789 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			789 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ComprehensiveBufferize.cpp - Single pass bufferization -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Perform inplace bufferization within function boundaries.
 | 
						|
// This is a specialized pass that supports inplace analysis for a fixed subset
 | 
						|
// of ops that have well-defined inplace semantics.
 | 
						|
// This pass caters to high-performance codegen where buffer reuse is deemed
 | 
						|
// critical: the pass should fail if the bufferized form of the function needs
 | 
						|
// to return any buffer.
 | 
						|
// Generic control-flow and branching are unsupported.
 | 
						|
// Composability with extensible set of ops is not a first-class concern.
 | 
						|
//
 | 
						|
// Bufferization occurs by:
 | 
						|
//  a. performing an inPlace analysis `inPlaceAnalysisFuncOpBody`
 | 
						|
//     which marks each operation within the function with the
 | 
						|
//     `kInPlaceResultsAttrName` attribute.
 | 
						|
//  b. traversing each operation in the function and rewriting it in
 | 
						|
//     buffer form and keeping a BlockAndValueMapping mapping of the
 | 
						|
//     rewrites. New allocations are introduced during this step.
 | 
						|
//     TODO: Allocation + depending op hoisting to outermost enclosing
 | 
						|
//     sequential scope.
 | 
						|
//  c. at the end of this bufferization, 3 cases may occur:
 | 
						|
//     i. inplaceable function arguments may be reused in place after the
 | 
						|
//        function itself has been bufferized. This is encoded by IR resembling:
 | 
						|
//
 | 
						|
//        ```
 | 
						|
//          #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
 | 
						|
//           func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
 | 
						|
//              -> tensor<?xf32> {
 | 
						|
//            %0 = bufferization.to_memref %A : memref<?xf32, #map>
 | 
						|
//            // ... uses of %0
 | 
						|
//            %res = bufferization.to_tensor %0 : memref<?xf32, #map>
 | 
						|
//            return %res : tensor<?xf32>
 | 
						|
//          }
 | 
						|
//        ```
 | 
						|
//
 | 
						|
//        this is the cue for the bufferization of the function foo (and calls
 | 
						|
//        to it) may bufferize to `func @foo(%A: memref<?xf32, some_layout>)`.
 | 
						|
//        To fully achieve bufferization, an additional analysis is needed to
 | 
						|
//        determine whether function argument/operand pairs bufferize to a
 | 
						|
//        single inplace buffer argument (i.e. functions may return tensors in
 | 
						|
//        arbitrary order that may not match argument numbers).
 | 
						|
//
 | 
						|
//    ii. results that don't map to an inplaceable function argument are
 | 
						|
//        generally allocated. Since memref semantics wrt ownership of the
 | 
						|
//        underlying memory region are not well-defined, comprehensive
 | 
						|
//        bufferization chooses to perform allocations in a scoped fashion:
 | 
						|
//        returning memrefs is always considered illegal.
 | 
						|
//        Such scenarios are encoded by IR resembling:
 | 
						|
//
 | 
						|
//        ```
 | 
						|
//          #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
 | 
						|
//          func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
 | 
						|
//              -> tensor<?xf32> {
 | 
						|
//            %0 = bufferization.to_memref %A : memref<?xf32, #map>
 | 
						|
//            %1 = memref.dim %0, %c0 : memref<?xf32, #map>
 | 
						|
//            %2 = memref.alloc(%1) : memref<?xf32>
 | 
						|
//            %3 = memref.cast %2 : memref<?xf32> to memref<?xf32, #map>
 | 
						|
//            // ... uses of %3
 | 
						|
//            memref.dealloc %2 : memref<?xf32, #map>
 | 
						|
//            %res = bufferization.to_tensor %3 : memref<?xf32, #map>
 | 
						|
//            return %res : tensor<?xf32>
 | 
						|
//          }
 | 
						|
//       ```
 | 
						|
//
 | 
						|
//        this is the cue for the bufferization of the function foo (and calls
 | 
						|
//        to it) that it must bufferize to `func @foo(%A: memref<?xf32,
 | 
						|
//        some_layout>,
 | 
						|
//                   %B: memref<?xf32, some_layout>)` (i.e. make a cloned
 | 
						|
//        allocation of the result tensor)
 | 
						|
//        To fully achieve bufferization, the alloc/dealloc pair must be lifted
 | 
						|
//        out of the function at each call site.
 | 
						|
//
 | 
						|
//   iii. as an optimization over ii., it may be possible to reuse an argument
 | 
						|
//        and only want to return a slice.
 | 
						|
//        This may forego allocation by letting *all* callers decide whether to
 | 
						|
//        pass a new *aliasing* memref function argument (i.e. a subview).
