TrueBB FalseBB
 | 
						|
          //
 | 
						|
          Tokens.push_back(std::make_unique<IfcvtToken>(
 | 
						|
              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
 | 
						|
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
 | 
						|
          Enqueued = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
 | 
						|
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
 | 
						|
                           TrueBBI.ExtraCost2, Prediction) &&
 | 
						|
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
 | 
						|
      // Triangle:
 | 
						|
      //   EBB
 | 
						|
      //   | \_
 | 
						|
      //   |  |
 | 
						|
      //   | TBB
 | 
						|
      //   |  /
 | 
						|
      //   FBB
 | 
						|
      Tokens.push_back(
 | 
						|
          std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
 | 
						|
      Enqueued = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
 | 
						|
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
 | 
						|
                           TrueBBI.ExtraCost2, Prediction) &&
 | 
						|
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
 | 
						|
      Tokens.push_back(
 | 
						|
          std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
 | 
						|
      Enqueued = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ValidSimple(TrueBBI, Dups, Prediction) &&
 | 
						|
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
 | 
						|
                           TrueBBI.ExtraCost2, Prediction) &&
 | 
						|
        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
 | 
						|
      // Simple (split, no rejoin):
 | 
						|
      //   EBB
 | 
						|
      //   | \_
 | 
						|
      //   |  |
 | 
						|
      //   | TBB---> exit
 | 
						|
      //   |
 | 
						|
      //   FBB
 | 
						|
      Tokens.push_back(
 | 
						|
          std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
 | 
						|
      Enqueued = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CanRevCond) {
 | 
						|
      // Try the other path...
 | 
						|
      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
 | 
						|
                        Prediction.getCompl()) &&
 | 
						|
          MeetIfcvtSizeLimit(*FalseBBI.BB,
 | 
						|
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
 | 
						|
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
 | 
						|
          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
 | 
						|
        Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
 | 
						|
                                                       FNeedSub, Dups));
 | 
						|
        Enqueued = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
 | 
						|
                        Prediction.getCompl()) &&
 | 
						|
          MeetIfcvtSizeLimit(*FalseBBI.BB,
 | 
						|
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
 | 
						|
                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
 | 
						|
        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
 | 
						|
        Tokens.push_back(
 | 
						|
            std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
 | 
						|
        Enqueued = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
 | 
						|
          MeetIfcvtSizeLimit(*FalseBBI.BB,
 | 
						|
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
 | 
						|
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
 | 
						|
          FeasibilityAnalysis(FalseBBI, RevCond)) {
 | 
						|
        Tokens.push_back(
 | 
						|
            std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
 | 
						|
        Enqueued = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    BBI.IsEnqueued = Enqueued;
 | 
						|
    BBI.IsBeingAnalyzed = false;
 | 
						|
    BBI.IsAnalyzed = true;
 | 
						|
    BBStack.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze all blocks and find entries for all if-conversion candidates.
 | 
						|
void IfConverter::AnalyzeBlocks(
 | 
						|
    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
 | 
						|
  for (MachineBasicBlock &MBB : MF)
 | 
						|
    AnalyzeBlock(MBB, Tokens);
 | 
						|
 | 
						|
  // Sort to favor more complex ifcvt scheme.
 | 
						|
  llvm::stable_sort(Tokens, IfcvtTokenCmp);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true either if ToMBB is the next block after MBB or that all the
 | 
						|
/// intervening blocks are empty (given MBB can fall through to its next block).
 | 
						|
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
 | 
						|
  MachineFunction::iterator PI = MBB.getIterator();
 | 
						|
  MachineFunction::iterator I = std::next(PI);
 | 
						|
  MachineFunction::iterator TI = ToMBB.getIterator();
 | 
						|
  MachineFunction::iterator E = MBB.getParent()->end();
 | 
						|
  while (I != TI) {
 | 
						|
    // Check isSuccessor to avoid case where the next block is empty, but
 | 
						|
    // it's not a successor.
 | 
						|
    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
 | 
						|
      return false;
 | 
						|
    PI = I++;
 | 
						|
  }
 | 
						|
  // Finally see if the last I is indeed a successor to PI.
 | 
						|
  return PI->isSuccessor(&*I);
 | 
						|
}
 | 
						|
 | 
						|
/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
 | 
						|
/// can be if-converted. If predecessor is already enqueued, dequeue it!
 | 
						|
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
 | 
						|
  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
 | 
						|
    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
 | 
						|
    if (PBBI.IsDone || PBBI.BB == &MBB)
 | 
						|
      continue;
 | 
						|
    PBBI.IsAnalyzed = false;
 | 
						|
    PBBI.IsEnqueued = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts an unconditional branch from \p MBB to \p ToMBB.
 | 
						|
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
 | 
						|
                               const TargetInstrInfo *TII) {
 | 
						|
  DebugLoc dl;  // FIXME: this is nowhere
 | 
						|
  SmallVector<MachineOperand, 0> NoCond;
 | 
						|
  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
 | 
						|
}
 | 
						|
 | 
						|
/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
 | 
						|
/// values defined in MI which are also live/used by MI.
 | 
						|
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
 | 
						|
  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
 | 
						|
 | 
						|
  // Before stepping forward past MI, remember which regs were live
 | 
						|
  // before MI. This is needed to set the Undef flag only when reg is
 | 
						|
  // dead.
