750 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			750 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the pass that performs some optimizations with LEA
 | 
						|
// instructions in order to improve performance and code size.
 | 
						|
// Currently, it does two things:
 | 
						|
// 1) If there are two LEA instructions calculating addresses which only differ
 | 
						|
//    by displacement inside a basic block, one of them is removed.
 | 
						|
// 2) Address calculations in load and store instructions are replaced by
 | 
						|
//    existing LEA def registers where possible.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseMapInfo.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineSizeOpts.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-optimize-LEAs"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
 | 
						|
                     cl::desc("X86: Disable LEA optimizations."),
 | 
						|
                     cl::init(false));
 | 
						|
 | 
						|
STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
 | 
						|
STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
 | 
						|
 | 
						|
/// Returns true if two machine operands are identical and they are not
 | 
						|
/// physical registers.
 | 
						|
static inline bool isIdenticalOp(const MachineOperand &MO1,
 | 
						|
                                 const MachineOperand &MO2);
 | 
						|
 | 
						|
/// Returns true if two address displacement operands are of the same
 | 
						|
/// type and use the same symbol/index/address regardless of the offset.
 | 
						|
static bool isSimilarDispOp(const MachineOperand &MO1,
 | 
						|
                            const MachineOperand &MO2);
 | 
						|
 | 
						|
/// Returns true if the instruction is LEA.
 | 
						|
static inline bool isLEA(const MachineInstr &MI);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// A key based on instruction's memory operands.
 | 
						|
class MemOpKey {
 | 
						|
public:
 | 
						|
  MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
 | 
						|
           const MachineOperand *Index, const MachineOperand *Segment,
 | 
						|
           const MachineOperand *Disp)
 | 
						|
      : Disp(Disp) {
 | 
						|
    Operands[0] = Base;
 | 
						|
    Operands[1] = Scale;
 | 
						|
    Operands[2] = Index;
 | 
						|
    Operands[3] = Segment;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const MemOpKey &Other) const {
 | 
						|
    // Addresses' bases, scales, indices and segments must be identical.
 | 
						|
    for (int i = 0; i < 4; ++i)
 | 
						|
      if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Addresses' displacements don't have to be exactly the same. It only
 | 
						|
    // matters that they use the same symbol/index/address. Immediates' or
 | 
						|
    // offsets' differences will be taken care of during instruction
 | 
						|
    // substitution.
 | 
						|
    return isSimilarDispOp(*Disp, *Other.Disp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Address' base, scale, index and segment operands.
 | 
						|
  const MachineOperand *Operands[4];
 | 
						|
 | 
						|
  // Address' displacement operand.
 | 
						|
  const MachineOperand *Disp;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// Provide DenseMapInfo for MemOpKey.
 | 
						|
template <> struct DenseMapInfo<MemOpKey> {
 | 
						|
  using PtrInfo = DenseMapInfo<const MachineOperand *>;
 | 
						|
 | 
						|
  static inline MemOpKey getEmptyKey() {
 | 
						|
    return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
 | 
						|
                    PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
 | 
						|
                    PtrInfo::getEmptyKey());
 | 
						|
  }
 | 
						|
 | 
						|
  static inline MemOpKey getTombstoneKey() {
 | 
						|
    return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
 | 
						|
                    PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
 | 
						|
                    PtrInfo::getTombstoneKey());
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const MemOpKey &Val) {
 | 
						|
    // Checking any field of MemOpKey is enough to determine if the key is
 | 
						|
    // empty or tombstone.
 | 
						|
    assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
 | 
						|
    assert(Val.Disp != PtrInfo::getTombstoneKey() &&
 | 
						|
           "Cannot hash the tombstone key");
 | 
						|
 | 
						|
    hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
 | 
						|
                                  *Val.Operands[2], *Val.Operands[3]);
 | 
						|
 | 
						|
    // If the address displacement is an immediate, it should not affect the
 | 
						|
    // hash so that memory operands which differ only be immediate displacement
 | 
						|
    // would have the same hash. If the address displacement is something else,
 | 
						|
    // we should reflect symbol/index/address in the hash.