 | 
						|
//        Without loss of generality, callers may agree to allocate a new buffer
 | 
						|
//        to avoid this aliasing. Such scenarios are encoded by IR resembling:
 | 
						|
//
 | 
						|
//        ```
 | 
						|
//          #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
 | 
						|
//          func @foo(%arg0: tensor<?xf32> {linalg.inplaceable = true})
 | 
						|
//              -> tensor<4xf32> {
 | 
						|
//            %0 = bufferization.to_memref %arg0 : memref<?xf32, #map>
 | 
						|
//            %1 = memref.subview %0[0] [4] [1] : memref<?xf32, #map> to
 | 
						|
//                                                memref<4xf32, #map>
 | 
						|
//            // ... inplace computes into %1
 | 
						|
//            %3 = bufferization.to_tensor %1 : memref<4xf32, #map>
 | 
						|
//            return %3 : tensor<4xf32>
 | 
						|
//          }
 | 
						|
//        ```
 | 
						|
//
 | 
						|
//  Note: In the future, it may be worthwhile to design special bufferization
 | 
						|
//  ops to encode the desired semantics at function boundaries for i., ii. and
 | 
						|
//  iii.
 | 
						|
//
 | 
						|
//  Lastly, note that layout map chosen to bufferize is the most dynamic
 | 
						|
//  canonical strided layout of the proper rank. This ensures compatibility with
 | 
						|
//  expected layouts after transformations. Combinations of memref.cast +
 | 
						|
//  canonicalization are responsible for clean ups.
 | 
						|
 | 
						|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.h"
 | 
						|
 | 
						|
#include <random>
 | 
						|
 | 
						|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
 | 
						|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h"
 | 
						|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
 | 
						|
#include "mlir/IR/AsmState.h"
 | 
						|
#include "mlir/IR/Dominance.h"
 | 
						|
#include "mlir/IR/Operation.h"
 | 
						|
#include "mlir/IR/TypeUtilities.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/FormatVariadic.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "comprehensive-module-bufferize"
 | 
						|
 | 
						|
using namespace mlir;
 | 
						|
using namespace linalg;
 | 
						|
using namespace tensor;
 | 
						|
using namespace comprehensive_bufferize;
 | 
						|
 | 
						|
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
 | 
						|
#define LDBG(X) LLVM_DEBUG(DBGS() << X)
 | 
						|
 | 
						|
// Forward declarations.
 | 
						|
#ifndef NDEBUG
 | 
						|
static std::string printOperationInfo(Operation *, bool prefix = true);
 | 
						|
static std::string printValueInfo(Value, bool prefix = true);
 | 
						|
#endif
 | 
						|
 | 
						|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization-specific attribute manipulation.
 | 
						|
// These are for testing and debugging only. Bufferization information is
 | 
						|
// stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR
 | 
						|
// is annotated with the results of the analysis (copied from
 | 
						|
// BufferizationAliasInfo), so that they can be checked in tests.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Attribute marker to specify op results that can be bufferized inPlace.
 | 
						|
constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_results_attr__";
 | 
						|
 | 
						|
/// Mark whether OpResult can actually be bufferized inplace.
 | 
						|
/// If `inPlace` is `true`, the use-def chain analysis has guaranteed that no
 | 
						|
/// subsequent write would occur to the bufferized tensor value (i.e. the result
 | 
						|
/// can be bufferized inplace).
 | 
						|
static void setInPlaceOpResult(OpResult opResult, bool inPlace) {
 | 
						|
  if (!opResult)
 | 
						|
    return;
 | 
						|
 | 
						|
  Operation *op = opResult.getOwner();
 | 
						|
  auto attr =
 | 
						|
      op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
 | 
						|
  SmallVector<StringRef> inPlaceVector =
 | 
						|
      attr ? SmallVector<StringRef>(
 | 
						|
                 llvm::to_vector<4>(attr.getAsValueRange<StringAttr>()))
 | 
						|
           : SmallVector<StringRef>(op->getNumResults(), "false");
 | 
						|
  LDBG("->set inPlace=" << inPlace << " <- #" << opResult.getResultNumber()
 | 
						|
                        << ": " << printOperationInfo(op) << "\n");
 | 
						|
  inPlaceVector[opResult.getResultNumber()] = inPlace ? "true" : "false";
 | 
						|
  op->setAttr(kInPlaceResultsAttrName,
 | 
						|
              OpBuilder(op).getStrArrayAttr(inPlaceVector));
 | 
						|
}
 | 
						|
 | 
						|
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
 | 
						|
/// `bbArg`.
 | 
						|
static void setInPlaceFuncArgument(BlockArgument bbArg, bool inPlace) {
 | 
						|
  auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
 | 
						|
  funcOp.setArgAttr(bbArg.getArgNumber(),
 | 
						|
                    BufferizableOpInterface::kInplaceableAttrName,
 | 
						|
                    BoolAttr::get(bbArg.getContext(), inPlace));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Printing helpers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Helper method printing the bufferization information of a buffer / tensor.
