1621 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1621 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file This register allocator allocates registers to a basic block at a
 | 
						|
/// time, attempting to keep values in registers and reusing registers as
 | 
						|
/// appropriate.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/IndexedMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/SparseSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RegAllocCommon.h"
 | 
						|
#include "llvm/CodeGen/RegAllocRegistry.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <tuple>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
STATISTIC(NumStores, "Number of stores added");
 | 
						|
STATISTIC(NumLoads , "Number of loads added");
 | 
						|
STATISTIC(NumCoalesced, "Number of copies coalesced");
 | 
						|
 | 
						|
// FIXME: Remove this switch when all testcases are fixed!
 | 
						|
static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
 | 
						|
                                       cl::Hidden);
 | 
						|
 | 
						|
static RegisterRegAlloc
 | 
						|
  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class RegAllocFast : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
 | 
						|
                 bool ClearVirtRegs_ = true) :
 | 
						|
      MachineFunctionPass(ID),
 | 
						|
      ShouldAllocateClass(F),
 | 
						|
      StackSlotForVirtReg(-1),
 | 
						|
      ClearVirtRegs(ClearVirtRegs_) {
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    MachineFrameInfo *MFI;
 | 
						|
    MachineRegisterInfo *MRI;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    RegisterClassInfo RegClassInfo;
 | 
						|
    const RegClassFilterFunc ShouldAllocateClass;
 | 
						|
 | 
						|
    /// Basic block currently being allocated.
 | 
						|
    MachineBasicBlock *MBB;
 | 
						|
 | 
						|
    /// Maps virtual regs to the frame index where these values are spilled.
 | 
						|
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
 | 
						|
 | 
						|
    bool ClearVirtRegs;
 | 
						|
 | 
						|
    /// Everything we know about a live virtual register.
 | 
						|
    struct LiveReg {
 | 
						|
      MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
 | 
						|
      Register VirtReg;                ///< Virtual register number.
 | 
						|
      MCPhysReg PhysReg = 0;           ///< Currently held here.
 | 
						|
      bool LiveOut = false;            ///< Register is possibly live out.
 | 
						|
      bool Reloaded = false;           ///< Register was reloaded.
 | 
						|
      bool Error = false;              ///< Could not allocate.
 | 
						|
 | 
						|
      explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
 | 
						|
 | 
						|
      unsigned getSparseSetIndex() const {
 | 
						|
        return Register::virtReg2Index(VirtReg);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    using LiveRegMap = SparseSet<LiveReg>;
 | 
						|
    /// This map contains entries for each virtual register that is currently
 | 
						|
    /// available in a physical register.
 | 
						|
    LiveRegMap LiveVirtRegs;
 | 
						|
 | 
						|
    /// Stores assigned virtual registers present in the bundle MI.
 | 
						|
    DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
 | 
						|
 | 
						|
    DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
 | 
						|
    /// List of DBG_VALUE that we encountered without the vreg being assigned
 | 
						|
    /// because they were placed after the last use of the vreg.
 | 
						|
    DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
 | 
						|
 | 
						|
    /// Has a bit set for every virtual register for which it was determined
 | 
						|
    /// that it is alive across blocks.
 | 
						|
    BitVector MayLiveAcrossBlocks;
 | 
						|
 | 
						|
    /// State of a register unit.
 | 
						|
    enum RegUnitState {
 | 
						|
      /// A free register is not currently in use and can be allocated
 | 
						|
      /// immediately without checking aliases.
 | 
						|
      regFree,
 | 
						|
 | 
						|
      /// A pre-assigned register has been assigned before register allocation
 | 
						|
      /// (e.g., setting up a call parameter).
 | 
						|
      regPreAssigned,
 | 
						|
 | 
						|
      /// Used temporarily in reloadAtBegin() to mark register units that are
 | 
						|
      /// live-in to the basic block.
 | 
						|
      regLiveIn,
 | 
						|
 | 
						|
      /// A register state may also be a virtual register number, indication
 | 
						|
      /// that the physical register is currently allocated to a virtual
 | 
						|
      /// register. In that case, LiveVirtRegs contains the inverse mapping.
 | 
						|
    };
 | 
						|
 | 
						|
    /// Maps each physical register to a RegUnitState enum or virtual register.
 | 
						|
    std::vector<unsigned> RegUnitStates;
 | 
						|
 | 
						|
    SmallVector<MachineInstr *, 32> Coalesced;
 | 
						|
 | 
						|
    using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
 | 
						|
    /// Set of register units that are used in the current instruction, and so
 | 
						|
    /// cannot be allocated.
 | 
						|
    RegUnitSet UsedInInstr;
 | 
						|
    RegUnitSet PhysRegUses;
 | 
						|
    SmallVector<uint16_t, 8> DefOperandIndexes;
 | 
						|
    // Register masks attached to the current instruction.
 | 
						|
    SmallVector<const uint32_t *> RegMasks;
 | 
						|
 | 
						|
    void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
 | 
						|
    bool isPhysRegFree(MCPhysReg PhysReg) const;
 | 
						|
 | 
						|
    /// Mark a physreg as used in this instruction.
 | 
						|
    void markRegUsedInInstr(MCPhysReg PhysReg) {
 | 
						|
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
 | 
						|
        UsedInInstr.insert(*Units);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if physreg is clobbered by instruction's regmask(s).
 | 
						|
    bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
 | 
						|
      return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
 | 
						|
        return MachineOperand::clobbersPhysReg(Mask, PhysReg);
 | 
						|
      });
 | 
						|
    }
 | 
						|
 | 
						|
    /// Check if a physreg or any of its aliases are used in this instruction.
 | 
						|
    bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
 | 
						|
      if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
 | 
						|
        return true;
 | 
						|
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | 
						|
        if (UsedInInstr.count(*Units))
 | 
						|
          return true;
 | 
						|
        if (LookAtPhysRegUses && PhysRegUses.count(*Units))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Mark physical register as being used in a register use operand.
 | 
						|
    /// This is only used by the special livethrough handling code.
 | 
						|
    void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
 | 
						|
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
 | 
						|
        PhysRegUses.insert(*Units);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Remove mark of physical register being used in the instruction.