 | 
						|
  SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
 | 
						|
  LiveBeforeMI.setUniverse(TRI->getNumRegs());
 | 
						|
  for (unsigned Reg : Redefs)
 | 
						|
    LiveBeforeMI.insert(Reg);
 | 
						|
 | 
						|
  SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
 | 
						|
  Redefs.stepForward(MI, Clobbers);
 | 
						|
 | 
						|
  // Now add the implicit uses for each of the clobbered values.
 | 
						|
  for (auto Clobber : Clobbers) {
 | 
						|
    // FIXME: Const cast here is nasty, but better than making StepForward
 | 
						|
    // take a mutable instruction instead of const.
 | 
						|
    unsigned Reg = Clobber.first;
 | 
						|
    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
 | 
						|
    MachineInstr *OpMI = Op.getParent();
 | 
						|
    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
 | 
						|
    if (Op.isRegMask()) {
 | 
						|
      // First handle regmasks.  They clobber any entries in the mask which
 | 
						|
      // means that we need a def for those registers.
 | 
						|
      if (LiveBeforeMI.count(Reg))
 | 
						|
        MIB.addReg(Reg, RegState::Implicit);
 | 
						|
 | 
						|
      // We also need to add an implicit def of this register for the later
 | 
						|
      // use to read from.
 | 
						|
      // For the register allocator to have allocated a register clobbered
 | 
						|
      // by the call which is used later, it must be the case that
 | 
						|
      // the call doesn't return.
 | 
						|
      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (LiveBeforeMI.count(Reg))
 | 
						|
      MIB.addReg(Reg, RegState::Implicit);
 | 
						|
    else {
 | 
						|
      bool HasLiveSubReg = false;
 | 
						|
      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
 | 
						|
        if (!LiveBeforeMI.count(*S))
 | 
						|
          continue;
 | 
						|
        HasLiveSubReg = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (HasLiveSubReg)
 | 
						|
        MIB.addReg(Reg, RegState::Implicit);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If convert a simple (split, no rejoin) sub-CFG.
 | 
						|
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
 | 
						|
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
 | 
						|
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | 
						|
  BBInfo *CvtBBI = &TrueBBI;
 | 
						|
  BBInfo *NextBBI = &FalseBBI;
 | 
						|
 | 
						|
  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
 | 
						|
  if (Kind == ICSimpleFalse)
 | 
						|
    std::swap(CvtBBI, NextBBI);
 | 
						|
 | 
						|
  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
 | 
						|
  MachineBasicBlock &NextMBB = *NextBBI->BB;
 | 
						|
  if (CvtBBI->IsDone ||
 | 
						|
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
 | 
						|
    // Something has changed. It's no longer safe to predicate this block.
 | 
						|
    BBI.IsAnalyzed = false;
 | 
						|
    CvtBBI->IsAnalyzed = false;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CvtMBB.hasAddressTaken())
 | 
						|
    // Conservatively abort if-conversion if BB's address is taken.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Kind == ICSimpleFalse)
 | 
						|
    if (TII->reverseBranchCondition(Cond))
 | 
						|
      llvm_unreachable("Unable to reverse branch condition!");
 | 
						|
 | 
						|
  Redefs.init(*TRI);
 | 
						|
 | 
						|
  if (MRI->tracksLiveness()) {
 | 
						|
    // Initialize liveins to the first BB. These are potentially redefined by
 | 
						|
    // predicated instructions.
 | 
						|
    Redefs.addLiveInsNoPristines(CvtMBB);
 | 
						|
    Redefs.addLiveInsNoPristines(NextMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the branches from the entry so we can add the contents of the true
 | 
						|
  // block to it.
 | 
						|
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
 | 
						|
 | 
						|
  if (CvtMBB.pred_size() > 1) {
 | 
						|
    // Copy instructions in the true block, predicate them, and add them to
 | 
						|
    // the entry block.
 | 
						|
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
 | 
						|
 | 
						|
    // Keep the CFG updated.
 | 
						|
    BBI.BB->removeSuccessor(&CvtMBB, true);
 | 
						|
  } else {
 | 
						|
    // Predicate the instructions in the true block.
 | 
						|
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
 | 
						|
 | 
						|
    // Merge converted block into entry block. The BB to Cvt edge is removed
 | 
						|
    // by MergeBlocks.
 | 
						|
    MergeBlocks(BBI, *CvtBBI);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IterIfcvt = true;
 | 
						|
  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
 | 
						|
    InsertUncondBranch(*BBI.BB, NextMBB, TII);
 | 
						|
    BBI.HasFallThrough = false;
 | 
						|
    // Now ifcvt'd block will look like this:
 | 
						|
    // BB:
 | 
						|
    // ...
 | 
						|
    // t, f = cmp
 | 
						|
    // if t op
 | 
						|
    // b BBf
 | 
						|
    //
 | 
						|
    // We cannot further ifcvt this block because the unconditional branch
 | 
						|
    // will have to be predicated on the new condition, that will not be
 | 
						|
    // available if cmp executes.
 | 
						|
    IterIfcvt = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update block info. BB can be iteratively if-converted.
 | 
						|
  if (!IterIfcvt)
 | 
						|
    BBI.IsDone = true;
 | 
						|
  InvalidatePreds(*BBI.BB);
 | 
						|
  CvtBBI->IsDone = true;
 | 
						|
 | 
						|
  // FIXME: Must maintain LiveIns.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If convert a triangle sub-CFG.