 | 
						|
static void printTensorOrBufferInfo(std::string prefix, Value value,
 | 
						|
                                    AsmState &state, llvm::raw_ostream &os) {
 | 
						|
  if (!value.getType().isa<ShapedType>())
 | 
						|
    return;
 | 
						|
  os << prefix;
 | 
						|
  value.printAsOperand(os, state);
 | 
						|
  os << " : " << value.getType();
 | 
						|
}
 | 
						|
 | 
						|
/// Print the operation name and bufferization information.
 | 
						|
static std::string printOperationInfo(Operation *op, bool prefix) {
 | 
						|
  std::string result;
 | 
						|
  llvm::raw_string_ostream os(result);
 | 
						|
  AsmState state(op->getParentOfType<mlir::FuncOp>());
 | 
						|
  StringRef tab = prefix ? "\n[" DEBUG_TYPE "]\t" : "";
 | 
						|
  os << tab << op->getName();
 | 
						|
  SmallVector<Value> shapedOperands;
 | 
						|
  for (OpOperand &opOperand : op->getOpOperands()) {
 | 
						|
    std::string prefix =
 | 
						|
        llvm::formatv("{0}  -> #{1} ", tab, opOperand.getOperandNumber());
 | 
						|
    printTensorOrBufferInfo(prefix, opOperand.get(), state, os);
 | 
						|
  }
 | 
						|
  for (OpResult opResult : op->getOpResults()) {
 | 
						|
    std::string prefix =
 | 
						|
        llvm::formatv("{0}  <- #{1} ", tab, opResult.getResultNumber());
 | 
						|
    printTensorOrBufferInfo(prefix, opResult, state, os);
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// Print the bufferization information for the defining op or block argument.
 | 
						|
static std::string printValueInfo(Value value, bool prefix) {
 | 
						|
  auto *op = value.getDefiningOp();
 | 
						|
  if (op)
 | 
						|
    return printOperationInfo(op, prefix);
 | 
						|
  // Print the block argument bufferization information.
 | 
						|
  std::string result;
 | 
						|
  llvm::raw_string_ostream os(result);
 | 
						|
  AsmState state(value.getParentRegion()->getParentOfType<mlir::FuncOp>());
 | 
						|
  os << value;
 | 
						|
  printTensorOrBufferInfo("\n\t - ", value, state, os);
 | 
						|
  return result;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization-specific alias analysis.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return true if opOperand has been decided to bufferize in-place.
 | 
						|
static bool isInplaceMemoryWrite(OpOperand &opOperand,
 | 
						|
                                 const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  // Ops that do not bufferize to a memory write, cannot be write in-place.
 | 
						|
  if (!bufferizesToMemoryWrite(opOperand))
 | 
						|
    return false;
 | 
						|
  OpResult opResult = getAliasingOpResult(opOperand);
 | 
						|
  return opResult && aliasInfo.isInPlace(opResult);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if, under current bufferization decisions, the buffer of `value`
 | 
						|
/// is not writable.
 | 
						|
static bool aliasesNonWritableBuffer(Value value,
 | 
						|
                                     const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  LDBG("WRITABILITY ANALYSIS FOR " << printValueInfo(value) << "\n");
 | 
						|
  bool foundNonWritableBuffer = false;
 | 
						|
  aliasInfo.applyOnAliases(value, [&](Value v) {
 | 
						|
    // Some values are known to be writable.
 | 
						|
    if (aliasInfo.bufferizesToWritableMemory(v))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Query BufferizableOpInterface to see if the OpResult is writable.
 | 
						|
    // TODO: Out-of-place bufferized OpResult could be considered writable.
 | 
						|
    if (auto bufferizableOp = v.getDefiningOp<BufferizableOpInterface>())
 | 
						|
      if (bufferizableOp && bufferizableOp.isWritable(v))
 | 
						|
        return;
 | 
						|
 | 
						|
    // Query BufferizableOpInterface to see if the BlockArgument is writable.
 | 
						|
    if (auto bbArg = v.dyn_cast<BlockArgument>())
 | 
						|
      if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(
 | 
						|
              bbArg.getOwner()->getParentOp()))
 | 
						|
        if (bufferizableOp.isWritable(bbArg))
 | 
						|
          return;
 | 
						|
 | 
						|
    foundNonWritableBuffer = true;
 | 
						|
  });
 | 
						|
 | 
						|
  if (foundNonWritableBuffer)
 | 
						|
    LDBG("--> NON WRITABLE\n");
 | 
						|
  else
 | 
						|
    LDBG("--> WRITABLE\n");
 | 
						|
 | 
						|
  return foundNonWritableBuffer;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the buffer to which `operand` would bufferize is equivalent
 | 
						|
/// to some buffer write.
