1425 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1425 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
 | 
						|
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/IndexedMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/UniqueVector.h"
 | 
						|
#include "llvm/CodeGen/LexicalScopes.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
 | 
						|
#include "LiveDebugValues.h"
 | 
						|
 | 
						|
class TransferTracker;
 | 
						|
 | 
						|
// Forward dec of unit test class, so that we can peer into the LDV object.
 | 
						|
class InstrRefLDVTest;
 | 
						|
 | 
						|
namespace LiveDebugValues {
 | 
						|
 | 
						|
class MLocTracker;
 | 
						|
class DbgOpIDMap;
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Handle-class for a particular "location". This value-type uniquely
 | 
						|
/// symbolises a register or stack location, allowing manipulation of locations
 | 
						|
/// without concern for where that location is. Practically, this allows us to
 | 
						|
/// treat the state of the machine at a particular point as an array of values,
 | 
						|
/// rather than a map of values.
 | 
						|
class LocIdx {
 | 
						|
  unsigned Location;
 | 
						|
 | 
						|
  // Default constructor is private, initializing to an illegal location number.
 | 
						|
  // Use only for "not an entry" elements in IndexedMaps.
 | 
						|
  LocIdx() : Location(UINT_MAX) {}
 | 
						|
 | 
						|
public:
 | 
						|
#define NUM_LOC_BITS 24
 | 
						|
  LocIdx(unsigned L) : Location(L) {
 | 
						|
    assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
 | 
						|
  }
 | 
						|
 | 
						|
  static LocIdx MakeIllegalLoc() { return LocIdx(); }
 | 
						|
  static LocIdx MakeTombstoneLoc() {
 | 
						|
    LocIdx L = LocIdx();
 | 
						|
    --L.Location;
 | 
						|
    return L;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isIllegal() const { return Location == UINT_MAX; }
 | 
						|
 | 
						|
  uint64_t asU64() const { return Location; }
 | 
						|
 | 
						|
  bool operator==(unsigned L) const { return Location == L; }
 | 
						|
 | 
						|
  bool operator==(const LocIdx &L) const { return Location == L.Location; }
 | 
						|
 | 
						|
  bool operator!=(unsigned L) const { return !(*this == L); }
 | 
						|
 | 
						|
  bool operator!=(const LocIdx &L) const { return !(*this == L); }
 | 
						|
 | 
						|
  bool operator<(const LocIdx &Other) const {
 | 
						|
    return Location < Other.Location;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// The location at which a spilled value resides. It consists of a register and
 | 
						|
// an offset.
 | 
						|
struct SpillLoc {
 | 
						|
  unsigned SpillBase;
 | 
						|
  StackOffset SpillOffset;
 | 
						|
  bool operator==(const SpillLoc &Other) const {
 | 
						|
    return std::make_pair(SpillBase, SpillOffset) ==
 | 
						|
           std::make_pair(Other.SpillBase, Other.SpillOffset);
 | 
						|
  }
 | 
						|
  bool operator<(const SpillLoc &Other) const {
 | 
						|
    return std::make_tuple(SpillBase, SpillOffset.getFixed(),
 | 
						|
                           SpillOffset.getScalable()) <
 | 
						|
           std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
 | 
						|
                           Other.SpillOffset.getScalable());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Unique identifier for a value defined by an instruction, as a value type.
 | 
						|
/// Casts back and forth to a uint64_t. Probably replacable with something less
 | 
						|
/// bit-constrained. Each value identifies the instruction and machine location
 | 
						|
/// where the value is defined, although there may be no corresponding machine
 | 
						|
/// operand for it (ex: regmasks clobbering values). The instructions are
 | 
						|
/// one-based, and definitions that are PHIs have instruction number zero.
 | 
						|
///
 | 
						|
/// The obvious limits of a 1M block function or 1M instruction blocks are
 | 
						|
/// problematic; but by that point we should probably have bailed out of
 | 
						|
/// trying to analyse the function.
 | 
						|
class ValueIDNum {
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      uint64_t BlockNo : 20; /// The block where the def happens.
 | 
						|
      uint64_t InstNo : 20;  /// The Instruction where the def happens.
 | 
						|
                             /// One based, is distance from start of block.
 | 
						|
      uint64_t LocNo
 | 
						|
          : NUM_LOC_BITS; /// The machine location where the def happens.
 | 
						|
    } s;
 | 
						|
    uint64_t Value;
 | 
						|
  } u;
 | 
						|
 | 
						|
  static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
 | 
						|
 | 
						|
public:
 | 
						|
  // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
 | 
						|
  // of values to work.
 | 
						|
  ValueIDNum() { u.Value = EmptyValue.asU64(); }
 | 
						|
 | 
						|
  ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
 | 
						|
    u.s = {Block, Inst, Loc};
 | 
						|
  }
 | 
						|
 | 
						|
  ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
 | 
						|
    u.s = {Block, Inst, Loc.asU64()};
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t getBlock() const { return u.s.BlockNo; }
 | 
						|
  uint64_t getInst() const { return u.s.InstNo; }
 | 
						|
  uint64_t getLoc() const { return u.s.LocNo; }
 | 
						|
  bool isPHI() const { return u.s.InstNo == 0; }
 | 
						|
 | 
						|
  uint64_t asU64() const { return u.Value; }
 | 
						|
 | 
						|
  static ValueIDNum fromU64(uint64_t v) {
 | 
						|
    ValueIDNum Val;
 | 
						|
    Val.u.Value = v;
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator<(const ValueIDNum &Other) const {
 | 
						|
    return asU64() < Other.asU64();
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const ValueIDNum &Other) const {
 | 
						|
    return u.Value == Other.u.Value;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
 | 
						|
 | 
						|
  std::string asString(const std::string &mlocname) const {
 | 
						|
    return Twine("Value{bb: ")
 | 
						|
        .concat(Twine(u.s.BlockNo)
 | 
						|
                    .concat(Twine(", inst: ")
 | 
						|
                                .concat((u.s.InstNo ? Twine(u.s.InstNo)
 | 
						|
                                                    : Twine("live-in"))
 | 
						|
                                            .concat(Twine(", loc: ").concat(
 | 
						|
                                                Twine(mlocname)))
 | 
						|
                                            .concat(Twine("}")))))
 | 
						|
        .str();
 | 
						|
  }
 | 
						|
 | 
						|
  static ValueIDNum EmptyValue;
 | 
						|
  static ValueIDNum TombstoneValue;
 | 
						|
};
 | 
						|
 | 
						|
} // End namespace LiveDebugValues
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
using namespace LiveDebugValues;
 | 
						|
 | 
						|
template <> struct DenseMapInfo<LocIdx> {
 | 
						|
  static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
 | 
						|
  static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
 | 
						|
 | 
						|
  static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
 | 
						|
 | 
						|
  static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct DenseMapInfo<ValueIDNum> {
 | 
						|
  static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
 | 
						|
  static inline ValueIDNum getTombstoneKey() {
 | 
						|
    return ValueIDNum::TombstoneValue;
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const ValueIDNum &Val) {
 | 
						|
    return hash_value(Val.asU64());
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
 | 
						|
    return A == B;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
namespace LiveDebugValues {
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Type for a table of values in a block.
 | 
						|
using ValueTable = std::unique_ptr<ValueIDNum[]>;
 | 
						|
 | 
						|
/// Type for a table-of-table-of-values, i.e., the collection of either
 | 
						|
/// live-in or live-out values for each block in the function.
 | 
						|
using FuncValueTable = std::unique_ptr<ValueTable[]>;
 | 
						|
 | 
						|
/// Thin wrapper around an integer -- designed to give more type safety to
 | 
						|
/// spill location numbers.
