1088 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1088 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/YAMLTraits.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Errc.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/LineIterator.h"
 | 
						|
#include "llvm/Support/MemoryBuffer.h"
 | 
						|
#include "llvm/Support/Unicode.h"
 | 
						|
#include "llvm/Support/YAMLParser.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdlib>
 | 
						|
#include <cstring>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace yaml;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  IO
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
IO::IO(void *Context) : Ctxt(Context) {}
 | 
						|
 | 
						|
IO::~IO() = default;
 | 
						|
 | 
						|
void *IO::getContext() const {
 | 
						|
  return Ctxt;
 | 
						|
}
 | 
						|
 | 
						|
void IO::setContext(void *Context) {
 | 
						|
  Ctxt = Context;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Input
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Input::Input(StringRef InputContent, void *Ctxt,
 | 
						|
             SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
 | 
						|
    : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
 | 
						|
  if (DiagHandler)
 | 
						|
    SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
 | 
						|
  DocIterator = Strm->begin();
 | 
						|
}
 | 
						|
 | 
						|
Input::Input(MemoryBufferRef Input, void *Ctxt,
 | 
						|
             SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
 | 
						|
    : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
 | 
						|
  if (DiagHandler)
 | 
						|
    SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
 | 
						|
  DocIterator = Strm->begin();
 | 
						|
}
 | 
						|
 | 
						|
Input::~Input() = default;
 | 
						|
 | 
						|
std::error_code Input::error() { return EC; }
 | 
						|
 | 
						|
// Pin the vtables to this file.
 | 
						|
void Input::HNode::anchor() {}
 | 
						|
void Input::EmptyHNode::anchor() {}
 | 
						|
void Input::ScalarHNode::anchor() {}
 | 
						|
void Input::MapHNode::anchor() {}
 | 
						|
void Input::SequenceHNode::anchor() {}
 | 
						|
 | 
						|
bool Input::outputting() const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::setCurrentDocument() {
 | 
						|
  if (DocIterator != Strm->end()) {
 | 
						|
    Node *N = DocIterator->getRoot();
 | 
						|
    if (!N) {
 | 
						|
      EC = make_error_code(errc::invalid_argument);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<NullNode>(N)) {
 | 
						|
      // Empty files are allowed and ignored
 | 
						|
      ++DocIterator;
 | 
						|
      return setCurrentDocument();
 | 
						|
    }
 | 
						|
    TopNode = createHNodes(N);
 | 
						|
    CurrentNode = TopNode.get();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::nextDocument() {
 | 
						|
  return ++DocIterator != Strm->end();
 | 
						|
}
 | 
						|
 | 
						|
const Node *Input::getCurrentNode() const {
 | 
						|
  return CurrentNode ? CurrentNode->_node : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::mapTag(StringRef Tag, bool Default) {
 | 
						|
  // CurrentNode can be null if setCurrentDocument() was unable to
 | 
						|
  // parse the document because it was invalid or empty.
 | 
						|
  if (!CurrentNode)
 | 
						|
    return false;
 | 
						|
 | 
						|
  std::string foundTag = CurrentNode->_node->getVerbatimTag();
 | 
						|
  if (foundTag.empty()) {
 | 
						|
    // If no tag found and 'Tag' is the default, say it was found.
 | 
						|
    return Default;
 | 
						|
  }
 | 
						|
  // Return true iff found tag matches supplied tag.
 | 
						|
  return Tag.equals(foundTag);
 | 
						|
}
 | 
						|
 | 
						|
void Input::beginMapping() {
 | 
						|
  if (EC)
 | 
						|
    return;
 | 
						|
  // CurrentNode can be null if the document is empty.
 | 
						|
  MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
 | 
						|
  if (MN) {
 | 
						|
    MN->ValidKeys.clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<StringRef> Input::keys() {
 | 
						|
  MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
 | 
						|
  std::vector<StringRef> Ret;
 | 
						|
  if (!MN) {
 | 
						|
    setError(CurrentNode, "not a mapping");
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
  for (auto &P : MN->Mapping)
 | 
						|
    Ret.push_back(P.first());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
 | 
						|
                         void *&SaveInfo) {
 | 
						|
  UseDefault = false;
 | 
						|
  if (EC)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // CurrentNode is null for empty documents, which is an error in case required
 | 
						|
  // nodes are present.