 | 
						|
static bool aliasesInPlaceWrite(Value value,
 | 
						|
                                const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  LDBG("----Start aliasesInPlaceWrite\n");
 | 
						|
  LDBG("-------for : " << printValueInfo(value) << '\n');
 | 
						|
  bool foundInplaceWrite = false;
 | 
						|
  aliasInfo.applyOnAliases(value, [&](Value v) {
 | 
						|
    for (auto &use : v.getUses()) {
 | 
						|
      if (isInplaceMemoryWrite(use, aliasInfo)) {
 | 
						|
        LDBG("-----------wants to bufferize to inPlace write: "
 | 
						|
             << printOperationInfo(use.getOwner()) << '\n');
 | 
						|
        foundInplaceWrite = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  if (!foundInplaceWrite)
 | 
						|
    LDBG("----------->does not alias an inplace write\n");
 | 
						|
 | 
						|
  return foundInplaceWrite;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
 | 
						|
/// properly dominates `b` and `b` is not inside `a`.
 | 
						|
static bool happensBefore(Operation *a, Operation *b,
 | 
						|
                          const DominanceInfo &domInfo) {
 | 
						|
  do {
 | 
						|
    // TODO: Instead of isProperAncestor + properlyDominates, we should use
 | 
						|
    // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
 | 
						|
    if (a->isProperAncestor(b))
 | 
						|
      return false;
 | 
						|
    if (domInfo.properlyDominates(a, b))
 | 
						|
      return true;
 | 
						|
  } while ((a = a->getParentOp()));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given sets of uses and writes, return true if there is a RaW conflict under
 | 
						|
/// the assumption that all given reads/writes alias the same buffer and that
 | 
						|
/// all given writes bufferize inplace.
 | 
						|
///
 | 
						|
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
 | 
						|
/// the result of a write W1. But because of bufferization decisions, R actually
 | 
						|
/// reads another write W2.
 | 
						|
static bool
 | 
						|
hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead,
 | 
						|
                              const DenseSet<OpOperand *> &usesWrite,
 | 
						|
                              const DominanceInfo &domInfo,
 | 
						|
                              const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  for (OpOperand *uRead : usesRead) {
 | 
						|
    Operation *readingOp = uRead->getOwner();
 | 
						|
 | 
						|
    // Find most recent write of uRead by following the SSA use-def chain. E.g.:
 | 
						|
    //
 | 
						|
    // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
 | 
						|
    // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
 | 
						|
    // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
 | 
						|
    //
 | 
						|
    // In the above example, if uRead is the OpOperand of reading_op, lastWrite
 | 
						|
    // is %0. Note that operations that create an alias but do not write (such
 | 
						|
    // as ExtractSliceOp) are skipped.
 | 
						|
    Value lastWrite = findLastPrecedingWrite(uRead->get());
 | 
						|
 | 
						|
    // Look for conflicting memory writes. Potential conflicts are writes to an
 | 
						|
    // alias that have been decided to bufferize inplace.
 | 
						|
    for (OpOperand *uConflictingWrite : usesWrite) {
 | 
						|
      // Throughout this loop, check for multiple requirements that have to be
 | 
						|
      // met for uConflictingWrite to be an actual conflict.
 | 
						|
      Operation *conflictingWritingOp = uConflictingWrite->getOwner();
 | 
						|
 | 
						|
      // Print some debug info.
 | 
						|
      LDBG("Found potential conflict:\n");
 | 
						|
      LDBG("READ = #" << uRead->getOperandNumber() << " of "
 | 
						|
                      << printOperationInfo(readingOp) << "\n");
 | 
						|
      LDBG("CONFLICTING WRITE = #"
 | 
						|
           << uConflictingWrite->getOperandNumber() << " of "
 | 
						|
           << printOperationInfo(conflictingWritingOp) << "\n");
 | 
						|
 | 
						|
      // No conflict if the readingOp dominates conflictingWritingOp, i.e., the
 | 
						|
      // write is not visible when reading.
 | 
						|
      if (happensBefore(readingOp, conflictingWritingOp, domInfo))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // No conflict if the reading use equals the use of the conflicting write.
 | 
						|
      // A use cannot conflict with itself. Note: Just being the same op is not
 | 
						|
      // enough. It has to be the same use.
 | 
						|
      if (uConflictingWrite == uRead)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // No conflict if the op interface says so.
 | 
						|
      if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(readingOp))
 | 
						|
        if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite,
 | 
						|
                                            aliasInfo))
 | 
						|
          continue;
 | 
						|
 | 
						|
      if (conflictingWritingOp != readingOp)
 | 
						|
        if (auto bufferizableOp =
 | 
						|
                dyn_cast<BufferizableOpInterface>(conflictingWritingOp))
 | 
						|
          if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite,
 | 
						|
                                              aliasInfo))
 | 
						|
            continue;
 | 
						|
 | 
						|
      // Ops are not conflicting if they are in mutually exclusive regions.