 | 
						|
    void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
 | 
						|
      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
 | 
						|
        UsedInInstr.erase(*Units);
 | 
						|
    }
 | 
						|
 | 
						|
    enum : unsigned {
 | 
						|
      spillClean = 50,
 | 
						|
      spillDirty = 100,
 | 
						|
      spillPrefBonus = 20,
 | 
						|
      spillImpossible = ~0u
 | 
						|
    };
 | 
						|
 | 
						|
  public:
 | 
						|
    StringRef getPassName() const override { return "Fast Register Allocator"; }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
      return MachineFunctionProperties().set(
 | 
						|
          MachineFunctionProperties::Property::NoPHIs);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineFunctionProperties getSetProperties() const override {
 | 
						|
      if (ClearVirtRegs) {
 | 
						|
        return MachineFunctionProperties().set(
 | 
						|
          MachineFunctionProperties::Property::NoVRegs);
 | 
						|
      }
 | 
						|
 | 
						|
      return MachineFunctionProperties();
 | 
						|
    }
 | 
						|
 | 
						|
    MachineFunctionProperties getClearedProperties() const override {
 | 
						|
      return MachineFunctionProperties().set(
 | 
						|
        MachineFunctionProperties::Property::IsSSA);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    void allocateBasicBlock(MachineBasicBlock &MBB);
 | 
						|
 | 
						|
    void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
 | 
						|
                              Register Reg) const;
 | 
						|
 | 
						|
    void allocateInstruction(MachineInstr &MI);
 | 
						|
    void handleDebugValue(MachineInstr &MI);
 | 
						|
    void handleBundle(MachineInstr &MI);
 | 
						|
 | 
						|
    bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
 | 
						|
    bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
 | 
						|
    bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
 | 
						|
    void freePhysReg(MCPhysReg PhysReg);
 | 
						|
 | 
						|
    unsigned calcSpillCost(MCPhysReg PhysReg) const;
 | 
						|
 | 
						|
    LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
 | 
						|
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
 | 
						|
    }
 | 
						|
 | 
						|
    LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
 | 
						|
      return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
 | 
						|
    }
 | 
						|
 | 
						|
    void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
 | 
						|
    void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
 | 
						|
                      bool LookAtPhysRegUses = false);
 | 
						|
    void allocVirtRegUndef(MachineOperand &MO);
 | 
						|
    void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
 | 
						|
                                   MCPhysReg Reg);
 | 
						|
    void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
 | 
						|
                                  Register VirtReg);
 | 
						|
    void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
 | 
						|
                       bool LookAtPhysRegUses = false);
 | 
						|
    void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
 | 
						|
 | 
						|
    MachineBasicBlock::iterator
 | 
						|
    getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
 | 
						|
                              SmallSet<Register, 2> &PrologLiveIns) const;
 | 
						|
 | 
						|
    void reloadAtBegin(MachineBasicBlock &MBB);
 | 
						|
    void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
 | 
						|
 | 
						|
    Register traceCopies(Register VirtReg) const;
 | 
						|
    Register traceCopyChain(Register Reg) const;
 | 
						|
 | 
						|
    bool shouldAllocateRegister(const Register Reg) const;
 | 
						|
    int getStackSpaceFor(Register VirtReg);
 | 
						|
    void spill(MachineBasicBlock::iterator Before, Register VirtReg,
 | 
						|
               MCPhysReg AssignedReg, bool Kill, bool LiveOut);
 | 
						|
    void reload(MachineBasicBlock::iterator Before, Register VirtReg,
 | 
						|
                MCPhysReg PhysReg);
 | 
						|
 | 
						|
    bool mayLiveOut(Register VirtReg);
 | 
						|
    bool mayLiveIn(Register VirtReg);
 | 
						|
 | 
						|
    void dumpState() const;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char RegAllocFast::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
 | 
						|
                false)
 | 
						|
 | 
						|
bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
 | 
						|
  assert(Register::isVirtualRegister(Reg));
 | 
						|
  const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
 | 
						|
  return ShouldAllocateClass(*TRI, RC);
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
 | 
						|
  for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
 | 
						|
    RegUnitStates[*UI] = NewState;
 | 
						|
}
 | 
						|
 | 
						|
bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
 | 
						|
  for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
 | 
						|
    if (RegUnitStates[*UI] != regFree)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This allocates space for the specified virtual register to be held on the
 | 
						|
/// stack.
 | 
						|
int RegAllocFast::getStackSpaceFor(Register VirtReg) {
 | 
						|
  // Find the location Reg would belong...
 | 
						|
  int SS = StackSlotForVirtReg[VirtReg];
 | 
						|
  // Already has space allocated?
 | 
						|
  if (SS != -1)
 | 
						|
    return SS;
 | 
						|
 | 
						|
  // Allocate a new stack object for this spill location...
 | 
						|
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
 | 
						|
  unsigned Size = TRI->getSpillSize(RC);
 | 
						|
  Align Alignment = TRI->getSpillAlign(RC);
 | 
						|
  int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
 | 
						|
 | 
						|
  // Assign the slot.
 | 
						|
  StackSlotForVirtReg[VirtReg] = FrameIdx;
 | 
						|
  return FrameIdx;
 | 
						|
}
 | 
						|
 | 
						|
static bool dominates(MachineBasicBlock &MBB,
 | 
						|
                      MachineBasicBlock::const_iterator A,
 | 
						|
                      MachineBasicBlock::const_iterator B) {
 | 
						|
  auto MBBEnd = MBB.end();
 | 
						|
  if (B == MBBEnd)
 | 
						|
    return true;
 | 
						|
 | 
						|
  MachineBasicBlock::const_iterator I = MBB.begin();
 | 
						|
  for (; &*I != A && &*I != B; ++I)
 | 
						|
    ;
 | 
						|
 | 
						|
  return &*I == A;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns false if \p VirtReg is known to not live out of the current block.
 | 
						|
bool RegAllocFast::mayLiveOut(Register VirtReg) {
 | 
						|
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
 | 
						|
    // Cannot be live-out if there are no successors.
 | 
						|
    return !MBB->succ_empty();
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineInstr *SelfLoopDef = nullptr;
 | 
						|
 | 
						|
  // If this block loops back to itself, it is necessary to check whether the
 | 
						|
  // use comes after the def.
 | 
						|
  if (MBB->isSuccessor(MBB)) {
 | 
						|
    // Find the first def in the self loop MBB.
 | 
						|
    for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
 | 
						|
      if (DefInst.getParent() != MBB) {
 | 
						|
        MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
 | 
						|
        return true;
 | 
						|
      } else {
 | 
						|
        if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef))
 | 
						|
          SelfLoopDef = &DefInst;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!SelfLoopDef) {
 | 
						|
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if the first \p Limit uses of the register are all in the current
 | 
						|
  // block.
 | 
						|
  static const unsigned Limit = 8;
 | 
						|
  unsigned C = 0;
 | 
						|
  for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
 | 
						|
    if (UseInst.getParent() != MBB || ++C >= Limit) {
 | 
						|
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
 | 
						|
      // Cannot be live-out if there are no successors.
 | 
						|
      return !MBB->succ_empty();
 | 
						|
    }
 | 
						|
 | 
						|
    if (SelfLoopDef) {
 | 
						|
      // Try to handle some simple cases to avoid spilling and reloading every
 | 
						|
      // value inside a self looping block.
 | 
						|
      if (SelfLoopDef == &UseInst ||
 | 
						|
          !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
 | 
						|
        MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns false if \p VirtReg is known to not be live into the current block.
 | 
						|
bool RegAllocFast::mayLiveIn(Register VirtReg) {
 | 
						|
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
 | 
						|
    return !MBB->pred_empty();
 | 
						|
 | 
						|
  // See if the first \p Limit def of the register are all in the current block.
 | 
						|
  static const unsigned Limit = 8;
 | 
						|
  unsigned C = 0;
 | 
						|
  for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
 | 
						|
    if (DefInst.getParent() != MBB || ++C >= Limit) {
 | 
						|
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
 | 
						|
      return !MBB->pred_empty();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Insert spill instruction for \p AssignedReg before \p Before. Update
 | 
						|
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
 | 
						|
void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
 | 
						|
                         MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
 | 
						|
                    << " in " << printReg(AssignedReg, TRI));
 | 
						|
  int FI = getStackSpaceFor(VirtReg);
 | 
						|
  LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
 | 
						|
 | 
						|
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
 | 
						|
  TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
 | 
						|
  ++NumStores;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
 | 
						|
 | 
						|
  // When we spill a virtual register, we will have spill instructions behind
 | 
						|
  // every definition of it, meaning we can switch all the DBG_VALUEs over
 | 
						|
  // to just reference the stack slot.