 | 
						|
  if (!CurrentNode) {
 | 
						|
    if (Required)
 | 
						|
      EC = make_error_code(errc::invalid_argument);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
 | 
						|
  if (!MN) {
 | 
						|
    if (Required || !isa<EmptyHNode>(CurrentNode))
 | 
						|
      setError(CurrentNode, "not a mapping");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  MN->ValidKeys.push_back(Key);
 | 
						|
  HNode *Value = MN->Mapping[Key].get();
 | 
						|
  if (!Value) {
 | 
						|
    if (Required)
 | 
						|
      setError(CurrentNode, Twine("missing required key '") + Key + "'");
 | 
						|
    else
 | 
						|
      UseDefault = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  SaveInfo = CurrentNode;
 | 
						|
  CurrentNode = Value;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Input::postflightKey(void *saveInfo) {
 | 
						|
  CurrentNode = reinterpret_cast<HNode *>(saveInfo);
 | 
						|
}
 | 
						|
 | 
						|
void Input::endMapping() {
 | 
						|
  if (EC)
 | 
						|
    return;
 | 
						|
  // CurrentNode can be null if the document is empty.
 | 
						|
  MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
 | 
						|
  if (!MN)
 | 
						|
    return;
 | 
						|
  for (const auto &NN : MN->Mapping) {
 | 
						|
    if (!is_contained(MN->ValidKeys, NN.first())) {
 | 
						|
      setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Input::beginFlowMapping() { beginMapping(); }
 | 
						|
 | 
						|
void Input::endFlowMapping() { endMapping(); }
 | 
						|
 | 
						|
unsigned Input::beginSequence() {
 | 
						|
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
 | 
						|
    return SQ->Entries.size();
 | 
						|
  if (isa<EmptyHNode>(CurrentNode))
 | 
						|
    return 0;
 | 
						|
  // Treat case where there's a scalar "null" value as an empty sequence.
 | 
						|
  if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
 | 
						|
    if (isNull(SN->value()))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  // Any other type of HNode is an error.
 | 
						|
  setError(CurrentNode, "not a sequence");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void Input::endSequence() {
 | 
						|
}
 | 
						|
 | 
						|
bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
 | 
						|
  if (EC)
 | 
						|
    return false;
 | 
						|
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | 
						|
    SaveInfo = CurrentNode;
 | 
						|
    CurrentNode = SQ->Entries[Index].get();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Input::postflightElement(void *SaveInfo) {
 | 
						|
  CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
 | 
						|
}
 | 
						|
 | 
						|
unsigned Input::beginFlowSequence() { return beginSequence(); }
 | 
						|
 | 
						|
bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
 | 
						|
  if (EC)
 | 
						|
    return false;
 | 
						|
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | 
						|
    SaveInfo = CurrentNode;
 | 
						|
    CurrentNode = SQ->Entries[index].get();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Input::postflightFlowElement(void *SaveInfo) {
 | 
						|
  CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
 | 
						|
}
 | 
						|
 | 
						|
void Input::endFlowSequence() {
 | 
						|
}
 | 
						|
 | 
						|
void Input::beginEnumScalar() {
 | 
						|
  ScalarMatchFound = false;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::matchEnumScalar(const char *Str, bool) {
 | 
						|
  if (ScalarMatchFound)
 | 
						|
    return false;
 | 
						|
  if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
 | 
						|
    if (SN->value().equals(Str)) {
 | 
						|
      ScalarMatchFound = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::matchEnumFallback() {
 | 
						|
  if (ScalarMatchFound)
 | 
						|
    return false;
 | 
						|
  ScalarMatchFound = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Input::endEnumScalar() {
 | 
						|
  if (!ScalarMatchFound) {
 | 
						|
    setError(CurrentNode, "unknown enumerated scalar");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Input::beginBitSetScalar(bool &DoClear) {
 | 
						|
  BitValuesUsed.clear();
 | 
						|
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | 
						|
    BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
 | 
						|
  } else {
 | 
						|
    setError(CurrentNode, "expected sequence of bit values");
