425 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			425 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a hash set that can be used to remove duplication of
 | 
						|
// nodes in a graph.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Host.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstring>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// FoldingSetNodeIDRef Implementation
 | 
						|
 | 
						|
bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
 | 
						|
  if (Size != RHS.Size) return false;
 | 
						|
  return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Used to compare the "ordering" of two nodes as defined by the
 | 
						|
/// profiled bits and their ordering defined by memcmp().
 | 
						|
bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
 | 
						|
  if (Size != RHS.Size)
 | 
						|
    return Size < RHS.Size;
 | 
						|
  return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// FoldingSetNodeID Implementation
 | 
						|
 | 
						|
/// Add* - Add various data types to Bit data.
 | 
						|
///
 | 
						|
void FoldingSetNodeID::AddString(StringRef String) {
 | 
						|
  unsigned Size =  String.size();
 | 
						|
 | 
						|
  unsigned NumInserts = 1 + divideCeil(Size, 4);
 | 
						|
  Bits.reserve(Bits.size() + NumInserts);
 | 
						|
 | 
						|
  Bits.push_back(Size);
 | 
						|
  if (!Size) return;
 | 
						|
 | 
						|
  unsigned Units = Size / 4;
 | 
						|
  unsigned Pos = 0;
 | 
						|
  const unsigned *Base = (const unsigned*) String.data();
 | 
						|
 | 
						|
  // If the string is aligned do a bulk transfer.
 | 
						|
  if (!((intptr_t)Base & 3)) {
 | 
						|
    Bits.append(Base, Base + Units);
 | 
						|
    Pos = (Units + 1) * 4;
 | 
						|
  } else {
 | 
						|
    // Otherwise do it the hard way.
 | 
						|
    // To be compatible with above bulk transfer, we need to take endianness
 | 
						|
    // into account.
 | 
						|
    static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
 | 
						|
                  "Unexpected host endianness");
 | 
						|
    if (sys::IsBigEndianHost) {
 | 
						|
      for (Pos += 4; Pos <= Size; Pos += 4) {
 | 
						|
        unsigned V = ((unsigned char)String[Pos - 4] << 24) |
 | 
						|
                     ((unsigned char)String[Pos - 3] << 16) |
 | 
						|
                     ((unsigned char)String[Pos - 2] << 8) |
 | 
						|
                      (unsigned char)String[Pos - 1];
 | 
						|
        Bits.push_back(V);
 | 
						|
      }
 | 
						|
    } else {  // Little-endian host
 | 
						|
      for (Pos += 4; Pos <= Size; Pos += 4) {
 | 
						|
        unsigned V = ((unsigned char)String[Pos - 1] << 24) |
 | 
						|
                     ((unsigned char)String[Pos - 2] << 16) |
 | 
						|
                     ((unsigned char)String[Pos - 3] << 8) |
 | 
						|
                      (unsigned char)String[Pos - 4];
 | 
						|
        Bits.push_back(V);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // With the leftover bits.
 | 
						|
  unsigned V = 0;
 | 
						|
  // Pos will have overshot size by 4 - #bytes left over.
 | 
						|
  // No need to take endianness into account here - this is always executed.
 | 
						|
  switch (Pos - Size) {
 | 
						|
  case 1: V = (V << 8) | (unsigned char)String[Size - 3]; [[fallthrough]];
 | 
						|
  case 2: V = (V << 8) | (unsigned char)String[Size - 2]; [[fallthrough]];
 | 
						|
  case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
 | 
						|
  default: return; // Nothing left.
 | 
						|
  }
 | 
						|
 | 
						|
  Bits.push_back(V);
 | 
						|
}
 | 
						|
 | 
						|
// AddNodeID - Adds the Bit data of another ID to *this.
 | 
						|
void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
 | 
						|
  Bits.append(ID.Bits.begin(), ID.Bits.end());
 | 
						|
}
 | 
						|
 | 
						|
/// operator== - Used to compare two nodes to each other.
 | 
						|
///
 | 
						|
bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
 | 
						|
  return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
 | 
						|
}
 | 
						|
 | 
						|
/// operator== - Used to compare two nodes to each other.
 | 
						|
///
 | 
						|
bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
 | 
						|
  return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Used to compare the "ordering" of two nodes as defined by the
 | 
						|
/// profiled bits and their ordering defined by memcmp().