 | 
						|
  SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
 | 
						|
  SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
 | 
						|
      SpilledOperandsMap;
 | 
						|
  for (MachineOperand *MO : LRIDbgOperands)
 | 
						|
    SpilledOperandsMap[MO->getParent()].push_back(MO);
 | 
						|
  for (auto MISpilledOperands : SpilledOperandsMap) {
 | 
						|
    MachineInstr &DBG = *MISpilledOperands.first;
 | 
						|
    MachineInstr *NewDV = buildDbgValueForSpill(
 | 
						|
        *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
 | 
						|
    assert(NewDV->getParent() == MBB && "dangling parent pointer");
 | 
						|
    (void)NewDV;
 | 
						|
    LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
 | 
						|
 | 
						|
    if (LiveOut) {
 | 
						|
      // We need to insert a DBG_VALUE at the end of the block if the spill slot
 | 
						|
      // is live out, but there is another use of the value after the
 | 
						|
      // spill. This will allow LiveDebugValues to see the correct live out
 | 
						|
      // value to propagate to the successors.
 | 
						|
      MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
 | 
						|
      MBB->insert(FirstTerm, ClonedDV);
 | 
						|
      LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // Rewrite unassigned dbg_values to use the stack slot.
 | 
						|
    // TODO We can potentially do this for list debug values as well if we know
 | 
						|
    // how the dbg_values are getting unassigned.
 | 
						|
    if (DBG.isNonListDebugValue()) {
 | 
						|
      MachineOperand &MO = DBG.getDebugOperand(0);
 | 
						|
      if (MO.isReg() && MO.getReg() == 0) {
 | 
						|
        updateDbgValueForSpill(DBG, FI, 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Now this register is spilled there is should not be any DBG_VALUE
 | 
						|
  // pointing to this register because they are all pointing to spilled value
 | 
						|
  // now.
 | 
						|
  LRIDbgOperands.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Insert reload instruction for \p PhysReg before \p Before.
 | 
						|
void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
 | 
						|
                          MCPhysReg PhysReg) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
 | 
						|
                    << printReg(PhysReg, TRI) << '\n');
 | 
						|
  int FI = getStackSpaceFor(VirtReg);
 | 
						|
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
 | 
						|
  TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
 | 
						|
  ++NumLoads;
 | 
						|
}
 | 
						|
 | 
						|
/// Get basic block begin insertion point.
 | 
						|
/// This is not just MBB.begin() because surprisingly we have EH_LABEL
 | 
						|
/// instructions marking the begin of a basic block. This means we must insert
 | 
						|
/// new instructions after such labels...
 | 
						|
MachineBasicBlock::iterator
 | 
						|
RegAllocFast::getMBBBeginInsertionPoint(
 | 
						|
  MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
 | 
						|
  MachineBasicBlock::iterator I = MBB.begin();
 | 
						|
  while (I != MBB.end()) {
 | 
						|
    if (I->isLabel()) {
 | 
						|
      ++I;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Most reloads should be inserted after prolog instructions.
 | 
						|
    if (!TII->isBasicBlockPrologue(*I))
 | 
						|
      break;
 | 
						|
 | 
						|
    // However if a prolog instruction reads a register that needs to be
 | 
						|
    // reloaded, the reload should be inserted before the prolog.
 | 
						|
    for (MachineOperand &MO : I->operands()) {
 | 
						|
      if (MO.isReg())
 | 
						|
        PrologLiveIns.insert(MO.getReg());
 | 
						|
    }
 | 
						|
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Reload all currently assigned virtual registers.
 | 
						|
void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
 | 
						|
  if (LiveVirtRegs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
 | 
						|
    MCPhysReg Reg = P.PhysReg;
 | 
						|
    // Set state to live-in. This possibly overrides mappings to virtual
 | 
						|
    // registers but we don't care anymore at this point.
 | 
						|
    setPhysRegState(Reg, regLiveIn);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  SmallSet<Register, 2> PrologLiveIns;
 | 
						|
 | 
						|
  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
 | 
						|
  // of spilling here is deterministic, if arbitrary.
 | 
						|
  MachineBasicBlock::iterator InsertBefore
 | 
						|
    = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
 | 
						|
  for (const LiveReg &LR : LiveVirtRegs) {
 | 
						|
    MCPhysReg PhysReg = LR.PhysReg;
 | 
						|
    if (PhysReg == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
 | 
						|
    if (RegUnitStates[FirstUnit] == regLiveIn)
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
 | 
						|
           "no reload in start block. Missing vreg def?");
 | 
						|
 | 
						|
    if (PrologLiveIns.count(PhysReg)) {
 | 
						|
      // FIXME: Theoretically this should use an insert point skipping labels
 | 
						|
      // but I'm not sure how labels should interact with prolog instruction
 | 
						|
      // that need reloads.
 | 
						|
      reload(MBB.begin(), LR.VirtReg, PhysReg);
 | 
						|
    } else
 | 
						|
      reload(InsertBefore, LR.VirtReg, PhysReg);
 | 
						|
  }
 | 
						|
  LiveVirtRegs.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Handle the direct use of a physical register.  Check that the register is
 | 
						|
/// not used by a virtreg. Kill the physreg, marking it free. This may add
 | 
						|
/// implicit kills to MO->getParent() and invalidate MO.
 | 
						|
bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
 | 
						|
  assert(Register::isPhysicalRegister(Reg) && "expected physreg");
 | 
						|
  bool displacedAny = displacePhysReg(MI, Reg);
 | 
						|
  setPhysRegState(Reg, regPreAssigned);
 | 
						|
  markRegUsedInInstr(Reg);
 | 
						|
  return displacedAny;
 | 
						|
}
 | 
						|
 | 
						|
bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
 | 
						|
  bool displacedAny = displacePhysReg(MI, Reg);
 | 
						|
  setPhysRegState(Reg, regPreAssigned);
 | 
						|
  return displacedAny;
 | 
						|
}
 | 
						|
 | 
						|
/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
 | 
						|
/// similar to defineVirtReg except the physreg is reserved instead of
 | 
						|
/// allocated.
 | 
						|
bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
 | 
						|
  bool displacedAny = false;
 | 
						|
 | 
						|
  for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
 | 
						|
    unsigned Unit = *UI;
 | 
						|
    switch (unsigned VirtReg = RegUnitStates[Unit]) {
 | 
						|
    default: {
 | 
						|
      LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
 | 
						|
      assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
 | 
						|
      MachineBasicBlock::iterator ReloadBefore =
 | 
						|
          std::next((MachineBasicBlock::iterator)MI.getIterator());
 | 
						|
      reload(ReloadBefore, VirtReg, LRI->PhysReg);
 | 
						|
 | 
						|
      setPhysRegState(LRI->PhysReg, regFree);
 | 
						|
      LRI->PhysReg = 0;
 | 
						|
      LRI->Reloaded = true;
 | 
						|
      displacedAny = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case regPreAssigned:
 | 
						|
      RegUnitStates[Unit] = regFree;
 | 
						|
      displacedAny = true;
 | 
						|
      break;
 | 
						|
    case regFree:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return displacedAny;
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
 | 
						|
 | 
						|
  MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
 | 
						|
  switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
 | 
						|
  case regFree:
 | 
						|
    LLVM_DEBUG(dbgs() << '\n');
 | 
						|
    return;
 | 
						|
  case regPreAssigned:
 | 
						|
    LLVM_DEBUG(dbgs() << '\n');
 | 
						|
    setPhysRegState(PhysReg, regFree);
 | 
						|
    return;
 | 
						|
  default: {
 | 
						|
      LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
 | 
						|
      assert(LRI != LiveVirtRegs.end());
 | 
						|
      LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
 | 
						|
      setPhysRegState(LRI->PhysReg, regFree);
 | 
						|
      LRI->PhysReg = 0;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return the cost of spilling clearing out PhysReg and aliases so it is free
 | 
						|
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
 | 
						|
/// disabled - it can be allocated directly.