 | 
						|
class SpillLocationNo {
 | 
						|
public:
 | 
						|
  explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
 | 
						|
  unsigned SpillNo;
 | 
						|
  unsigned id() const { return SpillNo; }
 | 
						|
 | 
						|
  bool operator<(const SpillLocationNo &Other) const {
 | 
						|
    return SpillNo < Other.SpillNo;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const SpillLocationNo &Other) const {
 | 
						|
    return SpillNo == Other.SpillNo;
 | 
						|
  }
 | 
						|
  bool operator!=(const SpillLocationNo &Other) const {
 | 
						|
    return !(*this == Other);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
 | 
						|
/// the value, and Boolean of whether or not it's indirect.
 | 
						|
class DbgValueProperties {
 | 
						|
public:
 | 
						|
  DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
 | 
						|
      : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {}
 | 
						|
 | 
						|
  /// Extract properties from an existing DBG_VALUE instruction.
 | 
						|
  DbgValueProperties(const MachineInstr &MI) {
 | 
						|
    assert(MI.isDebugValue());
 | 
						|
    assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
 | 
						|
           MI.isDebugValueList() || MI.isUndefDebugValue());
 | 
						|
    IsVariadic = MI.isDebugValueList();
 | 
						|
    DIExpr = MI.getDebugExpression();
 | 
						|
    Indirect = MI.isDebugOffsetImm();
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const DbgValueProperties &Other) const {
 | 
						|
    return std::tie(DIExpr, Indirect, IsVariadic) ==
 | 
						|
           std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const DbgValueProperties &Other) const {
 | 
						|
    return !(*this == Other);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getLocationOpCount() const {
 | 
						|
    return IsVariadic ? DIExpr->getNumLocationOperands() : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  const DIExpression *DIExpr;
 | 
						|
  bool Indirect;
 | 
						|
  bool IsVariadic;
 | 
						|
};
 | 
						|
 | 
						|
/// TODO: Might pack better if we changed this to a Struct of Arrays, since
 | 
						|
/// MachineOperand is width 32, making this struct width 33. We could also
 | 
						|
/// potentially avoid storing the whole MachineOperand (sizeof=32), instead
 | 
						|
/// choosing to store just the contents portion (sizeof=8) and a Kind enum,
 | 
						|
/// since we already know it is some type of immediate value.
 | 
						|
/// Stores a single debug operand, which can either be a MachineOperand for
 | 
						|
/// directly storing immediate values, or a ValueIDNum representing some value
 | 
						|
/// computed at some point in the program. IsConst is used as a discriminator.
 | 
						|
struct DbgOp {
 | 
						|
  union {
 | 
						|
    ValueIDNum ID;
 | 
						|
    MachineOperand MO;
 | 
						|
  };
 | 
						|
  bool IsConst;
 | 
						|
 | 
						|
  DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
 | 
						|
  DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {}
 | 
						|
  DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
 | 
						|
 | 
						|
  bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  void dump(const MLocTracker *MTrack) const;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
 | 
						|
/// when working with concrete debug values, i.e. when joining MLocs and VLocs
 | 
						|
/// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
 | 
						|
/// the MLocTracker.
 | 
						|
struct ResolvedDbgOp {
 | 
						|
  union {
 | 
						|
    LocIdx Loc;
 | 
						|
    MachineOperand MO;
 | 
						|
  };
 | 
						|
  bool IsConst;
 | 
						|
 | 
						|
  ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {}
 | 
						|
  ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
 | 
						|
 | 
						|
  bool operator==(const ResolvedDbgOp &Other) const {
 | 
						|
    if (IsConst != Other.IsConst)
 | 
						|
      return false;
 | 
						|
    if (IsConst)
 | 
						|
      return MO.isIdenticalTo(Other.MO);
 | 
						|
    return Loc == Other.Loc;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  void dump(const MLocTracker *MTrack) const;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
 | 
						|
/// in place of actual DbgOps inside of a DbgValue to reduce its size, as
 | 
						|
/// DbgValue is very frequently used and passed around, and the actual DbgOp is
 | 
						|
/// over 8x larger than this class, due to storing a MachineOperand. This ID
 | 
						|
/// should be equal for all equal DbgOps, and also encodes whether the mapped
 | 
						|
/// DbgOp is a constant, meaning that for simple equality or const-ness checks
 | 
						|
/// it is not necessary to lookup this ID.
 | 
						|
struct DbgOpID {
 | 
						|
  struct IsConstIndexPair {
 | 
						|
    uint32_t IsConst : 1;
 | 
						|
    uint32_t Index : 31;
 | 
						|
  };
 | 
						|
 | 
						|
  union {
 | 
						|
    struct IsConstIndexPair ID;
 | 
						|
    uint32_t RawID;
 | 
						|
  };
 | 
						|
 | 
						|
  DbgOpID() : RawID(UndefID.RawID) {
 | 
						|
    static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
 | 
						|
  }
 | 
						|
  DbgOpID(uint32_t RawID) : RawID(RawID) {}
 | 
						|
  DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
 | 
						|
 | 
						|
  static DbgOpID UndefID;
 | 
						|
 | 
						|
  bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
 | 
						|
  bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
 | 
						|
 | 
						|
  uint32_t asU32() const { return RawID; }
 | 
						|
 | 
						|
  bool isUndef() const { return *this == UndefID; }
 | 
						|
  bool isConst() const { return ID.IsConst && !isUndef(); }
 | 
						|
  uint32_t getIndex() const { return ID.Index; }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/// Class storing the complete set of values that are observed by DbgValues
 | 
						|
/// within the current function. Allows 2-way lookup, with `find` returning the
 | 
						|
/// Op for a given ID and `insert` returning the ID for a given Op (creating one
 | 
						|
/// if none exists).
 | 
						|
class DbgOpIDMap {
 | 
						|
 | 
						|
  SmallVector<ValueIDNum, 0> ValueOps;
 | 
						|
  SmallVector<MachineOperand, 0> ConstOps;
 | 
						|
 | 
						|
  DenseMap<ValueIDNum, DbgOpID> ValueOpToID;
 | 
						|
  DenseMap<MachineOperand, DbgOpID> ConstOpToID;
 | 
						|
 | 
						|
public:
 | 
						|
  /// If \p Op does not already exist in this map, it is inserted and the
 | 
						|
  /// corresponding DbgOpID is returned. If Op already exists in this map, then
 | 
						|
  /// no change is made and the existing ID for Op is returned.
 | 
						|
  /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
 | 
						|
  DbgOpID insert(DbgOp Op) {
 | 
						|
    if (Op.isUndef())
 | 
						|
      return DbgOpID::UndefID;
 | 
						|
    if (Op.IsConst)
 | 
						|
      return insertConstOp(Op.MO);
 | 
						|
    return insertValueOp(Op.ID);
 | 
						|
  }
 | 
						|
  /// Returns the DbgOp associated with \p ID. Should only be used for IDs
 | 
						|
  /// returned from calling `insert` from this map or DbgOpID::UndefID.
 | 
						|
  DbgOp find(DbgOpID ID) const {
 | 
						|
    if (ID == DbgOpID::UndefID)
 | 
						|
      return DbgOp();
 | 
						|
    if (ID.isConst())
 | 
						|
      return DbgOp(ConstOps[ID.getIndex()]);
 | 
						|
    return DbgOp(ValueOps[ID.getIndex()]);
 | 
						|
  }
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    ValueOps.clear();
 | 
						|
    ConstOps.clear();
 | 
						|
    ValueOpToID.clear();
 | 
						|
    ConstOpToID.clear();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  DbgOpID insertConstOp(MachineOperand &MO) {
 | 
						|
    auto ExistingIt = ConstOpToID.find(MO);
 | 
						|
    if (ExistingIt != ConstOpToID.end())
 | 
						|
      return ExistingIt->second;
 | 
						|
    DbgOpID ID(true, ConstOps.size());
 | 
						|
    ConstOpToID.insert(std::make_pair(MO, ID));
 | 
						|
    ConstOps.push_back(MO);
 | 
						|
    return ID;
 | 
						|
  }
 | 
						|
  DbgOpID insertValueOp(ValueIDNum VID) {
 | 
						|
    auto ExistingIt = ValueOpToID.find(VID);
 | 
						|
    if (ExistingIt != ValueOpToID.end())
 | 
						|
      return ExistingIt->second;
 | 
						|
    DbgOpID ID(false, ValueOps.size());
 | 
						|
    ValueOpToID.insert(std::make_pair(VID, ID));
 | 
						|
    ValueOps.push_back(VID);
 | 
						|
    return ID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// We set the maximum number of operands that we will handle to keep DbgValue
 | 
						|
// within a reasonable size (64 bytes), as we store and pass a lot of them
 | 
						|
// around.