 | 
						|
bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
 | 
						|
  return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
 | 
						|
}
 | 
						|
 | 
						|
bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
 | 
						|
  return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
 | 
						|
}
 | 
						|
 | 
						|
/// Intern - Copy this node's data to a memory region allocated from the
 | 
						|
/// given allocator and return a FoldingSetNodeIDRef describing the
 | 
						|
/// interned data.
 | 
						|
FoldingSetNodeIDRef
 | 
						|
FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
 | 
						|
  unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
 | 
						|
  std::uninitialized_copy(Bits.begin(), Bits.end(), New);
 | 
						|
  return FoldingSetNodeIDRef(New, Bits.size());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// Helper functions for FoldingSetBase.
 | 
						|
 | 
						|
/// GetNextPtr - In order to save space, each bucket is a
 | 
						|
/// singly-linked-list. In order to make deletion more efficient, we make
 | 
						|
/// the list circular, so we can delete a node without computing its hash.
 | 
						|
/// The problem with this is that the start of the hash buckets are not
 | 
						|
/// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
 | 
						|
/// use GetBucketPtr when this happens.
 | 
						|
static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
 | 
						|
  // The low bit is set if this is the pointer back to the bucket.
 | 
						|
  if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// testing.
 | 
						|
static void **GetBucketPtr(void *NextInBucketPtr) {
 | 
						|
  intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
 | 
						|
  assert((Ptr & 1) && "Not a bucket pointer");
 | 
						|
  return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
 | 
						|
}
 | 
						|
 | 
						|
/// GetBucketFor - Hash the specified node ID and return the hash bucket for
 | 
						|
/// the specified ID.
 | 
						|
static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
 | 
						|
  // NumBuckets is always a power of 2.
 | 
						|
  unsigned BucketNum = Hash & (NumBuckets-1);
 | 
						|
  return Buckets + BucketNum;
 | 
						|
}
 | 
						|
 | 
						|
/// AllocateBuckets - Allocated initialized bucket memory.
 | 
						|
static void **AllocateBuckets(unsigned NumBuckets) {
 | 
						|
  void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1,
 | 
						|
                                                   sizeof(void*)));
 | 
						|
  // Set the very last bucket to be a non-null "pointer".
 | 
						|
  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
 | 
						|
  return Buckets;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// FoldingSetBase Implementation
 | 
						|
 | 
						|
FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
 | 
						|
  assert(5 < Log2InitSize && Log2InitSize < 32 &&
 | 
						|
         "Initial hash table size out of range");
 | 
						|
  NumBuckets = 1 << Log2InitSize;
 | 
						|
  Buckets = AllocateBuckets(NumBuckets);
 | 
						|
  NumNodes = 0;
 | 
						|
}
 | 
						|
 | 
						|
FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
 | 
						|
    : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
 | 
						|
  Arg.Buckets = nullptr;
 | 
						|
  Arg.NumBuckets = 0;
 | 
						|
  Arg.NumNodes = 0;
 | 
						|
}
 | 
						|
 | 
						|
FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
 | 
						|
  free(Buckets); // This may be null if the set is in a moved-from state.
 | 
						|
  Buckets = RHS.Buckets;
 | 
						|
  NumBuckets = RHS.NumBuckets;
 | 
						|
  NumNodes = RHS.NumNodes;
 | 
						|
  RHS.Buckets = nullptr;
 | 
						|
  RHS.NumBuckets = 0;
 | 
						|
  RHS.NumNodes = 0;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
FoldingSetBase::~FoldingSetBase() {
 | 
						|
  free(Buckets);
 | 
						|
}
 | 
						|
 | 
						|
void FoldingSetBase::clear() {
 | 
						|
  // Set all but the last bucket to null pointers.
 | 
						|
  memset(Buckets, 0, NumBuckets*sizeof(void*));
 | 
						|
 | 
						|
  // Set the very last bucket to be a non-null "pointer".
 | 
						|
  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
 | 
						|
 | 
						|
  // Reset the node count to zero.
 | 
						|
  NumNodes = 0;
 | 
						|
}
 | 
						|
 | 
						|
void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount,
 | 
						|
                                     const FoldingSetInfo &Info) {
 | 
						|
  assert((NewBucketCount > NumBuckets) &&
 | 
						|
         "Can't shrink a folding set with GrowBucketCount");
 | 
						|
  assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
 | 
						|
  void **OldBuckets = Buckets;
 | 
						|
  unsigned OldNumBuckets = NumBuckets;
 | 
						|
 | 
						|
  // Clear out new buckets.
 | 
						|
  Buckets = AllocateBuckets(NewBucketCount);
 | 
						|
  // Set NumBuckets only if allocation of new buckets was successful.
 | 
						|
  NumBuckets = NewBucketCount;
 | 
						|
  NumNodes = 0;
 | 
						|
 | 
						|
  // Walk the old buckets, rehashing nodes into their new place.
 | 
						|
  FoldingSetNodeID TempID;
 | 
						|
  for (unsigned i = 0; i != OldNumBuckets; ++i) {
 | 
						|
    void *Probe = OldBuckets[i];
 | 
						|
    if (!Probe) continue;
 | 
						|
    while (Node *NodeInBucket = GetNextPtr(Probe)) {
 | 
						|
      // Figure out the next link, remove NodeInBucket from the old link.
 | 
						|
      Probe = NodeInBucket->getNextInBucket();
 | 
						|
      NodeInBucket->SetNextInBucket(nullptr);
 | 
						|
 | 
						|
      // Insert the node into the new bucket, after recomputing the hash.
 | 
						|
      InsertNode(NodeInBucket,
 | 
						|
                 GetBucketFor(Info.ComputeNodeHash(this, NodeInBucket, TempID),
 | 
						|
                              Buckets, NumBuckets),
 | 
						|
                 Info);
 | 
						|
      TempID.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  free(OldBuckets);
 | 
						|
}
 | 
						|
 | 
						|
/// GrowHashTable - Double the size of the hash table and rehash everything.
 | 
						|
///
 | 
						|
void FoldingSetBase::GrowHashTable(const FoldingSetInfo &Info) {
 | 
						|
  GrowBucketCount(NumBuckets * 2, Info);
 | 
						|
}
 | 
						|
 | 
						|
void FoldingSetBase::reserve(unsigned EltCount, const FoldingSetInfo &Info) {
 | 
						|
  // This will give us somewhere between EltCount / 2 and
 | 
						|
  // EltCount buckets.  This puts us in the load factor
 | 
						|
  // range of 1.0 - 2.0.
 | 
						|
  if(EltCount < capacity())
 | 
						|
    return;
 | 
						|
  GrowBucketCount(PowerOf2Floor(EltCount), Info);
 | 
						|
}
 | 
						|
 | 
						|
/// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
 | 
						|
/// return it.  If not, return the insertion token that will make insertion
 | 
						|
/// faster.
 | 
						|
FoldingSetBase::Node *FoldingSetBase::FindNodeOrInsertPos(
 | 
						|
    const FoldingSetNodeID &ID, void *&InsertPos, const FoldingSetInfo &Info) {
 | 
						|
  unsigned IDHash = ID.ComputeHash();
 | 
						|
  void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
 | 
						|
  void *Probe = *Bucket;
 | 
						|
 | 
						|
  InsertPos = nullptr;
 | 
						|
 | 
						|
  FoldingSetNodeID TempID;
 | 
						|
  while (Node *NodeInBucket = GetNextPtr(Probe)) {
 | 
						|
    if (Info.NodeEquals(this, NodeInBucket, ID, IDHash, TempID))
 | 
						|
      return NodeInBucket;
 | 
						|
    TempID.clear();
 | 
						|
 | 
						|
    Probe = NodeInBucket->getNextInBucket();
 | 
						|
  }
 | 
						|
 | 
						|
  // Didn't find the node, return null with the bucket as the InsertPos.
 | 
						|
  InsertPos = Bucket;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertNode - Insert the specified node into the folding set, knowing that it
 | 
						|
/// is not already in the map.  InsertPos must be obtained from
 | 
						|
/// FindNodeOrInsertPos.
 | 
						|
void FoldingSetBase::InsertNode(Node *N, void *InsertPos,
 | 
						|
                                const FoldingSetInfo &Info) {
 | 
						|
  assert(!N->getNextInBucket());
 | 
						|
  // Do we need to grow the hashtable?
 | 
						|
  if (NumNodes+1 > capacity()) {
 | 
						|
    GrowHashTable(Info);
 | 
						|
    FoldingSetNodeID TempID;
 | 
						|
    InsertPos = GetBucketFor(Info.ComputeNodeHash(this, N, TempID), Buckets,
 | 
						|
                             NumBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumNodes;
 | 
						|
 | 
						|
  /// The insert position is actually a bucket pointer.
 | 
						|
  void **Bucket = static_cast<void**>(InsertPos);
 | 
						|
 | 
						|
  void *Next = *Bucket;
 | 
						|
 | 
						|
  // If this is the first insertion into this bucket, its next pointer will be
 | 
						|
  // null.  Pretend as if it pointed to itself, setting the low bit to indicate
 | 
						|
  // that it is a pointer to the bucket.
 | 
						|
  if (!Next)
 | 
						|
    Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
 | 
						|
 | 
						|
  // Set the node's next pointer, and make the bucket point to the node.
 | 
						|
  N->SetNextInBucket(Next);
 | 
						|
  *Bucket = N;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveNode - Remove a node from the folding set, returning true if one was
 | 
						|
/// removed or false if the node was not in the folding set.
 | 
						|
bool FoldingSetBase::RemoveNode(Node *N) {
 | 
						|
  // Because each bucket is a circular list, we don't need to compute N's hash
 | 
						|
  // to remove it.
 | 
						|
  void *Ptr = N->getNextInBucket();
 | 
						|
  if (!Ptr) return false;  // Not in folding set.
 | 
						|
 | 
						|
  --NumNodes;
 | 
						|
  N->SetNextInBucket(nullptr);
 | 
						|
 | 
						|
  // Remember what N originally pointed to, either a bucket or another node.
 | 
						|
  void *NodeNextPtr = Ptr;
 | 
						|
 | 
						|
  // Chase around the list until we find the node (or bucket) which points to N.
 | 
						|
  while (true) {
 | 
						|
    if (Node *NodeInBucket = GetNextPtr(Ptr)) {
 | 
						|
      // Advance pointer.
 | 
						|
      Ptr = NodeInBucket->getNextInBucket();
 | 
						|
 | 
						|
      // We found a node that points to N, change it to point to N's next node,
 | 
						|
      // removing N from the list.
 | 
						|
      if (Ptr == N) {
 | 
						|
        NodeInBucket->SetNextInBucket(NodeNextPtr);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      void **Bucket = GetBucketPtr(Ptr);
 | 
						|
      Ptr = *Bucket;
 | 
						|
 | 
						|
      // If we found that the bucket points to N, update the bucket to point to
 | 
						|
      // whatever is next.
 | 
						|
      if (Ptr == N) {
 | 
						|
        *Bucket = NodeNextPtr;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetOrInsertNode - If there is an existing simple Node exactly
 | 
						|
/// equal to the specified node, return it.  Otherwise, insert 'N' and it
 | 
						|
/// instead.
 | 
						|
FoldingSetBase::Node *
 | 
						|
FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N,
 | 
						|
                                const FoldingSetInfo &Info) {
 | 
						|
  FoldingSetNodeID ID;
 | 
						|
  Info.GetNodeProfile(this, N, ID);
 | 
						|
  void *IP;
 | 
						|
  if (Node *E = FindNodeOrInsertPos(ID, IP, Info))
 | 
						|
    return E;
 | 
						|
  InsertNode(N, IP, Info);
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// FoldingSetIteratorImpl Implementation
 | 
						|
 | 
						|
FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
 | 
						|
  // Skip to the first non-null non-self-cycle bucket.
 | 
						|
  while (*Bucket != reinterpret_cast<void*>(-1) &&
 | 
						|
         (!*Bucket || !GetNextPtr(*Bucket)))
 | 
						|
    ++Bucket;
 | 
						|
 | 
						|
  NodePtr = static_cast<FoldingSetNode*>(*Bucket);
 | 
						|
}
 | 
						|
 | 
						|
void FoldingSetIteratorImpl::advance() {
 | 
						|
  // If there is another link within this bucket, go to it.
 | 
						|
  void *Probe = NodePtr->getNextInBucket();
 | 
						|
 | 
						|
  if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
 | 
						|
    NodePtr = NextNodeInBucket;
 | 
						|
  else {
 | 
						|
    // Otherwise, this is the last link in this bucket.
 | 
						|
    void **Bucket = GetBucketPtr(Probe);
 | 
						|
 | 
						|
    // Skip to the next non-null non-self-cycle bucket.
 | 
						|
    do {
 | 
						|
      ++Bucket;
 | 
						|
    } while (*Bucket != reinterpret_cast<void*>(-1) &&
 | 
						|
             (!*Bucket || !GetNextPtr(*Bucket)));
 | 
						|
 | 
						|
    NodePtr = static_cast<FoldingSetNode*>(*Bucket);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// FoldingSetBucketIteratorImpl Implementation
 | 
						|
 | 
						|
FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
 | 
						|
  Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
 | 
						|
}
 |