 | 
						|
    switch (Val.Disp->getType()) {
 | 
						|
    case MachineOperand::MO_Immediate:
 | 
						|
      break;
 | 
						|
    case MachineOperand::MO_ConstantPoolIndex:
 | 
						|
    case MachineOperand::MO_JumpTableIndex:
 | 
						|
      Hash = hash_combine(Hash, Val.Disp->getIndex());
 | 
						|
      break;
 | 
						|
    case MachineOperand::MO_ExternalSymbol:
 | 
						|
      Hash = hash_combine(Hash, Val.Disp->getSymbolName());
 | 
						|
      break;
 | 
						|
    case MachineOperand::MO_GlobalAddress:
 | 
						|
      Hash = hash_combine(Hash, Val.Disp->getGlobal());
 | 
						|
      break;
 | 
						|
    case MachineOperand::MO_BlockAddress:
 | 
						|
      Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
 | 
						|
      break;
 | 
						|
    case MachineOperand::MO_MCSymbol:
 | 
						|
      Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
 | 
						|
      break;
 | 
						|
    case MachineOperand::MO_MachineBasicBlock:
 | 
						|
      Hash = hash_combine(Hash, Val.Disp->getMBB());
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid address displacement operand");
 | 
						|
    }
 | 
						|
 | 
						|
    return (unsigned)Hash;
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
 | 
						|
    // Checking any field of MemOpKey is enough to determine if the key is
 | 
						|
    // empty or tombstone.
 | 
						|
    if (RHS.Disp == PtrInfo::getEmptyKey())
 | 
						|
      return LHS.Disp == PtrInfo::getEmptyKey();
 | 
						|
    if (RHS.Disp == PtrInfo::getTombstoneKey())
 | 
						|
      return LHS.Disp == PtrInfo::getTombstoneKey();
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
/// Returns a hash table key based on memory operands of \p MI. The
 | 
						|
/// number of the first memory operand of \p MI is specified through \p N.
 | 
						|
static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
 | 
						|
  assert((isLEA(MI) || MI.mayLoadOrStore()) &&
 | 
						|
         "The instruction must be a LEA, a load or a store");
 | 
						|
  return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
 | 
						|
                  &MI.getOperand(N + X86::AddrScaleAmt),
 | 
						|
                  &MI.getOperand(N + X86::AddrIndexReg),
 | 
						|
                  &MI.getOperand(N + X86::AddrSegmentReg),
 | 
						|
                  &MI.getOperand(N + X86::AddrDisp));
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isIdenticalOp(const MachineOperand &MO1,
 | 
						|
                                 const MachineOperand &MO2) {
 | 
						|
  return MO1.isIdenticalTo(MO2) &&
 | 
						|
         (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool isValidDispOp(const MachineOperand &MO) {
 | 
						|
  return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
 | 
						|
         MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool isSimilarDispOp(const MachineOperand &MO1,
 | 
						|
                            const MachineOperand &MO2) {
 | 
						|
  assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
 | 
						|
         "Address displacement operand is not valid");
 | 
						|
  return (MO1.isImm() && MO2.isImm()) ||
 | 
						|
         (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
 | 
						|
         (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
 | 
						|
         (MO1.isSymbol() && MO2.isSymbol() &&
 | 
						|
          MO1.getSymbolName() == MO2.getSymbolName()) ||
 | 
						|
         (MO1.isGlobal() && MO2.isGlobal() &&
 | 
						|
          MO1.getGlobal() == MO2.getGlobal()) ||
 | 
						|
         (MO1.isBlockAddress() && MO2.isBlockAddress() &&
 | 
						|
          MO1.getBlockAddress() == MO2.getBlockAddress()) ||
 | 
						|
         (MO1.isMCSymbol() && MO2.isMCSymbol() &&
 | 
						|
          MO1.getMCSymbol() == MO2.getMCSymbol()) ||
 | 
						|
         (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isLEA(const MachineInstr &MI) {
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
  return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
 | 
						|
         Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class X86OptimizeLEAPass : public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "X86 LEA Optimize"; }
 | 
						|
 | 
						|
  /// Loop over all of the basic blocks, replacing address
 | 
						|
  /// calculations in load and store instructions, if it's already
 | 
						|
  /// been calculated by LEA. Also, remove redundant LEAs.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | 
						|
    AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
 | 
						|
 | 
						|
  /// Returns a distance between two instructions inside one basic block.