 | 
						|
#define MAX_DBG_OPS 8
 | 
						|
 | 
						|
/// Class recording the (high level) _value_ of a variable. Identifies the value
 | 
						|
/// of the variable as a list of ValueIDNums and constant MachineOperands, or as
 | 
						|
/// an empty list for undef debug values or VPHI values which we have not found
 | 
						|
/// valid locations for.
 | 
						|
/// This class also stores meta-information about how the value is qualified.
 | 
						|
/// Used to reason about variable values when performing the second
 | 
						|
/// (DebugVariable specific) dataflow analysis.
 | 
						|
class DbgValue {
 | 
						|
private:
 | 
						|
  /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
 | 
						|
  /// are used. VPHIs set every ID to EmptyID when we have not found a valid
 | 
						|
  /// machine-value for every operand, and sets them to the corresponding
 | 
						|
  /// machine-values when we have found all of them.
 | 
						|
  DbgOpID DbgOps[MAX_DBG_OPS];
 | 
						|
  unsigned OpCount;
 | 
						|
 | 
						|
public:
 | 
						|
  /// For a NoVal or VPHI DbgValue, which block it was generated in.
 | 
						|
  int BlockNo;
 | 
						|
 | 
						|
  /// Qualifiers for the ValueIDNum above.
 | 
						|
  DbgValueProperties Properties;
 | 
						|
 | 
						|
  typedef enum {
 | 
						|
    Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
 | 
						|
    Def,   // This value is defined by some combination of constants,
 | 
						|
           // instructions, or PHI values.
 | 
						|
    VPHI,  // Incoming values to BlockNo differ, those values must be joined by
 | 
						|
           // a PHI in this block.
 | 
						|
    NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
 | 
						|
           // before dominating blocks values are propagated in.
 | 
						|
  } KindT;
 | 
						|
  /// Discriminator for whether this is a constant or an in-program value.
 | 
						|
  KindT Kind;
 | 
						|
 | 
						|
  DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop)
 | 
						|
      : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
 | 
						|
    static_assert(sizeof(DbgValue) <= 64,
 | 
						|
                  "DbgValue should fit within 64 bytes.");
 | 
						|
    assert(DbgOps.size() == Prop.getLocationOpCount());
 | 
						|
    if (DbgOps.size() > MAX_DBG_OPS ||
 | 
						|
        any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
 | 
						|
      Kind = Undef;
 | 
						|
      OpCount = 0;
 | 
						|
#define DEBUG_TYPE "LiveDebugValues"
 | 
						|
      if (DbgOps.size() > MAX_DBG_OPS) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
 | 
						|
                             "operands.\n");
 | 
						|
      }
 | 
						|
#undef DEBUG_TYPE
 | 
						|
    } else {
 | 
						|
      for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
 | 
						|
        this->DbgOps[Idx] = DbgOps[Idx];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
 | 
						|
      : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
 | 
						|
    assert(Kind == NoVal || Kind == VPHI);
 | 
						|
  }
 | 
						|
 | 
						|
  DbgValue(const DbgValueProperties &Prop, KindT Kind)
 | 
						|
      : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
 | 
						|
    assert(Kind == Undef &&
 | 
						|
           "Empty DbgValue constructor must pass in Undef kind");
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  void dump(const MLocTracker *MTrack = nullptr,
 | 
						|
            const DbgOpIDMap *OpStore = nullptr) const;
 | 
						|
#endif
 | 
						|
 | 
						|
  bool operator==(const DbgValue &Other) const {
 | 
						|
    if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
 | 
						|
      return false;
 | 
						|
    else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
 | 
						|
      return false;
 | 
						|
    else if (Kind == NoVal && BlockNo != Other.BlockNo)
 | 
						|
      return false;
 | 
						|
    else if (Kind == VPHI && BlockNo != Other.BlockNo)
 | 
						|
      return false;
 | 
						|
    else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
 | 
						|
 | 
						|
  // Returns an array of all the machine values used to calculate this variable
 | 
						|
  // value, or an empty list for an Undef or unjoined VPHI.
 | 
						|
  ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
 | 
						|
 | 
						|
  // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
 | 
						|
  // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
 | 
						|
  // NoVal, or an unjoined VPHI).
 | 
						|
  DbgOpID getDbgOpID(unsigned Index) const {
 | 
						|
    if (!OpCount)
 | 
						|
      return DbgOpID::UndefID;
 | 
						|
    assert(Index < OpCount);
 | 
						|
    return DbgOps[Index];
 | 
						|
  }
 | 
						|
  // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
 | 
						|
  // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
 | 
						|
  // arguments expected by this DbgValue's properties (the return value of
 | 
						|
  // `getLocationOpCount()`).
 | 
						|
  void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) {
 | 
						|
    // We can go from no ops to some ops, but not from some ops to no ops.
 | 
						|
    assert(NewIDs.size() == getLocationOpCount() &&
 | 
						|
           "Incorrect number of Debug Operands for this DbgValue.");
 | 
						|
    OpCount = NewIDs.size();
 | 
						|
    for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
 | 
						|
      DbgOps[Idx] = NewIDs[Idx];
 | 
						|
  }
 | 
						|
 | 
						|
  // The number of debug operands expected by this DbgValue's expression.
 | 
						|
  // getDbgOpIDs() should return an array of this length, unless this is an
 | 
						|
  // Undef or an unjoined VPHI.
 | 
						|
  unsigned getLocationOpCount() const {
 | 
						|
    return Properties.getLocationOpCount();
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns true if this or Other are unjoined PHIs, which do not have defined
 | 
						|
  // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
 | 
						|
  // `n`th Loc Op for Other.
 | 
						|
  bool hasJoinableLocOps(const DbgValue &Other) const {
 | 
						|
    if (isUnjoinedPHI() || Other.isUnjoinedPHI())
 | 
						|
      return true;
 | 
						|
    for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
 | 
						|
      if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
 | 
						|
 | 
						|
  bool hasIdenticalValidLocOps(const DbgValue &Other) const {
 | 
						|
    if (!OpCount)
 | 
						|
      return false;
 | 
						|
    return equal(getDbgOpIDs(), Other.getDbgOpIDs());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class LocIdxToIndexFunctor {
 | 
						|
public:
 | 
						|
  using argument_type = LocIdx;
 | 
						|
  unsigned operator()(const LocIdx &L) const { return L.asU64(); }
 | 
						|
};
 | 
						|
 | 
						|
/// Tracker for what values are in machine locations. Listens to the Things
 | 
						|
/// being Done by various instructions, and maintains a table of what machine
 | 
						|
/// locations have what values (as defined by a ValueIDNum).
 | 
						|
///
 | 
						|
/// There are potentially a much larger number of machine locations on the
 | 
						|
/// target machine than the actual working-set size of the function. On x86 for
 | 
						|
/// example, we're extremely unlikely to want to track values through control
 | 
						|
/// or debug registers. To avoid doing so, MLocTracker has several layers of
 | 
						|
/// indirection going on, described below, to avoid unnecessarily tracking
 | 
						|
/// any location.
 | 
						|
///
 | 
						|
/// Here's a sort of diagram of the indexes, read from the bottom up:
 | 
						|
///
 | 
						|
///           Size on stack   Offset on stack
 | 
						|
///                 \              /
 | 
						|
///          Stack Idx (Where in slot is this?)