 | 
						|
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
 | 
						|
  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
 | 
						|
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | 
						|
  BBInfo *CvtBBI = &TrueBBI;
 | 
						|
  BBInfo *NextBBI = &FalseBBI;
 | 
						|
  DebugLoc dl;  // FIXME: this is nowhere
 | 
						|
 | 
						|
  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
 | 
						|
  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
 | 
						|
    std::swap(CvtBBI, NextBBI);
 | 
						|
 | 
						|
  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
 | 
						|
  MachineBasicBlock &NextMBB = *NextBBI->BB;
 | 
						|
  if (CvtBBI->IsDone ||
 | 
						|
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
 | 
						|
    // Something has changed. It's no longer safe to predicate this block.
 | 
						|
    BBI.IsAnalyzed = false;
 | 
						|
    CvtBBI->IsAnalyzed = false;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CvtMBB.hasAddressTaken())
 | 
						|
    // Conservatively abort if-conversion if BB's address is taken.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
 | 
						|
    if (TII->reverseBranchCondition(Cond))
 | 
						|
      llvm_unreachable("Unable to reverse branch condition!");
 | 
						|
 | 
						|
  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
 | 
						|
    if (reverseBranchCondition(*CvtBBI)) {
 | 
						|
      // BB has been changed, modify its predecessors (except for this
 | 
						|
      // one) so they don't get ifcvt'ed based on bad intel.
 | 
						|
      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
 | 
						|
        if (PBB == BBI.BB)
 | 
						|
          continue;
 | 
						|
        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
 | 
						|
        if (PBBI.IsEnqueued) {
 | 
						|
          PBBI.IsAnalyzed = false;
 | 
						|
          PBBI.IsEnqueued = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize liveins to the first BB. These are potentially redefined by
 | 
						|
  // predicated instructions.
 | 
						|
  Redefs.init(*TRI);
 | 
						|
  if (MRI->tracksLiveness()) {
 | 
						|
    Redefs.addLiveInsNoPristines(CvtMBB);
 | 
						|
    Redefs.addLiveInsNoPristines(NextMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
 | 
						|
  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
 | 
						|
 | 
						|
  if (HasEarlyExit) {
 | 
						|
    // Get probabilities before modifying CvtMBB and BBI.BB.
 | 
						|
    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
 | 
						|
    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
 | 
						|
    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
 | 
						|
    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the branches from the entry so we can add the contents of the true
 | 
						|
  // block to it.
 | 
						|
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
 | 
						|
 | 
						|
  if (CvtMBB.pred_size() > 1) {
 | 
						|
    // Copy instructions in the true block, predicate them, and add them to
 | 
						|
    // the entry block.
 | 
						|
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
 | 
						|
  } else {
 | 
						|
    // Predicate the 'true' block after removing its branch.
 | 
						|
    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
 | 
						|
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
 | 
						|
 | 
						|
    // Now merge the entry of the triangle with the true block.
 | 
						|
    MergeBlocks(BBI, *CvtBBI, false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep the CFG updated.
 | 
						|
  BBI.BB->removeSuccessor(&CvtMBB, true);
 | 
						|
 | 
						|
  // If 'true' block has a 'false' successor, add an exit branch to it.
 | 
						|
  if (HasEarlyExit) {
 | 
						|
    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
 | 
						|
                                           CvtBBI->BrCond.end());
 | 
						|
    if (TII->reverseBranchCondition(RevCond))
 | 
						|
      llvm_unreachable("Unable to reverse branch condition!");
 | 
						|
 | 
						|
    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
 | 
						|
    // NewNext = New_Prob(BBI.BB, NextMBB) =
 | 
						|
    //   Prob(BBI.BB, NextMBB) +
 | 
						|
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
 | 
						|
    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
 | 
						|
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
 | 
						|
    auto NewTrueBB = getNextBlock(*BBI.BB);
 | 
						|
    auto NewNext = BBNext + BBCvt * CvtNext;
 | 
						|
    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
 | 
						|
    if (NewTrueBBIter != BBI.BB->succ_end())
 | 
						|
      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
 | 
						|
 | 
						|
    auto NewFalse = BBCvt * CvtFalse;
 | 
						|
    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
 | 
						|
    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge in the 'false' block if the 'false' block has no other
 | 
						|
  // predecessors. Otherwise, add an unconditional branch to 'false'.
 | 
						|
  bool FalseBBDead = false;
 | 
						|
  bool IterIfcvt = true;
 | 
						|
  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
 | 
						|
  if (!isFallThrough) {
 | 
						|
    // Only merge them if the true block does not fallthrough to the false
 | 
						|
    // block. By not merging them, we make it possible to iteratively
 | 
						|
    // ifcvt the blocks.
 | 
						|
    if (!HasEarlyExit &&
 | 
						|
        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
 | 
						|
        !NextMBB.hasAddressTaken()) {
 | 
						|
      MergeBlocks(BBI, *NextBBI);
 | 
						|
      FalseBBDead = true;
 | 
						|
    } else {
 | 
						|
      InsertUncondBranch(*BBI.BB, NextMBB, TII);
 | 
						|
      BBI.HasFallThrough = false;
 | 
						|
    }
 | 
						|
    // Mixed predicated and unpredicated code. This cannot be iteratively
 | 
						|
    // predicated.
 | 
						|
    IterIfcvt = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update block info. BB can be iteratively if-converted.
 | 
						|
  if (!IterIfcvt)
 | 
						|
    BBI.IsDone = true;
 | 
						|
  InvalidatePreds(*BBI.BB);
 | 
						|
  CvtBBI->IsDone = true;
 | 
						|
  if (FalseBBDead)
 | 
						|
    NextBBI->IsDone = true;
 | 
						|
 | 
						|
  // FIXME: Must maintain LiveIns.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Common code shared between diamond conversions.