 | 
						|
  /// Negative result means, that instructions occur in reverse order.
 | 
						|
  int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
 | 
						|
 | 
						|
  /// Choose the best \p LEA instruction from the \p List to replace
 | 
						|
  /// address calculation in \p MI instruction. Return the address displacement
 | 
						|
  /// and the distance between \p MI and the chosen \p BestLEA in
 | 
						|
  /// \p AddrDispShift and \p Dist.
 | 
						|
  bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
 | 
						|
                     const MachineInstr &MI, MachineInstr *&BestLEA,
 | 
						|
                     int64_t &AddrDispShift, int &Dist);
 | 
						|
 | 
						|
  /// Returns the difference between addresses' displacements of \p MI1
 | 
						|
  /// and \p MI2. The numbers of the first memory operands for the instructions
 | 
						|
  /// are specified through \p N1 and \p N2.
 | 
						|
  int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
 | 
						|
                           const MachineInstr &MI2, unsigned N2) const;
 | 
						|
 | 
						|
  /// Returns true if the \p Last LEA instruction can be replaced by the
 | 
						|
  /// \p First. The difference between displacements of the addresses calculated
 | 
						|
  /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
 | 
						|
  /// replacement of the \p Last LEA's uses with the \p First's def register.
 | 
						|
  bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
 | 
						|
                     int64_t &AddrDispShift) const;
 | 
						|
 | 
						|
  /// Find all LEA instructions in the basic block. Also, assign position
 | 
						|
  /// numbers to all instructions in the basic block to speed up calculation of
 | 
						|
  /// distance between them.
 | 
						|
  void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
 | 
						|
 | 
						|
  /// Removes redundant address calculations.
 | 
						|
  bool removeRedundantAddrCalc(MemOpMap &LEAs);
 | 
						|
 | 
						|
  /// Replace debug value MI with a new debug value instruction using register
 | 
						|
  /// VReg with an appropriate offset and DIExpression to incorporate the
 | 
						|
  /// address displacement AddrDispShift. Return new debug value instruction.
 | 
						|
  MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned OldReg,
 | 
						|
                                  unsigned NewReg, int64_t AddrDispShift);
 | 
						|
 | 
						|
  /// Removes LEAs which calculate similar addresses.
 | 
						|
  bool removeRedundantLEAs(MemOpMap &LEAs);
 | 
						|
 | 
						|
  DenseMap<const MachineInstr *, unsigned> InstrPos;
 | 
						|
 | 
						|
  MachineRegisterInfo *MRI = nullptr;
 | 
						|
  const X86InstrInfo *TII = nullptr;
 | 
						|
  const X86RegisterInfo *TRI = nullptr;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char X86OptimizeLEAPass::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
 | 
						|
INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
 | 
						|
                false)
 | 
						|
 | 
						|
int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
 | 
						|
                                      const MachineInstr &Last) {
 | 
						|
  // Both instructions must be in the same basic block and they must be
 | 
						|
  // presented in InstrPos.
 | 
						|
  assert(Last.getParent() == First.getParent() &&
 | 
						|
         "Instructions are in different basic blocks");
 | 
						|
  assert(InstrPos.find(&First) != InstrPos.end() &&
 | 
						|
         InstrPos.find(&Last) != InstrPos.end() &&
 | 
						|
         "Instructions' positions are undefined");
 | 
						|
 | 
						|
  return InstrPos[&Last] - InstrPos[&First];
 | 
						|
}
 | 
						|
 | 
						|
// Find the best LEA instruction in the List to replace address recalculation in
 | 
						|
// MI. Such LEA must meet these requirements:
 | 
						|
// 1) The address calculated by the LEA differs only by the displacement from
 | 
						|
//    the address used in MI.
 | 
						|
// 2) The register class of the definition of the LEA is compatible with the
 | 
						|
//    register class of the address base register of MI.
 | 
						|
// 3) Displacement of the new memory operand should fit in 1 byte if possible.
 | 
						|
// 4) The LEA should be as close to MI as possible, and prior to it if
 | 
						|
//    possible.