 | 
						|
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
 | 
						|
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
 | 
						|
  for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
 | 
						|
    switch (unsigned VirtReg = RegUnitStates[*UI]) {
 | 
						|
    case regFree:
 | 
						|
      break;
 | 
						|
    case regPreAssigned:
 | 
						|
      LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
 | 
						|
                        << printReg(PhysReg, TRI) << '\n');
 | 
						|
      return spillImpossible;
 | 
						|
    default: {
 | 
						|
      bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
 | 
						|
                       findLiveVirtReg(VirtReg)->LiveOut;
 | 
						|
      return SureSpill ? spillClean : spillDirty;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
 | 
						|
                                             Register VirtReg, MCPhysReg Reg) {
 | 
						|
  auto UDBGValIter = DanglingDbgValues.find(VirtReg);
 | 
						|
  if (UDBGValIter == DanglingDbgValues.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
 | 
						|
  for (MachineInstr *DbgValue : Dangling) {
 | 
						|
    assert(DbgValue->isDebugValue());
 | 
						|
    if (!DbgValue->hasDebugOperandForReg(VirtReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Test whether the physreg survives from the definition to the DBG_VALUE.
 | 
						|
    MCPhysReg SetToReg = Reg;
 | 
						|
    unsigned Limit = 20;
 | 
						|
    for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
 | 
						|
         E = DbgValue->getIterator(); I != E; ++I) {
 | 
						|
      if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
 | 
						|
                   << '\n');
 | 
						|
        SetToReg = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
 | 
						|
      MO.setReg(SetToReg);
 | 
						|
      if (SetToReg != 0)
 | 
						|
        MO.setIsRenamable();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Dangling.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// This method updates local state so that we know that PhysReg is the
 | 
						|
/// proper container for VirtReg now.  The physical register must not be used
 | 
						|
/// for anything else when this is called.
 | 
						|
void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
 | 
						|
                                       MCPhysReg PhysReg) {
 | 
						|
  Register VirtReg = LR.VirtReg;
 | 
						|
  LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
 | 
						|
                    << printReg(PhysReg, TRI) << '\n');
 | 
						|
  assert(LR.PhysReg == 0 && "Already assigned a physreg");
 | 
						|
  assert(PhysReg != 0 && "Trying to assign no register");
 | 
						|
  LR.PhysReg = PhysReg;
 | 
						|
  setPhysRegState(PhysReg, VirtReg);
 | 
						|
 | 
						|
  assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
static bool isCoalescable(const MachineInstr &MI) {
 | 
						|
  return MI.isFullCopy();
 | 
						|
}
 | 
						|
 | 
						|
Register RegAllocFast::traceCopyChain(Register Reg) const {
 | 
						|
  static const unsigned ChainLengthLimit = 3;
 | 
						|
  unsigned C = 0;
 | 
						|
  do {
 | 
						|
    if (Reg.isPhysical())
 | 
						|
      return Reg;
 | 
						|
    assert(Reg.isVirtual());
 | 
						|
 | 
						|
    MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
 | 
						|
    if (!VRegDef || !isCoalescable(*VRegDef))
 | 
						|
      return 0;
 | 
						|
    Reg = VRegDef->getOperand(1).getReg();
 | 
						|
  } while (++C <= ChainLengthLimit);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
 | 
						|
/// chain of copies to check whether we reach a physical register we can
 | 
						|
/// coalesce with.
 | 
						|
Register RegAllocFast::traceCopies(Register VirtReg) const {
 | 
						|
  static const unsigned DefLimit = 3;
 | 
						|
  unsigned C = 0;
 | 
						|
  for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
 | 
						|
    if (isCoalescable(MI)) {
 | 
						|
      Register Reg = MI.getOperand(1).getReg();
 | 
						|
      Reg = traceCopyChain(Reg);
 | 
						|
      if (Reg.isValid())
 | 
						|
        return Reg;
 | 
						|
    }
 | 
						|
 | 
						|
    if (++C >= DefLimit)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return Register();
 | 
						|
}
 | 
						|
 | 
						|
/// Allocates a physical register for VirtReg.
 | 
						|
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
 | 
						|
                                Register Hint0, bool LookAtPhysRegUses) {
 | 
						|
  const Register VirtReg = LR.VirtReg;
 | 
						|
  assert(LR.PhysReg == 0);
 | 
						|
 | 
						|
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
 | 
						|
  LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
 | 
						|
                    << " in class " << TRI->getRegClassName(&RC)
 | 
						|
                    << " with hint " << printReg(Hint0, TRI) << '\n');
 | 
						|
 | 
						|
  // Take hint when possible.
 | 
						|
  if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
 | 
						|
      !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
 | 
						|
    // Take hint if the register is currently free.
 | 
						|
    if (isPhysRegFree(Hint0)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
 | 
						|
                        << '\n');
 | 
						|
      assignVirtToPhysReg(MI, LR, Hint0);
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
 | 
						|
                        << " occupied\n");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Hint0 = Register();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Try other hint.
 | 
						|
  Register Hint1 = traceCopies(VirtReg);
 | 
						|
  if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
 | 
						|
      !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
 | 
						|
    // Take hint if the register is currently free.
 | 
						|
    if (isPhysRegFree(Hint1)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
 | 
						|
                 << '\n');
 | 
						|
      assignVirtToPhysReg(MI, LR, Hint1);
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
 | 
						|
                 << " occupied\n");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Hint1 = Register();
 | 
						|
  }
 | 
						|
 | 
						|
  MCPhysReg BestReg = 0;
 | 
						|
  unsigned BestCost = spillImpossible;
 | 
						|
  ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
 | 
						|
  for (MCPhysReg PhysReg : AllocationOrder) {
 | 
						|
    LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
 | 
						|
    if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "already used in instr.\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Cost = calcSpillCost(PhysReg);
 | 
						|
    LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
 | 
						|
    // Immediate take a register with cost 0.
 | 
						|
    if (Cost == 0) {
 | 
						|
      assignVirtToPhysReg(MI, LR, PhysReg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PhysReg == Hint0 || PhysReg == Hint1)
 | 
						|
      Cost -= spillPrefBonus;
 | 
						|
 | 
						|
    if (Cost < BestCost) {
 | 
						|
      BestReg = PhysReg;
 | 
						|
      BestCost = Cost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BestReg) {
 | 
						|
    // Nothing we can do: Report an error and keep going with an invalid
 | 
						|
    // allocation.
 | 
						|
    if (MI.isInlineAsm())
 | 
						|
      MI.emitError("inline assembly requires more registers than available");
 | 
						|
    else
 | 
						|
      MI.emitError("ran out of registers during register allocation");
 | 
						|
 | 
						|
    LR.Error = true;
 | 
						|
    LR.PhysReg = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  displacePhysReg(MI, BestReg);
 | 
						|
  assignVirtToPhysReg(MI, LR, BestReg);
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
 | 
						|
  assert(MO.isUndef() && "expected undef use");
 | 
						|
  Register VirtReg = MO.getReg();
 | 
						|
  assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
 | 
						|
  if (!shouldAllocateRegister(VirtReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
 | 
						|
  MCPhysReg PhysReg;
 | 
						|
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
 | 
						|
    PhysReg = LRI->PhysReg;
 | 
						|
  } else {
 | 
						|
    const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
 | 
						|
    ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
 | 
						|
    assert(!AllocationOrder.empty() && "Allocation order must not be empty");
 | 
						|
    PhysReg = AllocationOrder[0];
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned SubRegIdx = MO.getSubReg();
 | 
						|
  if (SubRegIdx != 0) {
 | 
						|
    PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
 | 
						|
    MO.setSubReg(0);
 | 
						|
  }
 | 
						|
  MO.setReg(PhysReg);
 | 
						|
  MO.setIsRenamable(true);
 | 
						|
}
 | 
						|
 | 
						|
/// Variation of defineVirtReg() with special handling for livethrough regs
 | 
						|
/// (tied or earlyclobber) that may interfere with preassigned uses.