 | 
						|
      if (insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp))
 | 
						|
        continue;
 | 
						|
 | 
						|
      LDBG("WRITE = #" << printValueInfo(lastWrite) << "\n");
 | 
						|
 | 
						|
      // No conflict if the conflicting write happens before the last
 | 
						|
      // write.
 | 
						|
      if (Operation *writingOp = lastWrite.getDefiningOp()) {
 | 
						|
        if (happensBefore(conflictingWritingOp, writingOp, domInfo))
 | 
						|
          // conflictingWritingOp happens before writingOp. No conflict.
 | 
						|
          continue;
 | 
						|
        // No conflict if conflictingWritingOp is contained in writingOp.
 | 
						|
        if (writingOp->isProperAncestor(conflictingWritingOp))
 | 
						|
          continue;
 | 
						|
      } else {
 | 
						|
        auto bbArg = lastWrite.cast<BlockArgument>();
 | 
						|
        Block *block = bbArg.getOwner();
 | 
						|
        if (!block->findAncestorOpInBlock(*conflictingWritingOp))
 | 
						|
          // conflictingWritingOp happens outside of the block. No
 | 
						|
          // conflict.
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // No conflict if the conflicting write and the last write are the same
 | 
						|
      // use.
 | 
						|
      if (getAliasingOpResult(*uConflictingWrite) == lastWrite)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // All requirements are met. Conflict found!
 | 
						|
      LDBG("CONFLICT CONFIRMED!\n\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LDBG("NOT A CONFLICT!\n\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if bufferizing result inplace would create a conflict. A read R
 | 
						|
/// and a write W of the same alias set is a conflict if inplace bufferization
 | 
						|
/// of W changes the value read by R to a value different from the one that
 | 
						|
/// would be expected by tracing back R's origin through SSA use-def chains.
 | 
						|
/// A conflict can only be introduced by a new alias and/or an inplace
 | 
						|
/// bufferization decision.
 | 
						|
///
 | 
						|
/// Example:
 | 
						|
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
 | 
						|
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
 | 
						|
/// %e = tensor.extract_slice %1
 | 
						|
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
 | 
						|
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
 | 
						|
///
 | 
						|
/// In the above example, the two TransferWriteOps have already been decided to
 | 
						|
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
 | 
						|
/// conflict because:
 | 
						|
/// * According to SSA use-def chains, we expect to read the result of %1.
 | 
						|
/// * However, adding an alias {%0, %t} would mean that the second
 | 
						|
///   TransferWriteOp overwrites the first one. Therefore, the TransferReadOp
 | 
						|
///   would no longer be reading the result of %1.
 | 
						|
///
 | 
						|
/// If `checkConsistencyOnly` is true, this function checks if there is a
 | 
						|
/// read-after-write conflict without bufferizing `operand` inplace. This would
 | 
						|
/// indicate a problem with the current inplace bufferization decisions.
 | 
						|
bool wouldCreateReadAfterWriteInterference(
 | 
						|
    OpOperand &operand, OpResult result, const DominanceInfo &domInfo,
 | 
						|
    const BufferizationAliasInfo &aliasInfo,
 | 
						|
    bool checkConsistencyOnly = false) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<OpOperand *> opOperands = getAliasingOpOperand(result);
 | 
						|
  assert(llvm::find(opOperands, &operand) != opOperands.end() &&
 | 
						|
         "operand and result do not match");
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  // Helper function to iterate on aliases of `root` and capture the reads.
 | 
						|
  auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) {
 | 
						|
    aliasInfo.applyOnAliases(root, [&](Value alias) {
 | 
						|
      for (auto &use : alias.getUses())
 | 
						|
        // Read to a value that aliases root.
 | 
						|
        if (bufferizesToMemoryRead(use))
 | 
						|
          res.insert(&use);
 | 
						|
    });
 | 
						|
  };
 | 
						|
 | 
						|
  // Helper function to iterate on aliases of `root` and capture the writes.
 | 
						|
  auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) {
 | 
						|
    aliasInfo.applyOnAliases(root, [&](Value alias) {
 | 
						|
      for (auto &use : alias.getUses())
 | 
						|
        // Inplace write to a value that aliases root.
 | 
						|
        if (isInplaceMemoryWrite(use, aliasInfo))
 | 
						|
          res.insert(&use);
 | 
						|
    });
 | 
						|
  };
 | 
						|
 | 
						|
  // Collect reads and writes of all aliases of OpOperand and OpResult.
 | 
						|
  DenseSet<OpOperand *> usesRead, usesWrite;
 | 
						|
  getAliasingReads(usesRead, operand.get());
 | 
						|
  getAliasingReads(usesRead, result);
 | 
						|
  getAliasingInplaceWrites(usesWrite, operand.get());
 | 
						|
  getAliasingInplaceWrites(usesWrite, result);
 | 
						|
  if (!checkConsistencyOnly && bufferizesToMemoryWrite(operand))
 | 
						|
    usesWrite.insert(&operand);
 | 
						|
 | 
						|
  return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, aliasInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if bufferizing `opOperand` inplace with `opResult` would create
 | 
						|
/// a write to a non-writable buffer.