 | 
						|
bool X86OptimizeLEAPass::chooseBestLEA(
 | 
						|
    const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
 | 
						|
    MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
 | 
						|
  const MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  const MCInstrDesc &Desc = MI.getDesc();
 | 
						|
  int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
 | 
						|
                X86II::getOperandBias(Desc);
 | 
						|
 | 
						|
  BestLEA = nullptr;
 | 
						|
 | 
						|
  // Loop over all LEA instructions.
 | 
						|
  for (auto *DefMI : List) {
 | 
						|
    // Get new address displacement.
 | 
						|
    int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
 | 
						|
 | 
						|
    // Make sure address displacement fits 4 bytes.
 | 
						|
    if (!isInt<32>(AddrDispShiftTemp))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that LEA def register can be used as MI address base. Some
 | 
						|
    // instructions can use a limited set of registers as address base, for
 | 
						|
    // example MOV8mr_NOREX. We could constrain the register class of the LEA
 | 
						|
    // def to suit MI, however since this case is very rare and hard to
 | 
						|
    // reproduce in a test it's just more reliable to skip the LEA.
 | 
						|
    if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
 | 
						|
        MRI->getRegClass(DefMI->getOperand(0).getReg()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Choose the closest LEA instruction from the list, prior to MI if
 | 
						|
    // possible. Note that we took into account resulting address displacement
 | 
						|
    // as well. Also note that the list is sorted by the order in which the LEAs
 | 
						|
    // occur, so the break condition is pretty simple.
 | 
						|
    int DistTemp = calcInstrDist(*DefMI, MI);
 | 
						|
    assert(DistTemp != 0 &&
 | 
						|
           "The distance between two different instructions cannot be zero");
 | 
						|
    if (DistTemp > 0 || BestLEA == nullptr) {
 | 
						|
      // Do not update return LEA, if the current one provides a displacement
 | 
						|
      // which fits in 1 byte, while the new candidate does not.
 | 
						|
      if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
 | 
						|
          isInt<8>(AddrDispShift))
 | 
						|
        continue;
 | 
						|
 | 
						|
      BestLEA = DefMI;
 | 
						|
      AddrDispShift = AddrDispShiftTemp;
 | 
						|
      Dist = DistTemp;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Maybe we should not always stop at the first LEA after MI.
 | 
						|
    if (DistTemp < 0)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return BestLEA != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Get the difference between the addresses' displacements of the two
 | 
						|
// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
 | 
						|
// passed through \p N1 and \p N2.
 | 
						|
int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
 | 
						|
                                             unsigned N1,
 | 
						|
                                             const MachineInstr &MI2,
 | 
						|
                                             unsigned N2) const {
 | 
						|
  const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
 | 
						|
  const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
 | 
						|
 | 
						|
  assert(isSimilarDispOp(Op1, Op2) &&
 | 
						|
         "Address displacement operands are not compatible");
 | 
						|
 | 
						|
  // After the assert above we can be sure that both operands are of the same
 | 
						|
  // valid type and use the same symbol/index/address, thus displacement shift
 | 
						|
  // calculation is rather simple.
 | 
						|
  if (Op1.isJTI())
 | 
						|
    return 0;
 | 
						|
  return Op1.isImm() ? Op1.getImm() - Op2.getImm()
 | 
						|
                     : Op1.getOffset() - Op2.getOffset();
 | 
						|
}
 | 
						|
 | 
						|
// Check that the Last LEA can be replaced by the First LEA. To be so,
 | 
						|
// these requirements must be met:
 | 
						|
// 1) Addresses calculated by LEAs differ only by displacement.
 | 
						|
// 2) Def registers of LEAs belong to the same class.
 | 
						|
// 3) All uses of the Last LEA def register are replaceable, thus the
 | 
						|
//    register is used only as address base.
 | 
						|
bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
 | 
						|
                                       const MachineInstr &Last,
 | 
						|
                                       int64_t &AddrDispShift) const {
 | 
						|
  assert(isLEA(First) && isLEA(Last) &&
 | 
						|
         "The function works only with LEA instructions");
 | 
						|
 | 
						|
  // Make sure that LEA def registers belong to the same class. There may be
 | 
						|
  // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
 | 
						|
  // be used as their operands, so we must be sure that replacing one LEA
 | 
						|
  // with another won't lead to putting a wrong register in the instruction.