 | 
						|
void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
 | 
						|
                                            Register VirtReg) {
 | 
						|
  if (!shouldAllocateRegister(VirtReg))
 | 
						|
    return;
 | 
						|
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
 | 
						|
  if (LRI != LiveVirtRegs.end()) {
 | 
						|
    MCPhysReg PrevReg = LRI->PhysReg;
 | 
						|
    if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
 | 
						|
                        << " (tied/earlyclobber resolution)\n");
 | 
						|
      freePhysReg(PrevReg);
 | 
						|
      LRI->PhysReg = 0;
 | 
						|
      allocVirtReg(MI, *LRI, 0, true);
 | 
						|
      MachineBasicBlock::iterator InsertBefore =
 | 
						|
        std::next((MachineBasicBlock::iterator)MI.getIterator());
 | 
						|
      LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
 | 
						|
                        << printReg(PrevReg, TRI) << '\n');
 | 
						|
      BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
 | 
						|
              TII->get(TargetOpcode::COPY), PrevReg)
 | 
						|
        .addReg(LRI->PhysReg, llvm::RegState::Kill);
 | 
						|
    }
 | 
						|
    MachineOperand &MO = MI.getOperand(OpNum);
 | 
						|
    if (MO.getSubReg() && !MO.isUndef()) {
 | 
						|
      LRI->LastUse = &MI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return defineVirtReg(MI, OpNum, VirtReg, true);
 | 
						|
}
 | 
						|
 | 
						|
/// Allocates a register for VirtReg definition. Typically the register is
 | 
						|
/// already assigned from a use of the virtreg, however we still need to
 | 
						|
/// perform an allocation if:
 | 
						|
/// - It is a dead definition without any uses.
 | 
						|
/// - The value is live out and all uses are in different basic blocks.
 | 
						|
void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
 | 
						|
                                 Register VirtReg, bool LookAtPhysRegUses) {
 | 
						|
  assert(VirtReg.isVirtual() && "Not a virtual register");
 | 
						|
  if (!shouldAllocateRegister(VirtReg))
 | 
						|
    return;
 | 
						|
  MachineOperand &MO = MI.getOperand(OpNum);
 | 
						|
  LiveRegMap::iterator LRI;
 | 
						|
  bool New;
 | 
						|
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
 | 
						|
  if (New) {
 | 
						|
    if (!MO.isDead()) {
 | 
						|
      if (mayLiveOut(VirtReg)) {
 | 
						|
        LRI->LiveOut = true;
 | 
						|
      } else {
 | 
						|
        // It is a dead def without the dead flag; add the flag now.
 | 
						|
        MO.setIsDead(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LRI->PhysReg == 0)
 | 
						|
    allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
 | 
						|
  else {
 | 
						|
    assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
 | 
						|
           "TODO: preassign mismatch");
 | 
						|
    LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
 | 
						|
                      << " use existing assignment to "
 | 
						|
                      << printReg(LRI->PhysReg, TRI) << '\n');
 | 
						|
  }
 | 
						|
 | 
						|
  MCPhysReg PhysReg = LRI->PhysReg;
 | 
						|
  assert(PhysReg != 0 && "Register not assigned");
 | 
						|
  if (LRI->Reloaded || LRI->LiveOut) {
 | 
						|
    if (!MI.isImplicitDef()) {
 | 
						|
      MachineBasicBlock::iterator SpillBefore =
 | 
						|
          std::next((MachineBasicBlock::iterator)MI.getIterator());
 | 
						|
      LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
 | 
						|
                        << LRI->Reloaded << '\n');
 | 
						|
      bool Kill = LRI->LastUse == nullptr;
 | 
						|
      spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
 | 
						|
      LRI->LastUse = nullptr;
 | 
						|
    }
 | 
						|
    LRI->LiveOut = false;
 | 
						|
    LRI->Reloaded = false;
 | 
						|
  }
 | 
						|
  if (MI.getOpcode() == TargetOpcode::BUNDLE) {
 | 
						|
    BundleVirtRegsMap[VirtReg] = PhysReg;
 | 
						|
  }
 | 
						|
  markRegUsedInInstr(PhysReg);
 | 
						|
  setPhysReg(MI, MO, PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
/// Allocates a register for a VirtReg use.
 | 
						|
void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
 | 
						|
                              Register VirtReg) {
 | 
						|
  assert(VirtReg.isVirtual() && "Not a virtual register");
 | 
						|
  if (!shouldAllocateRegister(VirtReg))
 | 
						|
    return;
 | 
						|
  MachineOperand &MO = MI.getOperand(OpNum);
 | 
						|
  LiveRegMap::iterator LRI;
 | 
						|
  bool New;
 | 
						|
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
 | 
						|
  if (New) {
 | 
						|
    MachineOperand &MO = MI.getOperand(OpNum);
 | 
						|
    if (!MO.isKill()) {
 | 
						|
      if (mayLiveOut(VirtReg)) {
 | 
						|
        LRI->LiveOut = true;
 | 
						|
      } else {
 | 
						|
        // It is a last (killing) use without the kill flag; add the flag now.
 | 
						|
        MO.setIsKill(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
 | 
						|
  }
 | 
						|
 | 
						|
  // If necessary allocate a register.
 | 
						|
  if (LRI->PhysReg == 0) {
 | 
						|
    assert(!MO.isTied() && "tied op should be allocated");
 | 
						|
    Register Hint;
 | 
						|
    if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
 | 
						|
      Hint = MI.getOperand(0).getReg();
 | 
						|
      if (Hint.isVirtual()) {
 | 
						|
        assert(!shouldAllocateRegister(Hint));
 | 
						|
        Hint = Register();
 | 
						|
      } else {
 | 
						|
        assert(Hint.isPhysical() &&
 | 
						|
               "Copy destination should already be assigned");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    allocVirtReg(MI, *LRI, Hint, false);
 | 
						|
    if (LRI->Error) {
 | 
						|
      const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
 | 
						|
      ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
 | 
						|
      setPhysReg(MI, MO, *AllocationOrder.begin());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LRI->LastUse = &MI;
 | 
						|
 | 
						|
  if (MI.getOpcode() == TargetOpcode::BUNDLE) {
 | 
						|
    BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
 | 
						|
  }
 | 
						|
  markRegUsedInInstr(LRI->PhysReg);
 | 
						|
  setPhysReg(MI, MO, LRI->PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
 | 
						|
/// may invalidate any operand pointers.  Return true if the operand kills its
 | 
						|
/// register.
 | 
						|
void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
 | 
						|
                              MCPhysReg PhysReg) {
 | 
						|
  if (!MO.getSubReg()) {
 | 
						|
    MO.setReg(PhysReg);
 | 
						|
    MO.setIsRenamable(true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle subregister index.
 | 
						|
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
 | 
						|
  MO.setIsRenamable(true);
 | 
						|
  // Note: We leave the subreg number around a little longer in case of defs.
 | 
						|
  // This is so that the register freeing logic in allocateInstruction can still
 | 
						|
  // recognize this as subregister defs. The code there will clear the number.