 | 
						|
static bool
 | 
						|
wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand, OpResult opResult,
 | 
						|
                                    const BufferizationAliasInfo &aliasInfo) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult);
 | 
						|
  assert(llvm::find(opOperands, &opOperand) != opOperands.end() &&
 | 
						|
         "operand and result do not match");
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  // Certain buffers are not writeable:
 | 
						|
  //   1. A function bbArg that is not inplaceable or
 | 
						|
  //   2. A constant op.
 | 
						|
  assert(!aliasesNonWritableBuffer(opResult, aliasInfo) &&
 | 
						|
         "expected that opResult does not alias non-writable buffer");
 | 
						|
  bool nonWritable = aliasesNonWritableBuffer(opOperand.get(), aliasInfo);
 | 
						|
  if (!nonWritable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This is a problem only if the buffer is written to via some alias.
 | 
						|
  bool hasWrite = aliasesInPlaceWrite(opResult, aliasInfo) ||
 | 
						|
                  aliasesInPlaceWrite(opOperand.get(), aliasInfo) ||
 | 
						|
                  bufferizesToMemoryWrite(opOperand);
 | 
						|
  if (!hasWrite)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LDBG("->the corresponding buffer is not writeable\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization as simple BlockAndValueMapping rewrites.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// FuncOp always creates TensorToMemRef ops.
 | 
						|
static LogicalResult bufferizeFuncOp(FuncOp funcOp, BufferizationState &state) {
 | 
						|
  // Take a guard before anything else.
 | 
						|
  OpBuilder b(funcOp->getContext());
 | 
						|
  b.setInsertionPointToStart(&funcOp.body().front());
 | 
						|
 | 
						|
  // Create BufferCastOps for function args.
 | 
						|
  for (auto bbArg : funcOp.getArguments()) {
 | 
						|
    auto tensorType = bbArg.getType().dyn_cast<TensorType>();
 | 
						|
    if (!tensorType)
 | 
						|
      continue;
 | 
						|
    auto rankedTensorType = tensorType.dyn_cast<RankedTensorType>();
 | 
						|
    // Cast the tensor to the most dynamic buffer possible. Further
 | 
						|
    // canonicalizations will clean up.
 | 
						|
    Type memRefType = rankedTensorType
 | 
						|
                          ? getDynamicMemRefType(rankedTensorType)
 | 
						|
                          : getContiguousOrUnrankedMemRefType(tensorType);
 | 
						|
    Value bufferCast =
 | 
						|
        b.create<bufferization::ToMemrefOp>(funcOp.getLoc(), memRefType, bbArg);
 | 
						|
    state.aliasInfo.insertNewBufferEquivalence(bufferCast, bbArg);
 | 
						|
    state.mapBuffer(bbArg, bufferCast);
 | 
						|
  }
 | 
						|
 | 
						|
  // Bufferize function body.
 | 
						|
  return bufferize(&funcOp.body(), state);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization analyses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Determine if `operand` can be bufferized in-place with `result`.
 | 
						|
static LogicalResult
 | 
						|
bufferizableInPlaceAnalysisImpl(OpOperand &operand, OpResult result,
 | 
						|
                                BufferizationAliasInfo &aliasInfo,
 | 
						|
                                const DominanceInfo &domInfo) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<OpOperand *> opOperands = getAliasingOpOperand(result);
 | 
						|
  assert(llvm::find(opOperands, &operand) != opOperands.end() &&
 | 
						|
         "operand and result do not match");
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  int64_t resultNumber = result.getResultNumber();
 | 
						|
  (void)resultNumber;
 | 
						|
  LDBG('\n');
 | 
						|
  LDBG("Inplace analysis for <- #" << resultNumber << " -> #"
 | 
						|
                                   << operand.getOperandNumber() << " in "
 | 
						|
                                   << printValueInfo(result) << '\n');
 | 
						|
 | 
						|
  bool foundInterference =
 | 
						|
      wouldCreateWriteToNonWritableBuffer(operand, result, aliasInfo) ||
 | 
						|
      wouldCreateReadAfterWriteInterference(operand, result, domInfo,
 | 
						|
                                            aliasInfo);
 | 
						|
 | 
						|
  if (foundInterference)
 | 
						|
    aliasInfo.bufferizeOutOfPlace(result);
 | 
						|
  else
 | 
						|
    aliasInfo.bufferizeInPlace(result, operand);
 | 
						|
 | 
						|
  LDBG("Done inplace analysis for result #" << resultNumber << '\n');
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the `ops` to determine which OpResults are inplaceable. Walk ops in
 | 
						|
/// reverse and bufferize ops greedily. This is a good starter heuristic.