 | 
						|
///                         /
 | 
						|
///                        /
 | 
						|
/// Slot Num (%stack.0)   /
 | 
						|
/// FrameIdx => SpillNum /
 | 
						|
///              \      /
 | 
						|
///           SpillID (int)              Register number (int)
 | 
						|
///                      \                  /
 | 
						|
///                      LocationID => LocIdx
 | 
						|
///                                |
 | 
						|
///                       LocIdx => ValueIDNum
 | 
						|
///
 | 
						|
/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
 | 
						|
/// values in numbered locations, so that later analyses can ignore whether the
 | 
						|
/// location is a register or otherwise. To map a register / spill location to
 | 
						|
/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
 | 
						|
/// build a LocationID for a stack slot, you need to combine identifiers for
 | 
						|
/// which stack slot it is and where within that slot is being described.
 | 
						|
///
 | 
						|
/// Register mask operands cause trouble by technically defining every register;
 | 
						|
/// various hacks are used to avoid tracking registers that are never read and
 | 
						|
/// only written by regmasks.
 | 
						|
class MLocTracker {
 | 
						|
public:
 | 
						|
  MachineFunction &MF;
 | 
						|
  const TargetInstrInfo &TII;
 | 
						|
  const TargetRegisterInfo &TRI;
 | 
						|
  const TargetLowering &TLI;
 | 
						|
 | 
						|
  /// IndexedMap type, mapping from LocIdx to ValueIDNum.
 | 
						|
  using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
 | 
						|
 | 
						|
  /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
 | 
						|
  /// packed, entries only exist for locations that are being tracked.
 | 
						|
  LocToValueType LocIdxToIDNum;
 | 
						|
 | 
						|
  /// "Map" of machine location IDs (i.e., raw register or spill number) to the
 | 
						|
  /// LocIdx key / number for that location. There are always at least as many
 | 
						|
  /// as the number of registers on the target -- if the value in the register
 | 
						|
  /// is not being tracked, then the LocIdx value will be zero. New entries are
 | 
						|
  /// appended if a new spill slot begins being tracked.
 | 
						|
  /// This, and the corresponding reverse map persist for the analysis of the
 | 
						|
  /// whole function, and is necessarying for decoding various vectors of
 | 
						|
  /// values.
 | 
						|
  std::vector<LocIdx> LocIDToLocIdx;
 | 
						|
 | 
						|
  /// Inverse map of LocIDToLocIdx.
 | 
						|
  IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
 | 
						|
 | 
						|
  /// When clobbering register masks, we chose to not believe the machine model
 | 
						|
  /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
 | 
						|
  /// keep a set of them here.
 | 
						|
  SmallSet<Register, 8> SPAliases;
 | 
						|
 | 
						|
  /// Unique-ification of spill. Used to number them -- their LocID number is
 | 
						|
  /// the index in SpillLocs minus one plus NumRegs.
 | 
						|
  UniqueVector<SpillLoc> SpillLocs;
 | 
						|
 | 
						|
  // If we discover a new machine location, assign it an mphi with this
 | 
						|
  // block number.
 | 
						|
  unsigned CurBB;
 | 
						|
 | 
						|
  /// Cached local copy of the number of registers the target has.
 | 
						|
  unsigned NumRegs;
 | 
						|
 | 
						|
  /// Number of slot indexes the target has -- distinct segments of a stack
 | 
						|
  /// slot that can take on the value of a subregister, when a super-register
 | 
						|
  /// is written to the stack.
 | 
						|
  unsigned NumSlotIdxes;
 | 
						|
 | 
						|
  /// Collection of register mask operands that have been observed. Second part
 | 
						|
  /// of pair indicates the instruction that they happened in. Used to
 | 
						|
  /// reconstruct where defs happened if we start tracking a location later
 | 
						|
  /// on.
 | 
						|
  SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
 | 
						|
 | 
						|
  /// Pair for describing a position within a stack slot -- first the size in
 | 
						|
  /// bits, then the offset.
 | 
						|
  typedef std::pair<unsigned short, unsigned short> StackSlotPos;
 | 
						|
 | 
						|
  /// Map from a size/offset pair describing a position in a stack slot, to a
 | 
						|
  /// numeric identifier for that position. Allows easier identification of
 | 
						|
  /// individual positions.
 | 
						|
  DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
 | 
						|
 | 
						|
  /// Inverse of StackSlotIdxes.
 | 
						|
  DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
 | 
						|
 | 
						|
  /// Iterator for locations and the values they contain. Dereferencing
 | 
						|
  /// produces a struct/pair containing the LocIdx key for this location,
 | 
						|
  /// and a reference to the value currently stored. Simplifies the process
 | 
						|
  /// of seeking a particular location.
 | 
						|
  class MLocIterator {
 | 
						|
    LocToValueType &ValueMap;
 | 
						|
    LocIdx Idx;
 | 
						|
 | 
						|
  public:
 | 
						|
    class value_type {
 | 
						|
    public:
 | 
						|
      value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
 | 
						|
      const LocIdx Idx;  /// Read-only index of this location.
 | 
						|
      ValueIDNum &Value; /// Reference to the stored value at this location.
 | 
						|
    };
 | 
						|
 | 
						|
    MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
 | 
						|
        : ValueMap(ValueMap), Idx(Idx) {}
 | 
						|
 | 
						|
    bool operator==(const MLocIterator &Other) const {
 | 
						|
      assert(&ValueMap == &Other.ValueMap);
 | 
						|
      return Idx == Other.Idx;
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator!=(const MLocIterator &Other) const {
 | 
						|
      return !(*this == Other);
 | 
						|
    }
 | 
						|
 | 
						|
    void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
 | 
						|
 | 
						|
    value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
 | 
						|
  };
 | 
						|
 | 
						|
  MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
 | 
						|
              const TargetRegisterInfo &TRI, const TargetLowering &TLI);
 | 
						|
 | 
						|
  /// Produce location ID number for a Register. Provides some small amount of
 | 
						|
  /// type safety.
 | 
						|
  /// \param Reg The register we're looking up.
 | 
						|
  unsigned getLocID(Register Reg) { return Reg.id(); }
 | 
						|
 | 
						|
  /// Produce location ID number for a spill position.
 | 
						|
  /// \param Spill The number of the spill we're fetching the location for.
 | 
						|
  /// \param SpillSubReg Subregister within the spill we're addressing.
 | 
						|
  unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
 | 
						|
    unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
 | 
						|
    unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
 | 
						|
    return getLocID(Spill, {Size, Offs});
 | 
						|
  }
 | 
						|
 | 
						|
  /// Produce location ID number for a spill position.
 | 
						|
  /// \param Spill The number of the spill we're fetching the location for.
 | 
						|
  /// \apram SpillIdx size/offset within the spill slot to be addressed.
 | 
						|
  unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
 | 
						|
    unsigned SlotNo = Spill.id() - 1;
 | 
						|
    SlotNo *= NumSlotIdxes;
 | 
						|
    assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
 | 
						|
    SlotNo += StackSlotIdxes[Idx];
 | 
						|
    SlotNo += NumRegs;
 | 
						|
    return SlotNo;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Given a spill number, and a slot within the spill, calculate the ID number
 | 
						|
  /// for that location.
 | 
						|
  unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
 | 
						|
    unsigned SlotNo = Spill.id() - 1;
 | 
						|
    SlotNo *= NumSlotIdxes;
 | 
						|
    SlotNo += Idx;
 | 
						|
    SlotNo += NumRegs;
 | 
						|
    return SlotNo;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the spill number that a location ID corresponds to.
 | 
						|
  SpillLocationNo locIDToSpill(unsigned ID) const {
 | 
						|
    assert(ID >= NumRegs);
 | 
						|
    ID -= NumRegs;
 | 
						|
    // Truncate away the index part, leaving only the spill number.
 | 
						|
    ID /= NumSlotIdxes;
 | 
						|
    return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the spill-slot size/offs that a location ID corresponds to.