 | 
						|
  if (!MO.isDef())
 | 
						|
    MO.setSubReg(0);
 | 
						|
 | 
						|
  // A kill flag implies killing the full register. Add corresponding super
 | 
						|
  // register kill.
 | 
						|
  if (MO.isKill()) {
 | 
						|
    MI.addRegisterKilled(PhysReg, TRI, true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // A <def,read-undef> of a sub-register requires an implicit def of the full
 | 
						|
  // register.
 | 
						|
  if (MO.isDef() && MO.isUndef()) {
 | 
						|
    if (MO.isDead())
 | 
						|
      MI.addRegisterDead(PhysReg, TRI, true);
 | 
						|
    else
 | 
						|
      MI.addRegisterDefined(PhysReg, TRI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
 | 
						|
void RegAllocFast::dumpState() const {
 | 
						|
  for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
 | 
						|
       ++Unit) {
 | 
						|
    switch (unsigned VirtReg = RegUnitStates[Unit]) {
 | 
						|
    case regFree:
 | 
						|
      break;
 | 
						|
    case regPreAssigned:
 | 
						|
      dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
 | 
						|
      break;
 | 
						|
    case regLiveIn:
 | 
						|
      llvm_unreachable("Should not have regLiveIn in map");
 | 
						|
    default: {
 | 
						|
      dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
 | 
						|
      LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
 | 
						|
      assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
 | 
						|
      if (I->LiveOut || I->Reloaded) {
 | 
						|
        dbgs() << '[';
 | 
						|
        if (I->LiveOut) dbgs() << 'O';
 | 
						|
        if (I->Reloaded) dbgs() << 'R';
 | 
						|
        dbgs() << ']';
 | 
						|
      }
 | 
						|
      assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  dbgs() << '\n';
 | 
						|
  // Check that LiveVirtRegs is the inverse.
 | 
						|
  for (const LiveReg &LR : LiveVirtRegs) {
 | 
						|
    Register VirtReg = LR.VirtReg;
 | 
						|
    assert(VirtReg.isVirtual() && "Bad map key");
 | 
						|
    MCPhysReg PhysReg = LR.PhysReg;
 | 
						|
    if (PhysReg != 0) {
 | 
						|
      assert(Register::isPhysicalRegister(PhysReg) &&
 | 
						|
             "mapped to physreg");
 | 
						|
      for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
 | 
						|
        assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Count number of defs consumed from each register class by \p Reg
 | 
						|
void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
 | 
						|
                                        Register Reg) const {
 | 
						|
  assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
 | 
						|
 | 
						|
  if (Reg.isVirtual()) {
 | 
						|
    if (!shouldAllocateRegister(Reg))
 | 
						|
      return;
 | 
						|
    const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
 | 
						|
    for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
 | 
						|
         RCIdx != RCIdxEnd; ++RCIdx) {
 | 
						|
      const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
 | 
						|
      // FIXME: Consider aliasing sub/super registers.
 | 
						|
      if (OpRC->hasSubClassEq(IdxRC))
 | 
						|
        ++RegClassDefCounts[RCIdx];
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
 | 
						|
       RCIdx != RCIdxEnd; ++RCIdx) {
 | 
						|
    const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
 | 
						|
    for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
 | 
						|
      if (IdxRC->contains(*Alias)) {
 | 
						|
        ++RegClassDefCounts[RCIdx];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::allocateInstruction(MachineInstr &MI) {
 | 
						|
  // The basic algorithm here is:
 | 
						|
  // 1. Mark registers of def operands as free
 | 
						|
  // 2. Allocate registers to use operands and place reload instructions for
 | 
						|
  //    registers displaced by the allocation.
 | 
						|
  //
 | 
						|
  // However we need to handle some corner cases:
 | 
						|
  // - pre-assigned defs and uses need to be handled before the other def/use
 | 
						|
  //   operands are processed to avoid the allocation heuristics clashing with
 | 
						|
  //   the pre-assignment.
 | 
						|
  // - The "free def operands" step has to come last instead of first for tied
 | 
						|
  //   operands and early-clobbers.
 | 
						|
 | 
						|
  UsedInInstr.clear();
 | 
						|
  RegMasks.clear();
 | 
						|
  BundleVirtRegsMap.clear();
 | 
						|
 | 
						|
  auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) {
 | 
						|
    assert(MO.isTied());
 | 
						|
    unsigned TiedIdx = MI.findTiedOperandIdx(Idx);
 | 
						|
    const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
 | 
						|
    return TiedMO.isUndef();
 | 
						|
  };
 | 
						|
  // Scan for special cases; Apply pre-assigned register defs to state.
 | 
						|
  bool HasPhysRegUse = false;
 | 
						|
  bool HasRegMask = false;
 | 
						|
  bool HasVRegDef = false;
 | 
						|
  bool HasDef = false;
 | 
						|
  bool HasEarlyClobber = false;
 | 
						|
  bool NeedToAssignLiveThroughs = false;
 | 
						|
  for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
 | 
						|
    MachineOperand &MO = MI.getOperand(I);
 | 
						|
    if (MO.isReg()) {
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (Reg.isVirtual()) {
 | 
						|
        if (!shouldAllocateRegister(Reg))
 | 
						|
          continue;
 | 
						|
        if (MO.isDef()) {
 | 
						|
          HasDef = true;
 | 
						|
          HasVRegDef = true;
 | 
						|
          if (MO.isEarlyClobber()) {
 | 
						|
            HasEarlyClobber = true;
 | 
						|
            NeedToAssignLiveThroughs = true;
 | 
						|
          }
 | 
						|
          if ((MO.isTied() && !TiedOpIsUndef(MO, I)) ||
 | 
						|
              (MO.getSubReg() != 0 && !MO.isUndef()))
 | 
						|
            NeedToAssignLiveThroughs = true;
 | 
						|
        }
 | 
						|
      } else if (Reg.isPhysical()) {
 | 
						|
        if (!MRI->isReserved(Reg)) {
 | 
						|
          if (MO.isDef()) {
 | 
						|
            HasDef = true;
 | 
						|
            bool displacedAny = definePhysReg(MI, Reg);
 | 
						|
            if (MO.isEarlyClobber())
 | 
						|
              HasEarlyClobber = true;
 | 
						|
            if (!displacedAny)
 | 
						|
              MO.setIsDead(true);
 | 
						|
          }
 | 
						|
          if (MO.readsReg())
 | 
						|
            HasPhysRegUse = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (MO.isRegMask()) {
 | 
						|
      HasRegMask = true;
 | 
						|
      RegMasks.push_back(MO.getRegMask());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate virtreg defs.
 | 
						|
  if (HasDef) {
 | 
						|
    if (HasVRegDef) {
 | 
						|
      // Special handling for early clobbers, tied operands or subregister defs:
 | 
						|
      // Compared to "normal" defs these:
 | 
						|
      // - Must not use a register that is pre-assigned for a use operand.
 | 
						|
      // - In order to solve tricky inline assembly constraints we change the
 | 
						|
      //   heuristic to figure out a good operand order before doing
 | 
						|
      //   assignments.
 | 
						|
      if (NeedToAssignLiveThroughs) {
 | 
						|
        DefOperandIndexes.clear();
 | 
						|
        PhysRegUses.clear();
 | 
						|
 | 
						|
        // Track number of defs which may consume a register from the class.