 | 
						|
  }
 | 
						|
  DoClear = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Input::bitSetMatch(const char *Str, bool) {
 | 
						|
  if (EC)
 | 
						|
    return false;
 | 
						|
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | 
						|
    unsigned Index = 0;
 | 
						|
    for (auto &N : SQ->Entries) {
 | 
						|
      if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
 | 
						|
        if (SN->value().equals(Str)) {
 | 
						|
          BitValuesUsed[Index] = true;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        setError(CurrentNode, "unexpected scalar in sequence of bit values");
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    setError(CurrentNode, "expected sequence of bit values");
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Input::endBitSetScalar() {
 | 
						|
  if (EC)
 | 
						|
    return;
 | 
						|
  if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | 
						|
    assert(BitValuesUsed.size() == SQ->Entries.size());
 | 
						|
    for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
 | 
						|
      if (!BitValuesUsed[i]) {
 | 
						|
        setError(SQ->Entries[i].get(), "unknown bit value");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Input::scalarString(StringRef &S, QuotingType) {
 | 
						|
  if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
 | 
						|
    S = SN->value();
 | 
						|
  } else {
 | 
						|
    setError(CurrentNode, "unexpected scalar");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
 | 
						|
 | 
						|
void Input::scalarTag(std::string &Tag) {
 | 
						|
  Tag = CurrentNode->_node->getVerbatimTag();
 | 
						|
}
 | 
						|
 | 
						|
void Input::setError(HNode *hnode, const Twine &message) {
 | 
						|
  assert(hnode && "HNode must not be NULL");
 | 
						|
  setError(hnode->_node, message);
 | 
						|
}
 | 
						|
 | 
						|
NodeKind Input::getNodeKind() {
 | 
						|
  if (isa<ScalarHNode>(CurrentNode))
 | 
						|
    return NodeKind::Scalar;
 | 
						|
  else if (isa<MapHNode>(CurrentNode))
 | 
						|
    return NodeKind::Map;
 | 
						|
  else if (isa<SequenceHNode>(CurrentNode))
 | 
						|
    return NodeKind::Sequence;
 | 
						|
  llvm_unreachable("Unsupported node kind");
 | 
						|
}
 | 
						|
 | 
						|
void Input::setError(Node *node, const Twine &message) {
 | 
						|
  Strm->printError(node, message);
 | 
						|
  EC = make_error_code(errc::invalid_argument);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
 | 
						|
  SmallString<128> StringStorage;
 | 
						|
  if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
 | 
						|
    StringRef KeyStr = SN->getValue(StringStorage);
 | 
						|
    if (!StringStorage.empty()) {
 | 
						|
      // Copy string to permanent storage
 | 
						|
      KeyStr = StringStorage.str().copy(StringAllocator);
 | 
						|
    }
 | 
						|
    return std::make_unique<ScalarHNode>(N, KeyStr);
 | 
						|
  } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
 | 
						|
    StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
 | 
						|
    return std::make_unique<ScalarHNode>(N, ValueCopy);
 | 
						|
  } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
 | 
						|
    auto SQHNode = std::make_unique<SequenceHNode>(N);
 | 
						|
    for (Node &SN : *SQ) {
 | 
						|
      auto Entry = createHNodes(&SN);
 | 
						|
      if (EC)
 | 
						|
        break;
 | 
						|
      SQHNode->Entries.push_back(std::move(Entry));
 | 
						|
    }
 | 
						|
    return std::move(SQHNode);
 | 
						|
  } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
 | 
						|
    auto mapHNode = std::make_unique<MapHNode>(N);
 | 
						|
    for (KeyValueNode &KVN : *Map) {
 | 
						|
      Node *KeyNode = KVN.getKey();
 | 
						|
      ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
 | 
						|
      Node *Value = KVN.getValue();
 | 
						|
      if (!Key || !Value) {
 | 
						|
        if (!Key)
 | 
						|
          setError(KeyNode, "Map key must be a scalar");
 | 
						|
        if (!Value)
 | 
						|
          setError(KeyNode, "Map value must not be empty");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      StringStorage.clear();
 | 
						|
      StringRef KeyStr = Key->getValue(StringStorage);
 | 
						|
      if (!StringStorage.empty()) {
 | 
						|
        // Copy string to permanent storage