 | 
						|
///
 | 
						|
/// Even if an op does not read or write, it may still create an alias when
 | 
						|
/// bufferized in-place. An example of such ops is tensor.extract_slice.
 | 
						|
///
 | 
						|
/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace:
 | 
						|
///
 | 
						|
/// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This
 | 
						|
/// cannot change the flow of information for either the source or the
 | 
						|
/// result buffers.
 | 
						|
///
 | 
						|
/// When bufferized inplace, an ExtractSliceOp does not by itself create any
 | 
						|
/// read or write from memory. Instead, it has the effect of merging the alias
 | 
						|
/// sets of the source and the result buffers.
 | 
						|
///
 | 
						|
/// An analysis is required to ensure inplace bufferization would not result in
 | 
						|
/// RaW dependence violations.
 | 
						|
static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops,
 | 
						|
                                     BufferizationAliasInfo &aliasInfo,
 | 
						|
                                     const DominanceInfo &domInfo,
 | 
						|
                                     unsigned analysisFuzzerSeed = 0) {
 | 
						|
  if (analysisFuzzerSeed) {
 | 
						|
    // This is a fuzzer. For testing purposes only. Randomize the order in which
 | 
						|
    // operations are analyzed. The bufferization quality is likely worse, but
 | 
						|
    // we want to make sure that no assertions are triggered anywhere.
 | 
						|
    std::mt19937 g(analysisFuzzerSeed);
 | 
						|
    llvm::shuffle(ops.begin(), ops.end(), g);
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk ops in reverse for better interference analysis.
 | 
						|
  for (Operation *op : reverse(ops))
 | 
						|
    for (OpOperand &opOperand : op->getOpOperands())
 | 
						|
      if (opOperand.get().getType().isa<TensorType>())
 | 
						|
        if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op))
 | 
						|
          if (OpResult opResult = bufferizableOp.getAliasingOpResult(opOperand))
 | 
						|
            if (failed(bufferizableInPlaceAnalysisImpl(opOperand, opResult,
 | 
						|
                                                       aliasInfo, domInfo)))
 | 
						|
              return failure();
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the `funcOp` body to determine which OpResults are inplaceable.
 | 
						|
static LogicalResult
 | 
						|
inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
 | 
						|
                          const DominanceInfo &domInfo,
 | 
						|
                          unsigned analysisFuzzerSeed = 0) {
 | 
						|
  LLVM_DEBUG(llvm::dbgs() << "\n\n");
 | 
						|
  LDBG("Begin InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
 | 
						|
  assert(funcOp && funcOp->getNumRegions() > 0 && !funcOp.body().empty() &&
 | 
						|
         "expected a funcOp definition with a body");
 | 
						|
 | 
						|
  // Collect ops so we can build our own reverse traversal.
 | 
						|
  SmallVector<Operation *> ops;
 | 
						|
  funcOp.walk([&](Operation *op) {
 | 
						|
    // No tensors => no buffers.
 | 
						|
    if (none_of(op->getOperandTypes(), isaTensor) &&
 | 
						|
        none_of(op->getResultTypes(), isaTensor))
 | 
						|
      return;
 | 
						|
    ops.push_back(op);
 | 
						|
  });
 | 
						|
 | 
						|
  // Set the function arguments marked with inplaceable to be known as
 | 
						|
  // bufferizing to a writeable memory.
 | 
						|
  for (BlockArgument bbArg : funcOp.getArguments()) {
 | 
						|
    BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
 | 
						|
        bbArg.getArgNumber(), BufferizableOpInterface::kInplaceableAttrName);
 | 
						|
    if (inplaceAttr && inplaceAttr.getValue())
 | 
						|
      aliasInfo.setBufferizesToWritableMemory(bbArg);
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult res =
 | 
						|
      inPlaceAnalysis(ops, aliasInfo, domInfo, analysisFuzzerSeed);
 | 
						|
  LDBG("End InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Assert that the current bufferization decisions are consistent.
 | 
						|
static void checkAliasInfoConsistency(FuncOp funcOp,
 | 
						|
                                      const DominanceInfo &domInfo,
 | 
						|
                                      const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  funcOp.walk([&](Operation *op) {
 | 
						|
    if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op))
 | 
						|
      for (OpOperand &opOperand : op->getOpOperands())
 | 
						|
        if (opOperand.get().getType().isa<TensorType>())
 | 
						|
          if (OpResult opResult = bufferizableOp.getAliasingOpResult(opOperand))
 | 
						|
            // If this assertion fails, there is probably an inconsistent
 | 
						|
            // combination of "mustBufferizeInPlace" decisions.