 | 
						|
/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
 | 
						|
/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
 | 
						|
///               and FalseBBI
 | 
						|
/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
 | 
						|
///               and \p FalseBBI
 | 
						|
/// \p RemoveBranch - Remove the common branch of the two blocks before
 | 
						|
///                   predicating. Only false for unanalyzable fallthrough
 | 
						|
///                   cases. The caller will replace the branch if necessary.
 | 
						|
/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
 | 
						|
///                    unanalyzable fallthrough
 | 
						|
bool IfConverter::IfConvertDiamondCommon(
 | 
						|
    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
 | 
						|
    unsigned NumDups1, unsigned NumDups2,
 | 
						|
    bool TClobbersPred, bool FClobbersPred,
 | 
						|
    bool RemoveBranch, bool MergeAddEdges) {
 | 
						|
 | 
						|
  if (TrueBBI.IsDone || FalseBBI.IsDone ||
 | 
						|
      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
 | 
						|
    // Something has changed. It's no longer safe to predicate these blocks.
 | 
						|
    BBI.IsAnalyzed = false;
 | 
						|
    TrueBBI.IsAnalyzed = false;
 | 
						|
    FalseBBI.IsAnalyzed = false;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
 | 
						|
    // Conservatively abort if-conversion if either BB has its address taken.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Put the predicated instructions from the 'true' block before the
 | 
						|
  // instructions from the 'false' block, unless the true block would clobber
 | 
						|
  // the predicate, in which case, do the opposite.
 | 
						|
  BBInfo *BBI1 = &TrueBBI;
 | 
						|
  BBInfo *BBI2 = &FalseBBI;
 | 
						|
  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
 | 
						|
  if (TII->reverseBranchCondition(RevCond))
 | 
						|
    llvm_unreachable("Unable to reverse branch condition!");
 | 
						|
  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
 | 
						|
  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
 | 
						|
 | 
						|
  // Figure out the more profitable ordering.
 | 
						|
  bool DoSwap = false;
 | 
						|
  if (TClobbersPred && !FClobbersPred)
 | 
						|
    DoSwap = true;
 | 
						|
  else if (!TClobbersPred && !FClobbersPred) {
 | 
						|
    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
 | 
						|
      DoSwap = true;
 | 
						|
  } else if (TClobbersPred && FClobbersPred)
 | 
						|
    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
 | 
						|
  if (DoSwap) {
 | 
						|
    std::swap(BBI1, BBI2);
 | 
						|
    std::swap(Cond1, Cond2);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the conditional branch from entry to the blocks.
 | 
						|
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
 | 
						|
 | 
						|
  MachineBasicBlock &MBB1 = *BBI1->BB;
 | 
						|
  MachineBasicBlock &MBB2 = *BBI2->BB;
 | 
						|
 | 
						|
  // Initialize the Redefs:
 | 
						|
  // - BB2 live-in regs need implicit uses before being redefined by BB1
 | 
						|
  //   instructions.
 | 
						|
  // - BB1 live-out regs need implicit uses before being redefined by BB2
 | 
						|
  //   instructions. We start with BB1 live-ins so we have the live-out regs
 | 
						|
  //   after tracking the BB1 instructions.
 | 
						|
  Redefs.init(*TRI);
 | 
						|
  if (MRI->tracksLiveness()) {
 | 
						|
    Redefs.addLiveInsNoPristines(MBB1);
 | 
						|
    Redefs.addLiveInsNoPristines(MBB2);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the duplicated instructions at the beginnings of both paths.
 | 
						|
  // Skip dbg_value instructions.
 | 
						|
  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false);
 | 
						|
  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false);
 | 
						|
  BBI1->NonPredSize -= NumDups1;
 | 
						|
  BBI2->NonPredSize -= NumDups1;
 | 
						|
 | 
						|
  // Skip past the dups on each side separately since there may be
 | 
						|
  // differing dbg_value entries. NumDups1 can include a "return"
 | 
						|
  // instruction, if it's not marked as "branch".
 | 
						|
  for (unsigned i = 0; i < NumDups1; ++DI1) {
 | 
						|
    if (DI1 == MBB1.end())
 | 
						|
      break;
 | 
						|
    if (!DI1->isDebugInstr())
 | 
						|
      ++i;
 | 
						|
  }
 | 
						|
  while (NumDups1 != 0) {
 | 
						|
    // Since this instruction is going to be deleted, update call
 | 
						|
    // site info state if the instruction is call instruction.
 | 
						|
    if (DI2->shouldUpdateCallSiteInfo())
 | 
						|
      MBB2.getParent()->eraseCallSiteInfo(&*DI2);
 | 
						|
 | 
						|
    ++DI2;
 | 
						|
    if (DI2 == MBB2.end())
 | 
						|
      break;
 | 
						|
    if (!DI2->isDebugInstr())
 | 
						|
      --NumDups1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MRI->tracksLiveness()) {
 | 
						|
    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
 | 
						|
      SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
 | 
						|
      Redefs.stepForward(MI, Dummy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
 | 
						|
  MBB2.erase(MBB2.begin(), DI2);
 | 
						|
 | 
						|
  // The branches have been checked to match, so it is safe to remove the
 | 
						|
  // branch in BB1 and rely on the copy in BB2. The complication is that
 | 
						|
  // the blocks may end with a return instruction, which may or may not
 | 
						|
  // be marked as "branch". If it's not, then it could be included in
 | 
						|
  // "dups1", leaving the blocks potentially empty after moving the common
 | 
						|
  // duplicates.