 | 
						|
        KeyStr = StringStorage.str().copy(StringAllocator);
 | 
						|
      }
 | 
						|
      auto ValueHNode = createHNodes(Value);
 | 
						|
      if (EC)
 | 
						|
        break;
 | 
						|
      mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
 | 
						|
    }
 | 
						|
    return std::move(mapHNode);
 | 
						|
  } else if (isa<NullNode>(N)) {
 | 
						|
    return std::make_unique<EmptyHNode>(N);
 | 
						|
  } else {
 | 
						|
    setError(N, "unknown node kind");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Input::setError(const Twine &Message) {
 | 
						|
  setError(CurrentNode, Message);
 | 
						|
}
 | 
						|
 | 
						|
bool Input::canElideEmptySequence() {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Output
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Output::Output(raw_ostream &yout, void *context, int WrapColumn)
 | 
						|
    : IO(context), Out(yout), WrapColumn(WrapColumn) {}
 | 
						|
 | 
						|
Output::~Output() = default;
 | 
						|
 | 
						|
bool Output::outputting() const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Output::beginMapping() {
 | 
						|
  StateStack.push_back(inMapFirstKey);
 | 
						|
  PaddingBeforeContainer = Padding;
 | 
						|
  Padding = "\n";
 | 
						|
}
 | 
						|
 | 
						|
bool Output::mapTag(StringRef Tag, bool Use) {
 | 
						|
  if (Use) {
 | 
						|
    // If this tag is being written inside a sequence we should write the start
 | 
						|
    // of the sequence before writing the tag, otherwise the tag won't be
 | 
						|
    // attached to the element in the sequence, but rather the sequence itself.
 | 
						|
    bool SequenceElement = false;
 | 
						|
    if (StateStack.size() > 1) {
 | 
						|
      auto &E = StateStack[StateStack.size() - 2];
 | 
						|
      SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
 | 
						|
    }
 | 
						|
    if (SequenceElement && StateStack.back() == inMapFirstKey) {
 | 
						|
      newLineCheck();
 | 
						|
    } else {
 | 
						|
      output(" ");
 | 
						|
    }
 | 
						|
    output(Tag);
 | 
						|
    if (SequenceElement) {
 | 
						|
      // If we're writing the tag during the first element of a map, the tag
 | 
						|
      // takes the place of the first element in the sequence.
 | 
						|
      if (StateStack.back() == inMapFirstKey) {
 | 
						|
        StateStack.pop_back();
 | 
						|
        StateStack.push_back(inMapOtherKey);
 | 
						|
      }
 | 
						|
      // Tags inside maps in sequences should act as keys in the map from a
 | 
						|
      // formatting perspective, so we always want a newline in a sequence.
 | 
						|
      Padding = "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Use;
 | 
						|
}
 | 
						|
 | 
						|
void Output::endMapping() {
 | 
						|
  // If we did not map anything, we should explicitly emit an empty map
 | 
						|
  if (StateStack.back() == inMapFirstKey) {
 | 
						|
    Padding = PaddingBeforeContainer;
 | 
						|
    newLineCheck();
 | 
						|
    output("{}");
 | 
						|
    Padding = "\n";
 | 
						|
  }
 | 
						|
  StateStack.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
std::vector<StringRef> Output::keys() {
 | 
						|
  report_fatal_error("invalid call");
 | 
						|
}
 | 
						|
 | 
						|
bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
 | 
						|
                          bool &UseDefault, void *&) {
 | 
						|
  UseDefault = false;
 | 
						|
  if (Required || !SameAsDefault || WriteDefaultValues) {
 | 
						|
    auto State = StateStack.back();
 | 
						|
    if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
 | 
						|
      flowKey(Key);
 | 
						|
    } else {
 | 
						|
      newLineCheck();
 | 
						|
      paddedKey(Key);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Output::postflightKey(void *) {
 | 
						|
  if (StateStack.back() == inMapFirstKey) {
 | 
						|
    StateStack.pop_back();
 | 
						|
    StateStack.push_back(inMapOtherKey);
 | 
						|
  } else if (StateStack.back() == inFlowMapFirstKey) {
 | 
						|
    StateStack.pop_back();
 | 
						|
    StateStack.push_back(inFlowMapOtherKey);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Output::beginFlowMapping() {
 | 
						|
  StateStack.push_back(inFlowMapFirstKey);
 | 
						|
  newLineCheck();
 | 
						|
  ColumnAtMapFlowStart = Column;