 | 
						|
        std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
 | 
						|
        assert(RegClassDefCounts[0] == 0);
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
 | 
						|
        for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
 | 
						|
          const MachineOperand &MO = MI.getOperand(I);
 | 
						|
          if (!MO.isReg())
 | 
						|
            continue;
 | 
						|
          Register Reg = MO.getReg();
 | 
						|
          if (MO.readsReg()) {
 | 
						|
            if (Reg.isPhysical()) {
 | 
						|
              LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
 | 
						|
                                << '\n');
 | 
						|
              markPhysRegUsedInInstr(Reg);
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          if (MO.isDef()) {
 | 
						|
            if (Reg.isVirtual() && shouldAllocateRegister(Reg))
 | 
						|
              DefOperandIndexes.push_back(I);
 | 
						|
 | 
						|
            addRegClassDefCounts(RegClassDefCounts, Reg);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
 | 
						|
          const MachineOperand &MO0 = MI.getOperand(I0);
 | 
						|
          const MachineOperand &MO1 = MI.getOperand(I1);
 | 
						|
          Register Reg0 = MO0.getReg();
 | 
						|
          Register Reg1 = MO1.getReg();
 | 
						|
          const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
 | 
						|
          const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
 | 
						|
 | 
						|
          // Identify regclass that are easy to use up completely just in this
 | 
						|
          // instruction.
 | 
						|
          unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
 | 
						|
          unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
 | 
						|
 | 
						|
          bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
 | 
						|
          bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
 | 
						|
          if (SmallClass0 > SmallClass1)
 | 
						|
            return true;
 | 
						|
          if (SmallClass0 < SmallClass1)
 | 
						|
            return false;
 | 
						|
 | 
						|
          // Allocate early clobbers and livethrough operands first.
 | 
						|
          bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
 | 
						|
                              (MO0.getSubReg() == 0 && !MO0.isUndef());
 | 
						|
          bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
 | 
						|
                              (MO1.getSubReg() == 0 && !MO1.isUndef());
 | 
						|
          if (Livethrough0 > Livethrough1)
 | 
						|
            return true;
 | 
						|
          if (Livethrough0 < Livethrough1)
 | 
						|
            return false;
 | 
						|
 | 
						|
          // Tie-break rule: operand index.
 | 
						|
          return I0 < I1;
 | 
						|
        });
 | 
						|
 | 
						|
        for (uint16_t OpIdx : DefOperandIndexes) {
 | 
						|
          MachineOperand &MO = MI.getOperand(OpIdx);
 | 
						|
          LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
 | 
						|
          unsigned Reg = MO.getReg();
 | 
						|
          if (MO.isEarlyClobber() ||
 | 
						|
              (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) ||
 | 
						|
              (MO.getSubReg() && !MO.isUndef())) {
 | 
						|
            defineLiveThroughVirtReg(MI, OpIdx, Reg);
 | 
						|
          } else {
 | 
						|
            defineVirtReg(MI, OpIdx, Reg);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Assign virtual register defs.
 | 
						|
        for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
 | 
						|
          MachineOperand &MO = MI.getOperand(I);
 | 
						|
          if (!MO.isReg() || !MO.isDef())
 | 
						|
            continue;
 | 
						|
          Register Reg = MO.getReg();
 | 
						|
          if (Reg.isVirtual())
 | 
						|
            defineVirtReg(MI, I, Reg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Free registers occupied by defs.
 | 
						|
    // Iterate operands in reverse order, so we see the implicit super register
 | 
						|
    // defs first (we added them earlier in case of <def,read-undef>).
 | 
						|
    for (signed I = MI.getNumOperands() - 1; I >= 0; --I) {
 | 
						|
      MachineOperand &MO = MI.getOperand(I);
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // subreg defs don't free the full register. We left the subreg number
 | 
						|
      // around as a marker in setPhysReg() to recognize this case here.
 | 
						|
      if (MO.getSubReg() != 0) {
 | 
						|
        MO.setSubReg(0);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
 | 
						|
             "tied def assigned to clobbered register");
 | 
						|
 | 
						|
      // Do not free tied operands and early clobbers.
 | 
						|
      if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber())
 | 
						|
        continue;
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (!Reg)
 | 
						|
        continue;
 | 
						|
      if (Reg.isVirtual()) {
 | 
						|
        assert(!shouldAllocateRegister(Reg));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      assert(Reg.isPhysical());
 | 
						|
      if (MRI->isReserved(Reg))
 | 
						|
        continue;
 | 
						|
      freePhysReg(Reg);
 | 
						|
      unmarkRegUsedInInstr(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Displace clobbered registers.
 | 
						|
  if (HasRegMask) {
 | 
						|
    assert(!RegMasks.empty() && "expected RegMask");
 | 
						|
    // MRI bookkeeping.
 | 
						|
    for (const auto *RM : RegMasks)
 | 
						|
      MRI->addPhysRegsUsedFromRegMask(RM);
 | 
						|
 | 
						|
    // Displace clobbered registers.
 | 
						|
    for (const LiveReg &LR : LiveVirtRegs) {
 | 
						|
      MCPhysReg PhysReg = LR.PhysReg;
 | 
						|
      if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
 | 
						|
        displacePhysReg(MI, PhysReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply pre-assigned register uses to state.
 | 
						|
  if (HasPhysRegUse) {
 | 
						|
    for (MachineOperand &MO : MI.operands()) {
 | 
						|
      if (!MO.isReg() || !MO.readsReg())
 | 
						|
        continue;
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (!Reg.isPhysical())
 | 
						|
        continue;
 | 
						|
      if (MRI->isReserved(Reg))
 | 
						|
        continue;
 | 
						|
      bool displacedAny = usePhysReg(MI, Reg);
 | 
						|
      if (!displacedAny && !MRI->isReserved(Reg))
 | 
						|
        MO.setIsKill(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate virtreg uses and insert reloads as necessary.
 | 
						|
  bool HasUndefUse = false;
 | 
						|
  for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
 | 
						|
    MachineOperand &MO = MI.getOperand(I);
 | 
						|
    if (!MO.isReg() || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MO.isUndef()) {
 | 
						|
      HasUndefUse = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Populate MayLiveAcrossBlocks in case the use block is allocated before
 | 
						|
    // the def block (removing the vreg uses).
 | 
						|
    mayLiveIn(Reg);
 | 
						|
 | 
						|
 | 
						|
    assert(!MO.isInternalRead() && "Bundles not supported");
 | 
						|
    assert(MO.readsReg() && "reading use");
 | 
						|
    useVirtReg(MI, I, Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate undef operands. This is a separate step because in a situation
 | 
						|
  // like  ` = OP undef %X, %X`    both operands need the same register assign
 | 
						|
  // so we should perform the normal assignment first.
 | 
						|
  if (HasUndefUse) {
 | 
						|
    for (MachineOperand &MO : MI.uses()) {
 | 
						|
      if (!MO.isReg() || !MO.isUse())
 | 
						|
        continue;
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(MO.isUndef() && "Should only have undef virtreg uses left");
 | 
						|
      allocVirtRegUndef(MO);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Free early clobbers.
 | 
						|
  if (HasEarlyClobber) {
 | 
						|
    for (MachineOperand &MO : llvm::reverse(MI.operands())) {
 | 
						|
      if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
 | 
						|
        continue;
 | 
						|
      // subreg defs don't free the full register. We left the subreg number
 | 
						|
      // around as a marker in setPhysReg() to recognize this case here.
 | 
						|
      if (MO.getSubReg() != 0) {
 | 
						|
        MO.setSubReg(0);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (!Reg)
 | 
						|
        continue;
 | 
						|
      if (Reg.isVirtual()) {
 | 
						|
        assert(!shouldAllocateRegister(Reg));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      assert(Reg.isPhysical() && "should have register assigned");
 | 
						|
 | 
						|
      // We sometimes get odd situations like:
 | 
						|
      //    early-clobber %x0 = INSTRUCTION %x0
 | 
						|
      // which is semantically questionable as the early-clobber should
 | 
						|
      // apply before the use. But in practice we consider the use to
 | 
						|
      // happen before the early clobber now. Don't free the early clobber
 | 
						|
      // register in this case.
 | 
						|
      if (MI.readsRegister(Reg, TRI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      freePhysReg(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "<< " << MI);
 | 
						|
  if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
 | 
						|
      MI.getNumOperands() == 2) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
 | 
						|
    Coalesced.push_back(&MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::handleDebugValue(MachineInstr &MI) {
 | 
						|
  // Ignore DBG_VALUEs that aren't based on virtual registers. These are
 | 
						|
  // mostly constants and frame indices.
 | 
						|
  for (Register Reg : MI.getUsedDebugRegs()) {
 | 
						|
    if (!Register::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    if (!shouldAllocateRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Already spilled to a stackslot?
 | 
						|
    int SS = StackSlotForVirtReg[Reg];
 | 
						|
    if (SS != -1) {
 | 
						|
      // Modify DBG_VALUE now that the value is in a spill slot.
 | 
						|
      updateDbgValueForSpill(MI, SS, Reg);
 | 
						|
      LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if this virtual register has already been allocated to a physical
 | 
						|
    // register or spilled to a stack slot.
 | 
						|
    LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
 | 
						|
    SmallVector<MachineOperand *> DbgOps;
 | 
						|
    for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
 | 
						|
      DbgOps.push_back(&Op);
 | 
						|
 | 
						|
    if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
 | 
						|
      // Update every use of Reg within MI.
 | 
						|
      for (auto &RegMO : DbgOps)
 | 
						|
        setPhysReg(MI, *RegMO, LRI->PhysReg);
 | 
						|
    } else {
 | 
						|
      DanglingDbgValues[Reg].push_back(&MI);
 | 
						|
    }
 | 
						|
 | 
						|
    // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
 | 
						|
    // that future spills of Reg will have DBG_VALUEs.
 | 
						|
    LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::handleBundle(MachineInstr &MI) {
 | 
						|
  MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
 | 
						|
  ++BundledMI;
 | 
						|
  while (BundledMI->isBundledWithPred()) {
 | 
						|
    for (MachineOperand &MO : BundledMI->operands()) {
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      DenseMap<Register, MCPhysReg>::iterator DI;
 | 
						|
      DI = BundleVirtRegsMap.find(Reg);
 | 
						|
      assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
 | 
						|
 | 
						|
      setPhysReg(MI, MO, DI->second);
 | 
						|
    }
 | 
						|
 | 
						|
    ++BundledMI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
 | 
						|
  this->MBB = &MBB;
 | 
						|
  LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
 | 
						|
 | 
						|
  RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
 | 
						|
  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
 | 
						|
 | 
						|
  for (const auto &LiveReg : MBB.liveouts())
 | 
						|
    setPhysRegState(LiveReg.PhysReg, regPreAssigned);
 | 
						|
 | 
						|
  Coalesced.clear();
 | 
						|
 | 
						|
  // Traverse block in reverse order allocating instructions one by one.
 | 
						|
  for (MachineInstr &MI : reverse(MBB)) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
      dbgs() << "\n>> " << MI << "Regs:";
 | 
						|
      dumpState()
 | 
						|
    );
 | 
						|
 | 
						|
    // Special handling for debug values. Note that they are not allowed to
 | 
						|
    // affect codegen of the other instructions in any way.
 | 
						|
    if (MI.isDebugValue()) {
 | 
						|
      handleDebugValue(MI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    allocateInstruction(MI);
 | 
						|
 | 
						|
    // Once BUNDLE header is assigned registers, same assignments need to be
 | 
						|
    // done for bundled MIs.
 | 
						|
    if (MI.getOpcode() == TargetOpcode::BUNDLE) {
 | 
						|
      handleBundle(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(
 | 
						|
    dbgs() << "Begin Regs:";
 | 
						|
    dumpState()
 | 
						|
  );
 | 
						|
 | 
						|
  // Spill all physical registers holding virtual registers now.
 | 
						|
  LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
 | 
						|
  reloadAtBegin(MBB);
 | 
						|
 | 
						|
  // Erase all the coalesced copies. We are delaying it until now because
 | 
						|
  // LiveVirtRegs might refer to the instrs.
 | 
						|
  for (MachineInstr *MI : Coalesced)
 | 
						|
    MBB.erase(MI);
 | 
						|
  NumCoalesced += Coalesced.size();
 | 
						|
 | 
						|
  for (auto &UDBGPair : DanglingDbgValues) {
 | 
						|
    for (MachineInstr *DbgValue : UDBGPair.second) {
 | 
						|
      assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
 | 
						|
      // Nothing to do if the vreg was spilled in the meantime.
 | 
						|
      if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
 | 
						|
        continue;
 | 
						|
      LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
 | 
						|
                 << '\n');
 | 
						|
      DbgValue->setDebugValueUndef();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DanglingDbgValues.clear();
 | 
						|
 | 
						|
  LLVM_DEBUG(MBB.dump());
 | 
						|
}
 | 
						|
 | 
						|
bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
 | 
						|
                    << "********** Function: " << MF.getName() << '\n');
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  const TargetSubtargetInfo &STI = MF.getSubtarget();
 | 
						|
  TRI = STI.getRegisterInfo();
 | 
						|
  TII = STI.getInstrInfo();
 | 
						|
  MFI = &MF.getFrameInfo();
 | 
						|
  MRI->freezeReservedRegs(MF);
 | 
						|
  RegClassInfo.runOnMachineFunction(MF);
 | 
						|
  unsigned NumRegUnits = TRI->getNumRegUnits();
 | 
						|
  UsedInInstr.clear();
 | 
						|
  UsedInInstr.setUniverse(NumRegUnits);
 | 
						|
  PhysRegUses.clear();
 | 
						|
  PhysRegUses.setUniverse(NumRegUnits);
 | 
						|
 | 
						|
  // initialize the virtual->physical register map to have a 'null'
 | 
						|
  // mapping for all virtual registers
 | 
						|
  unsigned NumVirtRegs = MRI->getNumVirtRegs();
 | 
						|
  StackSlotForVirtReg.resize(NumVirtRegs);
 | 
						|
  LiveVirtRegs.setUniverse(NumVirtRegs);
 | 
						|
  MayLiveAcrossBlocks.clear();
 | 
						|
  MayLiveAcrossBlocks.resize(NumVirtRegs);
 | 
						|
 | 
						|
  // Loop over all of the basic blocks, eliminating virtual register references
 | 
						|
  for (MachineBasicBlock &MBB : MF)
 | 
						|
    allocateBasicBlock(MBB);
 | 
						|
 | 
						|
  if (ClearVirtRegs) {
 | 
						|
    // All machine operands and other references to virtual registers have been
 | 
						|
    // replaced. Remove the virtual registers.
 | 
						|
    MRI->clearVirtRegs();
 | 
						|
  }
 | 
						|
 | 
						|
  StackSlotForVirtReg.clear();
 | 
						|
  LiveDbgValueMap.clear();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createFastRegisterAllocator() {
 | 
						|
  return new RegAllocFast();
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
 | 
						|
                                                bool ClearVirtRegs) {
 | 
						|
  return new RegAllocFast(Ftor, ClearVirtRegs);
 | 
						|
}
 |