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Unanalyzable branches must match exactly. Check that now.
 | 
						|
  if (!BBI1->IsBrAnalyzable)
 | 
						|
    verifySameBranchInstructions(&MBB1, &MBB2);
 | 
						|
#endif
 | 
						|
  // Remove duplicated instructions from the tail of MBB1: any branch
 | 
						|
  // instructions, and the common instructions counted by NumDups2.
 | 
						|
  DI1 = MBB1.end();
 | 
						|
  while (DI1 != MBB1.begin()) {
 | 
						|
    MachineBasicBlock::iterator Prev = std::prev(DI1);
 | 
						|
    if (!Prev->isBranch() && !Prev->isDebugInstr())
 | 
						|
      break;
 | 
						|
    DI1 = Prev;
 | 
						|
  }
 | 
						|
  for (unsigned i = 0; i != NumDups2; ) {
 | 
						|
    // NumDups2 only counted non-dbg_value instructions, so this won't
 | 
						|
    // run off the head of the list.
 | 
						|
    assert(DI1 != MBB1.begin());
 | 
						|
 | 
						|
    --DI1;
 | 
						|
 | 
						|
    // Since this instruction is going to be deleted, update call
 | 
						|
    // site info state if the instruction is call instruction.
 | 
						|
    if (DI1->shouldUpdateCallSiteInfo())
 | 
						|
      MBB1.getParent()->eraseCallSiteInfo(&*DI1);
 | 
						|
 | 
						|
    // skip dbg_value instructions
 | 
						|
    if (!DI1->isDebugInstr())
 | 
						|
      ++i;
 | 
						|
  }
 | 
						|
  MBB1.erase(DI1, MBB1.end());
 | 
						|
 | 
						|
  DI2 = BBI2->BB->end();
 | 
						|
  // The branches have been checked to match. Skip over the branch in the false
 | 
						|
  // block so that we don't try to predicate it.
 | 
						|
  if (RemoveBranch)
 | 
						|
    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
 | 
						|
  else {
 | 
						|
    // Make DI2 point to the end of the range where the common "tail"
 | 
						|
    // instructions could be found.
 | 
						|
    while (DI2 != MBB2.begin()) {
 | 
						|
      MachineBasicBlock::iterator Prev = std::prev(DI2);
 | 
						|
      if (!Prev->isBranch() && !Prev->isDebugInstr())
 | 
						|
        break;
 | 
						|
      DI2 = Prev;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  while (NumDups2 != 0) {
 | 
						|
    // NumDups2 only counted non-dbg_value instructions, so this won't
 | 
						|
    // run off the head of the list.
 | 
						|
    assert(DI2 != MBB2.begin());
 | 
						|
    --DI2;
 | 
						|
    // skip dbg_value instructions
 | 
						|
    if (!DI2->isDebugInstr())
 | 
						|
      --NumDups2;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remember which registers would later be defined by the false block.
 | 
						|
  // This allows us not to predicate instructions in the true block that would
 | 
						|
  // later be re-defined. That is, rather than
 | 
						|
  //   subeq  r0, r1, #1
 | 
						|
  //   addne  r0, r1, #1
 | 
						|
  // generate:
 | 
						|
  //   sub    r0, r1, #1
 | 
						|
  //   addne  r0, r1, #1
 | 
						|
  SmallSet<MCPhysReg, 4> RedefsByFalse;
 | 
						|
  SmallSet<MCPhysReg, 4> ExtUses;
 | 
						|
  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
 | 
						|
    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
 | 
						|
      if (FI.isDebugInstr())
 | 
						|
        continue;
 | 
						|
      SmallVector<MCPhysReg, 4> Defs;
 | 
						|
      for (const MachineOperand &MO : FI.operands()) {
 | 
						|
        if (!MO.isReg())
 | 
						|
          continue;
 | 
						|
        Register Reg = MO.getReg();
 | 
						|
        if (!Reg)
 | 
						|
          continue;
 | 
						|
        if (MO.isDef()) {
 | 
						|
          Defs.push_back(Reg);
 | 
						|
        } else if (!RedefsByFalse.count(Reg)) {
 | 
						|
          // These are defined before ctrl flow reach the 'false' instructions.
 | 
						|
          // They cannot be modified by the 'true' instructions.
 | 
						|
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
               SubRegs.isValid(); ++SubRegs)
 | 
						|
            ExtUses.insert(*SubRegs);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      for (MCPhysReg Reg : Defs) {
 | 
						|
        if (!ExtUses.count(Reg)) {
 | 
						|
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
               SubRegs.isValid(); ++SubRegs)
 | 
						|
            RedefsByFalse.insert(*SubRegs);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Predicate the 'true' block.
 | 
						|
  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
 | 
						|
 | 
						|
  // After predicating BBI1, if there is a predicated terminator in BBI1 and
 | 
						|
  // a non-predicated in BBI2, then we don't want to predicate the one from
 | 
						|
  // BBI2. The reason is that if we merged these blocks, we would end up with
 | 
						|
  // two predicated terminators in the same block.
 | 
						|
  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
 | 
						|
  // predicate them either. They were checked to be identical, and so the
 | 
						|
  // same branch would happen regardless of which path was taken.