 | 
						|
  output("{ ");
 | 
						|
}
 | 
						|
 | 
						|
void Output::endFlowMapping() {
 | 
						|
  StateStack.pop_back();
 | 
						|
  outputUpToEndOfLine(" }");
 | 
						|
}
 | 
						|
 | 
						|
void Output::beginDocuments() {
 | 
						|
  outputUpToEndOfLine("---");
 | 
						|
}
 | 
						|
 | 
						|
bool Output::preflightDocument(unsigned index) {
 | 
						|
  if (index > 0)
 | 
						|
    outputUpToEndOfLine("\n---");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Output::postflightDocument() {
 | 
						|
}
 | 
						|
 | 
						|
void Output::endDocuments() {
 | 
						|
  output("\n...\n");
 | 
						|
}
 | 
						|
 | 
						|
unsigned Output::beginSequence() {
 | 
						|
  StateStack.push_back(inSeqFirstElement);
 | 
						|
  PaddingBeforeContainer = Padding;
 | 
						|
  Padding = "\n";
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void Output::endSequence() {
 | 
						|
  // If we did not emit anything, we should explicitly emit an empty sequence
 | 
						|
  if (StateStack.back() == inSeqFirstElement) {
 | 
						|
    Padding = PaddingBeforeContainer;
 | 
						|
    newLineCheck();
 | 
						|
    output("[]");
 | 
						|
    Padding = "\n";
 | 
						|
  }
 | 
						|
  StateStack.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
bool Output::preflightElement(unsigned, void *&) {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Output::postflightElement(void *) {
 | 
						|
  if (StateStack.back() == inSeqFirstElement) {
 | 
						|
    StateStack.pop_back();
 | 
						|
    StateStack.push_back(inSeqOtherElement);
 | 
						|
  } else if (StateStack.back() == inFlowSeqFirstElement) {
 | 
						|
    StateStack.pop_back();
 | 
						|
    StateStack.push_back(inFlowSeqOtherElement);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned Output::beginFlowSequence() {
 | 
						|
  StateStack.push_back(inFlowSeqFirstElement);
 | 
						|
  newLineCheck();
 | 
						|
  ColumnAtFlowStart = Column;
 | 
						|
  output("[ ");
 | 
						|
  NeedFlowSequenceComma = false;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void Output::endFlowSequence() {
 | 
						|
  StateStack.pop_back();
 | 
						|
  outputUpToEndOfLine(" ]");
 | 
						|
}
 | 
						|
 | 
						|
bool Output::preflightFlowElement(unsigned, void *&) {
 | 
						|
  if (NeedFlowSequenceComma)
 | 
						|
    output(", ");
 | 
						|
  if (WrapColumn && Column > WrapColumn) {
 | 
						|
    output("\n");
 | 
						|
    for (int i = 0; i < ColumnAtFlowStart; ++i)
 | 
						|
      output(" ");
 | 
						|
    Column = ColumnAtFlowStart;
 | 
						|
    output("  ");
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Output::postflightFlowElement(void *) {
 | 
						|
  NeedFlowSequenceComma = true;
 | 
						|
}
 | 
						|
 | 
						|
void Output::beginEnumScalar() {
 | 
						|
  EnumerationMatchFound = false;
 | 
						|
}
 | 
						|
 | 
						|
bool Output::matchEnumScalar(const char *Str, bool Match) {
 | 
						|
  if (Match && !EnumerationMatchFound) {
 | 
						|
    newLineCheck();
 | 
						|
    outputUpToEndOfLine(Str);
 | 
						|
    EnumerationMatchFound = true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Output::matchEnumFallback() {
 | 
						|
  if (EnumerationMatchFound)
 | 
						|
    return false;
 | 
						|
  EnumerationMatchFound = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Output::endEnumScalar() {
 | 
						|
  if (!EnumerationMatchFound)
 | 
						|
    llvm_unreachable("bad runtime enum value");
 | 
						|
}
 | 
						|
 | 
						|
bool Output::beginBitSetScalar(bool &DoClear) {
 | 
						|
  newLineCheck();
 | 
						|
  output("[ ");
 | 
						|
  NeedBitValueComma = false;
 | 
						|
  DoClear = false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Output::bitSetMatch(const char *Str, bool Matches) {
 | 
						|
  if (Matches) {
 | 
						|
    if (NeedBitValueComma)
 | 
						|
      output(", ");
 | 
						|
    output(Str);
 | 
						|
    NeedBitValueComma = true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Output::endBitSetScalar() {
 | 
						|
  outputUpToEndOfLine(" ]");
 | 
						|
}
 | 
						|
 | 
						|
void Output::scalarString(StringRef &S, QuotingType MustQuote) {
 | 
						|
  newLineCheck();
 | 
						|
  if (S.empty()) {
 | 
						|
    // Print '' for the empty string because leaving the field empty is not
 | 
						|
    // allowed.