 | 
						|
  if (MRI->getRegClass(First.getOperand(0).getReg()) !=
 | 
						|
      MRI->getRegClass(Last.getOperand(0).getReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get new address displacement.
 | 
						|
  AddrDispShift = getAddrDispShift(Last, 1, First, 1);
 | 
						|
 | 
						|
  // Loop over all uses of the Last LEA to check that its def register is
 | 
						|
  // used only as address base for memory accesses. If so, it can be
 | 
						|
  // replaced, otherwise - no.
 | 
						|
  for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
 | 
						|
    MachineInstr &MI = *MO.getParent();
 | 
						|
 | 
						|
    // Get the number of the first memory operand.
 | 
						|
    const MCInstrDesc &Desc = MI.getDesc();
 | 
						|
    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
 | 
						|
 | 
						|
    // If the use instruction has no memory operand - the LEA is not
 | 
						|
    // replaceable.
 | 
						|
    if (MemOpNo < 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    MemOpNo += X86II::getOperandBias(Desc);
 | 
						|
 | 
						|
    // If the address base of the use instruction is not the LEA def register -
 | 
						|
    // the LEA is not replaceable.
 | 
						|
    if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the LEA def register is used as any other operand of the use
 | 
						|
    // instruction - the LEA is not replaceable.
 | 
						|
    for (unsigned i = 0; i < MI.getNumOperands(); i++)
 | 
						|
      if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
 | 
						|
          isIdenticalOp(MI.getOperand(i), MO))
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Check that the new address displacement will fit 4 bytes.
 | 
						|
    if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
 | 
						|
        !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
 | 
						|
                   AddrDispShift))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
 | 
						|
                                  MemOpMap &LEAs) {
 | 
						|
  unsigned Pos = 0;
 | 
						|
  for (auto &MI : MBB) {
 | 
						|
    // Assign the position number to the instruction. Note that we are going to
 | 
						|
    // move some instructions during the optimization however there will never
 | 
						|
    // be a need to move two instructions before any selected instruction. So to
 | 
						|
    // avoid multiple positions' updates during moves we just increase position
 | 
						|
    // counter by two leaving a free space for instructions which will be moved.
 | 
						|
    InstrPos[&MI] = Pos += 2;
 | 
						|
 | 
						|
    if (isLEA(MI))
 | 
						|
      LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Try to find load and store instructions which recalculate addresses already
 | 
						|
// calculated by some LEA and replace their memory operands with its def
 | 
						|
// register.
 | 
						|
bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  assert(!LEAs.empty());
 | 
						|
  MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
 | 
						|
 | 
						|
  // Process all instructions in basic block.
 | 
						|
  for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
 | 
						|
    // Instruction must be load or store.
 | 
						|
    if (!MI.mayLoadOrStore())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the number of the first memory operand.
 | 
						|
    const MCInstrDesc &Desc = MI.getDesc();
 | 
						|
    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
 | 
						|
 | 
						|
    // If instruction has no memory operand - skip it.
 | 
						|
    if (MemOpNo < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MemOpNo += X86II::getOperandBias(Desc);
 | 
						|
 | 
						|
    // Do not call chooseBestLEA if there was no matching LEA
 | 
						|
    auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
 | 
						|
    if (Insns == LEAs.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the best LEA instruction to replace address calculation.
 | 
						|
    MachineInstr *DefMI;
 | 
						|
    int64_t AddrDispShift;
 | 
						|
    int Dist;
 | 
						|
    if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If LEA occurs before current instruction, we can freely replace
 | 
						|
    // the instruction. If LEA occurs after, we can lift LEA above the
 | 
						|
    // instruction and this way to be able to replace it. Since LEA and the
 | 
						|
    // instruction have similar memory operands (thus, the same def
 | 
						|
    // instructions for these operands), we can always do that, without
 | 
						|
    // worries of using registers before their defs.
 | 
						|
    if (Dist < 0) {
 | 
						|
      DefMI->removeFromParent();
 | 
						|
      MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
 | 
						|
      InstrPos[DefMI] = InstrPos[&MI] - 1;
 | 
						|
 | 
						|
      // Make sure the instructions' position numbers are sane.
