364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines RangeConstraintManager, a class that tracks simple 
 | 
						|
//  equality and inequality constraints on symbolic values of GRState.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SimpleConstraintManager.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRState.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
 | 
						|
#include "clang/Frontend/ManagerRegistry.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/ImmutableSet.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
namespace { class VISIBILITY_HIDDEN ConstraintRange {}; }
 | 
						|
static int ConstraintRangeIndex = 0;
 | 
						|
 | 
						|
/// A Range represents the closed range [from, to].  The caller must
 | 
						|
/// guarantee that from <= to.  Note that Range is immutable, so as not
 | 
						|
/// to subvert RangeSet's immutability.
 | 
						|
namespace {
 | 
						|
class VISIBILITY_HIDDEN Range : public std::pair<const llvm::APSInt*,
 | 
						|
                                                const llvm::APSInt*> {
 | 
						|
public:
 | 
						|
  Range(const llvm::APSInt &from, const llvm::APSInt &to)
 | 
						|
    : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
 | 
						|
    assert(from <= to);
 | 
						|
  }
 | 
						|
  bool Includes(const llvm::APSInt &v) const {
 | 
						|
    return *first <= v && v <= *second;
 | 
						|
  }
 | 
						|
  const llvm::APSInt &From() const {
 | 
						|
    return *first;
 | 
						|
  }
 | 
						|
  const llvm::APSInt &To() const {
 | 
						|
    return *second;
 | 
						|
  }
 | 
						|
  const llvm::APSInt *getConcreteValue() const {
 | 
						|
    return &From() == &To() ? &From() : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  void Profile(llvm::FoldingSetNodeID &ID) const {
 | 
						|
    ID.AddPointer(&From());
 | 
						|
    ID.AddPointer(&To());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class VISIBILITY_HIDDEN RangeTrait : public llvm::ImutContainerInfo<Range> {
 | 
						|
public:
 | 
						|
  // When comparing if one Range is less than another, we should compare
 | 
						|
  // the actual APSInt values instead of their pointers.  This keeps the order
 | 
						|
  // consistent (instead of comparing by pointer values) and can potentially
 | 
						|
  // be used to speed up some of the operations in RangeSet.
 | 
						|
  static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
 | 
						|
    return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) && 
 | 
						|
                                       *lhs.second < *rhs.second);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// RangeSet contains a set of ranges. If the set is empty, then
 | 
						|
///  there the value of a symbol is overly constrained and there are no
 | 
						|
///  possible values for that symbol.
 | 
						|
class VISIBILITY_HIDDEN RangeSet {
 | 
						|
  typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
 | 
						|
  PrimRangeSet ranges; // no need to make const, since it is an
 | 
						|
                       // ImmutableSet - this allows default operator=
 | 
						|
                       // to work.    
 | 
						|
public:
 | 
						|
  typedef PrimRangeSet::Factory Factory;
 | 
						|
  typedef PrimRangeSet::iterator iterator;
 | 
						|
 | 
						|
  RangeSet(PrimRangeSet RS) : ranges(RS) {}
 | 
						|
  RangeSet(Factory& F) : ranges(F.GetEmptySet()) {}
 | 
						|
 | 
						|
  iterator begin() const { return ranges.begin(); }
 | 
						|
  iterator end() const { return ranges.end(); }
 | 
						|
  
 | 
						|
  bool isEmpty() const { return ranges.isEmpty(); }
 | 
						|
  
 | 
						|
  /// Construct a new RangeSet representing '{ [from, to] }'.
 | 
						|
  RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
 | 
						|
    : ranges(F.Add(F.GetEmptySet(), Range(from, to))) {}
 | 
						|
  
 | 
						|
  /// Profile - Generates a hash profile of this RangeSet for use
 | 
						|
  ///  by FoldingSet.
 | 
						|
  void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
 | 
						|
 | 
						|
  /// getConcreteValue - If a symbol is contrained to equal a specific integer
 | 
						|
  ///  constant then this method returns that value.  Otherwise, it returns
 | 
						|
  ///  NULL.
 | 
						|
  const llvm::APSInt* getConcreteValue() const {
 | 
						|
    return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddEQ - Create a new RangeSet with the additional constraint that the
 | 
						|
  ///  value be equal to V.
 | 
						|
  RangeSet AddEQ(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) {
 | 
						|
    // Search for a range that includes 'V'.  If so, return a new RangeSet
 | 
						|
    // representing { [V, V] }.
 | 
						|
    for (PrimRangeSet::iterator i = begin(), e = end(); i!=e; ++i)
 | 
						|
      if (i->Includes(V))
 | 
						|
        return RangeSet(F, V, V);
 | 
						|
 | 
						|
    return RangeSet(F);
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddNE - Create a new RangeSet with the additional constraint that the
 | 
						|
  ///  value be not be equal to V.
 | 
						|
  RangeSet AddNE(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) {
 | 
						|
    PrimRangeSet newRanges = ranges;
 | 
						|
    