 | 
						|
    outputUpToEndOfLine("''");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (MustQuote == QuotingType::None) {
 | 
						|
    // Only quote if we must.
 | 
						|
    outputUpToEndOfLine(S);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
 | 
						|
  output(Quote); // Starting quote.
 | 
						|
 | 
						|
  // When using double-quoted strings (and only in that case), non-printable characters may be
 | 
						|
  // present, and will be escaped using a variety of unicode-scalar and special short-form
 | 
						|
  // escapes. This is handled in yaml::escape.
 | 
						|
  if (MustQuote == QuotingType::Double) {
 | 
						|
    output(yaml::escape(S, /* EscapePrintable= */ false));
 | 
						|
    outputUpToEndOfLine(Quote);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned i = 0;
 | 
						|
  unsigned j = 0;
 | 
						|
  unsigned End = S.size();
 | 
						|
  const char *Base = S.data();
 | 
						|
 | 
						|
  // When using single-quoted strings, any single quote ' must be doubled to be escaped.
 | 
						|
  while (j < End) {
 | 
						|
    if (S[j] == '\'') {                    // Escape quotes.
 | 
						|
      output(StringRef(&Base[i], j - i));  // "flush".
 | 
						|
      output(StringLiteral("''"));         // Print it as ''
 | 
						|
      i = j + 1;
 | 
						|
    }
 | 
						|
    ++j;
 | 
						|
  }
 | 
						|
  output(StringRef(&Base[i], j - i));
 | 
						|
  outputUpToEndOfLine(Quote); // Ending quote.
 | 
						|
}
 | 
						|
 | 
						|
void Output::blockScalarString(StringRef &S) {
 | 
						|
  if (!StateStack.empty())
 | 
						|
    newLineCheck();
 | 
						|
  output(" |");
 | 
						|
  outputNewLine();
 | 
						|
 | 
						|
  unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
 | 
						|
 | 
						|
  auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
 | 
						|
  for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
 | 
						|
    for (unsigned I = 0; I < Indent; ++I) {
 | 
						|
      output("  ");
 | 
						|
    }
 | 
						|
    output(*Lines);
 | 
						|
    outputNewLine();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Output::scalarTag(std::string &Tag) {
 | 
						|
  if (Tag.empty())
 | 
						|
    return;
 | 
						|
  newLineCheck();
 | 
						|
  output(Tag);
 | 
						|
  output(" ");
 | 
						|
}
 | 
						|
 | 
						|
void Output::setError(const Twine &message) {
 | 
						|
}
 | 
						|
 | 
						|
bool Output::canElideEmptySequence() {
 | 
						|
  // Normally, with an optional key/value where the value is an empty sequence,
 | 
						|
  // the whole key/value can be not written.  But, that produces wrong yaml
 | 
						|
  // if the key/value is the only thing in the map and the map is used in
 | 
						|
  // a sequence.  This detects if the this sequence is the first key/value
 | 
						|
  // in map that itself is embedded in a sequnce.