 | 
						|
  if (!MBB2.empty() && (DI2 == MBB2.end())) {
 | 
						|
    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
 | 
						|
    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
 | 
						|
    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
 | 
						|
    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
 | 
						|
    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
 | 
						|
      --DI2;
 | 
						|
  }
 | 
						|
 | 
						|
  // Predicate the 'false' block.
 | 
						|
  PredicateBlock(*BBI2, DI2, *Cond2);
 | 
						|
 | 
						|
  // Merge the true block into the entry of the diamond.
 | 
						|
  MergeBlocks(BBI, *BBI1, MergeAddEdges);
 | 
						|
  MergeBlocks(BBI, *BBI2, MergeAddEdges);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If convert an almost-diamond sub-CFG where the true
 | 
						|
/// and false blocks share a common tail.
 | 
						|
bool IfConverter::IfConvertForkedDiamond(
 | 
						|
    BBInfo &BBI, IfcvtKind Kind,
 | 
						|
    unsigned NumDups1, unsigned NumDups2,
 | 
						|
    bool TClobbersPred, bool FClobbersPred) {
 | 
						|
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
 | 
						|
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | 
						|
 | 
						|
  // Save the debug location for later.
 | 
						|
  DebugLoc dl;
 | 
						|
  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
 | 
						|
  if (TIE != TrueBBI.BB->end())
 | 
						|
    dl = TIE->getDebugLoc();
 | 
						|
  // Removing branches from both blocks is safe, because we have already
 | 
						|
  // determined that both blocks have the same branch instructions. The branch
 | 
						|
  // will be added back at the end, unpredicated.
 | 
						|
  if (!IfConvertDiamondCommon(
 | 
						|
      BBI, TrueBBI, FalseBBI,
 | 
						|
      NumDups1, NumDups2,
 | 
						|
      TClobbersPred, FClobbersPred,
 | 
						|
      /* RemoveBranch */ true, /* MergeAddEdges */ true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Add back the branch.
 | 
						|
  // Debug location saved above when removing the branch from BBI2
 | 
						|
  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
 | 
						|
                    TrueBBI.BrCond, dl);
 | 
						|
 | 
						|
  // Update block info.
 | 
						|
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
 | 
						|
  InvalidatePreds(*BBI.BB);
 | 
						|
 | 
						|
  // FIXME: Must maintain LiveIns.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If convert a diamond sub-CFG.
 | 
						|
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
 | 
						|
                                   unsigned NumDups1, unsigned NumDups2,
 | 
						|
                                   bool TClobbersPred, bool FClobbersPred) {
 | 
						|
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
 | 
						|
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | 
						|
  MachineBasicBlock *TailBB = TrueBBI.TrueBB;
 | 
						|
 | 
						|
  // True block must fall through or end with an unanalyzable terminator.
 | 
						|
  if (!TailBB) {
 | 
						|
    if (blockAlwaysFallThrough(TrueBBI))
 | 
						|
      TailBB = FalseBBI.TrueBB;
 | 
						|
    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IfConvertDiamondCommon(
 | 
						|
      BBI, TrueBBI, FalseBBI,
 | 
						|
      NumDups1, NumDups2,
 | 
						|
      TClobbersPred, FClobbersPred,
 | 
						|
      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
 | 
						|
      /* MergeAddEdges */ TailBB == nullptr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the if-converted block falls through or unconditionally branches into
 | 
						|
  // the tail block, and the tail block does not have other predecessors, then
 | 
						|
  // fold the tail block in as well. Otherwise, unless it falls through to the
 | 
						|
  // tail, add a unconditional branch to it.
 | 
						|
  if (TailBB) {
 | 
						|
    // We need to remove the edges to the true and false blocks manually since
 | 
						|
    // we didn't let IfConvertDiamondCommon update the CFG.
 | 
						|
    BBI.BB->removeSuccessor(TrueBBI.BB);
 | 
						|
    BBI.BB->removeSuccessor(FalseBBI.BB, true);
 | 
						|
 | 
						|
    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
 | 
						|
    bool CanMergeTail = !TailBBI.HasFallThrough &&
 | 
						|
      !TailBBI.BB->hasAddressTaken();
 | 
						|
    // The if-converted block can still have a predicated terminator
 | 
						|
    // (e.g. a predicated return). If that is the case, we cannot merge
 | 
						|
    // it with the tail block.
 | 
						|
    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
 | 
						|
    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
 | 
						|
      CanMergeTail = false;
 | 
						|
    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
 | 
						|
    // check if there are any other predecessors besides those.
 | 
						|
    unsigned NumPreds = TailBB->pred_size();
 | 
						|
    if (NumPreds > 1)
 | 
						|
      CanMergeTail = false;
 | 
						|
    else if (NumPreds == 1 && CanMergeTail) {
 | 
						|
      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
 | 
						|
      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
 | 
						|
        CanMergeTail = false;
 | 
						|
    }
 | 
						|
    if (CanMergeTail) {
 | 
						|
      MergeBlocks(BBI, TailBBI);
 | 
						|
      TailBBI.IsDone = true;
 | 
						|
    } else {
 | 
						|
      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
 | 
						|
      InsertUncondBranch(*BBI.BB, *TailBB, TII);
 | 
						|
      BBI.HasFallThrough = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update block info.