 | 
						|
  StackSlotPos locIDToSpillIdx(unsigned ID) const {
 | 
						|
    assert(ID >= NumRegs);
 | 
						|
    ID -= NumRegs;
 | 
						|
    unsigned Idx = ID % NumSlotIdxes;
 | 
						|
    return StackIdxesToPos.find(Idx)->second;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
 | 
						|
 | 
						|
  /// Reset all locations to contain a PHI value at the designated block. Used
 | 
						|
  /// sometimes for actual PHI values, othertimes to indicate the block entry
 | 
						|
  /// value (before any more information is known).
 | 
						|
  void setMPhis(unsigned NewCurBB) {
 | 
						|
    CurBB = NewCurBB;
 | 
						|
    for (auto Location : locations())
 | 
						|
      Location.Value = {CurBB, 0, Location.Idx};
 | 
						|
  }
 | 
						|
 | 
						|
  /// Load values for each location from array of ValueIDNums. Take current
 | 
						|
  /// bbnum just in case we read a value from a hitherto untouched register.
 | 
						|
  void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
 | 
						|
    CurBB = NewCurBB;
 | 
						|
    // Iterate over all tracked locations, and load each locations live-in
 | 
						|
    // value into our local index.
 | 
						|
    for (auto Location : locations())
 | 
						|
      Location.Value = Locs[Location.Idx.asU64()];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Wipe any un-necessary location records after traversing a block.
 | 
						|
  void reset() {
 | 
						|
    // We could reset all the location values too; however either loadFromArray
 | 
						|
    // or setMPhis should be called before this object is re-used. Just
 | 
						|
    // clear Masks, they're definitely not needed.
 | 
						|
    Masks.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
 | 
						|
  /// the information in this pass uninterpretable.
 | 
						|
  void clear() {
 | 
						|
    reset();
 | 
						|
    LocIDToLocIdx.clear();
 | 
						|
    LocIdxToLocID.clear();
 | 
						|
    LocIdxToIDNum.clear();
 | 
						|
    // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
 | 
						|
    // 0
 | 
						|
    SpillLocs = decltype(SpillLocs)();
 | 
						|
    StackSlotIdxes.clear();
 | 
						|
    StackIdxesToPos.clear();
 | 
						|
 | 
						|
    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Set a locaiton to a certain value.
 | 
						|
  void setMLoc(LocIdx L, ValueIDNum Num) {
 | 
						|
    assert(L.asU64() < LocIdxToIDNum.size());
 | 
						|
    LocIdxToIDNum[L] = Num;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Read the value of a particular location
 | 
						|
  ValueIDNum readMLoc(LocIdx L) {
 | 
						|
    assert(L.asU64() < LocIdxToIDNum.size());
 | 
						|
    return LocIdxToIDNum[L];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create a LocIdx for an untracked register ID. Initialize it to either an
 | 
						|
  /// mphi value representing a live-in, or a recent register mask clobber.
 | 
						|
  LocIdx trackRegister(unsigned ID);
 | 
						|
 | 
						|
  LocIdx lookupOrTrackRegister(unsigned ID) {
 | 
						|
    LocIdx &Index = LocIDToLocIdx[ID];
 | 
						|
    if (Index.isIllegal())
 | 
						|
      Index = trackRegister(ID);
 | 
						|
    return Index;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Is register R currently tracked by MLocTracker?
 | 
						|
  bool isRegisterTracked(Register R) {
 | 
						|
    LocIdx &Index = LocIDToLocIdx[R];
 | 
						|
    return !Index.isIllegal();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Record a definition of the specified register at the given block / inst.
 | 
						|
  /// This doesn't take a ValueIDNum, because the definition and its location
 | 
						|
  /// are synonymous.
 | 
						|
  void defReg(Register R, unsigned BB, unsigned Inst) {
 | 
						|
    unsigned ID = getLocID(R);
 | 
						|
    LocIdx Idx = lookupOrTrackRegister(ID);
 | 
						|
    ValueIDNum ValueID = {BB, Inst, Idx};
 | 
						|
    LocIdxToIDNum[Idx] = ValueID;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Set a register to a value number. To be used if the value number is
 | 
						|
  /// known in advance.
 | 
						|
  void setReg(Register R, ValueIDNum ValueID) {
 | 
						|
    unsigned ID = getLocID(R);
 | 
						|
    LocIdx Idx = lookupOrTrackRegister(ID);
 | 
						|
    LocIdxToIDNum[Idx] = ValueID;
 | 
						|
  }
 | 
						|
 | 
						|
  ValueIDNum readReg(Register R) {
 | 
						|
    unsigned ID = getLocID(R);
 | 
						|
    LocIdx Idx = lookupOrTrackRegister(ID);
 | 
						|
    return LocIdxToIDNum[Idx];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Reset a register value to zero / empty. Needed to replicate the
 | 
						|
  /// VarLoc implementation where a copy to/from a register effectively
 | 
						|
  /// clears the contents of the source register. (Values can only have one
 | 
						|
  ///  machine location in VarLocBasedImpl).
 | 
						|
  void wipeRegister(Register R) {
 | 
						|
    unsigned ID = getLocID(R);
 | 
						|
    LocIdx Idx = LocIDToLocIdx[ID];
 | 
						|
    LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Determine the LocIdx of an existing register.
 | 
						|
  LocIdx getRegMLoc(Register R) {
 | 
						|
    unsigned ID = getLocID(R);
 | 
						|
    assert(ID < LocIDToLocIdx.size());
 | 
						|
    assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
 | 
						|
    return LocIDToLocIdx[ID];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Record a RegMask operand being executed. Defs any register we currently
 | 
						|
  /// track, stores a pointer to the mask in case we have to account for it
 | 
						|
  /// later.
 | 
						|
  void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
 | 
						|
 | 
						|
  /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
 | 
						|
  /// Returns None when in scenarios where a spill slot could be tracked, but
 | 
						|
  /// we would likely run into resource limitations.
 | 
						|
  Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
 | 
						|
 | 
						|
  // Get LocIdx of a spill ID.
 | 
						|
  LocIdx getSpillMLoc(unsigned SpillID) {
 | 
						|
    assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
 | 
						|
    return LocIDToLocIdx[SpillID];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return true if Idx is a spill machine location.
 | 
						|
  bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
 | 
						|
 | 
						|
  /// How large is this location (aka, how wide is a value defined there?).
 | 
						|
  unsigned getLocSizeInBits(LocIdx L) const {
 | 
						|
    unsigned ID = LocIdxToLocID[L];
 | 
						|
    if (!isSpill(L)) {
 | 
						|
      return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
 | 
						|
    } else {
 | 
						|
      // The slot location on the stack is uninteresting, we care about the
 | 
						|
      // position of the value within the slot (which comes with a size).
 | 
						|
      StackSlotPos Pos = locIDToSpillIdx(ID);
 | 
						|
      return Pos.first;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
 | 
						|
 | 
						|
  MLocIterator end() {
 | 
						|
    return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return a range over all locations currently tracked.
 | 
						|
  iterator_range<MLocIterator> locations() {
 | 
						|
    return llvm::make_range(begin(), end());
 | 
						|
  }
 | 
						|
 | 
						|
  std::string LocIdxToName(LocIdx Idx) const;
 | 
						|
 | 
						|
  std::string IDAsString(const ValueIDNum &Num) const;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  LLVM_DUMP_METHOD void dump();
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD void dump_mloc_map();
 | 
						|
#endif
 | 
						|
 | 
						|
  /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
 | 
						|
  /// information in \pProperties, for variable Var. Don't insert it anywhere,
 | 
						|
  /// just return the builder for it.
 | 
						|
  MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
 | 
						|
                              const DebugVariable &Var,
 | 
						|
                              const DbgValueProperties &Properties);
 | 
						|
};
 | 
						|
 | 
						|
/// Types for recording sets of variable fragments that overlap. For a given
 | 
						|
/// local variable, we record all other fragments of that variable that could
 | 
						|
/// overlap it, to reduce search time.