 | 
						|
  if (StateStack.size() < 2)
 | 
						|
    return true;
 | 
						|
  if (StateStack.back() != inMapFirstKey)
 | 
						|
    return true;
 | 
						|
  return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
 | 
						|
}
 | 
						|
 | 
						|
void Output::output(StringRef s) {
 | 
						|
  Column += s.size();
 | 
						|
  Out << s;
 | 
						|
}
 | 
						|
 | 
						|
void Output::outputUpToEndOfLine(StringRef s) {
 | 
						|
  output(s);
 | 
						|
  if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
 | 
						|
                             !inFlowMapAnyKey(StateStack.back())))
 | 
						|
    Padding = "\n";
 | 
						|
}
 | 
						|
 | 
						|
void Output::outputNewLine() {
 | 
						|
  Out << "\n";
 | 
						|
  Column = 0;
 | 
						|
}
 | 
						|
 | 
						|
// if seq at top, indent as if map, then add "- "
 | 
						|
// if seq in middle, use "- " if firstKey, else use "  "
 | 
						|
//
 | 
						|
 | 
						|
void Output::newLineCheck() {
 | 
						|
  if (Padding != "\n") {
 | 
						|
    output(Padding);
 | 
						|
    Padding = {};
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  outputNewLine();
 | 
						|
  Padding = {};
 | 
						|
 | 
						|
  if (StateStack.size() == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned Indent = StateStack.size() - 1;
 | 
						|
  bool OutputDash = false;
 | 
						|
 | 
						|
  if (StateStack.back() == inSeqFirstElement ||
 | 
						|
      StateStack.back() == inSeqOtherElement) {
 | 
						|
    OutputDash = true;
 | 
						|
  } else if ((StateStack.size() > 1) &&
 | 
						|
             ((StateStack.back() == inMapFirstKey) ||
 | 
						|
              inFlowSeqAnyElement(StateStack.back()) ||
 | 
						|
              (StateStack.back() == inFlowMapFirstKey)) &&
 | 
						|
             inSeqAnyElement(StateStack[StateStack.size() - 2])) {
 | 
						|
    --Indent;
 | 
						|
    OutputDash = true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Indent; ++i) {
 | 
						|
    output("  ");
 | 
						|
  }
 | 
						|
  if (OutputDash) {
 | 
						|
    output("- ");
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void Output::paddedKey(StringRef key) {
 | 
						|
  output(key);
 | 
						|
  output(":");
 | 
						|
  const char *spaces = "                ";
 | 
						|
  if (key.size() < strlen(spaces))
 | 
						|
    Padding = &spaces[key.size()];
 | 
						|
  else
 | 
						|
    Padding = " ";
 | 
						|
}
 | 
						|
 | 
						|
void Output::flowKey(StringRef Key) {
 | 
						|
  if (StateStack.back() == inFlowMapOtherKey)
 | 
						|
    output(", ");
 | 
						|
  if (WrapColumn && Column > WrapColumn) {
 | 
						|
    output("\n");
 | 
						|
    for (int I = 0; I < ColumnAtMapFlowStart; ++I)
 | 
						|
      output(" ");
 | 
						|
    Column = ColumnAtMapFlowStart;
 | 
						|
    output("  ");
 | 
						|
  }
 | 
						|
  output(Key);
 | 
						|
  output(": ");
 | 
						|
}
 | 
						|
 | 
						|
NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
 | 
						|
 | 
						|
bool Output::inSeqAnyElement(InState State) {
 | 
						|
  return State == inSeqFirstElement || State == inSeqOtherElement;
 | 
						|
}
 | 
						|
 | 
						|
bool Output::inFlowSeqAnyElement(InState State) {
 | 
						|
  return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
 | 
						|
}
 | 
						|
 | 
						|
bool Output::inMapAnyKey(InState State) {
 | 
						|
  return State == inMapFirstKey || State == inMapOtherKey;
 | 
						|
}
 | 
						|
 | 
						|
bool Output::inFlowMapAnyKey(InState State) {
 | 
						|
  return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  traits for built-in types
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
 | 
						|
  Out << (Val ? "true" : "false");
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
 | 
						|
  if (Scalar.equals("true")) {
 | 
						|
    Val = true;
 | 
						|
    return StringRef();
 | 
						|
  } else if (Scalar.equals("false")) {
 | 
						|
    Val = false;
 | 
						|
    return StringRef();
 | 
						|
  }
 | 
						|
  return "invalid boolean";
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
 | 
						|
                                     raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
 | 
						|
                                         StringRef &Val) {
 | 
						|
  Val = Scalar;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<std::string>::output(const std::string &Val, void *,
 | 
						|
                                     raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
 | 
						|
                                         std::string &Val) {
 | 
						|
  Val = Scalar.str();
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
 | 
						|
                                   raw_ostream &Out) {
 | 
						|
  // use temp uin32_t because ostream thinks uint8_t is a character
 | 
						|
  uint32_t Num = Val;
 | 
						|
  Out << Num;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
 | 
						|
  unsigned long long n;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, n))
 | 
						|
    return "invalid number";
 | 
						|
  if (n > 0xFF)
 | 
						|
    return "out of range number";
 | 
						|
  Val = n;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