 | 
						|
    // FIXME: We can perhaps enhance ImmutableSet to do this search for us
 | 
						|
    // in log(N) time using the sorted property of the internal AVL tree.
 | 
						|
    for (iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
      if (i->Includes(V)) {
 | 
						|
        // Remove the old range.
 | 
						|
        newRanges = F.Remove(newRanges, *i);
 | 
						|
        // Split the old range into possibly one or two ranges.
 | 
						|
        if (V != i->From())
 | 
						|
          newRanges = F.Add(newRanges, Range(i->From(), BV.Sub1(V)));
 | 
						|
        if (V != i->To())
 | 
						|
          newRanges = F.Add(newRanges, Range(BV.Add1(V), i->To()));
 | 
						|
        // All of the ranges are non-overlapping, so we can stop.        
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return newRanges;
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddNE - Create a new RangeSet with the additional constraint that the
 | 
						|
  ///  value be less than V.
 | 
						|
  RangeSet AddLT(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) {
 | 
						|
    PrimRangeSet newRanges = F.GetEmptySet();
 | 
						|
 | 
						|
    for (iterator i = begin(), e = end() ; i != e ; ++i) {
 | 
						|
      if (i->Includes(V) && i->From() < V)
 | 
						|
        newRanges = F.Add(newRanges, Range(i->From(), BV.Sub1(V)));
 | 
						|
      else if (i->To() < V)
 | 
						|
        newRanges = F.Add(newRanges, *i);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return newRanges;
 | 
						|
  }
 | 
						|
 | 
						|
  RangeSet AddLE(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) {
 | 
						|
    PrimRangeSet newRanges = F.GetEmptySet();
 | 
						|
 | 
						|
    for (iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
      // Strictly we should test for includes *V + 1, but no harm is
 | 
						|
      // done by this formulation
 | 
						|
      if (i->Includes(V))
 | 
						|
        newRanges = F.Add(newRanges, Range(i->From(), V));
 | 
						|
      else if (i->To() <= V)
 | 
						|
        newRanges = F.Add(newRanges, *i);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return newRanges;
 | 
						|
  }
 | 
						|
 | 
						|
  RangeSet AddGT(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) {
 | 
						|
    PrimRangeSet newRanges = F.GetEmptySet();
 | 
						|
 | 
						|
    for (PrimRangeSet::iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
      if (i->Includes(V) && i->To() > V)
 | 
						|
        newRanges = F.Add(newRanges, Range(BV.Add1(V), i->To()));
 | 
						|
      else if (i->From() > V)
 | 
						|
        newRanges = F.Add(newRanges, *i);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return newRanges;
 | 
						|
  }
 | 
						|
 | 
						|
  RangeSet AddGE(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) {
 | 
						|
    PrimRangeSet newRanges = F.GetEmptySet();
 | 
						|
 | 
						|
    for (PrimRangeSet::iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
      // Strictly we should test for includes *V - 1, but no harm is
 | 
						|
      // done by this formulation
 | 
						|
      if (i->Includes(V))
 | 
						|
        newRanges = F.Add(newRanges, Range(V, i->To()));
 | 
						|
      else if (i->From() >= V)
 | 
						|
        newRanges = F.Add(newRanges, *i);
 | 
						|
    }
 | 
						|
 | 
						|
    return newRanges;
 | 
						|
  }
 | 
						|
 | 
						|
  void Print(std::ostream &os) const {
 | 
						|
    bool isFirst = true;
 | 
						|
    os << "{ ";
 | 
						|
    for (iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
      if (isFirst)
 | 
						|
        isFirst = false;
 | 
						|
      else
 | 
						|
        os << ", ";
 | 
						|
      
 | 
						|
      os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
 | 
						|
         << ']';
 | 
						|
    }
 | 
						|
    os << " }";  
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool operator==(const RangeSet &other) const {
 | 
						|
    return ranges == other.ranges;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
 | 
						|
 | 
						|
namespace clang {
 | 
						|
template<>
 | 
						|
struct GRStateTrait<ConstraintRange>
 | 
						|
  : public GRStatePartialTrait<ConstraintRangeTy> {
 | 
						|
  static inline void* GDMIndex() { return &ConstraintRangeIndex; }  
 | 
						|
};
 | 
						|
}  
 | 
						|
  
 | 
						|
namespace {
 | 
						|
class VISIBILITY_HIDDEN RangeConstraintManager : public SimpleConstraintManager{
 | 
						|
  RangeSet GetRange(GRStateRef state, SymbolRef sym);      
 | 
						|
public:
 | 
						|
  RangeConstraintManager(GRStateManager& statemgr) 
 | 
						|
      : SimpleConstraintManager(statemgr) {}
 | 
						|
 | 
						|
  const GRState* AssumeSymNE(const GRState* St, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V, bool& isFeasible);
 | 
						|
 | 
						|
  const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym,
 | 
						|
                                const llvm::APSInt& V, bool& isFeasible);
 | 
						|
 | 
						|
  const GRState* AssumeSymLT(const GRState* St, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt& V, bool& isFeasible);
 | 
						|
 | 
						|
  const GRState* AssumeSymGT(const GRState* St, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V, bool& isFeasible);
 | 
						|
 | 
						|
  const GRState* AssumeSymGE(const GRState* St, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V, bool& isFeasible);
 | 
						|
 | 
						|
  const GRState* AssumeSymLE(const GRState* St, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V, bool& isFeasible);
 | 
						|
 | 
						|
  const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const;
 | 
						|
    