 | 
						|
      assert(((InstrPos[DefMI] == 1 &&
 | 
						|
               MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
 | 
						|
              InstrPos[DefMI] >
 | 
						|
                  InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
 | 
						|
             "Instruction positioning is broken");
 | 
						|
    }
 | 
						|
 | 
						|
    // Since we can possibly extend register lifetime, clear kill flags.
 | 
						|
    MRI->clearKillFlags(DefMI->getOperand(0).getReg());
 | 
						|
 | 
						|
    ++NumSubstLEAs;
 | 
						|
    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
 | 
						|
 | 
						|
    // Change instruction operands.
 | 
						|
    MI.getOperand(MemOpNo + X86::AddrBaseReg)
 | 
						|
        .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
 | 
						|
    MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
 | 
						|
    MI.getOperand(MemOpNo + X86::AddrIndexReg)
 | 
						|
        .ChangeToRegister(X86::NoRegister, false);
 | 
						|
    MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
 | 
						|
    MI.getOperand(MemOpNo + X86::AddrSegmentReg)
 | 
						|
        .ChangeToRegister(X86::NoRegister, false);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
 | 
						|
                                                    unsigned OldReg,
 | 
						|
                                                    unsigned NewReg,
 | 
						|
                                                    int64_t AddrDispShift) {
 | 
						|
  const DIExpression *Expr = MI.getDebugExpression();
 | 
						|
  if (AddrDispShift != 0) {
 | 
						|
    if (MI.isNonListDebugValue()) {
 | 
						|
      Expr =
 | 
						|
          DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
 | 
						|
    } else {
 | 
						|
      // Update the Expression, appending an offset of `AddrDispShift` to the
 | 
						|
      // Op corresponding to `OldReg`.
 | 
						|
      SmallVector<uint64_t, 3> Ops;
 | 
						|
      DIExpression::appendOffset(Ops, AddrDispShift);
 | 
						|
      for (MachineOperand &Op : MI.getDebugOperandsForReg(OldReg)) {
 | 
						|
        unsigned OpIdx = MI.getDebugOperandIndex(&Op);
 | 
						|
        Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace DBG_VALUE instruction with modified version.
 | 
						|
  MachineBasicBlock *MBB = MI.getParent();
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  bool IsIndirect = MI.isIndirectDebugValue();
 | 
						|
  const MDNode *Var = MI.getDebugVariable();
 | 
						|
  unsigned Opcode = MI.isNonListDebugValue() ? TargetOpcode::DBG_VALUE
 | 
						|
                                             : TargetOpcode::DBG_VALUE_LIST;
 | 
						|
  if (IsIndirect)
 | 
						|
    assert(MI.getDebugOffset().getImm() == 0 &&
 | 
						|
           "DBG_VALUE with nonzero offset");
 | 
						|
  SmallVector<MachineOperand, 4> NewOps;
 | 
						|
  // If we encounter an operand using the old register, replace it with an
 | 
						|
  // operand that uses the new register; otherwise keep the old operand.
 | 
						|
  auto replaceOldReg = [OldReg, NewReg](const MachineOperand &Op) {
 | 
						|
    if (Op.isReg() && Op.getReg() == OldReg)
 | 
						|
      return MachineOperand::CreateReg(NewReg, false, false, false, false,
 | 
						|
                                       false, false, false, false, false,
 | 
						|
                                       /*IsRenamable*/ true);
 | 
						|
    return Op;
 | 
						|
  };
 | 
						|
  for (const MachineOperand &Op : MI.debug_operands())
 | 
						|
    NewOps.push_back(replaceOldReg(Op));
 | 
						|
  return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(Opcode), IsIndirect,
 | 
						|
                 NewOps, Var, Expr);
 | 
						|
}
 | 
						|
 | 
						|
// Try to find similar LEAs in the list and replace one with another.
 | 
						|
bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Loop over all entries in the table.
 | 
						|
  for (auto &E : LEAs) {
 | 
						|
    auto &List = E.second;
 | 
						|
 | 
						|
    // Loop over all LEA pairs.
 | 
						|
    auto I1 = List.begin();
 | 
						|
    while (I1 != List.end()) {
 | 
						|
      MachineInstr &First = **I1;
 | 
						|
      auto I2 = std::next(I1);
 | 
						|
      while (I2 != List.end()) {
 | 
						|
        MachineInstr &Last = **I2;
 | 
						|
        int64_t AddrDispShift;
 | 
						|
 | 
						|
        // LEAs should be in occurrence order in the list, so we can freely
 | 
						|
        // replace later LEAs with earlier ones.