 | 
						|
                                    raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
 | 
						|
                                        uint16_t &Val) {
 | 
						|
  unsigned long long n;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, n))
 | 
						|
    return "invalid number";
 | 
						|
  if (n > 0xFFFF)
 | 
						|
    return "out of range number";
 | 
						|
  Val = n;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
 | 
						|
                                    raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
 | 
						|
                                        uint32_t &Val) {
 | 
						|
  unsigned long long n;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, n))
 | 
						|
    return "invalid number";
 | 
						|
  if (n > 0xFFFFFFFFUL)
 | 
						|
    return "out of range number";
 | 
						|
  Val = n;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
 | 
						|
                                    raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
 | 
						|
                                        uint64_t &Val) {
 | 
						|
  unsigned long long N;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, N))
 | 
						|
    return "invalid number";
 | 
						|
  Val = N;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
 | 
						|
  // use temp in32_t because ostream thinks int8_t is a character
 | 
						|
  int32_t Num = Val;
 | 
						|
  Out << Num;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
 | 
						|
  long long N;
 | 
						|
  if (getAsSignedInteger(Scalar, 0, N))
 | 
						|
    return "invalid number";
 | 
						|
  if ((N > 127) || (N < -128))
 | 
						|
    return "out of range number";
 | 
						|
  Val = N;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
 | 
						|
                                   raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
 | 
						|
  long long N;
 | 
						|
  if (getAsSignedInteger(Scalar, 0, N))
 | 
						|
    return "invalid number";
 | 
						|
  if ((N > INT16_MAX) || (N < INT16_MIN))
 | 
						|
    return "out of range number";
 | 
						|
  Val = N;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
 | 
						|
                                   raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
 | 
						|
  long long N;
 | 
						|
  if (getAsSignedInteger(Scalar, 0, N))
 | 
						|
    return "invalid number";
 | 
						|
  if ((N > INT32_MAX) || (N < INT32_MIN))
 | 
						|
    return "out of range number";
 | 
						|
  Val = N;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
 | 
						|
                                   raw_ostream &Out) {
 | 
						|
  Out << Val;
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
 | 
						|
  long long N;
 | 
						|
  if (getAsSignedInteger(Scalar, 0, N))
 | 
						|
    return "invalid number";
 | 
						|
  Val = N;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
 | 
						|
  Out << format("%g", Val);
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
 | 
						|
  if (to_float(Scalar, Val))
 | 
						|
    return StringRef();
 | 
						|
  return "invalid floating point number";
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
 | 
						|
  Out << format("%g", Val);
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
 | 
						|
  if (to_float(Scalar, Val))
 | 
						|
    return StringRef();
 | 
						|
  return "invalid floating point number";
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
 | 
						|
  uint8_t Num = Val;
 | 
						|
  Out << format("0x%02X", Num);
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
 | 
						|
  unsigned long long n;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, n))
 | 
						|
    return "invalid hex8 number";
 | 
						|
  if (n > 0xFF)
 | 
						|
    return "out of range hex8 number";
 | 
						|
  Val = n;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
 | 
						|
  uint16_t Num = Val;
 | 
						|
  Out << format("0x%04X", Num);
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
 | 
						|
  unsigned long long n;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, n))
 | 
						|
    return "invalid hex16 number";
 | 
						|
  if (n > 0xFFFF)
 | 
						|
    return "out of range hex16 number";
 | 
						|
  Val = n;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
 | 
						|
  uint32_t Num = Val;
 | 
						|
  Out << format("0x%08X", Num);
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
 | 
						|
  unsigned long long n;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, n))
 | 
						|
    return "invalid hex32 number";
 | 
						|
  if (n > 0xFFFFFFFFUL)
 | 
						|
    return "out of range hex32 number";
 | 
						|
  Val = n;
 | 
						|
  return StringRef();
 | 
						|
}
 | 
						|
 | 
						|
void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
 | 
						|
  uint64_t Num = Val;
 | 
						|
  Out << format("0x%016llX", Num);
 | 
						|
}
 | 
						|
 | 
						|
StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
 | 
						|
  unsigned long long Num;
 | 
						|
  if (getAsUnsignedInteger(Scalar, 0, Num))
 | 
						|
    return "invalid hex64 number";
 | 
						|
  Val = Num;
 | 
						|
  return StringRef();
 | 
						|
}
 |