 | 
						|
  // FIXME: Refactor into SimpleConstraintManager?
 | 
						|
  bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const {
 | 
						|
    const llvm::APSInt *i = getSymVal(St, sym);
 | 
						|
    return i ? *i == V : false;
 | 
						|
  }
 | 
						|
 | 
						|
  const GRState* RemoveDeadBindings(const GRState* St, SymbolReaper& SymReaper);
 | 
						|
 | 
						|
  void print(const GRState* St, std::ostream& Out, 
 | 
						|
             const char* nl, const char *sep);
 | 
						|
 | 
						|
private:
 | 
						|
  RangeSet::Factory F;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
ConstraintManager* clang::CreateRangeConstraintManager(GRStateManager& StateMgr)
 | 
						|
{
 | 
						|
  return new RangeConstraintManager(StateMgr);
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt* RangeConstraintManager::getSymVal(const GRState* St,
 | 
						|
                                                      SymbolRef sym) const {
 | 
						|
  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
 | 
						|
  return T ? T->getConcreteValue() : NULL;
 | 
						|
}
 | 
						|
 | 
						|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
 | 
						|
/// as marked in LSymbols, mark it as dead in DSymbols.
 | 
						|
const GRState*
 | 
						|
RangeConstraintManager::RemoveDeadBindings(const GRState* St,
 | 
						|
                                           SymbolReaper& SymReaper) {
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
 | 
						|
  ConstraintRangeTy CR = state.get<ConstraintRange>();
 | 
						|
  ConstraintRangeTy::Factory& CRFactory = state.get_context<ConstraintRange>();
 | 
						|
 | 
						|
  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
 | 
						|
    SymbolRef sym = I.getKey();    
 | 
						|
    if (SymReaper.maybeDead(sym))
 | 
						|
      CR = CRFactory.Remove(CR, sym);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return state.set<ConstraintRange>(CR);
 | 
						|
}
 | 
						|
 | 
						|
//===------------------------------------------------------------------------===
 | 
						|
// AssumeSymX methods: public interface for RangeConstraintManager.
 | 
						|
//===------------------------------------------------------------------------===/
 | 
						|
 | 
						|
RangeSet
 | 
						|
RangeConstraintManager::GetRange(GRStateRef state, SymbolRef sym) {
 | 
						|
  if (ConstraintRangeTy::data_type* V = state.get<ConstraintRange>(sym))
 | 
						|
    return *V;
 | 
						|
  
 | 
						|
  // Lazily generate a new RangeSet representing all possible values for the
 | 
						|
  // given symbol type.
 | 
						|
  QualType T = state.getSymbolManager().getType(sym);
 | 
						|
  BasicValueFactory& BV = state.getBasicVals();  
 | 
						|
  return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
 | 
						|
}
 | 
						|
 | 
						|
//===------------------------------------------------------------------------===
 | 
						|
// AssumeSymX methods: public interface for RangeConstraintManager.
 | 
						|
//===------------------------------------------------------------------------===/
 | 
						|
 | 
						|
#define AssumeX(OP)\
 | 
						|
const GRState*\
 | 
						|
RangeConstraintManager::AssumeSym ## OP(const GRState* St, SymbolRef sym,\
 | 
						|
  const llvm::APSInt& V, bool& isFeasible){\
 | 
						|
  GRStateRef state(St, StateMgr);\
 | 
						|
  const RangeSet& R = GetRange(state, sym).Add##OP(state.getBasicVals(), F, V);\
 | 
						|
  isFeasible = !R.isEmpty();\
 | 
						|
  return isFeasible ? state.set<ConstraintRange>(sym, R).getState() : 0;\
 | 
						|
}
 | 
						|
 | 
						|
AssumeX(EQ)
 | 
						|
AssumeX(NE)
 | 
						|
AssumeX(LT)
 | 
						|
AssumeX(GT)
 | 
						|
AssumeX(LE)
 | 
						|
AssumeX(GE)
 | 
						|
 | 
						|
//===------------------------------------------------------------------------===
 | 
						|
// Pretty-printing.
 | 
						|
//===------------------------------------------------------------------------===/
 | 
						|
 | 
						|
void RangeConstraintManager::print(const GRState* St, std::ostream& Out, 
 | 
						|
                                   const char* nl, const char *sep) {
 | 
						|
  
 | 
						|
  ConstraintRangeTy Ranges = St->get<ConstraintRange>();
 | 
						|
  
 | 
						|
  if (Ranges.isEmpty())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  Out << nl << sep << "ranges of symbol values:";
 | 
						|
  
 | 
						|
  for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
 | 
						|
    Out << nl << " $" << I.getKey() << " : ";
 | 
						|
    I.getData().Print(Out);
 | 
						|
  }
 | 
						|
}
 |