 | 
						|
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
 | 
						|
  InvalidatePreds(*BBI.BB);
 | 
						|
 | 
						|
  // FIXME: Must maintain LiveIns.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool MaySpeculate(const MachineInstr &MI,
 | 
						|
                         SmallSet<MCPhysReg, 4> &LaterRedefs) {
 | 
						|
  bool SawStore = true;
 | 
						|
  if (!MI.isSafeToMove(nullptr, SawStore))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (!Reg)
 | 
						|
      continue;
 | 
						|
    if (MO.isDef() && !LaterRedefs.count(Reg))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Predicate instructions from the start of the block to the specified end with
 | 
						|
/// the specified condition.
 | 
						|
void IfConverter::PredicateBlock(BBInfo &BBI,
 | 
						|
                                 MachineBasicBlock::iterator E,
 | 
						|
                                 SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                                 SmallSet<MCPhysReg, 4> *LaterRedefs) {
 | 
						|
  bool AnyUnpred = false;
 | 
						|
  bool MaySpec = LaterRedefs != nullptr;
 | 
						|
  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
 | 
						|
    if (I.isDebugInstr() || TII->isPredicated(I))
 | 
						|
      continue;
 | 
						|
    // It may be possible not to predicate an instruction if it's the 'true'
 | 
						|
    // side of a diamond and the 'false' side may re-define the instruction's
 | 
						|
    // defs.
 | 
						|
    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
 | 
						|
      AnyUnpred = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // If any instruction is predicated, then every instruction after it must
 | 
						|
    // be predicated.
 | 
						|
    MaySpec = false;
 | 
						|
    if (!TII->PredicateInstruction(I, Cond)) {
 | 
						|
#ifndef NDEBUG
 | 
						|
      dbgs() << "Unable to predicate " << I << "!\n";
 | 
						|
#endif
 | 
						|
      llvm_unreachable(nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the predicated instruction now redefines a register as the result of
 | 
						|
    // if-conversion, add an implicit kill.
 | 
						|
    UpdatePredRedefs(I, Redefs);
 | 
						|
  }
 | 
						|
 | 
						|
  BBI.Predicate.append(Cond.begin(), Cond.end());
 | 
						|
 | 
						|
  BBI.IsAnalyzed = false;
 | 
						|
  BBI.NonPredSize = 0;
 | 
						|
 | 
						|
  ++NumIfConvBBs;
 | 
						|
  if (AnyUnpred)
 | 
						|
    ++NumUnpred;
 | 
						|
}
 | 
						|
 | 
						|
/// Copy and predicate instructions from source BB to the destination block.
 | 
						|
/// Skip end of block branches if IgnoreBr is true.
 | 
						|
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
 | 
						|
                                        SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                                        bool IgnoreBr) {
 | 
						|
  MachineFunction &MF = *ToBBI.BB->getParent();
 | 
						|
 | 
						|
  MachineBasicBlock &FromMBB = *FromBBI.BB;
 | 
						|
  for (MachineInstr &I : FromMBB) {
 | 
						|
    // Do not copy the end of the block branches.
 | 
						|
    if (IgnoreBr && I.isBranch())
 | 
						|
      break;
 | 
						|
 | 
						|
    MachineInstr *MI = MF.CloneMachineInstr(&I);
 | 
						|
    // Make a copy of the call site info.
 | 
						|
    if (I.isCandidateForCallSiteEntry())
 | 
						|
      MF.copyCallSiteInfo(&I, MI);
 | 
						|
 | 
						|
    ToBBI.BB->insert(ToBBI.BB->end(), MI);
 | 
						|
    ToBBI.NonPredSize++;
 | 
						|
    unsigned ExtraPredCost = TII->getPredicationCost(I);
 | 
						|
    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
 | 
						|
    if (NumCycles > 1)
 | 
						|
      ToBBI.ExtraCost += NumCycles-1;
 | 
						|
    ToBBI.ExtraCost2 += ExtraPredCost;
 | 
						|
 | 
						|
    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
 | 
						|
      if (!TII->PredicateInstruction(*MI, Cond)) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        dbgs() << "Unable to predicate " << I << "!\n";
 | 
						|
#endif
 | 
						|
        llvm_unreachable(nullptr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the predicated instruction now redefines a register as the result of
 | 
						|
    // if-conversion, add an implicit kill.
 | 
						|
    UpdatePredRedefs(*MI, Redefs);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IgnoreBr) {
 | 
						|
    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
 | 
						|
                                           FromMBB.succ_end());
 | 
						|
    MachineBasicBlock *NBB = getNextBlock(FromMBB);
 | 
						|
    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
 | 
						|
 | 
						|
    for (MachineBasicBlock *Succ : Succs) {
 | 
						|
      // Fallthrough edge can't be transferred.
 | 
						|
      if (Succ == FallThrough)
 | 
						|
        continue;
 | 
						|
      ToBBI.BB->addSuccessor(Succ);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
 | 
						|
  ToBBI.Predicate.append(Cond.begin(), Cond.end());
 | 
						|
 | 
						|
  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
 | 
						|
  ToBBI.IsAnalyzed = false;
 | 
						|
 | 
						|
  ++NumDupBBs;
 | 
						|
}
 | 
						|
 | 
						|
/// Move all instructions from FromBB to the end of ToBB.  This will leave
 | 
						|
/// FromBB as an empty block, so remove all of its successor edges and move it
 | 
						|
/// to the end of the function.  If AddEdges is true, i.e., when FromBBI's
 | 
						|
/// branch is being moved, add those successor edges to ToBBI and remove the old
 | 
						|
/// edge from ToBBI to FromBBI.