 | 
						|
using FragmentOfVar =
 | 
						|
    std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
 | 
						|
using OverlapMap =
 | 
						|
    DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
 | 
						|
 | 
						|
/// Collection of DBG_VALUEs observed when traversing a block. Records each
 | 
						|
/// variable and the value the DBG_VALUE refers to. Requires the machine value
 | 
						|
/// location dataflow algorithm to have run already, so that values can be
 | 
						|
/// identified.
 | 
						|
class VLocTracker {
 | 
						|
public:
 | 
						|
  /// Map DebugVariable to the latest Value it's defined to have.
 | 
						|
  /// Needs to be a MapVector because we determine order-in-the-input-MIR from
 | 
						|
  /// the order in this container.
 | 
						|
  /// We only retain the last DbgValue in each block for each variable, to
 | 
						|
  /// determine the blocks live-out variable value. The Vars container forms the
 | 
						|
  /// transfer function for this block, as part of the dataflow analysis. The
 | 
						|
  /// movement of values between locations inside of a block is handled at a
 | 
						|
  /// much later stage, in the TransferTracker class.
 | 
						|
  MapVector<DebugVariable, DbgValue> Vars;
 | 
						|
  SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
 | 
						|
  MachineBasicBlock *MBB = nullptr;
 | 
						|
  const OverlapMap &OverlappingFragments;
 | 
						|
  DbgValueProperties EmptyProperties;
 | 
						|
 | 
						|
public:
 | 
						|
  VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
 | 
						|
      : OverlappingFragments(O), EmptyProperties(EmptyExpr, false, false) {}
 | 
						|
 | 
						|
  void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
 | 
						|
              const SmallVectorImpl<DbgOpID> &DebugOps) {
 | 
						|
    assert(MI.isDebugValue() || MI.isDebugRef());
 | 
						|
    DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
 | 
						|
                      MI.getDebugLoc()->getInlinedAt());
 | 
						|
    DbgValue Rec = (DebugOps.size() > 0)
 | 
						|
                       ? DbgValue(DebugOps, Properties)
 | 
						|
                       : DbgValue(Properties, DbgValue::Undef);
 | 
						|
 | 
						|
    // Attempt insertion; overwrite if it's already mapped.
 | 
						|
    auto Result = Vars.insert(std::make_pair(Var, Rec));
 | 
						|
    if (!Result.second)
 | 
						|
      Result.first->second = Rec;
 | 
						|
    Scopes[Var] = MI.getDebugLoc().get();
 | 
						|
 | 
						|
    considerOverlaps(Var, MI.getDebugLoc().get());
 | 
						|
  }
 | 
						|
 | 
						|
  void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
 | 
						|
    auto Overlaps = OverlappingFragments.find(
 | 
						|
        {Var.getVariable(), Var.getFragmentOrDefault()});
 | 
						|
    if (Overlaps == OverlappingFragments.end())
 | 
						|
      return;
 | 
						|
 | 
						|
    // Otherwise: terminate any overlapped variable locations.
 | 
						|
    for (auto FragmentInfo : Overlaps->second) {
 | 
						|
      // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
 | 
						|
      // that it overlaps with everything, however its cannonical representation
 | 
						|
      // in a DebugVariable is as "None".
 | 
						|
      Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
 | 
						|
      if (DebugVariable::isDefaultFragment(FragmentInfo))
 | 
						|
        OptFragmentInfo = None;
 | 
						|
 | 
						|
      DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
 | 
						|
                               Var.getInlinedAt());
 | 
						|
      DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
 | 
						|
 | 
						|
      // Attempt insertion; overwrite if it's already mapped.
 | 
						|
      auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
 | 
						|
      if (!Result.second)
 | 
						|
        Result.first->second = Rec;
 | 
						|
      Scopes[Overlapped] = Loc;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    Vars.clear();
 | 
						|
    Scopes.clear();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// XXX XXX docs
 | 
						|
class InstrRefBasedLDV : public LDVImpl {
 | 
						|
public:
 | 
						|
  friend class ::InstrRefLDVTest;
 | 
						|
 | 
						|
  using FragmentInfo = DIExpression::FragmentInfo;
 | 
						|
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
 | 
						|
 | 
						|
  // Helper while building OverlapMap, a map of all fragments seen for a given
 | 
						|
  // DILocalVariable.
 | 
						|
  using VarToFragments =
 | 
						|
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
 | 
						|
 | 
						|
  /// Machine location/value transfer function, a mapping of which locations
 | 
						|
  /// are assigned which new values.
 | 
						|
  using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
 | 
						|
 | 
						|
  /// Live in/out structure for the variable values: a per-block map of
 | 
						|
  /// variables to their values.
 | 
						|
  using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
 | 
						|
 | 
						|
  using VarAndLoc = std::pair<DebugVariable, DbgValue>;
 | 
						|
 | 
						|
  /// Type for a live-in value: the predecessor block, and its value.
 | 
						|
  using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
 | 
						|
 | 
						|
  /// Vector (per block) of a collection (inner smallvector) of live-ins.
 | 
						|
  /// Used as the result type for the variable value dataflow problem.
 | 
						|
  using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
 | 
						|
 | 
						|
  /// Mapping from lexical scopes to a DILocation in that scope.
 | 
						|
  using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
 | 
						|
 | 
						|
  /// Mapping from lexical scopes to variables in that scope.
 | 
						|
  using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;
 | 
						|
 | 
						|
  /// Mapping from lexical scopes to blocks where variables in that scope are
 | 
						|
  /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
 | 
						|
  /// just a block where an assignment happens.
 | 
						|
  using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
 | 
						|
 | 
						|
private:
 | 
						|
  MachineDominatorTree *DomTree;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
  const MachineRegisterInfo *MRI;
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetFrameLowering *TFI;
 | 
						|
  const MachineFrameInfo *MFI;
 | 
						|
  BitVector CalleeSavedRegs;
 | 
						|
  LexicalScopes LS;
 | 
						|
  TargetPassConfig *TPC;
 | 
						|
 | 
						|
  // An empty DIExpression. Used default / placeholder DbgValueProperties
 | 
						|
  // objects, as we can't have null expressions.
 | 
						|
  const DIExpression *EmptyExpr;
 | 
						|
 | 
						|
  /// Object to track machine locations as we step through a block. Could
 | 
						|
  /// probably be a field rather than a pointer, as it's always used.
 | 
						|
  MLocTracker *MTracker = nullptr;
 | 
						|
 | 
						|
  /// Number of the current block LiveDebugValues is stepping through.
 | 
						|
  unsigned CurBB;
 | 
						|
 | 
						|
  /// Number of the current instruction LiveDebugValues is evaluating.
 | 
						|
  unsigned CurInst;
 | 
						|
 | 
						|
  /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
 | 
						|
  /// steps through a block. Reads the values at each location from the
 | 
						|
  /// MLocTracker object.
 | 
						|
  VLocTracker *VTracker = nullptr;
 | 
						|
 | 
						|
  /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
 | 
						|
  /// between locations during stepping, creates new DBG_VALUEs when values move
 | 
						|
  /// location.
 | 
						|
  TransferTracker *TTracker = nullptr;
 | 
						|
 | 
						|
  /// Blocks which are artificial, i.e. blocks which exclusively contain
 | 
						|
  /// instructions without DebugLocs, or with line 0 locations.
 | 
						|
  SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
 | 
						|
 | 
						|
  // Mapping of blocks to and from their RPOT order.
 | 
						|
  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
 | 
						|
  DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
 | 
						|
  DenseMap<unsigned, unsigned> BBNumToRPO;
 | 
						|
 | 
						|
  /// Pair of MachineInstr, and its 1-based offset into the containing block.
 | 
						|
  using InstAndNum = std::pair<const MachineInstr *, unsigned>;
 | 
						|
  /// Map from debug instruction number to the MachineInstr labelled with that
 | 
						|
  /// number, and its location within the function. Used to transform
 | 
						|
  /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
 | 
						|
  std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
 | 
						|
 | 
						|
  /// Record of where we observed a DBG_PHI instruction.
 | 
						|
  class DebugPHIRecord {
 | 
						|
  public:
 | 
						|
    /// Instruction number of this DBG_PHI.
 | 
						|
    uint64_t InstrNum;
 | 
						|
    /// Block where DBG_PHI occurred.
 | 
						|
    MachineBasicBlock *MBB;
 | 
						|
    /// The value number read by the DBG_PHI -- or None if it didn't refer to
 | 
						|
    /// a value.
 | 
						|
    Optional<ValueIDNum> ValueRead;
 | 
						|
    /// Register/Stack location the DBG_PHI reads -- or None if it referred to
 | 
						|
    /// something unexpected.
 | 
						|
    Optional<LocIdx> ReadLoc;
 | 
						|
 | 
						|
    operator unsigned() const { return InstrNum; }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Map from instruction numbers defined by DBG_PHIs to a record of what that
 | 
						|
  /// DBG_PHI read and where. Populated and edited during the machine value
 | 
						|
  /// location problem -- we use LLVMs SSA Updater to fix changes by
 | 
						|
  /// optimizations that destroy PHI instructions.
 | 
						|
  SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
 | 
						|
 | 
						|
  // Map of overlapping variable fragments.
 | 
						|
  OverlapMap OverlapFragments;
 | 
						|
  VarToFragments SeenFragments;
 | 
						|
 | 
						|
  /// Mapping of DBG_INSTR_REF instructions to their values, for those
 | 
						|
  /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
 | 
						|
  /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
 | 
						|
  /// the result.
 | 
						|
  DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs;
 | 
						|
 | 
						|
  DbgOpIDMap DbgOpStore;
 | 
						|
 | 
						|
  /// True if we need to examine call instructions for stack clobbers. We
 | 
						|
  /// normally assume that they don't clobber SP, but stack probes on Windows
 | 
						|
  /// do.
 | 
						|
  bool AdjustsStackInCalls = false;
 | 
						|
 | 
						|
  /// If AdjustsStackInCalls is true, this holds the name of the target's stack
 | 
						|
  /// probe function, which is the function we expect will alter the stack
 | 
						|
  /// pointer.
 | 
						|
  StringRef StackProbeSymbolName;
 | 
						|
 | 
						|
  /// Tests whether this instruction is a spill to a stack slot.
 | 
						|
  Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
 | 
						|
                                               MachineFunction *MF);
 | 
						|
 | 
						|
  /// Decide if @MI is a spill instruction and return true if it is. We use 2
 | 
						|
  /// criteria to make this decision:
 | 
						|
  /// - Is this instruction a store to a spill slot?
 | 
						|
  /// - Is there a register operand that is both used and killed?
 | 
						|
  /// TODO: Store optimization can fold spills into other stores (including
 | 
						|
  /// other spills). We do not handle this yet (more than one memory operand).
 | 
						|
  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
 | 
						|
                       unsigned &Reg);
 | 
						|
 | 
						|
  /// If a given instruction is identified as a spill, return the spill slot
 | 
						|
  /// and set \p Reg to the spilled register.
 | 
						|
  Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
 | 
						|
                                          MachineFunction *MF, unsigned &Reg);
 | 
						|
 | 
						|
  /// Given a spill instruction, extract the spill slot information, ensure it's
 | 
						|
  /// tracked, and return the spill number.
 | 
						|
  Optional<SpillLocationNo>
 | 
						|
  extractSpillBaseRegAndOffset(const MachineInstr &MI);
 | 
						|
 | 
						|
  /// Observe a single instruction while stepping through a block.
 | 
						|
  void process(MachineInstr &MI, const ValueTable *MLiveOuts,
 | 
						|
               const ValueTable *MLiveIns);
 | 
						|
 | 
						|
  /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
 | 
						|
  /// \returns true if MI was recognized and processed.
 | 
						|
  bool transferDebugValue(const MachineInstr &MI);
 | 
						|
 | 
						|
  /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
 | 
						|
  /// \returns true if MI was recognized and processed.
 | 
						|
  bool transferDebugInstrRef(MachineInstr &MI, const ValueTable *MLiveOuts,
 | 
						|
                             const ValueTable *MLiveIns);
 | 
						|
 | 
						|
  /// Stores value-information about where this PHI occurred, and what
 | 
						|
  /// instruction number is associated with it.
 | 
						|
  /// \returns true if MI was recognized and processed.
 | 
						|
  bool transferDebugPHI(MachineInstr &MI);
 | 
						|
 | 
						|
  /// Examines whether \p MI is copy instruction, and notifies trackers.
 | 
						|
  /// \returns true if MI was recognized and processed.
 | 
						|
  bool transferRegisterCopy(MachineInstr &MI);
 | 
						|
 | 
						|
  /// Examines whether \p MI is stack spill or restore  instruction, and
 | 
						|
  /// notifies trackers. \returns true if MI was recognized and processed.
 | 
						|
  bool transferSpillOrRestoreInst(MachineInstr &MI);
 | 
						|
 | 
						|
  /// Examines \p MI for any registers that it defines, and notifies trackers.
 | 
						|
  void transferRegisterDef(MachineInstr &MI);
 | 
						|
 | 
						|
  /// Copy one location to the other, accounting for movement of subregisters
 | 
						|
  /// too.
 | 
						|
  void performCopy(Register Src, Register Dst);
 | 
						|
 | 
						|
  void accumulateFragmentMap(MachineInstr &MI);
 | 
						|
 | 
						|
  /// Determine the machine value number referred to by (potentially several)
 | 
						|
  /// DBG_PHI instructions. Block duplication and tail folding can duplicate
 | 
						|
  /// DBG_PHIs, shifting the position where values in registers merge, and
 | 
						|
  /// forming another mini-ssa problem to solve.
 | 
						|
  /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
 | 
						|
  /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
 | 
						|
  /// \returns The machine value number at position Here, or None.
 | 
						|
  Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
 | 
						|
                                      const ValueTable *MLiveOuts,
 | 
						|
                                      const ValueTable *MLiveIns,
 | 
						|
                                      MachineInstr &Here, uint64_t InstrNum);
 | 
						|
 | 
						|
  Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
 | 
						|
                                          const ValueTable *MLiveOuts,
 | 
						|
                                          const ValueTable *MLiveIns,
 | 
						|
                                          MachineInstr &Here,
 | 
						|
                                          uint64_t InstrNum);
 | 
						|
 | 
						|
  /// Step through the function, recording register definitions and movements
 | 
						|
  /// in an MLocTracker. Convert the observations into a per-block transfer
 | 
						|
  /// function in \p MLocTransfer, suitable for using with the machine value
 | 
						|
  /// location dataflow problem.
 | 
						|
  void
 | 
						|
  produceMLocTransferFunction(MachineFunction &MF,
 | 
						|
                              SmallVectorImpl<MLocTransferMap> &MLocTransfer,
 | 
						|
                              unsigned MaxNumBlocks);
 | 
						|
 | 
						|
  /// Solve the machine value location dataflow problem. Takes as input the
 | 
						|
  /// transfer functions in \p MLocTransfer. Writes the output live-in and
 | 
						|
  /// live-out arrays to the (initialized to zero) multidimensional arrays in
 | 
						|
  /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
 | 
						|
  /// number, the inner by LocIdx.
 | 
						|
  void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
 | 
						|
                         FuncValueTable &MOutLocs,
 | 
						|
                         SmallVectorImpl<MLocTransferMap> &MLocTransfer);
 | 
						|
 | 
						|
  /// Examine the stack indexes (i.e. offsets within the stack) to find the
 | 
						|
  /// basic units of interference -- like reg units, but for the stack.
 | 
						|
  void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
 | 
						|
 | 
						|
  /// Install PHI values into the live-in array for each block, according to
 | 
						|
  /// the IDF of each register.
 | 
						|
  void placeMLocPHIs(MachineFunction &MF,
 | 
						|
                     SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
 | 
						|
                     FuncValueTable &MInLocs,
 | 
						|
                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
 | 
						|
 | 
						|
  /// Propagate variable values to blocks in the common case where there's
 | 
						|
  /// only one value assigned to the variable. This function has better
 | 
						|
  /// performance as it doesn't have to find the dominance frontier between
 | 
						|
  /// different assignments.
 | 
						|
  void placePHIsForSingleVarDefinition(
 | 
						|
          const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
 | 
						|
          MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
 | 
						|
          const DebugVariable &Var, LiveInsT &Output);
 | 
						|
 | 
						|
  /// Calculate the iterated-dominance-frontier for a set of defs, using the
 | 
						|
  /// existing LLVM facilities for this. Works for a single "value" or
 | 
						|
  /// machine/variable location.
 | 
						|
  /// \p AllBlocks Set of blocks where we might consume the value.
 | 
						|
  /// \p DefBlocks Set of blocks where the value/location is defined.
 | 
						|
  /// \p PHIBlocks Output set of blocks where PHIs must be placed.
 | 
						|
  void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
 | 
						|
                         const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
 | 
						|
                         SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
 | 
						|
 | 
						|
  /// Perform a control flow join (lattice value meet) of the values in machine
 | 
						|
  /// locations at \p MBB. Follows the algorithm described in the file-comment,
 | 
						|
  /// reading live-outs of predecessors from \p OutLocs, the current live ins
 | 
						|
  /// from \p InLocs, and assigning the newly computed live ins back into
 | 
						|
  /// \p InLocs. \returns two bools -- the first indicates whether a change
 | 
						|
  /// was made, the second whether a lattice downgrade occurred. If the latter
 | 
						|
  /// is true, revisiting this block is necessary.
 | 
						|
  bool mlocJoin(MachineBasicBlock &MBB,
 | 
						|
                SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
 | 
						|
                FuncValueTable &OutLocs, ValueTable &InLocs);
 | 
						|
 | 
						|
  /// Produce a set of blocks that are in the current lexical scope. This means
 | 
						|
  /// those blocks that contain instructions "in" the scope, blocks where
 | 
						|
  /// assignments to variables in scope occur, and artificial blocks that are
 | 
						|
  /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
 | 
						|
  /// more commentry on what "in scope" means.
 | 
						|
  /// \p DILoc A location in the scope that we're fetching blocks for.
 | 
						|
  /// \p Output Set to put in-scope-blocks into.
 | 
						|
  /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
 | 
						|
  void
 | 
						|
  getBlocksForScope(const DILocation *DILoc,
 | 
						|
                    SmallPtrSetImpl<const MachineBasicBlock *> &Output,
 | 
						|
                    const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
 | 
						|
 | 
						|
  /// Solve the variable value dataflow problem, for a single lexical scope.
 | 
						|
  /// Uses the algorithm from the file comment to resolve control flow joins
 | 
						|
  /// using PHI placement and value propagation. Reads the locations of machine
 | 
						|
  /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
 | 
						|
  /// and reads the variable values transfer function from \p AllTheVlocs.
 | 
						|
  /// Live-in and Live-out variable values are stored locally, with the live-ins
 | 
						|
  /// permanently stored to \p Output once a fixedpoint is reached.
 | 
						|
  /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
 | 
						|
  /// that we should be tracking.
 | 
						|
  /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
 | 
						|
  /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
 | 
						|
  /// locations through.
 | 
						|
  void buildVLocValueMap(const DILocation *DILoc,
 | 
						|
                         const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
 | 
						|
                         SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
 | 
						|
                         LiveInsT &Output, FuncValueTable &MOutLocs,
 | 
						|
                         FuncValueTable &MInLocs,
 | 
						|
                         SmallVectorImpl<VLocTracker> &AllTheVLocs);
 | 
						|
 | 
						|
  /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
 | 
						|
  /// live-in values coming from predecessors live-outs, and replaces any PHIs
 | 
						|
  /// already present in this blocks live-ins with a live-through value if the
 | 
						|
  /// PHI isn't needed.
 | 
						|
  /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
 | 
						|
  /// \returns true if any live-ins change value, either from value propagation
 | 
						|
  ///          or PHI elimination.
 | 
						|
  bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
 | 
						|
                SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
 | 
						|
                DbgValue &LiveIn);
 | 
						|
 | 
						|
  /// For the given block and live-outs feeding into it, try to find
 | 
						|
  /// machine locations for each debug operand where all the values feeding
 | 
						|
  /// into that operand join together.
 | 
						|
  /// \returns true if a joined location was found for every value that needed
 | 
						|
  ///          to be joined.
 | 
						|
  bool
 | 
						|
  pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
 | 
						|
              const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
 | 
						|
              const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
 | 
						|
 | 
						|
  Optional<ValueIDNum> pickOperandPHILoc(
 | 
						|
      unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
 | 
						|
      FuncValueTable &MOutLocs,
 | 
						|
      const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
 | 
						|
 | 
						|
  /// Take collections of DBG_VALUE instructions stored in TTracker, and
 | 
						|
  /// install them into their output blocks. Preserves a stable order of
 | 
						|
  /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
 | 
						|
  /// the AllVarsNumbering order.
 | 
						|
  bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
 | 
						|
 | 
						|
  /// Boilerplate computation of some initial sets, artifical blocks and
 | 
						|
  /// RPOT block ordering.
 | 
						|
  void initialSetup(MachineFunction &MF);
 | 
						|
 | 
						|
  /// Produce a map of the last lexical scope that uses a block, using the
 | 
						|
  /// scopes DFSOut number. Mapping is block-number to DFSOut.
 | 
						|
  /// \p EjectionMap Pre-allocated vector in which to install the built ma.
 | 
						|
  /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
 | 
						|
  /// \p AssignBlocks Map of blocks where assignments happen for a scope.
 | 
						|
  void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
 | 
						|
                                 const ScopeToDILocT &ScopeToDILocation,
 | 
						|
                                 ScopeToAssignBlocksT &AssignBlocks);
 | 
						|
 | 
						|
  /// When determining per-block variable values and emitting to DBG_VALUEs,
 | 
						|
  /// this function explores by lexical scope depth. Doing so means that per
 | 
						|
  /// block information can be fully computed before exploration finishes,
 | 
						|
  /// allowing us to emit it and free data structures earlier than otherwise.
 | 
						|
  /// It's also good for locality.
 | 
						|
  bool depthFirstVLocAndEmit(
 | 
						|
      unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
 | 
						|
      const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
 | 
						|
      LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
 | 
						|
      SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
 | 
						|
      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
 | 
						|
      const TargetPassConfig &TPC);
 | 
						|
 | 
						|
  bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
 | 
						|
                    TargetPassConfig *TPC, unsigned InputBBLimit,
 | 
						|
                    unsigned InputDbgValLimit) override;
 | 
						|
 | 
						|
public:
 | 
						|
  /// Default construct and initialize the pass.
 | 
						|
  InstrRefBasedLDV();
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD
 | 
						|
  void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
 | 
						|
 | 
						|
  bool isCalleeSaved(LocIdx L) const;
 | 
						|
  bool isCalleeSavedReg(Register R) const;
 | 
						|
 | 
						|
  bool hasFoldedStackStore(const MachineInstr &MI) {
 | 
						|
    // Instruction must have a memory operand that's a stack slot, and isn't
 | 
						|
    // aliased, meaning it's a spill from regalloc instead of a variable.
 | 
						|
    // If it's aliased, we can't guarantee its value.
 | 
						|
    if (!MI.hasOneMemOperand())
 | 
						|
      return false;
 | 
						|
    auto *MemOperand = *MI.memoperands_begin();
 | 
						|
    return MemOperand->isStore() &&
 | 
						|
           MemOperand->getPseudoValue() &&
 | 
						|
           MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
 | 
						|
           && !MemOperand->getPseudoValue()->isAliased(MFI);
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
 | 
						|
};
 | 
						|
 | 
						|
} // namespace LiveDebugValues
 | 
						|
 | 
						|
#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
 |