 | 
						|
            assert(!wouldCreateReadAfterWriteInterference(
 | 
						|
                       opOperand, opResult, domInfo, aliasInfo,
 | 
						|
                       /*checkConsistencyOnly=*/true) &&
 | 
						|
                   "found read after write conflict before running analysis");
 | 
						|
  });
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
 | 
						|
static void
 | 
						|
annotateOpsWithBufferizationMarkers(Operation *op,
 | 
						|
                                    const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  op->walk([&](Operation *op) {
 | 
						|
    for (OpResult opResult : op->getResults()) {
 | 
						|
      if (opResult.getType().isa<TensorType>())
 | 
						|
        setInPlaceOpResult(opResult, aliasInfo.isInPlace(opResult));
 | 
						|
      if (auto funcOp = dyn_cast<FuncOp>(op))
 | 
						|
        for (BlockArgument bbArg : funcOp.getArguments())
 | 
						|
          if (bbArg.getType().isa<TensorType>())
 | 
						|
            setInPlaceFuncArgument(bbArg,
 | 
						|
                                   aliasInfo.bufferizesToWritableMemory(bbArg));
 | 
						|
    }
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
LogicalResult mlir::linalg::comprehensive_bufferize::runComprehensiveBufferize(
 | 
						|
    FuncOp funcOp, const BufferizationOptions &options,
 | 
						|
    BufferizationState &state) {
 | 
						|
 | 
						|
  DominanceInfo domInfo(funcOp);
 | 
						|
  BufferizationAliasInfo &aliasInfo = state.aliasInfo;
 | 
						|
 | 
						|
  if (funcOp.body().empty())
 | 
						|
    return success();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  checkAliasInfoConsistency(funcOp, domInfo, aliasInfo);
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  // If the analysis fails, just return.
 | 
						|
  if (failed(inPlaceAnalysisFuncOpBody(funcOp, aliasInfo, domInfo,
 | 
						|
                                       options.analysisFuzzerSeed)))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  for (const std::unique_ptr<PostAnalysisStep> &step :
 | 
						|
       options.postAnalysisSteps) {
 | 
						|
    SmallVector<Operation *> newOps;
 | 
						|
    if (failed(step->run(funcOp, aliasInfo, domInfo, newOps)))
 | 
						|
      return failure();
 | 
						|
    // Analyze ops that were created by the PostAnalysisStep.
 | 
						|
    if (failed(inPlaceAnalysis(newOps, aliasInfo, domInfo)))
 | 
						|
      return failure();
 | 
						|
  }
 | 
						|
 | 
						|
  // Annotate operations if we only want to report the analysis.
 | 
						|
  if (options.testAnalysisOnly) {
 | 
						|
    annotateOpsWithBufferizationMarkers(funcOp, aliasInfo);
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
 | 
						|
  // Bufferize all ops in funcOp.
 | 
						|
  if (failed(bufferizeFuncOp(funcOp, state)))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  // Erase all obsolete ops.
 | 
						|
  state.eraseObsoleteOps();
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Default allocation function that is used by the comprehensive bufferization
 | 
						|
/// pass. The default currently creates a ranked memref using `memref.alloc`.
 | 
						|
static Optional<Value> defaultAllocationFn(OpBuilder &b, Location loc,
 | 
						|
                                           MemRefType type,
 | 
						|
                                           ArrayRef<Value> dynShape) {
 | 
						|
  Value allocated = b.create<memref::AllocOp>(
 | 
						|
      loc, type, dynShape, b.getI64IntegerAttr(kBufferAlignments));
 | 
						|
  return allocated;
 | 
						|
}
 | 
						|
 | 
						|
/// Default deallocation function that is used by the comprehensive
 | 
						|
/// bufferization pass. It expects to recieve back the value called from the
 | 
						|
/// `defaultAllocationFn`.
 | 
						|
static void defaultDeallocationFn(OpBuilder &b, Location loc,
 | 
						|
                                  Value allocatedBuffer) {
 | 
						|
  b.create<memref::DeallocOp>(loc, allocatedBuffer);
 | 
						|
}
 | 
						|
 | 
						|
/// Default memory copy function that is used by the comprehensive bufferization
 | 
						|
/// pass. Creates a `memref.copy` op.
 | 
						|
static void defaultMemCpyFn(OpBuilder &b, Location loc, Value from, Value to) {
 | 
						|
  b.create<memref::CopyOp>(loc, from, to);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<AllocationCallbacks>
 | 
						|
mlir::linalg::comprehensive_bufferize::defaultAllocationCallbacks() {
 | 
						|
  return std::make_unique<AllocationCallbacks>(
 | 
						|
      defaultAllocationFn, defaultDeallocationFn, defaultMemCpyFn);
 | 
						|
}
 | 
						|
 | 
						|
// Default constructor for BufferizationOptions that sets all allocation
 | 
						|
// callbacks to their default functions.
 | 
						|
BufferizationOptions::BufferizationOptions()
 | 
						|
    : allocationFns(defaultAllocationCallbacks()) {}
 | 
						|
 |