 | 
						|
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
 | 
						|
  MachineBasicBlock &FromMBB = *FromBBI.BB;
 | 
						|
  assert(!FromMBB.hasAddressTaken() &&
 | 
						|
         "Removing a BB whose address is taken!");
 | 
						|
 | 
						|
  // In case FromMBB contains terminators (e.g. return instruction),
 | 
						|
  // first move the non-terminator instructions, then the terminators.
 | 
						|
  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
 | 
						|
  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
 | 
						|
  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
 | 
						|
 | 
						|
  // If FromBB has non-predicated terminator we should copy it at the end.
 | 
						|
  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
 | 
						|
    ToTI = ToBBI.BB->end();
 | 
						|
  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
 | 
						|
 | 
						|
  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
 | 
						|
  // unknown probabilities into known ones.
 | 
						|
  // FIXME: This usage is too tricky and in the future we would like to
 | 
						|
  // eliminate all unknown probabilities in MBB.
 | 
						|
  if (ToBBI.IsBrAnalyzable)
 | 
						|
    ToBBI.BB->normalizeSuccProbs();
 | 
						|
 | 
						|
  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
 | 
						|
  MachineBasicBlock *NBB = getNextBlock(FromMBB);
 | 
						|
  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
 | 
						|
  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
 | 
						|
  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
 | 
						|
  auto To2FromProb = BranchProbability::getZero();
 | 
						|
  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
 | 
						|
    // Remove the old edge but remember the edge probability so we can calculate
 | 
						|
    // the correct weights on the new edges being added further down.
 | 
						|
    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
 | 
						|
    ToBBI.BB->removeSuccessor(&FromMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineBasicBlock *Succ : FromSuccs) {
 | 
						|
    // Fallthrough edge can't be transferred.
 | 
						|
    if (Succ == FallThrough) {
 | 
						|
      FromMBB.removeSuccessor(Succ);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto NewProb = BranchProbability::getZero();
 | 
						|
    if (AddEdges) {
 | 
						|
      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
 | 
						|
      // which is a portion of the edge probability from FromMBB to Succ. The
 | 
						|
      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
 | 
						|
      // FromBBI is a successor of ToBBI.BB. See comment below for exception).
 | 
						|
      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
 | 
						|
 | 
						|
      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
 | 
						|
      // only happens when if-converting a diamond CFG and FromMBB is the
 | 
						|
      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
 | 
						|
      // could just use the probabilities on FromMBB's out-edges when adding
 | 
						|
      // new successors.
 | 
						|
      if (!To2FromProb.isZero())
 | 
						|
        NewProb *= To2FromProb;
 | 
						|
    }
 | 
						|
 | 
						|
    FromMBB.removeSuccessor(Succ);
 | 
						|
 | 
						|
    if (AddEdges) {
 | 
						|
      // If the edge from ToBBI.BB to Succ already exists, update the
 | 
						|
      // probability of this edge by adding NewProb to it. An example is shown
 | 
						|
      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
 | 
						|
      // don't have to set C as A's successor as it already is. We only need to
 | 
						|
      // update the edge probability on A->C. Note that B will not be
 | 
						|
      // immediately removed from A's successors. It is possible that B->D is
 | 
						|
      // not removed either if D is a fallthrough of B. Later the edge A->D
 | 
						|
      // (generated here) and B->D will be combined into one edge. To maintain
 | 
						|
      // correct edge probability of this combined edge, we need to set the edge
 | 
						|
      // probability of A->B to zero, which is already done above. The edge
 | 
						|
      // probability on A->D is calculated by scaling the original probability
 | 
						|
      // on A->B by the probability of B->D.
 | 
						|
      //
 | 
						|
      // Before ifcvt:      After ifcvt (assume B->D is kept):
 | 
						|
      //
 | 
						|
      //       A                A
 | 
						|
      //      /|               /|\
 | 
						|
      //     / B              / B|
 | 
						|
      //    | /|             |  ||
 | 
						|
      //    |/ |             |  |/
 | 
						|
      //    C  D             C  D
 | 
						|
      //
 | 
						|
      if (ToBBI.BB->isSuccessor(Succ))
 | 
						|
        ToBBI.BB->setSuccProbability(
 | 
						|
            find(ToBBI.BB->successors(), Succ),
 | 
						|
            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
 | 
						|
      else
 | 
						|
        ToBBI.BB->addSuccessor(Succ, NewProb);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Move the now empty FromMBB out of the way to the end of the function so
 | 
						|
  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
 | 
						|
  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
 | 
						|
  if (Last != &FromMBB)
 | 
						|
    FromMBB.moveAfter(Last);
 | 
						|
 | 
						|
  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
 | 
						|
  // we've done above.
 | 
						|
  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
 | 
						|
    ToBBI.BB->normalizeSuccProbs();
 | 
						|
 | 
						|
  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
 | 
						|
  FromBBI.Predicate.clear();
 | 
						|
 | 
						|
  ToBBI.NonPredSize += FromBBI.NonPredSize;
 | 
						|
  ToBBI.ExtraCost += FromBBI.ExtraCost;
 | 
						|
  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
 | 
						|
  FromBBI.NonPredSize = 0;
 | 
						|
  FromBBI.ExtraCost = 0;
 | 
						|
  FromBBI.ExtraCost2 = 0;
 | 
						|
 | 
						|
  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
 | 
						|
  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
 | 
						|
  ToBBI.IsAnalyzed = false;
 | 
						|
  FromBBI.IsAnalyzed = false;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *
 | 
						|
llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
 | 
						|
  return new IfConverter(std::move(Ftor));
 | 
						|
}
 |