 | 
						|
        assert(calcInstrDist(First, Last) > 0 &&
 | 
						|
               "LEAs must be in occurrence order in the list");
 | 
						|
 | 
						|
        // Check that the Last LEA instruction can be replaced by the First.
 | 
						|
        if (!isReplaceable(First, Last, AddrDispShift)) {
 | 
						|
          ++I2;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Loop over all uses of the Last LEA and update their operands. Note
 | 
						|
        // that the correctness of this has already been checked in the
 | 
						|
        // isReplaceable function.
 | 
						|
        Register FirstVReg = First.getOperand(0).getReg();
 | 
						|
        Register LastVReg = Last.getOperand(0).getReg();
 | 
						|
        for (MachineOperand &MO :
 | 
						|
             llvm::make_early_inc_range(MRI->use_operands(LastVReg))) {
 | 
						|
          MachineInstr &MI = *MO.getParent();
 | 
						|
 | 
						|
          if (MI.isDebugValue()) {
 | 
						|
            // Replace DBG_VALUE instruction with modified version using the
 | 
						|
            // register from the replacing LEA and the address displacement
 | 
						|
            // between the LEA instructions.
 | 
						|
            replaceDebugValue(MI, LastVReg, FirstVReg, AddrDispShift);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
 | 
						|
          // Get the number of the first memory operand.
 | 
						|
          const MCInstrDesc &Desc = MI.getDesc();
 | 
						|
          int MemOpNo =
 | 
						|
              X86II::getMemoryOperandNo(Desc.TSFlags) +
 | 
						|
              X86II::getOperandBias(Desc);
 | 
						|
 | 
						|
          // Update address base.
 | 
						|
          MO.setReg(FirstVReg);
 | 
						|
 | 
						|
          // Update address disp.
 | 
						|
          MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
 | 
						|
          if (Op.isImm())
 | 
						|
            Op.setImm(Op.getImm() + AddrDispShift);
 | 
						|
          else if (!Op.isJTI())
 | 
						|
            Op.setOffset(Op.getOffset() + AddrDispShift);
 | 
						|
        }
 | 
						|
 | 
						|
        // Since we can possibly extend register lifetime, clear kill flags.
 | 
						|
        MRI->clearKillFlags(FirstVReg);
 | 
						|
 | 
						|
        ++NumRedundantLEAs;
 | 
						|
        LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
 | 
						|
                   Last.dump(););
 | 
						|
 | 
						|
        // By this moment, all of the Last LEA's uses must be replaced. So we
 | 
						|
        // can freely remove it.
 | 
						|
        assert(MRI->use_empty(LastVReg) &&
 | 
						|
               "The LEA's def register must have no uses");
 | 
						|
        Last.eraseFromParent();
 | 
						|
 | 
						|
        // Erase removed LEA from the list.
 | 
						|
        I2 = List.erase(I2);
 | 
						|
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
      ++I1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
 | 
						|
  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
 | 
						|
  auto *PSI =
 | 
						|
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | 
						|
  auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
 | 
						|
               &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
 | 
						|
               nullptr;
 | 
						|
 | 
						|
  // Process all basic blocks.
 | 
						|
  for (auto &MBB : MF) {
 | 
						|
    MemOpMap LEAs;
 | 
						|
    InstrPos.clear();
 | 
						|
 | 
						|
    // Find all LEA instructions in basic block.
 | 
						|
    findLEAs(MBB, LEAs);
 | 
						|
 | 
						|
    // If current basic block has no LEAs, move on to the next one.
 | 
						|
    if (LEAs.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Remove redundant LEA instructions.
 | 
						|
    Changed |= removeRedundantLEAs(LEAs);
 | 
						|
 | 
						|
    // Remove redundant address calculations. Do it only for -Os/-Oz since only
 | 
						|
    // a code size gain is expected from this part of the pass.
 | 
						|
    bool OptForSize = MF.getFunction().hasOptSize() ||
 | 
						|
                      llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
 | 
						|
    if (OptForSize)
 | 
						|
      Changed |= removeRedundantAddrCalc(LEAs);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |