5038 lines
		
	
	
		
			206 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5038 lines
		
	
	
		
			206 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file provides Sema routines for C++ overloading.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Sema.h"
 | 
						|
#include "SemaInherit.h"
 | 
						|
#include "clang/Basic/Diagnostic.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/TypeOrdering.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdio>
 | 
						|
 | 
						|
namespace clang {
 | 
						|
 | 
						|
/// GetConversionCategory - Retrieve the implicit conversion
 | 
						|
/// category corresponding to the given implicit conversion kind.
 | 
						|
ImplicitConversionCategory
 | 
						|
GetConversionCategory(ImplicitConversionKind Kind) {
 | 
						|
  static const ImplicitConversionCategory
 | 
						|
    Category[(int)ICK_Num_Conversion_Kinds] = {
 | 
						|
    ICC_Identity,
 | 
						|
    ICC_Lvalue_Transformation,
 | 
						|
    ICC_Lvalue_Transformation,
 | 
						|
    ICC_Lvalue_Transformation,
 | 
						|
    ICC_Qualification_Adjustment,
 | 
						|
    ICC_Promotion,
 | 
						|
    ICC_Promotion,
 | 
						|
    ICC_Promotion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion
 | 
						|
  };
 | 
						|
  return Category[(int)Kind];
 | 
						|
}
 | 
						|
 | 
						|
/// GetConversionRank - Retrieve the implicit conversion rank
 | 
						|
/// corresponding to the given implicit conversion kind.
 | 
						|
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
 | 
						|
  static const ImplicitConversionRank
 | 
						|
    Rank[(int)ICK_Num_Conversion_Kinds] = {
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Promotion,
 | 
						|
    ICR_Promotion,
 | 
						|
    ICR_Promotion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion
 | 
						|
  };
 | 
						|
  return Rank[(int)Kind];
 | 
						|
}
 | 
						|
 | 
						|
/// GetImplicitConversionName - Return the name of this kind of
 | 
						|
/// implicit conversion.
 | 
						|
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
 | 
						|
  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
 | 
						|
    "No conversion",
 | 
						|
    "Lvalue-to-rvalue",
 | 
						|
    "Array-to-pointer",
 | 
						|
    "Function-to-pointer",
 | 
						|
    "Qualification",
 | 
						|
    "Integral promotion",
 | 
						|
    "Floating point promotion",
 | 
						|
    "Complex promotion",
 | 
						|
    "Integral conversion",
 | 
						|
    "Floating conversion",
 | 
						|
    "Complex conversion",
 | 
						|
    "Floating-integral conversion",
 | 
						|
    "Complex-real conversion",
 | 
						|
    "Pointer conversion",
 | 
						|
    "Pointer-to-member conversion",
 | 
						|
    "Boolean conversion",
 | 
						|
    "Compatible-types conversion",
 | 
						|
    "Derived-to-base conversion"
 | 
						|
  };
 | 
						|
  return Name[Kind];
 | 
						|
}
 | 
						|
 | 
						|
/// StandardConversionSequence - Set the standard conversion
 | 
						|
/// sequence to the identity conversion.
 | 
						|
void StandardConversionSequence::setAsIdentityConversion() {
 | 
						|
  First = ICK_Identity;
 | 
						|
  Second = ICK_Identity;
 | 
						|
  Third = ICK_Identity;
 | 
						|
  Deprecated = false;
 | 
						|
  ReferenceBinding = false;
 | 
						|
  DirectBinding = false;
 | 
						|
  RRefBinding = false;
 | 
						|
  CopyConstructor = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getRank - Retrieve the rank of this standard conversion sequence
 | 
						|
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
 | 
						|
/// implicit conversions.
 | 
						|
ImplicitConversionRank StandardConversionSequence::getRank() const {
 | 
						|
  ImplicitConversionRank Rank = ICR_Exact_Match;
 | 
						|
  if  (GetConversionRank(First) > Rank)
 | 
						|
    Rank = GetConversionRank(First);
 | 
						|
  if  (GetConversionRank(Second) > Rank)
 | 
						|
    Rank = GetConversionRank(Second);
 | 
						|
  if  (GetConversionRank(Third) > Rank)
 | 
						|
    Rank = GetConversionRank(Third);
 | 
						|
  return Rank;
 | 
						|
}
 | 
						|
 | 
						|
/// isPointerConversionToBool - Determines whether this conversion is
 | 
						|
/// a conversion of a pointer or pointer-to-member to bool. This is
 | 
						|
/// used as part of the ranking of standard conversion sequences
 | 
						|
/// (C++ 13.3.3.2p4).
 | 
						|
bool StandardConversionSequence::isPointerConversionToBool() const {
 | 
						|
  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
 | 
						|
  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
 | 
						|
 | 
						|
  // Note that FromType has not necessarily been transformed by the
 | 
						|
  // array-to-pointer or function-to-pointer implicit conversions, so
 | 
						|
  // check for their presence as well as checking whether FromType is
 | 
						|
  // a pointer.
 | 
						|
  if (ToType->isBooleanType() &&
 | 
						|
      (FromType->isPointerType() || FromType->isBlockPointerType() ||
 | 
						|
       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isPointerConversionToVoidPointer - Determines whether this
 | 
						|
/// conversion is a conversion of a pointer to a void pointer. This is
 | 
						|
/// used as part of the ranking of standard conversion sequences (C++
 | 
						|
/// 13.3.3.2p4).
 | 
						|
bool
 | 
						|
StandardConversionSequence::
 | 
						|
isPointerConversionToVoidPointer(ASTContext& Context) const {
 | 
						|
  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
 | 
						|
  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
 | 
						|
 | 
						|
  // Note that FromType has not necessarily been transformed by the
 | 
						|
  // array-to-pointer implicit conversion, so check for its presence
 | 
						|
  // and redo the conversion to get a pointer.
 | 
						|
  if (First == ICK_Array_To_Pointer)
 | 
						|
    FromType = Context.getArrayDecayedType(FromType);
 | 
						|
 | 
						|
  if (Second == ICK_Pointer_Conversion)
 | 
						|
    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
 | 
						|
      return ToPtrType->getPointeeType()->isVoidType();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// DebugPrint - Print this standard conversion sequence to standard
 | 
						|
/// error. Useful for debugging overloading issues.
 | 
						|
void StandardConversionSequence::DebugPrint() const {
 | 
						|
  bool PrintedSomething = false;
 | 
						|
  if (First != ICK_Identity) {
 | 
						|
    fprintf(stderr, "%s", GetImplicitConversionName(First));
 | 
						|
    PrintedSomething = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Second != ICK_Identity) {
 | 
						|
    if (PrintedSomething) {
 | 
						|
      fprintf(stderr, " -> ");
 | 
						|
    }
 | 
						|
    fprintf(stderr, "%s", GetImplicitConversionName(Second));
 | 
						|
 | 
						|
    if (CopyConstructor) {
 | 
						|
      fprintf(stderr, " (by copy constructor)");
 | 
						|
    } else if (DirectBinding) {
 | 
						|
      fprintf(stderr, " (direct reference binding)");
 | 
						|
    } else if (ReferenceBinding) {
 | 
						|
      fprintf(stderr, " (reference binding)");
 | 
						|
    }
 | 
						|
    PrintedSomething = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Third != ICK_Identity) {
 | 
						|
    if (PrintedSomething) {
 | 
						|
      fprintf(stderr, " -> ");
 | 
						|
    }
 | 
						|
    fprintf(stderr, "%s", GetImplicitConversionName(Third));
 | 
						|
    PrintedSomething = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PrintedSomething) {
 | 
						|
    fprintf(stderr, "No conversions required");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DebugPrint - Print this user-defined conversion sequence to standard
 | 
						|
/// error. Useful for debugging overloading issues.
 | 
						|
void UserDefinedConversionSequence::DebugPrint() const {
 | 
						|
  if (Before.First || Before.Second || Before.Third) {
 | 
						|
    Before.DebugPrint();
 | 
						|
    fprintf(stderr, " -> ");
 | 
						|
  }
 | 
						|
  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
 | 
						|
  if (After.First || After.Second || After.Third) {
 | 
						|
    fprintf(stderr, " -> ");
 | 
						|
    After.DebugPrint();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DebugPrint - Print this implicit conversion sequence to standard
 | 
						|
/// error. Useful for debugging overloading issues.
 | 
						|
void ImplicitConversionSequence::DebugPrint() const {
 | 
						|
  switch (ConversionKind) {
 | 
						|
  case StandardConversion:
 | 
						|
    fprintf(stderr, "Standard conversion: ");
 | 
						|
    Standard.DebugPrint();
 | 
						|
    break;
 | 
						|
  case UserDefinedConversion:
 | 
						|
    fprintf(stderr, "User-defined conversion: ");
 | 
						|
    UserDefined.DebugPrint();
 | 
						|
    break;
 | 
						|
  case EllipsisConversion:
 | 
						|
    fprintf(stderr, "Ellipsis conversion");
 | 
						|
    break;
 | 
						|
  case BadConversion:
 | 
						|
    fprintf(stderr, "Bad conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  fprintf(stderr, "\n");
 | 
						|
}
 | 
						|
 | 
						|
// IsOverload - Determine whether the given New declaration is an
 | 
						|
// overload of the Old declaration. This routine returns false if New
 | 
						|
// and Old cannot be overloaded, e.g., if they are functions with the
 | 
						|
// same signature (C++ 1.3.10) or if the Old declaration isn't a
 | 
						|
// function (or overload set). When it does return false and Old is an
 | 
						|
// OverloadedFunctionDecl, MatchedDecl will be set to point to the
 | 
						|
// FunctionDecl that New cannot be overloaded with.
 | 
						|
//
 | 
						|
// Example: Given the following input:
 | 
						|
//
 | 
						|
//   void f(int, float); // #1
 | 
						|
//   void f(int, int); // #2
 | 
						|
//   int f(int, int); // #3
 | 
						|
//
 | 
						|
// When we process #1, there is no previous declaration of "f",
 | 
						|
// so IsOverload will not be used.
 | 
						|
//
 | 
						|
// When we process #2, Old is a FunctionDecl for #1.  By comparing the
 | 
						|
// parameter types, we see that #1 and #2 are overloaded (since they
 | 
						|
// have different signatures), so this routine returns false;
 | 
						|
// MatchedDecl is unchanged.
 | 
						|
//
 | 
						|
// When we process #3, Old is an OverloadedFunctionDecl containing #1
 | 
						|
// and #2. We compare the signatures of #3 to #1 (they're overloaded,
 | 
						|
// so we do nothing) and then #3 to #2. Since the signatures of #3 and
 | 
						|
// #2 are identical (return types of functions are not part of the
 | 
						|
// signature), IsOverload returns false and MatchedDecl will be set to
 | 
						|
// point to the FunctionDecl for #2.
 | 
						|
bool
 | 
						|
Sema::IsOverload(FunctionDecl *New, Decl* OldD,
 | 
						|
                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
 | 
						|
  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
 | 
						|
    // Is this new function an overload of every function in the
 | 
						|
    // overload set?
 | 
						|
    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
 | 
						|
                                           FuncEnd = Ovl->function_end();
 | 
						|
    for (; Func != FuncEnd; ++Func) {
 | 
						|
      if (!IsOverload(New, *Func, MatchedDecl)) {
 | 
						|
        MatchedDecl = Func;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // This function overloads every function in the overload set.
 | 
						|
    return true;
 | 
						|
  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
 | 
						|
    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
 | 
						|
  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
 | 
						|
    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
 | 
						|
    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
 | 
						|
 | 
						|
    // C++ [temp.fct]p2:
 | 
						|
    //   A function template can be overloaded with other function templates
 | 
						|
    //   and with normal (non-template) functions.
 | 
						|
    if ((OldTemplate == 0) != (NewTemplate == 0))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Is the function New an overload of the function Old?
 | 
						|
    QualType OldQType = Context.getCanonicalType(Old->getType());
 | 
						|
    QualType NewQType = Context.getCanonicalType(New->getType());
 | 
						|
 | 
						|
    // Compare the signatures (C++ 1.3.10) of the two functions to
 | 
						|
    // determine whether they are overloads. If we find any mismatch
 | 
						|
    // in the signature, they are overloads.
 | 
						|
 | 
						|
    // If either of these functions is a K&R-style function (no
 | 
						|
    // prototype), then we consider them to have matching signatures.
 | 
						|
    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
 | 
						|
        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
 | 
						|
    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
 | 
						|
 | 
						|
    // The signature of a function includes the types of its
 | 
						|
    // parameters (C++ 1.3.10), which includes the presence or absence
 | 
						|
    // of the ellipsis; see C++ DR 357).
 | 
						|
    if (OldQType != NewQType &&
 | 
						|
        (OldType->getNumArgs() != NewType->getNumArgs() ||
 | 
						|
         OldType->isVariadic() != NewType->isVariadic() ||
 | 
						|
         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
 | 
						|
                     NewType->arg_type_begin())))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // C++ [temp.over.link]p4:
 | 
						|
    //   The signature of a function template consists of its function
 | 
						|
    //   signature, its return type and its template parameter list. The names
 | 
						|
    //   of the template parameters are significant only for establishing the
 | 
						|
    //   relationship between the template parameters and the rest of the
 | 
						|
    //   signature.
 | 
						|
    //
 | 
						|
    // We check the return type and template parameter lists for function
 | 
						|
    // templates first; the remaining checks follow.
 | 
						|
    if (NewTemplate &&
 | 
						|
        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
 | 
						|
                                         OldTemplate->getTemplateParameters(),
 | 
						|
                                         false, false, SourceLocation()) ||
 | 
						|
         OldType->getResultType() != NewType->getResultType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the function is a class member, its signature includes the
 | 
						|
    // cv-qualifiers (if any) on the function itself.
 | 
						|
    //
 | 
						|
    // As part of this, also check whether one of the member functions
 | 
						|
    // is static, in which case they are not overloads (C++
 | 
						|
    // 13.1p2). While not part of the definition of the signature,
 | 
						|
    // this check is important to determine whether these functions
 | 
						|
    // can be overloaded.
 | 
						|
    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | 
						|
    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
 | 
						|
    if (OldMethod && NewMethod &&
 | 
						|
        !OldMethod->isStatic() && !NewMethod->isStatic() &&
 | 
						|
        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // The signatures match; this is not an overload.
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    // (C++ 13p1):
 | 
						|
    //   Only function declarations can be overloaded; object and type
 | 
						|
    //   declarations cannot be overloaded.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// TryImplicitConversion - Attempt to perform an implicit conversion
 | 
						|
/// from the given expression (Expr) to the given type (ToType). This
 | 
						|
/// function returns an implicit conversion sequence that can be used
 | 
						|
/// to perform the initialization. Given
 | 
						|
///
 | 
						|
///   void f(float f);
 | 
						|
///   void g(int i) { f(i); }
 | 
						|
///
 | 
						|
/// this routine would produce an implicit conversion sequence to
 | 
						|
/// describe the initialization of f from i, which will be a standard
 | 
						|
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
 | 
						|
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
 | 
						|
//
 | 
						|
/// Note that this routine only determines how the conversion can be
 | 
						|
/// performed; it does not actually perform the conversion. As such,
 | 
						|
/// it will not produce any diagnostics if no conversion is available,
 | 
						|
/// but will instead return an implicit conversion sequence of kind
 | 
						|
/// "BadConversion".
 | 
						|
///
 | 
						|
/// If @p SuppressUserConversions, then user-defined conversions are
 | 
						|
/// not permitted.
 | 
						|
/// If @p AllowExplicit, then explicit user-defined conversions are
 | 
						|
/// permitted.
 | 
						|
/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
 | 
						|
/// no matter its actual lvalueness.
 | 
						|
ImplicitConversionSequence
 | 
						|
Sema::TryImplicitConversion(Expr* From, QualType ToType,
 | 
						|
                            bool SuppressUserConversions,
 | 
						|
                            bool AllowExplicit, bool ForceRValue,
 | 
						|
                            bool InOverloadResolution) {
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  OverloadCandidateSet Conversions;
 | 
						|
  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
 | 
						|
    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
 | 
						|
  else if (getLangOptions().CPlusPlus &&
 | 
						|
           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
 | 
						|
                                   Conversions,
 | 
						|
                                   !SuppressUserConversions, AllowExplicit,
 | 
						|
                                   ForceRValue) == OR_Success) {
 | 
						|
    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
 | 
						|
    // C++ [over.ics.user]p4:
 | 
						|
    //   A conversion of an expression of class type to the same class
 | 
						|
    //   type is given Exact Match rank, and a conversion of an
 | 
						|
    //   expression of class type to a base class of that type is
 | 
						|
    //   given Conversion rank, in spite of the fact that a copy
 | 
						|
    //   constructor (i.e., a user-defined conversion function) is
 | 
						|
    //   called for those cases.
 | 
						|
    if (CXXConstructorDecl *Constructor
 | 
						|
          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
 | 
						|
      QualType FromCanon
 | 
						|
        = Context.getCanonicalType(From->getType().getUnqualifiedType());
 | 
						|
      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
 | 
						|
      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
 | 
						|
        // Turn this into a "standard" conversion sequence, so that it
 | 
						|
        // gets ranked with standard conversion sequences.
 | 
						|
        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
 | 
						|
        ICS.Standard.setAsIdentityConversion();
 | 
						|
        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
 | 
						|
        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
 | 
						|
        ICS.Standard.CopyConstructor = Constructor;
 | 
						|
        if (ToCanon != FromCanon)
 | 
						|
          ICS.Standard.Second = ICK_Derived_To_Base;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [over.best.ics]p4:
 | 
						|
    //   However, when considering the argument of a user-defined
 | 
						|
    //   conversion function that is a candidate by 13.3.1.3 when
 | 
						|
    //   invoked for the copying of the temporary in the second step
 | 
						|
    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
 | 
						|
    //   13.3.1.6 in all cases, only standard conversion sequences and
 | 
						|
    //   ellipsis conversion sequences are allowed.
 | 
						|
    if (SuppressUserConversions &&
 | 
						|
        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
 | 
						|
      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
 | 
						|
  } else
 | 
						|
    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
 | 
						|
 | 
						|
  return ICS;
 | 
						|
}
 | 
						|
 | 
						|
/// IsStandardConversion - Determines whether there is a standard
 | 
						|
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
 | 
						|
/// expression From to the type ToType. Standard conversion sequences
 | 
						|
/// only consider non-class types; for conversions that involve class
 | 
						|
/// types, use TryImplicitConversion. If a conversion exists, SCS will
 | 
						|
/// contain the standard conversion sequence required to perform this
 | 
						|
/// conversion and this routine will return true. Otherwise, this
 | 
						|
/// routine will return false and the value of SCS is unspecified.
 | 
						|
bool
 | 
						|
Sema::IsStandardConversion(Expr* From, QualType ToType,
 | 
						|
                           bool InOverloadResolution,
 | 
						|
                           StandardConversionSequence &SCS) {
 | 
						|
  QualType FromType = From->getType();
 | 
						|
 | 
						|
  // Standard conversions (C++ [conv])
 | 
						|
  SCS.setAsIdentityConversion();
 | 
						|
  SCS.Deprecated = false;
 | 
						|
  SCS.IncompatibleObjC = false;
 | 
						|
  SCS.FromTypePtr = FromType.getAsOpaquePtr();
 | 
						|
  SCS.CopyConstructor = 0;
 | 
						|
 | 
						|
  // There are no standard conversions for class types in C++, so
 | 
						|
  // abort early. When overloading in C, however, we do permit
 | 
						|
  if (FromType->isRecordType() || ToType->isRecordType()) {
 | 
						|
    if (getLangOptions().CPlusPlus)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // When we're overloading in C, we allow, as standard conversions,
 | 
						|
  }
 | 
						|
 | 
						|
  // The first conversion can be an lvalue-to-rvalue conversion,
 | 
						|
  // array-to-pointer conversion, or function-to-pointer conversion
 | 
						|
  // (C++ 4p1).
 | 
						|
 | 
						|
  // Lvalue-to-rvalue conversion (C++ 4.1):
 | 
						|
  //   An lvalue (3.10) of a non-function, non-array type T can be
 | 
						|
  //   converted to an rvalue.
 | 
						|
  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
 | 
						|
  if (argIsLvalue == Expr::LV_Valid &&
 | 
						|
      !FromType->isFunctionType() && !FromType->isArrayType() &&
 | 
						|
      Context.getCanonicalType(FromType) != Context.OverloadTy) {
 | 
						|
    SCS.First = ICK_Lvalue_To_Rvalue;
 | 
						|
 | 
						|
    // If T is a non-class type, the type of the rvalue is the
 | 
						|
    // cv-unqualified version of T. Otherwise, the type of the rvalue
 | 
						|
    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
 | 
						|
    // just strip the qualifiers because they don't matter.
 | 
						|
 | 
						|
    // FIXME: Doesn't see through to qualifiers behind a typedef!
 | 
						|
    FromType = FromType.getUnqualifiedType();
 | 
						|
  } else if (FromType->isArrayType()) {
 | 
						|
    // Array-to-pointer conversion (C++ 4.2)
 | 
						|
    SCS.First = ICK_Array_To_Pointer;
 | 
						|
 | 
						|
    // An lvalue or rvalue of type "array of N T" or "array of unknown
 | 
						|
    // bound of T" can be converted to an rvalue of type "pointer to
 | 
						|
    // T" (C++ 4.2p1).
 | 
						|
    FromType = Context.getArrayDecayedType(FromType);
 | 
						|
 | 
						|
    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
 | 
						|
      // This conversion is deprecated. (C++ D.4).
 | 
						|
      SCS.Deprecated = true;
 | 
						|
 | 
						|
      // For the purpose of ranking in overload resolution
 | 
						|
      // (13.3.3.1.1), this conversion is considered an
 | 
						|
      // array-to-pointer conversion followed by a qualification
 | 
						|
      // conversion (4.4). (C++ 4.2p2)
 | 
						|
      SCS.Second = ICK_Identity;
 | 
						|
      SCS.Third = ICK_Qualification;
 | 
						|
      SCS.ToTypePtr = ToType.getAsOpaquePtr();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
 | 
						|
    // Function-to-pointer conversion (C++ 4.3).
 | 
						|
    SCS.First = ICK_Function_To_Pointer;
 | 
						|
 | 
						|
    // An lvalue of function type T can be converted to an rvalue of
 | 
						|
    // type "pointer to T." The result is a pointer to the
 | 
						|
    // function. (C++ 4.3p1).
 | 
						|
    FromType = Context.getPointerType(FromType);
 | 
						|
  } else if (FunctionDecl *Fn
 | 
						|
             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
 | 
						|
    // Address of overloaded function (C++ [over.over]).
 | 
						|
    SCS.First = ICK_Function_To_Pointer;
 | 
						|
 | 
						|
    // We were able to resolve the address of the overloaded function,
 | 
						|
    // so we can convert to the type of that function.
 | 
						|
    FromType = Fn->getType();
 | 
						|
    if (ToType->isLValueReferenceType())
 | 
						|
      FromType = Context.getLValueReferenceType(FromType);
 | 
						|
    else if (ToType->isRValueReferenceType())
 | 
						|
      FromType = Context.getRValueReferenceType(FromType);
 | 
						|
    else if (ToType->isMemberPointerType()) {
 | 
						|
      // Resolve address only succeeds if both sides are member pointers,
 | 
						|
      // but it doesn't have to be the same class. See DR 247.
 | 
						|
      // Note that this means that the type of &Derived::fn can be
 | 
						|
      // Ret (Base::*)(Args) if the fn overload actually found is from the
 | 
						|
      // base class, even if it was brought into the derived class via a
 | 
						|
      // using declaration. The standard isn't clear on this issue at all.
 | 
						|
      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
 | 
						|
      FromType = Context.getMemberPointerType(FromType,
 | 
						|
                    Context.getTypeDeclType(M->getParent()).getTypePtr());
 | 
						|
    } else
 | 
						|
      FromType = Context.getPointerType(FromType);
 | 
						|
  } else {
 | 
						|
    // We don't require any conversions for the first step.
 | 
						|
    SCS.First = ICK_Identity;
 | 
						|
  }
 | 
						|
 | 
						|
  // The second conversion can be an integral promotion, floating
 | 
						|
  // point promotion, integral conversion, floating point conversion,
 | 
						|
  // floating-integral conversion, pointer conversion,
 | 
						|
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
 | 
						|
  // For overloading in C, this can also be a "compatible-type"
 | 
						|
  // conversion.
 | 
						|
  bool IncompatibleObjC = false;
 | 
						|
  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
 | 
						|
    // The unqualified versions of the types are the same: there's no
 | 
						|
    // conversion to do.
 | 
						|
    SCS.Second = ICK_Identity;
 | 
						|
  } else if (IsIntegralPromotion(From, FromType, ToType)) {
 | 
						|
    // Integral promotion (C++ 4.5).
 | 
						|
    SCS.Second = ICK_Integral_Promotion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (IsFloatingPointPromotion(FromType, ToType)) {
 | 
						|
    // Floating point promotion (C++ 4.6).
 | 
						|
    SCS.Second = ICK_Floating_Promotion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (IsComplexPromotion(FromType, ToType)) {
 | 
						|
    // Complex promotion (Clang extension)
 | 
						|
    SCS.Second = ICK_Complex_Promotion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
 | 
						|
           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
 | 
						|
    // Integral conversions (C++ 4.7).
 | 
						|
    // FIXME: isIntegralType shouldn't be true for enums in C++.
 | 
						|
    SCS.Second = ICK_Integral_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
 | 
						|
    // Floating point conversions (C++ 4.8).
 | 
						|
    SCS.Second = ICK_Floating_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (FromType->isComplexType() && ToType->isComplexType()) {
 | 
						|
    // Complex conversions (C99 6.3.1.6)
 | 
						|
    SCS.Second = ICK_Complex_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if ((FromType->isFloatingType() &&
 | 
						|
              ToType->isIntegralType() && (!ToType->isBooleanType() &&
 | 
						|
                                           !ToType->isEnumeralType())) ||
 | 
						|
             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
 | 
						|
              ToType->isFloatingType())) {
 | 
						|
    // Floating-integral conversions (C++ 4.9).
 | 
						|
    // FIXME: isIntegralType shouldn't be true for enums in C++.
 | 
						|
    SCS.Second = ICK_Floating_Integral;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
 | 
						|
             (ToType->isComplexType() && FromType->isArithmeticType())) {
 | 
						|
    // Complex-real conversions (C99 6.3.1.7)
 | 
						|
    SCS.Second = ICK_Complex_Real;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
 | 
						|
                                 FromType, IncompatibleObjC)) {
 | 
						|
    // Pointer conversions (C++ 4.10).
 | 
						|
    SCS.Second = ICK_Pointer_Conversion;
 | 
						|
    SCS.IncompatibleObjC = IncompatibleObjC;
 | 
						|
  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
 | 
						|
    // Pointer to member conversions (4.11).
 | 
						|
    SCS.Second = ICK_Pointer_Member;
 | 
						|
  } else if (ToType->isBooleanType() &&
 | 
						|
             (FromType->isArithmeticType() ||
 | 
						|
              FromType->isEnumeralType() ||
 | 
						|
              FromType->isPointerType() ||
 | 
						|
              FromType->isBlockPointerType() ||
 | 
						|
              FromType->isMemberPointerType() ||
 | 
						|
              FromType->isNullPtrType())) {
 | 
						|
    // Boolean conversions (C++ 4.12).
 | 
						|
    SCS.Second = ICK_Boolean_Conversion;
 | 
						|
    FromType = Context.BoolTy;
 | 
						|
  } else if (!getLangOptions().CPlusPlus &&
 | 
						|
             Context.typesAreCompatible(ToType, FromType)) {
 | 
						|
    // Compatible conversions (Clang extension for C function overloading)
 | 
						|
    SCS.Second = ICK_Compatible_Conversion;
 | 
						|
  } else {
 | 
						|
    // No second conversion required.
 | 
						|
    SCS.Second = ICK_Identity;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType CanonFrom;
 | 
						|
  QualType CanonTo;
 | 
						|
  // The third conversion can be a qualification conversion (C++ 4p1).
 | 
						|
  if (IsQualificationConversion(FromType, ToType)) {
 | 
						|
    SCS.Third = ICK_Qualification;
 | 
						|
    FromType = ToType;
 | 
						|
    CanonFrom = Context.getCanonicalType(FromType);
 | 
						|
    CanonTo = Context.getCanonicalType(ToType);
 | 
						|
  } else {
 | 
						|
    // No conversion required
 | 
						|
    SCS.Third = ICK_Identity;
 | 
						|
 | 
						|
    // C++ [over.best.ics]p6:
 | 
						|
    //   [...] Any difference in top-level cv-qualification is
 | 
						|
    //   subsumed by the initialization itself and does not constitute
 | 
						|
    //   a conversion. [...]
 | 
						|
    CanonFrom = Context.getCanonicalType(FromType);
 | 
						|
    CanonTo = Context.getCanonicalType(ToType);
 | 
						|
    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
 | 
						|
        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
 | 
						|
      FromType = ToType;
 | 
						|
      CanonFrom = CanonTo;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have not converted the argument type to the parameter type,
 | 
						|
  // this is a bad conversion sequence.
 | 
						|
  if (CanonFrom != CanonTo)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SCS.ToTypePtr = FromType.getAsOpaquePtr();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// IsIntegralPromotion - Determines whether the conversion from the
 | 
						|
/// expression From (whose potentially-adjusted type is FromType) to
 | 
						|
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
 | 
						|
/// sets PromotedType to the promoted type.
 | 
						|
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
 | 
						|
  const BuiltinType *To = ToType->getAs<BuiltinType>();
 | 
						|
  // All integers are built-in.
 | 
						|
  if (!To) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // An rvalue of type char, signed char, unsigned char, short int, or
 | 
						|
  // unsigned short int can be converted to an rvalue of type int if
 | 
						|
  // int can represent all the values of the source type; otherwise,
 | 
						|
  // the source rvalue can be converted to an rvalue of type unsigned
 | 
						|
  // int (C++ 4.5p1).
 | 
						|
  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
 | 
						|
    if (// We can promote any signed, promotable integer type to an int
 | 
						|
        (FromType->isSignedIntegerType() ||
 | 
						|
         // We can promote any unsigned integer type whose size is
 | 
						|
         // less than int to an int.
 | 
						|
         (!FromType->isSignedIntegerType() &&
 | 
						|
          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
 | 
						|
      return To->getKind() == BuiltinType::Int;
 | 
						|
    }
 | 
						|
 | 
						|
    return To->getKind() == BuiltinType::UInt;
 | 
						|
  }
 | 
						|
 | 
						|
  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
 | 
						|
  // can be converted to an rvalue of the first of the following types
 | 
						|
  // that can represent all the values of its underlying type: int,
 | 
						|
  // unsigned int, long, or unsigned long (C++ 4.5p2).
 | 
						|
  if ((FromType->isEnumeralType() || FromType->isWideCharType())
 | 
						|
      && ToType->isIntegerType()) {
 | 
						|
    // Determine whether the type we're converting from is signed or
 | 
						|
    // unsigned.
 | 
						|
    bool FromIsSigned;
 | 
						|
    uint64_t FromSize = Context.getTypeSize(FromType);
 | 
						|
    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
 | 
						|
      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
 | 
						|
      FromIsSigned = UnderlyingType->isSignedIntegerType();
 | 
						|
    } else {
 | 
						|
      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
 | 
						|
      FromIsSigned = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // The types we'll try to promote to, in the appropriate
 | 
						|
    // order. Try each of these types.
 | 
						|
    QualType PromoteTypes[6] = {
 | 
						|
      Context.IntTy, Context.UnsignedIntTy,
 | 
						|
      Context.LongTy, Context.UnsignedLongTy ,
 | 
						|
      Context.LongLongTy, Context.UnsignedLongLongTy
 | 
						|
    };
 | 
						|
    for (int Idx = 0; Idx < 6; ++Idx) {
 | 
						|
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
 | 
						|
      if (FromSize < ToSize ||
 | 
						|
          (FromSize == ToSize &&
 | 
						|
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
 | 
						|
        // We found the type that we can promote to. If this is the
 | 
						|
        // type we wanted, we have a promotion. Otherwise, no
 | 
						|
        // promotion.
 | 
						|
        return Context.getCanonicalType(ToType).getUnqualifiedType()
 | 
						|
          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // An rvalue for an integral bit-field (9.6) can be converted to an
 | 
						|
  // rvalue of type int if int can represent all the values of the
 | 
						|
  // bit-field; otherwise, it can be converted to unsigned int if
 | 
						|
  // unsigned int can represent all the values of the bit-field. If
 | 
						|
  // the bit-field is larger yet, no integral promotion applies to
 | 
						|
  // it. If the bit-field has an enumerated type, it is treated as any
 | 
						|
  // other value of that type for promotion purposes (C++ 4.5p3).
 | 
						|
  // FIXME: We should delay checking of bit-fields until we actually perform the
 | 
						|
  // conversion.
 | 
						|
  using llvm::APSInt;
 | 
						|
  if (From)
 | 
						|
    if (FieldDecl *MemberDecl = From->getBitField()) {
 | 
						|
      APSInt BitWidth;
 | 
						|
      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
 | 
						|
          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
 | 
						|
        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
 | 
						|
        ToSize = Context.getTypeSize(ToType);
 | 
						|
 | 
						|
        // Are we promoting to an int from a bitfield that fits in an int?
 | 
						|
        if (BitWidth < ToSize ||
 | 
						|
            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
 | 
						|
          return To->getKind() == BuiltinType::Int;
 | 
						|
        }
 | 
						|
 | 
						|
        // Are we promoting to an unsigned int from an unsigned bitfield
 | 
						|
        // that fits into an unsigned int?
 | 
						|
        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
 | 
						|
          return To->getKind() == BuiltinType::UInt;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // An rvalue of type bool can be converted to an rvalue of type int,
 | 
						|
  // with false becoming zero and true becoming one (C++ 4.5p4).
 | 
						|
  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsFloatingPointPromotion - Determines whether the conversion from
 | 
						|
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
 | 
						|
/// returns true and sets PromotedType to the promoted type.
 | 
						|
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
 | 
						|
  /// An rvalue of type float can be converted to an rvalue of type
 | 
						|
  /// double. (C++ 4.6p1).
 | 
						|
  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
 | 
						|
    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
 | 
						|
      if (FromBuiltin->getKind() == BuiltinType::Float &&
 | 
						|
          ToBuiltin->getKind() == BuiltinType::Double)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // C99 6.3.1.5p1:
 | 
						|
      //   When a float is promoted to double or long double, or a
 | 
						|
      //   double is promoted to long double [...].
 | 
						|
      if (!getLangOptions().CPlusPlus &&
 | 
						|
          (FromBuiltin->getKind() == BuiltinType::Float ||
 | 
						|
           FromBuiltin->getKind() == BuiltinType::Double) &&
 | 
						|
          (ToBuiltin->getKind() == BuiltinType::LongDouble))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine if a conversion is a complex promotion.
 | 
						|
///
 | 
						|
/// A complex promotion is defined as a complex -> complex conversion
 | 
						|
/// where the conversion between the underlying real types is a
 | 
						|
/// floating-point or integral promotion.
 | 
						|
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
 | 
						|
  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
 | 
						|
  if (!FromComplex)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
 | 
						|
  if (!ToComplex)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return IsFloatingPointPromotion(FromComplex->getElementType(),
 | 
						|
                                  ToComplex->getElementType()) ||
 | 
						|
    IsIntegralPromotion(0, FromComplex->getElementType(),
 | 
						|
                        ToComplex->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
 | 
						|
/// the pointer type FromPtr to a pointer to type ToPointee, with the
 | 
						|
/// same type qualifiers as FromPtr has on its pointee type. ToType,
 | 
						|
/// if non-empty, will be a pointer to ToType that may or may not have
 | 
						|
/// the right set of qualifiers on its pointee.
 | 
						|
static QualType
 | 
						|
BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
 | 
						|
                                   QualType ToPointee, QualType ToType,
 | 
						|
                                   ASTContext &Context) {
 | 
						|
  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
 | 
						|
  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
 | 
						|
  unsigned Quals = CanonFromPointee.getCVRQualifiers();
 | 
						|
 | 
						|
  // Exact qualifier match -> return the pointer type we're converting to.
 | 
						|
  if (CanonToPointee.getCVRQualifiers() == Quals) {
 | 
						|
    // ToType is exactly what we need. Return it.
 | 
						|
    if (ToType.getTypePtr())
 | 
						|
      return ToType;
 | 
						|
 | 
						|
    // Build a pointer to ToPointee. It has the right qualifiers
 | 
						|
    // already.
 | 
						|
    return Context.getPointerType(ToPointee);
 | 
						|
  }
 | 
						|
 | 
						|
  // Just build a canonical type that has the right qualifiers.
 | 
						|
  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
 | 
						|
}
 | 
						|
 | 
						|
static bool isNullPointerConstantForConversion(Expr *Expr,
 | 
						|
                                               bool InOverloadResolution,
 | 
						|
                                               ASTContext &Context) {
 | 
						|
  // Handle value-dependent integral null pointer constants correctly.
 | 
						|
  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
 | 
						|
  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
 | 
						|
      Expr->getType()->isIntegralType())
 | 
						|
    return !InOverloadResolution;
 | 
						|
 | 
						|
  return Expr->isNullPointerConstant(Context);
 | 
						|
}
 | 
						|
 | 
						|
/// IsPointerConversion - Determines whether the conversion of the
 | 
						|
/// expression From, which has the (possibly adjusted) type FromType,
 | 
						|
/// can be converted to the type ToType via a pointer conversion (C++
 | 
						|
/// 4.10). If so, returns true and places the converted type (that
 | 
						|
/// might differ from ToType in its cv-qualifiers at some level) into
 | 
						|
/// ConvertedType.
 | 
						|
///
 | 
						|
/// This routine also supports conversions to and from block pointers
 | 
						|
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
 | 
						|
/// pointers to interfaces. FIXME: Once we've determined the
 | 
						|
/// appropriate overloading rules for Objective-C, we may want to
 | 
						|
/// split the Objective-C checks into a different routine; however,
 | 
						|
/// GCC seems to consider all of these conversions to be pointer
 | 
						|
/// conversions, so for now they live here. IncompatibleObjC will be
 | 
						|
/// set if the conversion is an allowed Objective-C conversion that
 | 
						|
/// should result in a warning.
 | 
						|
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
 | 
						|
                               bool InOverloadResolution,
 | 
						|
                               QualType& ConvertedType,
 | 
						|
                               bool &IncompatibleObjC) {
 | 
						|
  IncompatibleObjC = false;
 | 
						|
  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Conversion from a null pointer constant to any Objective-C pointer type.
 | 
						|
  if (ToType->isObjCObjectPointerType() &&
 | 
						|
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Blocks: Block pointers can be converted to void*.
 | 
						|
  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
 | 
						|
      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Blocks: A null pointer constant can be converted to a block
 | 
						|
  // pointer type.
 | 
						|
  if (ToType->isBlockPointerType() &&
 | 
						|
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the left-hand-side is nullptr_t, the right side can be a null
 | 
						|
  // pointer constant.
 | 
						|
  if (ToType->isNullPtrType() &&
 | 
						|
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
 | 
						|
  if (!ToTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
 | 
						|
  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Beyond this point, both types need to be pointers.
 | 
						|
  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
 | 
						|
  if (!FromTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType FromPointeeType = FromTypePtr->getPointeeType();
 | 
						|
  QualType ToPointeeType = ToTypePtr->getPointeeType();
 | 
						|
 | 
						|
  // An rvalue of type "pointer to cv T," where T is an object type,
 | 
						|
  // can be converted to an rvalue of type "pointer to cv void" (C++
 | 
						|
  // 4.10p2).
 | 
						|
  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // When we're overloading in C, we allow a special kind of pointer
 | 
						|
  // conversion for compatible-but-not-identical pointee types.
 | 
						|
  if (!getLangOptions().CPlusPlus &&
 | 
						|
      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [conv.ptr]p3:
 | 
						|
  //
 | 
						|
  //   An rvalue of type "pointer to cv D," where D is a class type,
 | 
						|
  //   can be converted to an rvalue of type "pointer to cv B," where
 | 
						|
  //   B is a base class (clause 10) of D. If B is an inaccessible
 | 
						|
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
 | 
						|
  //   necessitates this conversion is ill-formed. The result of the
 | 
						|
  //   conversion is a pointer to the base class sub-object of the
 | 
						|
  //   derived class object. The null pointer value is converted to
 | 
						|
  //   the null pointer value of the destination type.
 | 
						|
  //
 | 
						|
  // Note that we do not check for ambiguity or inaccessibility
 | 
						|
  // here. That is handled by CheckPointerConversion.
 | 
						|
  if (getLangOptions().CPlusPlus &&
 | 
						|
      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
 | 
						|
      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isObjCPointerConversion - Determines whether this is an
 | 
						|
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
 | 
						|
/// with the same arguments and return values.
 | 
						|
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
 | 
						|
                                   QualType& ConvertedType,
 | 
						|
                                   bool &IncompatibleObjC) {
 | 
						|
  if (!getLangOptions().ObjC1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // First, we handle all conversions on ObjC object pointer types.
 | 
						|
  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
 | 
						|
  const ObjCObjectPointerType *FromObjCPtr =
 | 
						|
    FromType->getAs<ObjCObjectPointerType>();
 | 
						|
 | 
						|
  if (ToObjCPtr && FromObjCPtr) {
 | 
						|
    // Objective C++: We're able to convert between "id" or "Class" and a
 | 
						|
    // pointer to any interface (in both directions).
 | 
						|
    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
 | 
						|
      ConvertedType = ToType;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Conversions with Objective-C's id<...>.
 | 
						|
    if ((FromObjCPtr->isObjCQualifiedIdType() ||
 | 
						|
         ToObjCPtr->isObjCQualifiedIdType()) &&
 | 
						|
        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
 | 
						|
                                                  /*compare=*/false)) {
 | 
						|
      ConvertedType = ToType;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Objective C++: We're able to convert from a pointer to an
 | 
						|
    // interface to a pointer to a different interface.
 | 
						|
    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
 | 
						|
      ConvertedType = ToType;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
 | 
						|
      // Okay: this is some kind of implicit downcast of Objective-C
 | 
						|
      // interfaces, which is permitted. However, we're going to
 | 
						|
      // complain about it.
 | 
						|
      IncompatibleObjC = true;
 | 
						|
      ConvertedType = FromType;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Beyond this point, both types need to be C pointers or block pointers.
 | 
						|
  QualType ToPointeeType;
 | 
						|
  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
 | 
						|
    ToPointeeType = ToCPtr->getPointeeType();
 | 
						|
  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
 | 
						|
    ToPointeeType = ToBlockPtr->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType FromPointeeType;
 | 
						|
  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
 | 
						|
    FromPointeeType = FromCPtr->getPointeeType();
 | 
						|
  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
 | 
						|
    FromPointeeType = FromBlockPtr->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have pointers to pointers, recursively check whether this
 | 
						|
  // is an Objective-C conversion.
 | 
						|
  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
 | 
						|
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
 | 
						|
                              IncompatibleObjC)) {
 | 
						|
    // We always complain about this conversion.
 | 
						|
    IncompatibleObjC = true;
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // If we have pointers to functions or blocks, check whether the only
 | 
						|
  // differences in the argument and result types are in Objective-C
 | 
						|
  // pointer conversions. If so, we permit the conversion (but
 | 
						|
  // complain about it).
 | 
						|
  const FunctionProtoType *FromFunctionType
 | 
						|
    = FromPointeeType->getAs<FunctionProtoType>();
 | 
						|
  const FunctionProtoType *ToFunctionType
 | 
						|
    = ToPointeeType->getAs<FunctionProtoType>();
 | 
						|
  if (FromFunctionType && ToFunctionType) {
 | 
						|
    // If the function types are exactly the same, this isn't an
 | 
						|
    // Objective-C pointer conversion.
 | 
						|
    if (Context.getCanonicalType(FromPointeeType)
 | 
						|
          == Context.getCanonicalType(ToPointeeType))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Perform the quick checks that will tell us whether these
 | 
						|
    // function types are obviously different.
 | 
						|
    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
 | 
						|
        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
 | 
						|
        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool HasObjCConversion = false;
 | 
						|
    if (Context.getCanonicalType(FromFunctionType->getResultType())
 | 
						|
          == Context.getCanonicalType(ToFunctionType->getResultType())) {
 | 
						|
      // Okay, the types match exactly. Nothing to do.
 | 
						|
    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
 | 
						|
                                       ToFunctionType->getResultType(),
 | 
						|
                                       ConvertedType, IncompatibleObjC)) {
 | 
						|
      // Okay, we have an Objective-C pointer conversion.
 | 
						|
      HasObjCConversion = true;
 | 
						|
    } else {
 | 
						|
      // Function types are too different. Abort.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check argument types.
 | 
						|
    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
 | 
						|
         ArgIdx != NumArgs; ++ArgIdx) {
 | 
						|
      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
 | 
						|
      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
 | 
						|
      if (Context.getCanonicalType(FromArgType)
 | 
						|
            == Context.getCanonicalType(ToArgType)) {
 | 
						|
        // Okay, the types match exactly. Nothing to do.
 | 
						|
      } else if (isObjCPointerConversion(FromArgType, ToArgType,
 | 
						|
                                         ConvertedType, IncompatibleObjC)) {
 | 
						|
        // Okay, we have an Objective-C pointer conversion.
 | 
						|
        HasObjCConversion = true;
 | 
						|
      } else {
 | 
						|
        // Argument types are too different. Abort.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasObjCConversion) {
 | 
						|
      // We had an Objective-C conversion. Allow this pointer
 | 
						|
      // conversion, but complain about it.
 | 
						|
      ConvertedType = ToType;
 | 
						|
      IncompatibleObjC = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckPointerConversion - Check the pointer conversion from the
 | 
						|
/// expression From to the type ToType. This routine checks for
 | 
						|
/// ambiguous or inaccessible derived-to-base pointer
 | 
						|
/// conversions for which IsPointerConversion has already returned
 | 
						|
/// true. It returns true and produces a diagnostic if there was an
 | 
						|
/// error, or returns false otherwise.
 | 
						|
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
 | 
						|
                                  CastExpr::CastKind &Kind) {
 | 
						|
  QualType FromType = From->getType();
 | 
						|
 | 
						|
  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
 | 
						|
    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
 | 
						|
      QualType FromPointeeType = FromPtrType->getPointeeType(),
 | 
						|
               ToPointeeType   = ToPtrType->getPointeeType();
 | 
						|
 | 
						|
      if (FromPointeeType->isRecordType() &&
 | 
						|
          ToPointeeType->isRecordType()) {
 | 
						|
        // We must have a derived-to-base conversion. Check an
 | 
						|
        // ambiguous or inaccessible conversion.
 | 
						|
        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
 | 
						|
                                         From->getExprLoc(),
 | 
						|
                                         From->getSourceRange()))
 | 
						|
          return true;
 | 
						|
        
 | 
						|
        // The conversion was successful.
 | 
						|
        Kind = CastExpr::CK_DerivedToBase;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  if (const ObjCObjectPointerType *FromPtrType =
 | 
						|
        FromType->getAs<ObjCObjectPointerType>())
 | 
						|
    if (const ObjCObjectPointerType *ToPtrType =
 | 
						|
          ToType->getAs<ObjCObjectPointerType>()) {
 | 
						|
      // Objective-C++ conversions are always okay.
 | 
						|
      // FIXME: We should have a different class of conversions for the
 | 
						|
      // Objective-C++ implicit conversions.
 | 
						|
      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
 | 
						|
        return false;
 | 
						|
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsMemberPointerConversion - Determines whether the conversion of the
 | 
						|
/// expression From, which has the (possibly adjusted) type FromType, can be
 | 
						|
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
 | 
						|
/// If so, returns true and places the converted type (that might differ from
 | 
						|
/// ToType in its cv-qualifiers at some level) into ConvertedType.
 | 
						|
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
 | 
						|
                                     QualType ToType, QualType &ConvertedType) {
 | 
						|
  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
 | 
						|
  if (!ToTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
 | 
						|
  if (From->isNullPointerConstant(Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, both types have to be member pointers.
 | 
						|
  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
 | 
						|
  if (!FromTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A pointer to member of B can be converted to a pointer to member of D,
 | 
						|
  // where D is derived from B (C++ 4.11p2).
 | 
						|
  QualType FromClass(FromTypePtr->getClass(), 0);
 | 
						|
  QualType ToClass(ToTypePtr->getClass(), 0);
 | 
						|
  // FIXME: What happens when these are dependent? Is this function even called?
 | 
						|
 | 
						|
  if (IsDerivedFrom(ToClass, FromClass)) {
 | 
						|
    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
 | 
						|
                                                 ToClass.getTypePtr());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckMemberPointerConversion - Check the member pointer conversion from the
 | 
						|
/// expression From to the type ToType. This routine checks for ambiguous or
 | 
						|
/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
 | 
						|
/// for which IsMemberPointerConversion has already returned true. It returns
 | 
						|
/// true and produces a diagnostic if there was an error, or returns false
 | 
						|
/// otherwise.
 | 
						|
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
 | 
						|
                                        CastExpr::CastKind &Kind) {
 | 
						|
  QualType FromType = From->getType();
 | 
						|
  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
 | 
						|
  if (!FromPtrType) {
 | 
						|
    // This must be a null pointer to member pointer conversion
 | 
						|
    assert(From->isNullPointerConstant(Context) &&
 | 
						|
           "Expr must be null pointer constant!");
 | 
						|
    Kind = CastExpr::CK_NullToMemberPointer;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
 | 
						|
  assert(ToPtrType && "No member pointer cast has a target type "
 | 
						|
                      "that is not a member pointer.");
 | 
						|
 | 
						|
  QualType FromClass = QualType(FromPtrType->getClass(), 0);
 | 
						|
  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
 | 
						|
 | 
						|
  // FIXME: What about dependent types?
 | 
						|
  assert(FromClass->isRecordType() && "Pointer into non-class.");
 | 
						|
  assert(ToClass->isRecordType() && "Pointer into non-class.");
 | 
						|
 | 
						|
  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
 | 
						|
                  /*DetectVirtual=*/true);
 | 
						|
  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
 | 
						|
  assert(DerivationOkay &&
 | 
						|
         "Should not have been called if derivation isn't OK.");
 | 
						|
  (void)DerivationOkay;
 | 
						|
 | 
						|
  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
 | 
						|
                                  getUnqualifiedType())) {
 | 
						|
    // Derivation is ambiguous. Redo the check to find the exact paths.
 | 
						|
    Paths.clear();
 | 
						|
    Paths.setRecordingPaths(true);
 | 
						|
    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
 | 
						|
    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
 | 
						|
    (void)StillOkay;
 | 
						|
 | 
						|
    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
 | 
						|
    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
 | 
						|
      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
 | 
						|
    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
 | 
						|
      << FromClass << ToClass << QualType(VBase, 0)
 | 
						|
      << From->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Must be a base to derived member conversion.
 | 
						|
  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsQualificationConversion - Determines whether the conversion from
 | 
						|
/// an rvalue of type FromType to ToType is a qualification conversion
 | 
						|
/// (C++ 4.4).
 | 
						|
bool
 | 
						|
Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
 | 
						|
  FromType = Context.getCanonicalType(FromType);
 | 
						|
  ToType = Context.getCanonicalType(ToType);
 | 
						|
 | 
						|
  // If FromType and ToType are the same type, this is not a
 | 
						|
  // qualification conversion.
 | 
						|
  if (FromType == ToType)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // (C++ 4.4p4):
 | 
						|
  //   A conversion can add cv-qualifiers at levels other than the first
 | 
						|
  //   in multi-level pointers, subject to the following rules: [...]
 | 
						|
  bool PreviousToQualsIncludeConst = true;
 | 
						|
  bool UnwrappedAnyPointer = false;
 | 
						|
  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
 | 
						|
    // Within each iteration of the loop, we check the qualifiers to
 | 
						|
    // determine if this still looks like a qualification
 | 
						|
    // conversion. Then, if all is well, we unwrap one more level of
 | 
						|
    // pointers or pointers-to-members and do it all again
 | 
						|
    // until there are no more pointers or pointers-to-members left to
 | 
						|
    // unwrap.
 | 
						|
    UnwrappedAnyPointer = true;
 | 
						|
 | 
						|
    //   -- for every j > 0, if const is in cv 1,j then const is in cv
 | 
						|
    //      2,j, and similarly for volatile.
 | 
						|
    if (!ToType.isAtLeastAsQualifiedAs(FromType))
 | 
						|
      return false;
 | 
						|
 | 
						|
    //   -- if the cv 1,j and cv 2,j are different, then const is in
 | 
						|
    //      every cv for 0 < k < j.
 | 
						|
    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
 | 
						|
        && !PreviousToQualsIncludeConst)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Keep track of whether all prior cv-qualifiers in the "to" type
 | 
						|
    // include const.
 | 
						|
    PreviousToQualsIncludeConst
 | 
						|
      = PreviousToQualsIncludeConst && ToType.isConstQualified();
 | 
						|
  }
 | 
						|
 | 
						|
  // We are left with FromType and ToType being the pointee types
 | 
						|
  // after unwrapping the original FromType and ToType the same number
 | 
						|
  // of types. If we unwrapped any pointers, and if FromType and
 | 
						|
  // ToType have the same unqualified type (since we checked
 | 
						|
  // qualifiers above), then this is a qualification conversion.
 | 
						|
  return UnwrappedAnyPointer &&
 | 
						|
    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given a function template or function, extract the function template
 | 
						|
/// declaration (if any) and the underlying function declaration.
 | 
						|
template<typename T>
 | 
						|
static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
 | 
						|
                                   FunctionTemplateDecl *&FunctionTemplate) {
 | 
						|
  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
 | 
						|
  if (FunctionTemplate)
 | 
						|
    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
 | 
						|
  else
 | 
						|
    Function = cast<T>(Orig);
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether there is a user-defined conversion sequence
 | 
						|
/// (C++ [over.ics.user]) that converts expression From to the type
 | 
						|
/// ToType. If such a conversion exists, User will contain the
 | 
						|
/// user-defined conversion sequence that performs such a conversion
 | 
						|
/// and this routine will return true. Otherwise, this routine returns
 | 
						|
/// false and User is unspecified.
 | 
						|
///
 | 
						|
/// \param AllowConversionFunctions true if the conversion should
 | 
						|
/// consider conversion functions at all. If false, only constructors
 | 
						|
/// will be considered.
 | 
						|
///
 | 
						|
/// \param AllowExplicit  true if the conversion should consider C++0x
 | 
						|
/// "explicit" conversion functions as well as non-explicit conversion
 | 
						|
/// functions (C++0x [class.conv.fct]p2).
 | 
						|
///
 | 
						|
/// \param ForceRValue  true if the expression should be treated as an rvalue
 | 
						|
/// for overload resolution.
 | 
						|
Sema::OverloadingResult Sema::IsUserDefinedConversion(
 | 
						|
                                   Expr *From, QualType ToType,
 | 
						|
                                   UserDefinedConversionSequence& User,
 | 
						|
                                   OverloadCandidateSet& CandidateSet,
 | 
						|
                                   bool AllowConversionFunctions,
 | 
						|
                                   bool AllowExplicit, bool ForceRValue) {
 | 
						|
  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
 | 
						|
    if (CXXRecordDecl *ToRecordDecl
 | 
						|
          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
 | 
						|
      // C++ [over.match.ctor]p1:
 | 
						|
      //   When objects of class type are direct-initialized (8.5), or
 | 
						|
      //   copy-initialized from an expression of the same or a
 | 
						|
      //   derived class type (8.5), overload resolution selects the
 | 
						|
      //   constructor. [...] For copy-initialization, the candidate
 | 
						|
      //   functions are all the converting constructors (12.3.1) of
 | 
						|
      //   that class. The argument list is the expression-list within
 | 
						|
      //   the parentheses of the initializer.
 | 
						|
      DeclarationName ConstructorName
 | 
						|
        = Context.DeclarationNames.getCXXConstructorName(
 | 
						|
                          Context.getCanonicalType(ToType).getUnqualifiedType());
 | 
						|
      DeclContext::lookup_iterator Con, ConEnd;
 | 
						|
      for (llvm::tie(Con, ConEnd)
 | 
						|
             = ToRecordDecl->lookup(ConstructorName);
 | 
						|
           Con != ConEnd; ++Con) {
 | 
						|
        // Find the constructor (which may be a template).
 | 
						|
        CXXConstructorDecl *Constructor = 0;
 | 
						|
        FunctionTemplateDecl *ConstructorTmpl
 | 
						|
          = dyn_cast<FunctionTemplateDecl>(*Con);
 | 
						|
        if (ConstructorTmpl)
 | 
						|
          Constructor
 | 
						|
            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Constructor = cast<CXXConstructorDecl>(*Con);
 | 
						|
 | 
						|
        if (!Constructor->isInvalidDecl() &&
 | 
						|
            Constructor->isConvertingConstructor(AllowExplicit)) {
 | 
						|
          if (ConstructorTmpl)
 | 
						|
            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
 | 
						|
                                         1, CandidateSet,
 | 
						|
                                         /*SuppressUserConversions=*/true,
 | 
						|
                                         ForceRValue);
 | 
						|
          else
 | 
						|
            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
 | 
						|
                                 /*SuppressUserConversions=*/true, ForceRValue);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllowConversionFunctions) {
 | 
						|
    // Don't allow any conversion functions to enter the overload set.
 | 
						|
  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
 | 
						|
                                 PDiag(0)
 | 
						|
                                   << From->getSourceRange())) {
 | 
						|
    // No conversion functions from incomplete types.
 | 
						|
  } else if (const RecordType *FromRecordType
 | 
						|
               = From->getType()->getAs<RecordType>()) {
 | 
						|
    if (CXXRecordDecl *FromRecordDecl
 | 
						|
         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
 | 
						|
      // Add all of the conversion functions as candidates.
 | 
						|
      OverloadedFunctionDecl *Conversions
 | 
						|
        = FromRecordDecl->getVisibleConversionFunctions();
 | 
						|
      for (OverloadedFunctionDecl::function_iterator Func
 | 
						|
             = Conversions->function_begin();
 | 
						|
           Func != Conversions->function_end(); ++Func) {
 | 
						|
        CXXConversionDecl *Conv;
 | 
						|
        FunctionTemplateDecl *ConvTemplate;
 | 
						|
        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
 | 
						|
        if (ConvTemplate)
 | 
						|
          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Conv = dyn_cast<CXXConversionDecl>(*Func);
 | 
						|
 | 
						|
        if (AllowExplicit || !Conv->isExplicit()) {
 | 
						|
          if (ConvTemplate)
 | 
						|
            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
 | 
						|
                                           CandidateSet);
 | 
						|
          else
 | 
						|
            AddConversionCandidate(Conv, From, ToType, CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
 | 
						|
    case OR_Success:
 | 
						|
      // Record the standard conversion we used and the conversion function.
 | 
						|
      if (CXXConstructorDecl *Constructor
 | 
						|
            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
 | 
						|
        // C++ [over.ics.user]p1:
 | 
						|
        //   If the user-defined conversion is specified by a
 | 
						|
        //   constructor (12.3.1), the initial standard conversion
 | 
						|
        //   sequence converts the source type to the type required by
 | 
						|
        //   the argument of the constructor.
 | 
						|
        //
 | 
						|
        // FIXME: What about ellipsis conversions?
 | 
						|
        QualType ThisType = Constructor->getThisType(Context);
 | 
						|
        User.Before = Best->Conversions[0].Standard;
 | 
						|
        User.ConversionFunction = Constructor;
 | 
						|
        User.After.setAsIdentityConversion();
 | 
						|
        User.After.FromTypePtr
 | 
						|
          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
 | 
						|
        User.After.ToTypePtr = ToType.getAsOpaquePtr();
 | 
						|
        return OR_Success;
 | 
						|
      } else if (CXXConversionDecl *Conversion
 | 
						|
                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
 | 
						|
        // C++ [over.ics.user]p1:
 | 
						|
        //
 | 
						|
        //   [...] If the user-defined conversion is specified by a
 | 
						|
        //   conversion function (12.3.2), the initial standard
 | 
						|
        //   conversion sequence converts the source type to the
 | 
						|
        //   implicit object parameter of the conversion function.
 | 
						|
        User.Before = Best->Conversions[0].Standard;
 | 
						|
        User.ConversionFunction = Conversion;
 | 
						|
 | 
						|
        // C++ [over.ics.user]p2:
 | 
						|
        //   The second standard conversion sequence converts the
 | 
						|
        //   result of the user-defined conversion to the target type
 | 
						|
        //   for the sequence. Since an implicit conversion sequence
 | 
						|
        //   is an initialization, the special rules for
 | 
						|
        //   initialization by user-defined conversion apply when
 | 
						|
        //   selecting the best user-defined conversion for a
 | 
						|
        //   user-defined conversion sequence (see 13.3.3 and
 | 
						|
        //   13.3.3.1).
 | 
						|
        User.After = Best->FinalConversion;
 | 
						|
        return OR_Success;
 | 
						|
      } else {
 | 
						|
        assert(false && "Not a constructor or conversion function?");
 | 
						|
        return OR_No_Viable_Function;
 | 
						|
      }
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      return OR_No_Viable_Function;
 | 
						|
    case OR_Deleted:
 | 
						|
      // No conversion here! We're done.
 | 
						|
      return OR_Deleted;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      // FIXME: See C++ [over.best.ics]p10 for the handling of
 | 
						|
      // ambiguous conversion sequences.
 | 
						|
      return OR_Ambiguous;
 | 
						|
    }
 | 
						|
 | 
						|
  return OR_No_Viable_Function;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareImplicitConversionSequences - Compare two implicit
 | 
						|
/// conversion sequences to determine whether one is better than the
 | 
						|
/// other or if they are indistinguishable (C++ 13.3.3.2).
 | 
						|
ImplicitConversionSequence::CompareKind
 | 
						|
Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
 | 
						|
                                         const ImplicitConversionSequence& ICS2)
 | 
						|
{
 | 
						|
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
 | 
						|
  // conversion sequences (as defined in 13.3.3.1)
 | 
						|
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
 | 
						|
  //      conversion sequence than a user-defined conversion sequence or
 | 
						|
  //      an ellipsis conversion sequence, and
 | 
						|
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
 | 
						|
  //      conversion sequence than an ellipsis conversion sequence
 | 
						|
  //      (13.3.3.1.3).
 | 
						|
  //
 | 
						|
  if (ICS1.ConversionKind < ICS2.ConversionKind)
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
  else if (ICS2.ConversionKind < ICS1.ConversionKind)
 | 
						|
    return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  // Two implicit conversion sequences of the same form are
 | 
						|
  // indistinguishable conversion sequences unless one of the
 | 
						|
  // following rules apply: (C++ 13.3.3.2p3):
 | 
						|
  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
 | 
						|
    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
 | 
						|
  else if (ICS1.ConversionKind ==
 | 
						|
             ImplicitConversionSequence::UserDefinedConversion) {
 | 
						|
    // User-defined conversion sequence U1 is a better conversion
 | 
						|
    // sequence than another user-defined conversion sequence U2 if
 | 
						|
    // they contain the same user-defined conversion function or
 | 
						|
    // constructor and if the second standard conversion sequence of
 | 
						|
    // U1 is better than the second standard conversion sequence of
 | 
						|
    // U2 (C++ 13.3.3.2p3).
 | 
						|
    if (ICS1.UserDefined.ConversionFunction ==
 | 
						|
          ICS2.UserDefined.ConversionFunction)
 | 
						|
      return CompareStandardConversionSequences(ICS1.UserDefined.After,
 | 
						|
                                                ICS2.UserDefined.After);
 | 
						|
  }
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareStandardConversionSequences - Compare two standard
 | 
						|
/// conversion sequences to determine whether one is better than the
 | 
						|
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
 | 
						|
ImplicitConversionSequence::CompareKind
 | 
						|
Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
 | 
						|
                                         const StandardConversionSequence& SCS2)
 | 
						|
{
 | 
						|
  // Standard conversion sequence S1 is a better conversion sequence
 | 
						|
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
 | 
						|
 | 
						|
  //  -- S1 is a proper subsequence of S2 (comparing the conversion
 | 
						|
  //     sequences in the canonical form defined by 13.3.3.1.1,
 | 
						|
  //     excluding any Lvalue Transformation; the identity conversion
 | 
						|
  //     sequence is considered to be a subsequence of any
 | 
						|
  //     non-identity conversion sequence) or, if not that,
 | 
						|
  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
 | 
						|
    // Neither is a proper subsequence of the other. Do nothing.
 | 
						|
    ;
 | 
						|
  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
 | 
						|
           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
 | 
						|
           (SCS1.Second == ICK_Identity &&
 | 
						|
            SCS1.Third == ICK_Identity))
 | 
						|
    // SCS1 is a proper subsequence of SCS2.
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
 | 
						|
           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
 | 
						|
           (SCS2.Second == ICK_Identity &&
 | 
						|
            SCS2.Third == ICK_Identity))
 | 
						|
    // SCS2 is a proper subsequence of SCS1.
 | 
						|
    return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  //  -- the rank of S1 is better than the rank of S2 (by the rules
 | 
						|
  //     defined below), or, if not that,
 | 
						|
  ImplicitConversionRank Rank1 = SCS1.getRank();
 | 
						|
  ImplicitConversionRank Rank2 = SCS2.getRank();
 | 
						|
  if (Rank1 < Rank2)
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
  else if (Rank2 < Rank1)
 | 
						|
    return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
 | 
						|
  // are indistinguishable unless one of the following rules
 | 
						|
  // applies:
 | 
						|
 | 
						|
  //   A conversion that is not a conversion of a pointer, or
 | 
						|
  //   pointer to member, to bool is better than another conversion
 | 
						|
  //   that is such a conversion.
 | 
						|
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
 | 
						|
    return SCS2.isPointerConversionToBool()
 | 
						|
             ? ImplicitConversionSequence::Better
 | 
						|
             : ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  // C++ [over.ics.rank]p4b2:
 | 
						|
  //
 | 
						|
  //   If class B is derived directly or indirectly from class A,
 | 
						|
  //   conversion of B* to A* is better than conversion of B* to
 | 
						|
  //   void*, and conversion of A* to void* is better than conversion
 | 
						|
  //   of B* to void*.
 | 
						|
  bool SCS1ConvertsToVoid
 | 
						|
    = SCS1.isPointerConversionToVoidPointer(Context);
 | 
						|
  bool SCS2ConvertsToVoid
 | 
						|
    = SCS2.isPointerConversionToVoidPointer(Context);
 | 
						|
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
 | 
						|
    // Exactly one of the conversion sequences is a conversion to
 | 
						|
    // a void pointer; it's the worse conversion.
 | 
						|
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
 | 
						|
                              : ImplicitConversionSequence::Worse;
 | 
						|
  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
 | 
						|
    // Neither conversion sequence converts to a void pointer; compare
 | 
						|
    // their derived-to-base conversions.
 | 
						|
    if (ImplicitConversionSequence::CompareKind DerivedCK
 | 
						|
          = CompareDerivedToBaseConversions(SCS1, SCS2))
 | 
						|
      return DerivedCK;
 | 
						|
  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
 | 
						|
    // Both conversion sequences are conversions to void
 | 
						|
    // pointers. Compare the source types to determine if there's an
 | 
						|
    // inheritance relationship in their sources.
 | 
						|
    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
 | 
						|
    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
 | 
						|
 | 
						|
    // Adjust the types we're converting from via the array-to-pointer
 | 
						|
    // conversion, if we need to.
 | 
						|
    if (SCS1.First == ICK_Array_To_Pointer)
 | 
						|
      FromType1 = Context.getArrayDecayedType(FromType1);
 | 
						|
    if (SCS2.First == ICK_Array_To_Pointer)
 | 
						|
      FromType2 = Context.getArrayDecayedType(FromType2);
 | 
						|
 | 
						|
    QualType FromPointee1
 | 
						|
      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType FromPointee2
 | 
						|
      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
 | 
						|
    if (IsDerivedFrom(FromPointee2, FromPointee1))
 | 
						|
      return ImplicitConversionSequence::Better;
 | 
						|
    else if (IsDerivedFrom(FromPointee1, FromPointee2))
 | 
						|
      return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
    // Objective-C++: If one interface is more specific than the
 | 
						|
    // other, it is the better one.
 | 
						|
    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
 | 
						|
    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
 | 
						|
    if (FromIface1 && FromIface1) {
 | 
						|
      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare based on qualification conversions (C++ 13.3.3.2p3,
 | 
						|
  // bullet 3).
 | 
						|
  if (ImplicitConversionSequence::CompareKind QualCK
 | 
						|
        = CompareQualificationConversions(SCS1, SCS2))
 | 
						|
    return QualCK;
 | 
						|
 | 
						|
  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
 | 
						|
    // C++0x [over.ics.rank]p3b4:
 | 
						|
    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
 | 
						|
    //      implicit object parameter of a non-static member function declared
 | 
						|
    //      without a ref-qualifier, and S1 binds an rvalue reference to an
 | 
						|
    //      rvalue and S2 binds an lvalue reference.
 | 
						|
    // FIXME: We don't know if we're dealing with the implicit object parameter,
 | 
						|
    // or if the member function in this case has a ref qualifier.
 | 
						|
    // (Of course, we don't have ref qualifiers yet.)
 | 
						|
    if (SCS1.RRefBinding != SCS2.RRefBinding)
 | 
						|
      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
 | 
						|
                              : ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
    // C++ [over.ics.rank]p3b4:
 | 
						|
    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
 | 
						|
    //      which the references refer are the same type except for
 | 
						|
    //      top-level cv-qualifiers, and the type to which the reference
 | 
						|
    //      initialized by S2 refers is more cv-qualified than the type
 | 
						|
    //      to which the reference initialized by S1 refers.
 | 
						|
    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
 | 
						|
    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
 | 
						|
    T1 = Context.getCanonicalType(T1);
 | 
						|
    T2 = Context.getCanonicalType(T2);
 | 
						|
    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
 | 
						|
      if (T2.isMoreQualifiedThan(T1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (T1.isMoreQualifiedThan(T2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareQualificationConversions - Compares two standard conversion
 | 
						|
/// sequences to determine whether they can be ranked based on their
 | 
						|
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
 | 
						|
ImplicitConversionSequence::CompareKind
 | 
						|
Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
 | 
						|
                                      const StandardConversionSequence& SCS2) {
 | 
						|
  // C++ 13.3.3.2p3:
 | 
						|
  //  -- S1 and S2 differ only in their qualification conversion and
 | 
						|
  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
 | 
						|
  //     cv-qualification signature of type T1 is a proper subset of
 | 
						|
  //     the cv-qualification signature of type T2, and S1 is not the
 | 
						|
  //     deprecated string literal array-to-pointer conversion (4.2).
 | 
						|
  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
 | 
						|
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  // FIXME: the example in the standard doesn't use a qualification
 | 
						|
  // conversion (!)
 | 
						|
  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
 | 
						|
  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
 | 
						|
  T1 = Context.getCanonicalType(T1);
 | 
						|
  T2 = Context.getCanonicalType(T2);
 | 
						|
 | 
						|
  // If the types are the same, we won't learn anything by unwrapped
 | 
						|
  // them.
 | 
						|
  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  ImplicitConversionSequence::CompareKind Result
 | 
						|
    = ImplicitConversionSequence::Indistinguishable;
 | 
						|
  while (UnwrapSimilarPointerTypes(T1, T2)) {
 | 
						|
    // Within each iteration of the loop, we check the qualifiers to
 | 
						|
    // determine if this still looks like a qualification
 | 
						|
    // conversion. Then, if all is well, we unwrap one more level of
 | 
						|
    // pointers or pointers-to-members and do it all again
 | 
						|
    // until there are no more pointers or pointers-to-members left
 | 
						|
    // to unwrap. This essentially mimics what
 | 
						|
    // IsQualificationConversion does, but here we're checking for a
 | 
						|
    // strict subset of qualifiers.
 | 
						|
    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
 | 
						|
      // The qualifiers are the same, so this doesn't tell us anything
 | 
						|
      // about how the sequences rank.
 | 
						|
      ;
 | 
						|
    else if (T2.isMoreQualifiedThan(T1)) {
 | 
						|
      // T1 has fewer qualifiers, so it could be the better sequence.
 | 
						|
      if (Result == ImplicitConversionSequence::Worse)
 | 
						|
        // Neither has qualifiers that are a subset of the other's
 | 
						|
        // qualifiers.
 | 
						|
        return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
      Result = ImplicitConversionSequence::Better;
 | 
						|
    } else if (T1.isMoreQualifiedThan(T2)) {
 | 
						|
      // T2 has fewer qualifiers, so it could be the better sequence.
 | 
						|
      if (Result == ImplicitConversionSequence::Better)
 | 
						|
        // Neither has qualifiers that are a subset of the other's
 | 
						|
        // qualifiers.
 | 
						|
        return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
      Result = ImplicitConversionSequence::Worse;
 | 
						|
    } else {
 | 
						|
      // Qualifiers are disjoint.
 | 
						|
      return ImplicitConversionSequence::Indistinguishable;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the types after this point are equivalent, we're done.
 | 
						|
    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the winning standard conversion sequence isn't using
 | 
						|
  // the deprecated string literal array to pointer conversion.
 | 
						|
  switch (Result) {
 | 
						|
  case ImplicitConversionSequence::Better:
 | 
						|
    if (SCS1.Deprecated)
 | 
						|
      Result = ImplicitConversionSequence::Indistinguishable;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::Indistinguishable:
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::Worse:
 | 
						|
    if (SCS2.Deprecated)
 | 
						|
      Result = ImplicitConversionSequence::Indistinguishable;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareDerivedToBaseConversions - Compares two standard conversion
 | 
						|
/// sequences to determine whether they can be ranked based on their
 | 
						|
/// various kinds of derived-to-base conversions (C++
 | 
						|
/// [over.ics.rank]p4b3).  As part of these checks, we also look at
 | 
						|
/// conversions between Objective-C interface types.
 | 
						|
ImplicitConversionSequence::CompareKind
 | 
						|
Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
 | 
						|
                                      const StandardConversionSequence& SCS2) {
 | 
						|
  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
 | 
						|
  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
 | 
						|
  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
 | 
						|
  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
 | 
						|
 | 
						|
  // Adjust the types we're converting from via the array-to-pointer
 | 
						|
  // conversion, if we need to.
 | 
						|
  if (SCS1.First == ICK_Array_To_Pointer)
 | 
						|
    FromType1 = Context.getArrayDecayedType(FromType1);
 | 
						|
  if (SCS2.First == ICK_Array_To_Pointer)
 | 
						|
    FromType2 = Context.getArrayDecayedType(FromType2);
 | 
						|
 | 
						|
  // Canonicalize all of the types.
 | 
						|
  FromType1 = Context.getCanonicalType(FromType1);
 | 
						|
  ToType1 = Context.getCanonicalType(ToType1);
 | 
						|
  FromType2 = Context.getCanonicalType(FromType2);
 | 
						|
  ToType2 = Context.getCanonicalType(ToType2);
 | 
						|
 | 
						|
  // C++ [over.ics.rank]p4b3:
 | 
						|
  //
 | 
						|
  //   If class B is derived directly or indirectly from class A and
 | 
						|
  //   class C is derived directly or indirectly from B,
 | 
						|
  //
 | 
						|
  // For Objective-C, we let A, B, and C also be Objective-C
 | 
						|
  // interfaces.
 | 
						|
 | 
						|
  // Compare based on pointer conversions.
 | 
						|
  if (SCS1.Second == ICK_Pointer_Conversion &&
 | 
						|
      SCS2.Second == ICK_Pointer_Conversion &&
 | 
						|
      /*FIXME: Remove if Objective-C id conversions get their own rank*/
 | 
						|
      FromType1->isPointerType() && FromType2->isPointerType() &&
 | 
						|
      ToType1->isPointerType() && ToType2->isPointerType()) {
 | 
						|
    QualType FromPointee1
 | 
						|
      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType ToPointee1
 | 
						|
      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType FromPointee2
 | 
						|
      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType ToPointee2
 | 
						|
      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
 | 
						|
    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
 | 
						|
    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
 | 
						|
    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
 | 
						|
    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
 | 
						|
 | 
						|
    //   -- conversion of C* to B* is better than conversion of C* to A*,
 | 
						|
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
 | 
						|
      if (IsDerivedFrom(ToPointee1, ToPointee2))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (IsDerivedFrom(ToPointee2, ToPointee1))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
      if (ToIface1 && ToIface2) {
 | 
						|
        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
 | 
						|
          return ImplicitConversionSequence::Better;
 | 
						|
        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
 | 
						|
          return ImplicitConversionSequence::Worse;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    //   -- conversion of B* to A* is better than conversion of C* to A*,
 | 
						|
    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
 | 
						|
      if (IsDerivedFrom(FromPointee2, FromPointee1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (IsDerivedFrom(FromPointee1, FromPointee2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
      if (FromIface1 && FromIface2) {
 | 
						|
        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
 | 
						|
          return ImplicitConversionSequence::Better;
 | 
						|
        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
 | 
						|
          return ImplicitConversionSequence::Worse;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare based on reference bindings.
 | 
						|
  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
 | 
						|
      SCS1.Second == ICK_Derived_To_Base) {
 | 
						|
    //   -- binding of an expression of type C to a reference of type
 | 
						|
    //      B& is better than binding an expression of type C to a
 | 
						|
    //      reference of type A&,
 | 
						|
    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
 | 
						|
        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
 | 
						|
      if (IsDerivedFrom(ToType1, ToType2))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (IsDerivedFrom(ToType2, ToType1))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
 | 
						|
    //   -- binding of an expression of type B to a reference of type
 | 
						|
    //      A& is better than binding an expression of type C to a
 | 
						|
    //      reference of type A&,
 | 
						|
    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
 | 
						|
        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
 | 
						|
      if (IsDerivedFrom(FromType2, FromType1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (IsDerivedFrom(FromType1, FromType2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // FIXME: conversion of A::* to B::* is better than conversion of
 | 
						|
  // A::* to C::*,
 | 
						|
 | 
						|
  // FIXME: conversion of B::* to C::* is better than conversion of
 | 
						|
  // A::* to C::*, and
 | 
						|
 | 
						|
  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
 | 
						|
      SCS1.Second == ICK_Derived_To_Base) {
 | 
						|
    //   -- conversion of C to B is better than conversion of C to A,
 | 
						|
    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
 | 
						|
        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
 | 
						|
      if (IsDerivedFrom(ToType1, ToType2))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (IsDerivedFrom(ToType2, ToType1))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
 | 
						|
    //   -- conversion of B to A is better than conversion of C to A.
 | 
						|
    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
 | 
						|
        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
 | 
						|
      if (IsDerivedFrom(FromType2, FromType1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (IsDerivedFrom(FromType1, FromType2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
 | 
						|
/// TryCopyInitialization - Try to copy-initialize a value of type
 | 
						|
/// ToType from the expression From. Return the implicit conversion
 | 
						|
/// sequence required to pass this argument, which may be a bad
 | 
						|
/// conversion sequence (meaning that the argument cannot be passed to
 | 
						|
/// a parameter of this type). If @p SuppressUserConversions, then we
 | 
						|
/// do not permit any user-defined conversion sequences. If @p ForceRValue,
 | 
						|
/// then we treat @p From as an rvalue, even if it is an lvalue.
 | 
						|
ImplicitConversionSequence
 | 
						|
Sema::TryCopyInitialization(Expr *From, QualType ToType,
 | 
						|
                            bool SuppressUserConversions, bool ForceRValue,
 | 
						|
                            bool InOverloadResolution) {
 | 
						|
  if (ToType->isReferenceType()) {
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    CheckReferenceInit(From, ToType,
 | 
						|
                       SuppressUserConversions,
 | 
						|
                       /*AllowExplicit=*/false,
 | 
						|
                       ForceRValue,
 | 
						|
                       &ICS);
 | 
						|
    return ICS;
 | 
						|
  } else {
 | 
						|
    return TryImplicitConversion(From, ToType,
 | 
						|
                                 SuppressUserConversions,
 | 
						|
                                 /*AllowExplicit=*/false,
 | 
						|
                                 ForceRValue,
 | 
						|
                                 InOverloadResolution);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
 | 
						|
/// the expression @p From. Returns true (and emits a diagnostic) if there was
 | 
						|
/// an error, returns false if the initialization succeeded. Elidable should
 | 
						|
/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
 | 
						|
/// differently in C++0x for this case.
 | 
						|
bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
 | 
						|
                                     const char* Flavor, bool Elidable) {
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    // In C, argument passing is the same as performing an assignment.
 | 
						|
    QualType FromType = From->getType();
 | 
						|
 | 
						|
    AssignConvertType ConvTy =
 | 
						|
      CheckSingleAssignmentConstraints(ToType, From);
 | 
						|
    if (ConvTy != Compatible &&
 | 
						|
        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
 | 
						|
      ConvTy = Compatible;
 | 
						|
 | 
						|
    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
 | 
						|
                                    FromType, From, Flavor);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ToType->isReferenceType())
 | 
						|
    return CheckReferenceInit(From, ToType,
 | 
						|
                              /*SuppressUserConversions=*/false,
 | 
						|
                              /*AllowExplicit=*/false,
 | 
						|
                              /*ForceRValue=*/false);
 | 
						|
 | 
						|
  if (!PerformImplicitConversion(From, ToType, Flavor,
 | 
						|
                                 /*AllowExplicit=*/false, Elidable))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(From->getSourceRange().getBegin(),
 | 
						|
              diag::err_typecheck_convert_incompatible)
 | 
						|
    << ToType << From->getType() << Flavor << From->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// TryObjectArgumentInitialization - Try to initialize the object
 | 
						|
/// parameter of the given member function (@c Method) from the
 | 
						|
/// expression @p From.
 | 
						|
ImplicitConversionSequence
 | 
						|
Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
 | 
						|
  QualType ClassType = Context.getTypeDeclType(Method->getParent());
 | 
						|
  unsigned MethodQuals = Method->getTypeQualifiers();
 | 
						|
  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
 | 
						|
 | 
						|
  // Set up the conversion sequence as a "bad" conversion, to allow us
 | 
						|
  // to exit early.
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  ICS.Standard.setAsIdentityConversion();
 | 
						|
  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
 | 
						|
 | 
						|
  // We need to have an object of class type.
 | 
						|
  QualType FromType = From->getType();
 | 
						|
  if (const PointerType *PT = FromType->getAs<PointerType>())
 | 
						|
    FromType = PT->getPointeeType();
 | 
						|
 | 
						|
  assert(FromType->isRecordType());
 | 
						|
 | 
						|
  // The implicit object parmeter is has the type "reference to cv X",
 | 
						|
  // where X is the class of which the function is a member
 | 
						|
  // (C++ [over.match.funcs]p4). However, when finding an implicit
 | 
						|
  // conversion sequence for the argument, we are not allowed to
 | 
						|
  // create temporaries or perform user-defined conversions
 | 
						|
  // (C++ [over.match.funcs]p5). We perform a simplified version of
 | 
						|
  // reference binding here, that allows class rvalues to bind to
 | 
						|
  // non-constant references.
 | 
						|
 | 
						|
  // First check the qualifiers. We don't care about lvalue-vs-rvalue
 | 
						|
  // with the implicit object parameter (C++ [over.match.funcs]p5).
 | 
						|
  QualType FromTypeCanon = Context.getCanonicalType(FromType);
 | 
						|
  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
 | 
						|
      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
 | 
						|
    return ICS;
 | 
						|
 | 
						|
  // Check that we have either the same type or a derived type. It
 | 
						|
  // affects the conversion rank.
 | 
						|
  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
 | 
						|
  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
 | 
						|
    ICS.Standard.Second = ICK_Identity;
 | 
						|
  else if (IsDerivedFrom(FromType, ClassType))
 | 
						|
    ICS.Standard.Second = ICK_Derived_To_Base;
 | 
						|
  else
 | 
						|
    return ICS;
 | 
						|
 | 
						|
  // Success. Mark this as a reference binding.
 | 
						|
  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
 | 
						|
  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
 | 
						|
  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
 | 
						|
  ICS.Standard.ReferenceBinding = true;
 | 
						|
  ICS.Standard.DirectBinding = true;
 | 
						|
  ICS.Standard.RRefBinding = false;
 | 
						|
  return ICS;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformObjectArgumentInitialization - Perform initialization of
 | 
						|
/// the implicit object parameter for the given Method with the given
 | 
						|
/// expression.
 | 
						|
bool
 | 
						|
Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
 | 
						|
  QualType FromRecordType, DestType;
 | 
						|
  QualType ImplicitParamRecordType  =
 | 
						|
    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
 | 
						|
    FromRecordType = PT->getPointeeType();
 | 
						|
    DestType = Method->getThisType(Context);
 | 
						|
  } else {
 | 
						|
    FromRecordType = From->getType();
 | 
						|
    DestType = ImplicitParamRecordType;
 | 
						|
  }
 | 
						|
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = TryObjectArgumentInitialization(From, Method);
 | 
						|
  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
 | 
						|
    return Diag(From->getSourceRange().getBegin(),
 | 
						|
                diag::err_implicit_object_parameter_init)
 | 
						|
       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
 | 
						|
 | 
						|
  if (ICS.Standard.Second == ICK_Derived_To_Base &&
 | 
						|
      CheckDerivedToBaseConversion(FromRecordType,
 | 
						|
                                   ImplicitParamRecordType,
 | 
						|
                                   From->getSourceRange().getBegin(),
 | 
						|
                                   From->getSourceRange()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
 | 
						|
                    /*isLvalue=*/true);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// TryContextuallyConvertToBool - Attempt to contextually convert the
 | 
						|
/// expression From to bool (C++0x [conv]p3).
 | 
						|
ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
 | 
						|
  return TryImplicitConversion(From, Context.BoolTy,
 | 
						|
                               // FIXME: Are these flags correct?
 | 
						|
                               /*SuppressUserConversions=*/false,
 | 
						|
                               /*AllowExplicit=*/true,
 | 
						|
                               /*ForceRValue=*/false,
 | 
						|
                               /*InOverloadResolution=*/false);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformContextuallyConvertToBool - Perform a contextual conversion
 | 
						|
/// of the expression From to bool (C++0x [conv]p3).
 | 
						|
bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
 | 
						|
  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
 | 
						|
  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
 | 
						|
    return false;
 | 
						|
 | 
						|
    OverloadCandidateSet CandidateSet;
 | 
						|
    if (IsUserDefinedConversion(From, Context.BoolTy, ICS.UserDefined,
 | 
						|
                            CandidateSet,
 | 
						|
                            true, true, false) != OR_Ambiguous)
 | 
						|
      return  Diag(From->getSourceRange().getBegin(),
 | 
						|
                   diag::err_typecheck_bool_condition)
 | 
						|
                    << From->getType() << From->getSourceRange();
 | 
						|
    Diag(From->getSourceRange().getBegin(),
 | 
						|
         diag::err_typecheck_ambiguous_bool_condition)
 | 
						|
          << From->getType() << From->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AddOverloadCandidate - Adds the given function to the set of
 | 
						|
/// candidate functions, using the given function call arguments.  If
 | 
						|
/// @p SuppressUserConversions, then don't allow user-defined
 | 
						|
/// conversions via constructors or conversion operators.
 | 
						|
/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
 | 
						|
/// hacky way to implement the overloading rules for elidable copy
 | 
						|
/// initialization in C++0x (C++0x 12.8p15).
 | 
						|
///
 | 
						|
/// \para PartialOverloading true if we are performing "partial" overloading
 | 
						|
/// based on an incomplete set of function arguments. This feature is used by
 | 
						|
/// code completion.
 | 
						|
void
 | 
						|
Sema::AddOverloadCandidate(FunctionDecl *Function,
 | 
						|
                           Expr **Args, unsigned NumArgs,
 | 
						|
                           OverloadCandidateSet& CandidateSet,
 | 
						|
                           bool SuppressUserConversions,
 | 
						|
                           bool ForceRValue,
 | 
						|
                           bool PartialOverloading) {
 | 
						|
  const FunctionProtoType* Proto
 | 
						|
    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
 | 
						|
  assert(Proto && "Functions without a prototype cannot be overloaded");
 | 
						|
  assert(!isa<CXXConversionDecl>(Function) &&
 | 
						|
         "Use AddConversionCandidate for conversion functions");
 | 
						|
  assert(!Function->getDescribedFunctionTemplate() &&
 | 
						|
         "Use AddTemplateOverloadCandidate for function templates");
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
 | 
						|
    if (!isa<CXXConstructorDecl>(Method)) {
 | 
						|
      // If we get here, it's because we're calling a member function
 | 
						|
      // that is named without a member access expression (e.g.,
 | 
						|
      // "this->f") that was either written explicitly or created
 | 
						|
      // implicitly. This can happen with a qualified call to a member
 | 
						|
      // function, e.g., X::f(). We use a NULL object as the implied
 | 
						|
      // object argument (C++ [over.call.func]p3).
 | 
						|
      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
 | 
						|
                         SuppressUserConversions, ForceRValue);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // We treat a constructor like a non-member function, since its object
 | 
						|
    // argument doesn't participate in overload resolution.
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  CandidateSet.push_back(OverloadCandidate());
 | 
						|
  OverloadCandidate& Candidate = CandidateSet.back();
 | 
						|
  Candidate.Function = Function;
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having fewer than m
 | 
						|
  // parameters is viable only if it has an ellipsis in its parameter
 | 
						|
  // list (8.3.5).
 | 
						|
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having more than m parameters
 | 
						|
  // is viable only if the (m+1)st parameter has a default argument
 | 
						|
  // (8.3.6). For the purposes of overload resolution, the
 | 
						|
  // parameter list is truncated on the right, so that there are
 | 
						|
  // exactly m parameters.
 | 
						|
  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
 | 
						|
  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
 | 
						|
    // Not enough arguments.
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  Candidate.Conversions.resize(NumArgs);
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      // (C++ 13.3.2p3): for F to be a viable function, there shall
 | 
						|
      // exist for each argument an implicit conversion sequence
 | 
						|
      // (13.3.3.1) that converts that argument to the corresponding
 | 
						|
      // parameter of F.
 | 
						|
      QualType ParamType = Proto->getArgType(ArgIdx);
 | 
						|
      Candidate.Conversions[ArgIdx]
 | 
						|
        = TryCopyInitialization(Args[ArgIdx], ParamType,
 | 
						|
                                SuppressUserConversions, ForceRValue,
 | 
						|
                                /*InOverloadResolution=*/true);
 | 
						|
      if (Candidate.Conversions[ArgIdx].ConversionKind
 | 
						|
            == ImplicitConversionSequence::BadConversion) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | 
						|
      // argument for which there is no corresponding parameter is
 | 
						|
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | 
						|
      Candidate.Conversions[ArgIdx].ConversionKind
 | 
						|
        = ImplicitConversionSequence::EllipsisConversion;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add all of the function declarations in the given function set to
 | 
						|
/// the overload canddiate set.
 | 
						|
void Sema::AddFunctionCandidates(const FunctionSet &Functions,
 | 
						|
                                 Expr **Args, unsigned NumArgs,
 | 
						|
                                 OverloadCandidateSet& CandidateSet,
 | 
						|
                                 bool SuppressUserConversions) {
 | 
						|
  for (FunctionSet::const_iterator F = Functions.begin(),
 | 
						|
                                FEnd = Functions.end();
 | 
						|
       F != FEnd; ++F) {
 | 
						|
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
 | 
						|
      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
 | 
						|
                           SuppressUserConversions);
 | 
						|
    else
 | 
						|
      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
 | 
						|
                                   /*FIXME: explicit args */false, 0, 0,
 | 
						|
                                   Args, NumArgs, CandidateSet,
 | 
						|
                                   SuppressUserConversions);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddMethodCandidate - Adds the given C++ member function to the set
 | 
						|
/// of candidate functions, using the given function call arguments
 | 
						|
/// and the object argument (@c Object). For example, in a call
 | 
						|
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
 | 
						|
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
 | 
						|
/// allow user-defined conversions via constructors or conversion
 | 
						|
/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
 | 
						|
/// a slightly hacky way to implement the overloading rules for elidable copy
 | 
						|
/// initialization in C++0x (C++0x 12.8p15).
 | 
						|
void
 | 
						|
Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
 | 
						|
                         Expr **Args, unsigned NumArgs,
 | 
						|
                         OverloadCandidateSet& CandidateSet,
 | 
						|
                         bool SuppressUserConversions, bool ForceRValue) {
 | 
						|
  const FunctionProtoType* Proto
 | 
						|
    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
 | 
						|
  assert(Proto && "Methods without a prototype cannot be overloaded");
 | 
						|
  assert(!isa<CXXConversionDecl>(Method) &&
 | 
						|
         "Use AddConversionCandidate for conversion functions");
 | 
						|
  assert(!isa<CXXConstructorDecl>(Method) &&
 | 
						|
         "Use AddOverloadCandidate for constructors");
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  CandidateSet.push_back(OverloadCandidate());
 | 
						|
  OverloadCandidate& Candidate = CandidateSet.back();
 | 
						|
  Candidate.Function = Method;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having fewer than m
 | 
						|
  // parameters is viable only if it has an ellipsis in its parameter
 | 
						|
  // list (8.3.5).
 | 
						|
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having more than m parameters
 | 
						|
  // is viable only if the (m+1)st parameter has a default argument
 | 
						|
  // (8.3.6). For the purposes of overload resolution, the
 | 
						|
  // parameter list is truncated on the right, so that there are
 | 
						|
  // exactly m parameters.
 | 
						|
  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
 | 
						|
  if (NumArgs < MinRequiredArgs) {
 | 
						|
    // Not enough arguments.
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.Conversions.resize(NumArgs + 1);
 | 
						|
 | 
						|
  if (Method->isStatic() || !Object)
 | 
						|
    // The implicit object argument is ignored.
 | 
						|
    Candidate.IgnoreObjectArgument = true;
 | 
						|
  else {
 | 
						|
    // Determine the implicit conversion sequence for the object
 | 
						|
    // parameter.
 | 
						|
    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
 | 
						|
    if (Candidate.Conversions[0].ConversionKind
 | 
						|
          == ImplicitConversionSequence::BadConversion) {
 | 
						|
      Candidate.Viable = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      // (C++ 13.3.2p3): for F to be a viable function, there shall
 | 
						|
      // exist for each argument an implicit conversion sequence
 | 
						|
      // (13.3.3.1) that converts that argument to the corresponding
 | 
						|
      // parameter of F.
 | 
						|
      QualType ParamType = Proto->getArgType(ArgIdx);
 | 
						|
      Candidate.Conversions[ArgIdx + 1]
 | 
						|
        = TryCopyInitialization(Args[ArgIdx], ParamType,
 | 
						|
                                SuppressUserConversions, ForceRValue,
 | 
						|
                                /*InOverloadResolution=*/true);
 | 
						|
      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
 | 
						|
            == ImplicitConversionSequence::BadConversion) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | 
						|
      // argument for which there is no corresponding parameter is
 | 
						|
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | 
						|
      Candidate.Conversions[ArgIdx + 1].ConversionKind
 | 
						|
        = ImplicitConversionSequence::EllipsisConversion;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add a C++ member function template as a candidate to the candidate
 | 
						|
/// set, using template argument deduction to produce an appropriate member
 | 
						|
/// function template specialization.
 | 
						|
void
 | 
						|
Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
 | 
						|
                                 bool HasExplicitTemplateArgs,
 | 
						|
                                 const TemplateArgument *ExplicitTemplateArgs,
 | 
						|
                                 unsigned NumExplicitTemplateArgs,
 | 
						|
                                 Expr *Object, Expr **Args, unsigned NumArgs,
 | 
						|
                                 OverloadCandidateSet& CandidateSet,
 | 
						|
                                 bool SuppressUserConversions,
 | 
						|
                                 bool ForceRValue) {
 | 
						|
  // C++ [over.match.funcs]p7:
 | 
						|
  //   In each case where a candidate is a function template, candidate
 | 
						|
  //   function template specializations are generated using template argument
 | 
						|
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
 | 
						|
  //   candidate functions in the usual way.113) A given name can refer to one
 | 
						|
  //   or more function templates and also to a set of overloaded non-template
 | 
						|
  //   functions. In such a case, the candidate functions generated from each
 | 
						|
  //   function template are combined with the set of non-template candidate
 | 
						|
  //   functions.
 | 
						|
  TemplateDeductionInfo Info(Context);
 | 
						|
  FunctionDecl *Specialization = 0;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
 | 
						|
                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
 | 
						|
                                Args, NumArgs, Specialization, Info)) {
 | 
						|
        // FIXME: Record what happened with template argument deduction, so
 | 
						|
        // that we can give the user a beautiful diagnostic.
 | 
						|
        (void)Result;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
  // Add the function template specialization produced by template argument
 | 
						|
  // deduction as a candidate.
 | 
						|
  assert(Specialization && "Missing member function template specialization?");
 | 
						|
  assert(isa<CXXMethodDecl>(Specialization) &&
 | 
						|
         "Specialization is not a member function?");
 | 
						|
  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
 | 
						|
                     CandidateSet, SuppressUserConversions, ForceRValue);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add a C++ function template specialization as a candidate
 | 
						|
/// in the candidate set, using template argument deduction to produce
 | 
						|
/// an appropriate function template specialization.
 | 
						|
void
 | 
						|
Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                   bool HasExplicitTemplateArgs,
 | 
						|
                                 const TemplateArgument *ExplicitTemplateArgs,
 | 
						|
                                   unsigned NumExplicitTemplateArgs,
 | 
						|
                                   Expr **Args, unsigned NumArgs,
 | 
						|
                                   OverloadCandidateSet& CandidateSet,
 | 
						|
                                   bool SuppressUserConversions,
 | 
						|
                                   bool ForceRValue) {
 | 
						|
  // C++ [over.match.funcs]p7:
 | 
						|
  //   In each case where a candidate is a function template, candidate
 | 
						|
  //   function template specializations are generated using template argument
 | 
						|
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
 | 
						|
  //   candidate functions in the usual way.113) A given name can refer to one
 | 
						|
  //   or more function templates and also to a set of overloaded non-template
 | 
						|
  //   functions. In such a case, the candidate functions generated from each
 | 
						|
  //   function template are combined with the set of non-template candidate
 | 
						|
  //   functions.
 | 
						|
  TemplateDeductionInfo Info(Context);
 | 
						|
  FunctionDecl *Specialization = 0;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
 | 
						|
                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
 | 
						|
                                  Args, NumArgs, Specialization, Info)) {
 | 
						|
    // FIXME: Record what happened with template argument deduction, so
 | 
						|
    // that we can give the user a beautiful diagnostic.
 | 
						|
    (void)Result;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the function template specialization produced by template argument
 | 
						|
  // deduction as a candidate.
 | 
						|
  assert(Specialization && "Missing function template specialization?");
 | 
						|
  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
 | 
						|
                       SuppressUserConversions, ForceRValue);
 | 
						|
}
 | 
						|
 | 
						|
/// AddConversionCandidate - Add a C++ conversion function as a
 | 
						|
/// candidate in the candidate set (C++ [over.match.conv],
 | 
						|
/// C++ [over.match.copy]). From is the expression we're converting from,
 | 
						|
/// and ToType is the type that we're eventually trying to convert to
 | 
						|
/// (which may or may not be the same type as the type that the
 | 
						|
/// conversion function produces).
 | 
						|
void
 | 
						|
Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
 | 
						|
                             Expr *From, QualType ToType,
 | 
						|
                             OverloadCandidateSet& CandidateSet) {
 | 
						|
  assert(!Conversion->getDescribedFunctionTemplate() &&
 | 
						|
         "Conversion function templates use AddTemplateConversionCandidate");
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  CandidateSet.push_back(OverloadCandidate());
 | 
						|
  OverloadCandidate& Candidate = CandidateSet.back();
 | 
						|
  Candidate.Function = Conversion;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.FinalConversion.setAsIdentityConversion();
 | 
						|
  Candidate.FinalConversion.FromTypePtr
 | 
						|
    = Conversion->getConversionType().getAsOpaquePtr();
 | 
						|
  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
 | 
						|
 | 
						|
  // Determine the implicit conversion sequence for the implicit
 | 
						|
  // object parameter.
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.Conversions.resize(1);
 | 
						|
  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
 | 
						|
  // Conversion functions to a different type in the base class is visible in 
 | 
						|
  // the derived class.  So, a derived to base conversion should not participate
 | 
						|
  // in overload resolution. 
 | 
						|
  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
 | 
						|
    Candidate.Conversions[0].Standard.Second = ICK_Identity;
 | 
						|
  if (Candidate.Conversions[0].ConversionKind
 | 
						|
      == ImplicitConversionSequence::BadConversion) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // To determine what the conversion from the result of calling the
 | 
						|
  // conversion function to the type we're eventually trying to
 | 
						|
  // convert to (ToType), we need to synthesize a call to the
 | 
						|
  // conversion function and attempt copy initialization from it. This
 | 
						|
  // makes sure that we get the right semantics with respect to
 | 
						|
  // lvalues/rvalues and the type. Fortunately, we can allocate this
 | 
						|
  // call on the stack and we don't need its arguments to be
 | 
						|
  // well-formed.
 | 
						|
  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
 | 
						|
                            SourceLocation());
 | 
						|
  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
 | 
						|
                                CastExpr::CK_Unknown,
 | 
						|
                                &ConversionRef, false);
 | 
						|
 | 
						|
  // Note that it is safe to allocate CallExpr on the stack here because
 | 
						|
  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
 | 
						|
  // allocator).
 | 
						|
  CallExpr Call(Context, &ConversionFn, 0, 0,
 | 
						|
                Conversion->getConversionType().getNonReferenceType(),
 | 
						|
                SourceLocation());
 | 
						|
  ImplicitConversionSequence ICS =
 | 
						|
    TryCopyInitialization(&Call, ToType,
 | 
						|
                          /*SuppressUserConversions=*/true,
 | 
						|
                          /*ForceRValue=*/false,
 | 
						|
                          /*InOverloadResolution=*/false);
 | 
						|
 | 
						|
  switch (ICS.ConversionKind) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    Candidate.FinalConversion = ICS.Standard;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    Candidate.Viable = false;
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(false &&
 | 
						|
           "Can only end up with a standard conversion sequence or failure");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds a conversion function template specialization
 | 
						|
/// candidate to the overload set, using template argument deduction
 | 
						|
/// to deduce the template arguments of the conversion function
 | 
						|
/// template from the type that we are converting to (C++
 | 
						|
/// [temp.deduct.conv]).
 | 
						|
void
 | 
						|
Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                     Expr *From, QualType ToType,
 | 
						|
                                     OverloadCandidateSet &CandidateSet) {
 | 
						|
  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
 | 
						|
         "Only conversion function templates permitted here");
 | 
						|
 | 
						|
  TemplateDeductionInfo Info(Context);
 | 
						|
  CXXConversionDecl *Specialization = 0;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArguments(FunctionTemplate, ToType,
 | 
						|
                                  Specialization, Info)) {
 | 
						|
    // FIXME: Record what happened with template argument deduction, so
 | 
						|
    // that we can give the user a beautiful diagnostic.
 | 
						|
    (void)Result;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the conversion function template specialization produced by
 | 
						|
  // template argument deduction as a candidate.
 | 
						|
  assert(Specialization && "Missing function template specialization?");
 | 
						|
  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
 | 
						|
}
 | 
						|
 | 
						|
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
 | 
						|
/// converts the given @c Object to a function pointer via the
 | 
						|
/// conversion function @c Conversion, and then attempts to call it
 | 
						|
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
 | 
						|
/// the type of function that we'll eventually be calling.
 | 
						|
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
 | 
						|
                                 const FunctionProtoType *Proto,
 | 
						|
                                 Expr *Object, Expr **Args, unsigned NumArgs,
 | 
						|
                                 OverloadCandidateSet& CandidateSet) {
 | 
						|
  CandidateSet.push_back(OverloadCandidate());
 | 
						|
  OverloadCandidate& Candidate = CandidateSet.back();
 | 
						|
  Candidate.Function = 0;
 | 
						|
  Candidate.Surrogate = Conversion;
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.IsSurrogate = true;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.Conversions.resize(NumArgs + 1);
 | 
						|
 | 
						|
  // Determine the implicit conversion sequence for the implicit
 | 
						|
  // object parameter.
 | 
						|
  ImplicitConversionSequence ObjectInit
 | 
						|
    = TryObjectArgumentInitialization(Object, Conversion);
 | 
						|
  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The first conversion is actually a user-defined conversion whose
 | 
						|
  // first conversion is ObjectInit's standard conversion (which is
 | 
						|
  // effectively a reference binding). Record it as such.
 | 
						|
  Candidate.Conversions[0].ConversionKind
 | 
						|
    = ImplicitConversionSequence::UserDefinedConversion;
 | 
						|
  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
 | 
						|
  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
 | 
						|
  Candidate.Conversions[0].UserDefined.After
 | 
						|
    = Candidate.Conversions[0].UserDefined.Before;
 | 
						|
  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
 | 
						|
 | 
						|
  // Find the
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having fewer than m
 | 
						|
  // parameters is viable only if it has an ellipsis in its parameter
 | 
						|
  // list (8.3.5).
 | 
						|
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Function types don't have any default arguments, so just check if
 | 
						|
  // we have enough arguments.
 | 
						|
  if (NumArgs < NumArgsInProto) {
 | 
						|
    // Not enough arguments.
 | 
						|
    Candidate.Viable = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      // (C++ 13.3.2p3): for F to be a viable function, there shall
 | 
						|
      // exist for each argument an implicit conversion sequence
 | 
						|
      // (13.3.3.1) that converts that argument to the corresponding
 | 
						|
      // parameter of F.
 | 
						|
      QualType ParamType = Proto->getArgType(ArgIdx);
 | 
						|
      Candidate.Conversions[ArgIdx + 1]
 | 
						|
        = TryCopyInitialization(Args[ArgIdx], ParamType,
 | 
						|
                                /*SuppressUserConversions=*/false,
 | 
						|
                                /*ForceRValue=*/false,
 | 
						|
                                /*InOverloadResolution=*/false);
 | 
						|
      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
 | 
						|
            == ImplicitConversionSequence::BadConversion) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | 
						|
      // argument for which there is no corresponding parameter is
 | 
						|
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | 
						|
      Candidate.Conversions[ArgIdx + 1].ConversionKind
 | 
						|
        = ImplicitConversionSequence::EllipsisConversion;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This will eventually be removed, once we've migrated all of the
 | 
						|
// operator overloading logic over to the scheme used by binary operators, which
 | 
						|
// works for template instantiation.
 | 
						|
void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
 | 
						|
                                 SourceLocation OpLoc,
 | 
						|
                                 Expr **Args, unsigned NumArgs,
 | 
						|
                                 OverloadCandidateSet& CandidateSet,
 | 
						|
                                 SourceRange OpRange) {
 | 
						|
 | 
						|
  FunctionSet Functions;
 | 
						|
 | 
						|
  QualType T1 = Args[0]->getType();
 | 
						|
  QualType T2;
 | 
						|
  if (NumArgs > 1)
 | 
						|
    T2 = Args[1]->getType();
 | 
						|
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
  if (S)
 | 
						|
    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
 | 
						|
  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
 | 
						|
  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
 | 
						|
  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
 | 
						|
  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add overload candidates for overloaded operators that are
 | 
						|
/// member functions.
 | 
						|
///
 | 
						|
/// Add the overloaded operator candidates that are member functions
 | 
						|
/// for the operator Op that was used in an operator expression such
 | 
						|
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
 | 
						|
/// CandidateSet will store the added overload candidates. (C++
 | 
						|
/// [over.match.oper]).
 | 
						|
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
 | 
						|
                                       SourceLocation OpLoc,
 | 
						|
                                       Expr **Args, unsigned NumArgs,
 | 
						|
                                       OverloadCandidateSet& CandidateSet,
 | 
						|
                                       SourceRange OpRange) {
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
 | 
						|
  // C++ [over.match.oper]p3:
 | 
						|
  //   For a unary operator @ with an operand of a type whose
 | 
						|
  //   cv-unqualified version is T1, and for a binary operator @ with
 | 
						|
  //   a left operand of a type whose cv-unqualified version is T1 and
 | 
						|
  //   a right operand of a type whose cv-unqualified version is T2,
 | 
						|
  //   three sets of candidate functions, designated member
 | 
						|
  //   candidates, non-member candidates and built-in candidates, are
 | 
						|
  //   constructed as follows:
 | 
						|
  QualType T1 = Args[0]->getType();
 | 
						|
  QualType T2;
 | 
						|
  if (NumArgs > 1)
 | 
						|
    T2 = Args[1]->getType();
 | 
						|
 | 
						|
  //     -- If T1 is a class type, the set of member candidates is the
 | 
						|
  //        result of the qualified lookup of T1::operator@
 | 
						|
  //        (13.3.1.1.1); otherwise, the set of member candidates is
 | 
						|
  //        empty.
 | 
						|
  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
 | 
						|
    // Complete the type if it can be completed. Otherwise, we're done.
 | 
						|
    if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0)))
 | 
						|
      return;
 | 
						|
 | 
						|
    LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName,
 | 
						|
                                                 LookupOrdinaryName, false);
 | 
						|
    for (LookupResult::iterator Oper = Operators.begin(),
 | 
						|
                             OperEnd = Operators.end();
 | 
						|
         Oper != OperEnd;
 | 
						|
         ++Oper)
 | 
						|
      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
 | 
						|
                         Args+1, NumArgs - 1, CandidateSet,
 | 
						|
                         /*SuppressUserConversions=*/false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddBuiltinCandidate - Add a candidate for a built-in
 | 
						|
/// operator. ResultTy and ParamTys are the result and parameter types
 | 
						|
/// of the built-in candidate, respectively. Args and NumArgs are the
 | 
						|
/// arguments being passed to the candidate. IsAssignmentOperator
 | 
						|
/// should be true when this built-in candidate is an assignment
 | 
						|
/// operator. NumContextualBoolArguments is the number of arguments
 | 
						|
/// (at the beginning of the argument list) that will be contextually
 | 
						|
/// converted to bool.
 | 
						|
void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
 | 
						|
                               Expr **Args, unsigned NumArgs,
 | 
						|
                               OverloadCandidateSet& CandidateSet,
 | 
						|
                               bool IsAssignmentOperator,
 | 
						|
                               unsigned NumContextualBoolArguments) {
 | 
						|
  // Add this candidate
 | 
						|
  CandidateSet.push_back(OverloadCandidate());
 | 
						|
  OverloadCandidate& Candidate = CandidateSet.back();
 | 
						|
  Candidate.Function = 0;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.BuiltinTypes.ResultTy = ResultTy;
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.Conversions.resize(NumArgs);
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    // C++ [over.match.oper]p4:
 | 
						|
    //   For the built-in assignment operators, conversions of the
 | 
						|
    //   left operand are restricted as follows:
 | 
						|
    //     -- no temporaries are introduced to hold the left operand, and
 | 
						|
    //     -- no user-defined conversions are applied to the left
 | 
						|
    //        operand to achieve a type match with the left-most
 | 
						|
    //        parameter of a built-in candidate.
 | 
						|
    //
 | 
						|
    // We block these conversions by turning off user-defined
 | 
						|
    // conversions, since that is the only way that initialization of
 | 
						|
    // a reference to a non-class type can occur from something that
 | 
						|
    // is not of the same type.
 | 
						|
    if (ArgIdx < NumContextualBoolArguments) {
 | 
						|
      assert(ParamTys[ArgIdx] == Context.BoolTy &&
 | 
						|
             "Contextual conversion to bool requires bool type");
 | 
						|
      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
 | 
						|
    } else {
 | 
						|
      Candidate.Conversions[ArgIdx]
 | 
						|
        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
 | 
						|
                                ArgIdx == 0 && IsAssignmentOperator,
 | 
						|
                                /*ForceRValue=*/false,
 | 
						|
                                /*InOverloadResolution=*/false);
 | 
						|
    }
 | 
						|
    if (Candidate.Conversions[ArgIdx].ConversionKind
 | 
						|
        == ImplicitConversionSequence::BadConversion) {
 | 
						|
      Candidate.Viable = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// BuiltinCandidateTypeSet - A set of types that will be used for the
 | 
						|
/// candidate operator functions for built-in operators (C++
 | 
						|
/// [over.built]). The types are separated into pointer types and
 | 
						|
/// enumeration types.
 | 
						|
class BuiltinCandidateTypeSet  {
 | 
						|
  /// TypeSet - A set of types.
 | 
						|
  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
 | 
						|
 | 
						|
  /// PointerTypes - The set of pointer types that will be used in the
 | 
						|
  /// built-in candidates.
 | 
						|
  TypeSet PointerTypes;
 | 
						|
 | 
						|
  /// MemberPointerTypes - The set of member pointer types that will be
 | 
						|
  /// used in the built-in candidates.
 | 
						|
  TypeSet MemberPointerTypes;
 | 
						|
 | 
						|
  /// EnumerationTypes - The set of enumeration types that will be
 | 
						|
  /// used in the built-in candidates.
 | 
						|
  TypeSet EnumerationTypes;
 | 
						|
 | 
						|
  /// Sema - The semantic analysis instance where we are building the
 | 
						|
  /// candidate type set.
 | 
						|
  Sema &SemaRef;
 | 
						|
 | 
						|
  /// Context - The AST context in which we will build the type sets.
 | 
						|
  ASTContext &Context;
 | 
						|
 | 
						|
  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
 | 
						|
  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
 | 
						|
 | 
						|
public:
 | 
						|
  /// iterator - Iterates through the types that are part of the set.
 | 
						|
  typedef TypeSet::iterator iterator;
 | 
						|
 | 
						|
  BuiltinCandidateTypeSet(Sema &SemaRef)
 | 
						|
    : SemaRef(SemaRef), Context(SemaRef.Context) { }
 | 
						|
 | 
						|
  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
 | 
						|
                             bool AllowExplicitConversions);
 | 
						|
 | 
						|
  /// pointer_begin - First pointer type found;
 | 
						|
  iterator pointer_begin() { return PointerTypes.begin(); }
 | 
						|
 | 
						|
  /// pointer_end - Past the last pointer type found;
 | 
						|
  iterator pointer_end() { return PointerTypes.end(); }
 | 
						|
 | 
						|
  /// member_pointer_begin - First member pointer type found;
 | 
						|
  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
 | 
						|
 | 
						|
  /// member_pointer_end - Past the last member pointer type found;
 | 
						|
  iterator member_pointer_end() { return MemberPointerTypes.end(); }
 | 
						|
 | 
						|
  /// enumeration_begin - First enumeration type found;
 | 
						|
  iterator enumeration_begin() { return EnumerationTypes.begin(); }
 | 
						|
 | 
						|
  /// enumeration_end - Past the last enumeration type found;
 | 
						|
  iterator enumeration_end() { return EnumerationTypes.end(); }
 | 
						|
};
 | 
						|
 | 
						|
/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
 | 
						|
/// the set of pointer types along with any more-qualified variants of
 | 
						|
/// that type. For example, if @p Ty is "int const *", this routine
 | 
						|
/// will add "int const *", "int const volatile *", "int const
 | 
						|
/// restrict *", and "int const volatile restrict *" to the set of
 | 
						|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
 | 
						|
/// false otherwise.
 | 
						|
bool
 | 
						|
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
 | 
						|
  // Insert this type.
 | 
						|
  if (!PointerTypes.insert(Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
 | 
						|
    QualType PointeeTy = PointerTy->getPointeeType();
 | 
						|
    // FIXME: Optimize this so that we don't keep trying to add the same types.
 | 
						|
 | 
						|
    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
 | 
						|
    // pointer conversions that don't cast away constness?
 | 
						|
    if (!PointeeTy.isConstQualified())
 | 
						|
      AddPointerWithMoreQualifiedTypeVariants
 | 
						|
        (Context.getPointerType(PointeeTy.withConst()));
 | 
						|
    if (!PointeeTy.isVolatileQualified())
 | 
						|
      AddPointerWithMoreQualifiedTypeVariants
 | 
						|
        (Context.getPointerType(PointeeTy.withVolatile()));
 | 
						|
    if (!PointeeTy.isRestrictQualified())
 | 
						|
      AddPointerWithMoreQualifiedTypeVariants
 | 
						|
        (Context.getPointerType(PointeeTy.withRestrict()));
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
 | 
						|
/// to the set of pointer types along with any more-qualified variants of
 | 
						|
/// that type. For example, if @p Ty is "int const *", this routine
 | 
						|
/// will add "int const *", "int const volatile *", "int const
 | 
						|
/// restrict *", and "int const volatile restrict *" to the set of
 | 
						|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
 | 
						|
/// false otherwise.
 | 
						|
bool
 | 
						|
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
 | 
						|
    QualType Ty) {
 | 
						|
  // Insert this type.
 | 
						|
  if (!MemberPointerTypes.insert(Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
 | 
						|
    QualType PointeeTy = PointerTy->getPointeeType();
 | 
						|
    const Type *ClassTy = PointerTy->getClass();
 | 
						|
    // FIXME: Optimize this so that we don't keep trying to add the same types.
 | 
						|
 | 
						|
    if (!PointeeTy.isConstQualified())
 | 
						|
      AddMemberPointerWithMoreQualifiedTypeVariants
 | 
						|
        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
 | 
						|
    if (!PointeeTy.isVolatileQualified())
 | 
						|
      AddMemberPointerWithMoreQualifiedTypeVariants
 | 
						|
        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
 | 
						|
    if (!PointeeTy.isRestrictQualified())
 | 
						|
      AddMemberPointerWithMoreQualifiedTypeVariants
 | 
						|
        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AddTypesConvertedFrom - Add each of the types to which the type @p
 | 
						|
/// Ty can be implicit converted to the given set of @p Types. We're
 | 
						|
/// primarily interested in pointer types and enumeration types. We also
 | 
						|
/// take member pointer types, for the conditional operator.
 | 
						|
/// AllowUserConversions is true if we should look at the conversion
 | 
						|
/// functions of a class type, and AllowExplicitConversions if we
 | 
						|
/// should also include the explicit conversion functions of a class
 | 
						|
/// type.
 | 
						|
void
 | 
						|
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
 | 
						|
                                               bool AllowUserConversions,
 | 
						|
                                               bool AllowExplicitConversions) {
 | 
						|
  // Only deal with canonical types.
 | 
						|
  Ty = Context.getCanonicalType(Ty);
 | 
						|
 | 
						|
  // Look through reference types; they aren't part of the type of an
 | 
						|
  // expression for the purposes of conversions.
 | 
						|
  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
 | 
						|
    Ty = RefTy->getPointeeType();
 | 
						|
 | 
						|
  // We don't care about qualifiers on the type.
 | 
						|
  Ty = Ty.getUnqualifiedType();
 | 
						|
 | 
						|
  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
 | 
						|
    QualType PointeeTy = PointerTy->getPointeeType();
 | 
						|
 | 
						|
    // Insert our type, and its more-qualified variants, into the set
 | 
						|
    // of types.
 | 
						|
    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Add 'cv void*' to our set of types.
 | 
						|
    if (!Ty->isVoidType()) {
 | 
						|
      QualType QualVoid
 | 
						|
        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
 | 
						|
      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a pointer to a class type, add pointers to its bases
 | 
						|
    // (with the same level of cv-qualification as the original
 | 
						|
    // derived class, of course).
 | 
						|
    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
 | 
						|
      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
 | 
						|
           Base != ClassDecl->bases_end(); ++Base) {
 | 
						|
        QualType BaseTy = Context.getCanonicalType(Base->getType());
 | 
						|
        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
 | 
						|
 | 
						|
        // Add the pointer type, recursively, so that we get all of
 | 
						|
        // the indirect base classes, too.
 | 
						|
        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (Ty->isMemberPointerType()) {
 | 
						|
    // Member pointers are far easier, since the pointee can't be converted.
 | 
						|
    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
 | 
						|
      return;
 | 
						|
  } else if (Ty->isEnumeralType()) {
 | 
						|
    EnumerationTypes.insert(Ty);
 | 
						|
  } else if (AllowUserConversions) {
 | 
						|
    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
 | 
						|
      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
 | 
						|
        // No conversion functions in incomplete types.
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
 | 
						|
      // FIXME: Visit conversion functions in the base classes, too.
 | 
						|
      OverloadedFunctionDecl *Conversions
 | 
						|
        = ClassDecl->getConversionFunctions();
 | 
						|
      for (OverloadedFunctionDecl::function_iterator Func
 | 
						|
             = Conversions->function_begin();
 | 
						|
           Func != Conversions->function_end(); ++Func) {
 | 
						|
        CXXConversionDecl *Conv;
 | 
						|
        FunctionTemplateDecl *ConvTemplate;
 | 
						|
        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
 | 
						|
 | 
						|
        // Skip conversion function templates; they don't tell us anything
 | 
						|
        // about which builtin types we can convert to.
 | 
						|
        if (ConvTemplate)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (AllowExplicitConversions || !Conv->isExplicit())
 | 
						|
          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
 | 
						|
/// the volatile- and non-volatile-qualified assignment operators for the
 | 
						|
/// given type to the candidate set.
 | 
						|
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
 | 
						|
                                                   QualType T,
 | 
						|
                                                   Expr **Args,
 | 
						|
                                                   unsigned NumArgs,
 | 
						|
                                    OverloadCandidateSet &CandidateSet) {
 | 
						|
  QualType ParamTypes[2];
 | 
						|
 | 
						|
  // T& operator=(T&, T)
 | 
						|
  ParamTypes[0] = S.Context.getLValueReferenceType(T);
 | 
						|
  ParamTypes[1] = T;
 | 
						|
  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                        /*IsAssignmentOperator=*/true);
 | 
						|
 | 
						|
  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
 | 
						|
    // volatile T& operator=(volatile T&, T)
 | 
						|
    ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile());
 | 
						|
    ParamTypes[1] = T;
 | 
						|
    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                          /*IsAssignmentOperator=*/true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
 | 
						|
/// operator overloads to the candidate set (C++ [over.built]), based
 | 
						|
/// on the operator @p Op and the arguments given. For example, if the
 | 
						|
/// operator is a binary '+', this routine might add "int
 | 
						|
/// operator+(int, int)" to cover integer addition.
 | 
						|
void
 | 
						|
Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
 | 
						|
                                   Expr **Args, unsigned NumArgs,
 | 
						|
                                   OverloadCandidateSet& CandidateSet) {
 | 
						|
  // The set of "promoted arithmetic types", which are the arithmetic
 | 
						|
  // types are that preserved by promotion (C++ [over.built]p2). Note
 | 
						|
  // that the first few of these types are the promoted integral
 | 
						|
  // types; these types need to be first.
 | 
						|
  // FIXME: What about complex?
 | 
						|
  const unsigned FirstIntegralType = 0;
 | 
						|
  const unsigned LastIntegralType = 13;
 | 
						|
  const unsigned FirstPromotedIntegralType = 7,
 | 
						|
                 LastPromotedIntegralType = 13;
 | 
						|
  const unsigned FirstPromotedArithmeticType = 7,
 | 
						|
                 LastPromotedArithmeticType = 16;
 | 
						|
  const unsigned NumArithmeticTypes = 16;
 | 
						|
  QualType ArithmeticTypes[NumArithmeticTypes] = {
 | 
						|
    Context.BoolTy, Context.CharTy, Context.WCharTy,
 | 
						|
// FIXME:   Context.Char16Ty, Context.Char32Ty,
 | 
						|
    Context.SignedCharTy, Context.ShortTy,
 | 
						|
    Context.UnsignedCharTy, Context.UnsignedShortTy,
 | 
						|
    Context.IntTy, Context.LongTy, Context.LongLongTy,
 | 
						|
    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
 | 
						|
    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
 | 
						|
  };
 | 
						|
 | 
						|
  // Find all of the types that the arguments can convert to, but only
 | 
						|
  // if the operator we're looking at has built-in operator candidates
 | 
						|
  // that make use of these types.
 | 
						|
  BuiltinCandidateTypeSet CandidateTypes(*this);
 | 
						|
  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
 | 
						|
      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
 | 
						|
      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
 | 
						|
      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
 | 
						|
      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
 | 
						|
      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
 | 
						|
                                           true,
 | 
						|
                                           (Op == OO_Exclaim ||
 | 
						|
                                            Op == OO_AmpAmp ||
 | 
						|
                                            Op == OO_PipePipe));
 | 
						|
  }
 | 
						|
 | 
						|
  bool isComparison = false;
 | 
						|
  switch (Op) {
 | 
						|
  case OO_None:
 | 
						|
  case NUM_OVERLOADED_OPERATORS:
 | 
						|
    assert(false && "Expected an overloaded operator");
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Star: // '*' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      goto UnaryStar;
 | 
						|
    else
 | 
						|
      goto BinaryStar;
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Plus: // '+' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      goto UnaryPlus;
 | 
						|
    else
 | 
						|
      goto BinaryPlus;
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Minus: // '-' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      goto UnaryMinus;
 | 
						|
    else
 | 
						|
      goto BinaryMinus;
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Amp: // '&' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      goto UnaryAmp;
 | 
						|
    else
 | 
						|
      goto BinaryAmp;
 | 
						|
 | 
						|
  case OO_PlusPlus:
 | 
						|
  case OO_MinusMinus:
 | 
						|
    // C++ [over.built]p3:
 | 
						|
    //
 | 
						|
    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
 | 
						|
    //   is either volatile or empty, there exist candidate operator
 | 
						|
    //   functions of the form
 | 
						|
    //
 | 
						|
    //       VQ T&      operator++(VQ T&);
 | 
						|
    //       T          operator++(VQ T&, int);
 | 
						|
    //
 | 
						|
    // C++ [over.built]p4:
 | 
						|
    //
 | 
						|
    //   For every pair (T, VQ), where T is an arithmetic type other
 | 
						|
    //   than bool, and VQ is either volatile or empty, there exist
 | 
						|
    //   candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //       VQ T&      operator--(VQ T&);
 | 
						|
    //       T          operator--(VQ T&, int);
 | 
						|
    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
 | 
						|
         Arith < NumArithmeticTypes; ++Arith) {
 | 
						|
      QualType ArithTy = ArithmeticTypes[Arith];
 | 
						|
      QualType ParamTypes[2]
 | 
						|
        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
 | 
						|
 | 
						|
      // Non-volatile version.
 | 
						|
      if (NumArgs == 1)
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
      else
 | 
						|
        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
 | 
						|
      // Volatile version
 | 
						|
      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
 | 
						|
      if (NumArgs == 1)
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
      else
 | 
						|
        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [over.built]p5:
 | 
						|
    //
 | 
						|
    //   For every pair (T, VQ), where T is a cv-qualified or
 | 
						|
    //   cv-unqualified object type, and VQ is either volatile or
 | 
						|
    //   empty, there exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //       T*VQ&      operator++(T*VQ&);
 | 
						|
    //       T*VQ&      operator--(T*VQ&);
 | 
						|
    //       T*         operator++(T*VQ&, int);
 | 
						|
    //       T*         operator--(T*VQ&, int);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
 | 
						|
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
      // Skip pointer types that aren't pointers to object types.
 | 
						|
      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      QualType ParamTypes[2] = {
 | 
						|
        Context.getLValueReferenceType(*Ptr), Context.IntTy
 | 
						|
      };
 | 
						|
 | 
						|
      // Without volatile
 | 
						|
      if (NumArgs == 1)
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
      else
 | 
						|
        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
 | 
						|
      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
 | 
						|
        // With volatile
 | 
						|
        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
 | 
						|
        if (NumArgs == 1)
 | 
						|
          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
        else
 | 
						|
          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  UnaryStar:
 | 
						|
    // C++ [over.built]p6:
 | 
						|
    //   For every cv-qualified or cv-unqualified object type T, there
 | 
						|
    //   exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //       T&         operator*(T*);
 | 
						|
    //
 | 
						|
    // C++ [over.built]p7:
 | 
						|
    //   For every function type T, there exist candidate operator
 | 
						|
    //   functions of the form
 | 
						|
    //       T&         operator*(T*);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
 | 
						|
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
      QualType ParamTy = *Ptr;
 | 
						|
      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
 | 
						|
      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
 | 
						|
                          &ParamTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  UnaryPlus:
 | 
						|
    // C++ [over.built]p8:
 | 
						|
    //   For every type T, there exist candidate operator functions of
 | 
						|
    //   the form
 | 
						|
    //
 | 
						|
    //       T*         operator+(T*);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
 | 
						|
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
      QualType ParamTy = *Ptr;
 | 
						|
      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through
 | 
						|
 | 
						|
  UnaryMinus:
 | 
						|
    // C++ [over.built]p9:
 | 
						|
    //  For every promoted arithmetic type T, there exist candidate
 | 
						|
    //  operator functions of the form
 | 
						|
    //
 | 
						|
    //       T         operator+(T);
 | 
						|
    //       T         operator-(T);
 | 
						|
    for (unsigned Arith = FirstPromotedArithmeticType;
 | 
						|
         Arith < LastPromotedArithmeticType; ++Arith) {
 | 
						|
      QualType ArithTy = ArithmeticTypes[Arith];
 | 
						|
      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Tilde:
 | 
						|
    // C++ [over.built]p10:
 | 
						|
    //   For every promoted integral type T, there exist candidate
 | 
						|
    //   operator functions of the form
 | 
						|
    //
 | 
						|
    //        T         operator~(T);
 | 
						|
    for (unsigned Int = FirstPromotedIntegralType;
 | 
						|
         Int < LastPromotedIntegralType; ++Int) {
 | 
						|
      QualType IntTy = ArithmeticTypes[Int];
 | 
						|
      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_New:
 | 
						|
  case OO_Delete:
 | 
						|
  case OO_Array_New:
 | 
						|
  case OO_Array_Delete:
 | 
						|
  case OO_Call:
 | 
						|
    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Comma:
 | 
						|
  UnaryAmp:
 | 
						|
  case OO_Arrow:
 | 
						|
    // C++ [over.match.oper]p3:
 | 
						|
    //   -- For the operator ',', the unary operator '&', or the
 | 
						|
    //      operator '->', the built-in candidates set is empty.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_EqualEqual:
 | 
						|
  case OO_ExclaimEqual:
 | 
						|
    // C++ [over.match.oper]p16:
 | 
						|
    //   For every pointer to member type T, there exist candidate operator
 | 
						|
    //   functions of the form
 | 
						|
    //
 | 
						|
    //        bool operator==(T,T);
 | 
						|
    //        bool operator!=(T,T);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
           MemPtr = CandidateTypes.member_pointer_begin(),
 | 
						|
           MemPtrEnd = CandidateTypes.member_pointer_end();
 | 
						|
         MemPtr != MemPtrEnd;
 | 
						|
         ++MemPtr) {
 | 
						|
      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
 | 
						|
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through
 | 
						|
 | 
						|
  case OO_Less:
 | 
						|
  case OO_Greater:
 | 
						|
  case OO_LessEqual:
 | 
						|
  case OO_GreaterEqual:
 | 
						|
    // C++ [over.built]p15:
 | 
						|
    //
 | 
						|
    //   For every pointer or enumeration type T, there exist
 | 
						|
    //   candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        bool       operator<(T, T);
 | 
						|
    //        bool       operator>(T, T);
 | 
						|
    //        bool       operator<=(T, T);
 | 
						|
    //        bool       operator>=(T, T);
 | 
						|
    //        bool       operator==(T, T);
 | 
						|
    //        bool       operator!=(T, T);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
 | 
						|
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
      QualType ParamTypes[2] = { *Ptr, *Ptr };
 | 
						|
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Enum
 | 
						|
           = CandidateTypes.enumeration_begin();
 | 
						|
         Enum != CandidateTypes.enumeration_end(); ++Enum) {
 | 
						|
      QualType ParamTypes[2] = { *Enum, *Enum };
 | 
						|
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through.
 | 
						|
    isComparison = true;
 | 
						|
 | 
						|
  BinaryPlus:
 | 
						|
  BinaryMinus:
 | 
						|
    if (!isComparison) {
 | 
						|
      // We didn't fall through, so we must have OO_Plus or OO_Minus.
 | 
						|
 | 
						|
      // C++ [over.built]p13:
 | 
						|
      //
 | 
						|
      //   For every cv-qualified or cv-unqualified object type T
 | 
						|
      //   there exist candidate operator functions of the form
 | 
						|
      //
 | 
						|
      //      T*         operator+(T*, ptrdiff_t);
 | 
						|
      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
 | 
						|
      //      T*         operator-(T*, ptrdiff_t);
 | 
						|
      //      T*         operator+(ptrdiff_t, T*);
 | 
						|
      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
 | 
						|
      //
 | 
						|
      // C++ [over.built]p14:
 | 
						|
      //
 | 
						|
      //   For every T, where T is a pointer to object type, there
 | 
						|
      //   exist candidate operator functions of the form
 | 
						|
      //
 | 
						|
      //      ptrdiff_t  operator-(T, T);
 | 
						|
      for (BuiltinCandidateTypeSet::iterator Ptr
 | 
						|
             = CandidateTypes.pointer_begin();
 | 
						|
           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
 | 
						|
 | 
						|
        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
 | 
						|
        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
 | 
						|
        if (Op == OO_Plus) {
 | 
						|
          // T* operator+(ptrdiff_t, T*);
 | 
						|
          ParamTypes[0] = ParamTypes[1];
 | 
						|
          ParamTypes[1] = *Ptr;
 | 
						|
          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
        } else {
 | 
						|
          // ptrdiff_t operator-(T, T);
 | 
						|
          ParamTypes[1] = *Ptr;
 | 
						|
          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
 | 
						|
                              Args, 2, CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Fall through
 | 
						|
 | 
						|
  case OO_Slash:
 | 
						|
  BinaryStar:
 | 
						|
  Conditional:
 | 
						|
    // C++ [over.built]p12:
 | 
						|
    //
 | 
						|
    //   For every pair of promoted arithmetic types L and R, there
 | 
						|
    //   exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        LR         operator*(L, R);
 | 
						|
    //        LR         operator/(L, R);
 | 
						|
    //        LR         operator+(L, R);
 | 
						|
    //        LR         operator-(L, R);
 | 
						|
    //        bool       operator<(L, R);
 | 
						|
    //        bool       operator>(L, R);
 | 
						|
    //        bool       operator<=(L, R);
 | 
						|
    //        bool       operator>=(L, R);
 | 
						|
    //        bool       operator==(L, R);
 | 
						|
    //        bool       operator!=(L, R);
 | 
						|
    //
 | 
						|
    //   where LR is the result of the usual arithmetic conversions
 | 
						|
    //   between types L and R.
 | 
						|
    //
 | 
						|
    // C++ [over.built]p24:
 | 
						|
    //
 | 
						|
    //   For every pair of promoted arithmetic types L and R, there exist
 | 
						|
    //   candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        LR       operator?(bool, L, R);
 | 
						|
    //
 | 
						|
    //   where LR is the result of the usual arithmetic conversions
 | 
						|
    //   between types L and R.
 | 
						|
    // Our candidates ignore the first parameter.
 | 
						|
    for (unsigned Left = FirstPromotedArithmeticType;
 | 
						|
         Left < LastPromotedArithmeticType; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedArithmeticType;
 | 
						|
           Right < LastPromotedArithmeticType; ++Right) {
 | 
						|
        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
 | 
						|
        QualType Result
 | 
						|
          = isComparison
 | 
						|
          ? Context.BoolTy
 | 
						|
          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
 | 
						|
        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Percent:
 | 
						|
  BinaryAmp:
 | 
						|
  case OO_Caret:
 | 
						|
  case OO_Pipe:
 | 
						|
  case OO_LessLess:
 | 
						|
  case OO_GreaterGreater:
 | 
						|
    // C++ [over.built]p17:
 | 
						|
    //
 | 
						|
    //   For every pair of promoted integral types L and R, there
 | 
						|
    //   exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //      LR         operator%(L, R);
 | 
						|
    //      LR         operator&(L, R);
 | 
						|
    //      LR         operator^(L, R);
 | 
						|
    //      LR         operator|(L, R);
 | 
						|
    //      L          operator<<(L, R);
 | 
						|
    //      L          operator>>(L, R);
 | 
						|
    //
 | 
						|
    //   where LR is the result of the usual arithmetic conversions
 | 
						|
    //   between types L and R.
 | 
						|
    for (unsigned Left = FirstPromotedIntegralType;
 | 
						|
         Left < LastPromotedIntegralType; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedIntegralType;
 | 
						|
           Right < LastPromotedIntegralType; ++Right) {
 | 
						|
        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
 | 
						|
        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
 | 
						|
            ? LandR[0]
 | 
						|
            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
 | 
						|
        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Equal:
 | 
						|
    // C++ [over.built]p20:
 | 
						|
    //
 | 
						|
    //   For every pair (T, VQ), where T is an enumeration or
 | 
						|
    //   pointer to member type and VQ is either volatile or
 | 
						|
    //   empty, there exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        VQ T&      operator=(VQ T&, T);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
           Enum = CandidateTypes.enumeration_begin(),
 | 
						|
           EnumEnd = CandidateTypes.enumeration_end();
 | 
						|
         Enum != EnumEnd; ++Enum)
 | 
						|
      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
 | 
						|
                                             CandidateSet);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
           MemPtr = CandidateTypes.member_pointer_begin(),
 | 
						|
         MemPtrEnd = CandidateTypes.member_pointer_end();
 | 
						|
         MemPtr != MemPtrEnd; ++MemPtr)
 | 
						|
      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
 | 
						|
                                             CandidateSet);
 | 
						|
      // Fall through.
 | 
						|
 | 
						|
  case OO_PlusEqual:
 | 
						|
  case OO_MinusEqual:
 | 
						|
    // C++ [over.built]p19:
 | 
						|
    //
 | 
						|
    //   For every pair (T, VQ), where T is any type and VQ is either
 | 
						|
    //   volatile or empty, there exist candidate operator functions
 | 
						|
    //   of the form
 | 
						|
    //
 | 
						|
    //        T*VQ&      operator=(T*VQ&, T*);
 | 
						|
    //
 | 
						|
    // C++ [over.built]p21:
 | 
						|
    //
 | 
						|
    //   For every pair (T, VQ), where T is a cv-qualified or
 | 
						|
    //   cv-unqualified object type and VQ is either volatile or
 | 
						|
    //   empty, there exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
 | 
						|
    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
 | 
						|
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
      QualType ParamTypes[2];
 | 
						|
      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
 | 
						|
 | 
						|
      // non-volatile version
 | 
						|
      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
 | 
						|
      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                          /*IsAssigmentOperator=*/Op == OO_Equal);
 | 
						|
 | 
						|
      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
 | 
						|
        // volatile version
 | 
						|
        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                            /*IsAssigmentOperator=*/Op == OO_Equal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Fall through.
 | 
						|
 | 
						|
  case OO_StarEqual:
 | 
						|
  case OO_SlashEqual:
 | 
						|
    // C++ [over.built]p18:
 | 
						|
    //
 | 
						|
    //   For every triple (L, VQ, R), where L is an arithmetic type,
 | 
						|
    //   VQ is either volatile or empty, and R is a promoted
 | 
						|
    //   arithmetic type, there exist candidate operator functions of
 | 
						|
    //   the form
 | 
						|
    //
 | 
						|
    //        VQ L&      operator=(VQ L&, R);
 | 
						|
    //        VQ L&      operator*=(VQ L&, R);
 | 
						|
    //        VQ L&      operator/=(VQ L&, R);
 | 
						|
    //        VQ L&      operator+=(VQ L&, R);
 | 
						|
    //        VQ L&      operator-=(VQ L&, R);
 | 
						|
    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedArithmeticType;
 | 
						|
           Right < LastPromotedArithmeticType; ++Right) {
 | 
						|
        QualType ParamTypes[2];
 | 
						|
        ParamTypes[1] = ArithmeticTypes[Right];
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is empty).
 | 
						|
        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                            /*IsAssigmentOperator=*/Op == OO_Equal);
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is 'volatile').
 | 
						|
        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
 | 
						|
        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                            /*IsAssigmentOperator=*/Op == OO_Equal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_PercentEqual:
 | 
						|
  case OO_LessLessEqual:
 | 
						|
  case OO_GreaterGreaterEqual:
 | 
						|
  case OO_AmpEqual:
 | 
						|
  case OO_CaretEqual:
 | 
						|
  case OO_PipeEqual:
 | 
						|
    // C++ [over.built]p22:
 | 
						|
    //
 | 
						|
    //   For every triple (L, VQ, R), where L is an integral type, VQ
 | 
						|
    //   is either volatile or empty, and R is a promoted integral
 | 
						|
    //   type, there exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        VQ L&       operator%=(VQ L&, R);
 | 
						|
    //        VQ L&       operator<<=(VQ L&, R);
 | 
						|
    //        VQ L&       operator>>=(VQ L&, R);
 | 
						|
    //        VQ L&       operator&=(VQ L&, R);
 | 
						|
    //        VQ L&       operator^=(VQ L&, R);
 | 
						|
    //        VQ L&       operator|=(VQ L&, R);
 | 
						|
    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedIntegralType;
 | 
						|
           Right < LastPromotedIntegralType; ++Right) {
 | 
						|
        QualType ParamTypes[2];
 | 
						|
        ParamTypes[1] = ArithmeticTypes[Right];
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is empty).
 | 
						|
        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is 'volatile').
 | 
						|
        ParamTypes[0] = ArithmeticTypes[Left];
 | 
						|
        ParamTypes[0].addVolatile();
 | 
						|
        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
 | 
						|
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Exclaim: {
 | 
						|
    // C++ [over.operator]p23:
 | 
						|
    //
 | 
						|
    //   There also exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        bool        operator!(bool);
 | 
						|
    //        bool        operator&&(bool, bool);     [BELOW]
 | 
						|
    //        bool        operator||(bool, bool);     [BELOW]
 | 
						|
    QualType ParamTy = Context.BoolTy;
 | 
						|
    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
 | 
						|
                        /*IsAssignmentOperator=*/false,
 | 
						|
                        /*NumContextualBoolArguments=*/1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case OO_AmpAmp:
 | 
						|
  case OO_PipePipe: {
 | 
						|
    // C++ [over.operator]p23:
 | 
						|
    //
 | 
						|
    //   There also exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        bool        operator!(bool);            [ABOVE]
 | 
						|
    //        bool        operator&&(bool, bool);
 | 
						|
    //        bool        operator||(bool, bool);
 | 
						|
    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
 | 
						|
    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
 | 
						|
                        /*IsAssignmentOperator=*/false,
 | 
						|
                        /*NumContextualBoolArguments=*/2);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case OO_Subscript:
 | 
						|
    // C++ [over.built]p13:
 | 
						|
    //
 | 
						|
    //   For every cv-qualified or cv-unqualified object type T there
 | 
						|
    //   exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
 | 
						|
    //        T&         operator[](T*, ptrdiff_t);
 | 
						|
    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
 | 
						|
    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
 | 
						|
    //        T&         operator[](ptrdiff_t, T*);
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
 | 
						|
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
 | 
						|
      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
 | 
						|
      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
 | 
						|
      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
 | 
						|
 | 
						|
      // T& operator[](T*, ptrdiff_t)
 | 
						|
      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
 | 
						|
      // T& operator[](ptrdiff_t, T*);
 | 
						|
      ParamTypes[0] = ParamTypes[1];
 | 
						|
      ParamTypes[1] = *Ptr;
 | 
						|
      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_ArrowStar:
 | 
						|
    // FIXME: No support for pointer-to-members yet.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Conditional:
 | 
						|
    // Note that we don't consider the first argument, since it has been
 | 
						|
    // contextually converted to bool long ago. The candidates below are
 | 
						|
    // therefore added as binary.
 | 
						|
    //
 | 
						|
    // C++ [over.built]p24:
 | 
						|
    //   For every type T, where T is a pointer or pointer-to-member type,
 | 
						|
    //   there exist candidate operator functions of the form
 | 
						|
    //
 | 
						|
    //        T        operator?(bool, T, T);
 | 
						|
    //
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
 | 
						|
         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
 | 
						|
      QualType ParamTypes[2] = { *Ptr, *Ptr };
 | 
						|
      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
    for (BuiltinCandidateTypeSet::iterator Ptr =
 | 
						|
           CandidateTypes.member_pointer_begin(),
 | 
						|
         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
 | 
						|
      QualType ParamTypes[2] = { *Ptr, *Ptr };
 | 
						|
      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
    goto Conditional;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add function candidates found via argument-dependent lookup
 | 
						|
/// to the set of overloading candidates.
 | 
						|
///
 | 
						|
/// This routine performs argument-dependent name lookup based on the
 | 
						|
/// given function name (which may also be an operator name) and adds
 | 
						|
/// all of the overload candidates found by ADL to the overload
 | 
						|
/// candidate set (C++ [basic.lookup.argdep]).
 | 
						|
void
 | 
						|
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
 | 
						|
                                           Expr **Args, unsigned NumArgs,
 | 
						|
                                           bool HasExplicitTemplateArgs,
 | 
						|
                                const TemplateArgument *ExplicitTemplateArgs,
 | 
						|
                                           unsigned NumExplicitTemplateArgs,                                            
 | 
						|
                                           OverloadCandidateSet& CandidateSet,
 | 
						|
                                           bool PartialOverloading) {
 | 
						|
  FunctionSet Functions;
 | 
						|
 | 
						|
  // FIXME: Should we be trafficking in canonical function decls throughout?
 | 
						|
  
 | 
						|
  // Record all of the function candidates that we've already
 | 
						|
  // added to the overload set, so that we don't add those same
 | 
						|
  // candidates a second time.
 | 
						|
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
 | 
						|
                                   CandEnd = CandidateSet.end();
 | 
						|
       Cand != CandEnd; ++Cand)
 | 
						|
    if (Cand->Function) {
 | 
						|
      Functions.insert(Cand->Function);
 | 
						|
      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
 | 
						|
        Functions.insert(FunTmpl);
 | 
						|
    }
 | 
						|
 | 
						|
  // FIXME: Pass in the explicit template arguments?
 | 
						|
  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
 | 
						|
 | 
						|
  // Erase all of the candidates we already knew about.
 | 
						|
  // FIXME: This is suboptimal. Is there a better way?
 | 
						|
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
 | 
						|
                                   CandEnd = CandidateSet.end();
 | 
						|
       Cand != CandEnd; ++Cand)
 | 
						|
    if (Cand->Function) {
 | 
						|
      Functions.erase(Cand->Function);
 | 
						|
      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
 | 
						|
        Functions.erase(FunTmpl);
 | 
						|
    }
 | 
						|
 | 
						|
  // For each of the ADL candidates we found, add it to the overload
 | 
						|
  // set.
 | 
						|
  for (FunctionSet::iterator Func = Functions.begin(),
 | 
						|
                          FuncEnd = Functions.end();
 | 
						|
       Func != FuncEnd; ++Func) {
 | 
						|
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
 | 
						|
      if (HasExplicitTemplateArgs)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
 | 
						|
                           false, false, PartialOverloading);
 | 
						|
    } else
 | 
						|
      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
 | 
						|
                                   HasExplicitTemplateArgs,
 | 
						|
                                   ExplicitTemplateArgs,
 | 
						|
                                   NumExplicitTemplateArgs,
 | 
						|
                                   Args, NumArgs, CandidateSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isBetterOverloadCandidate - Determines whether the first overload
 | 
						|
/// candidate is a better candidate than the second (C++ 13.3.3p1).
 | 
						|
bool
 | 
						|
Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
 | 
						|
                                const OverloadCandidate& Cand2) {
 | 
						|
  // Define viable functions to be better candidates than non-viable
 | 
						|
  // functions.
 | 
						|
  if (!Cand2.Viable)
 | 
						|
    return Cand1.Viable;
 | 
						|
  else if (!Cand1.Viable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [over.match.best]p1:
 | 
						|
  //
 | 
						|
  //   -- if F is a static member function, ICS1(F) is defined such
 | 
						|
  //      that ICS1(F) is neither better nor worse than ICS1(G) for
 | 
						|
  //      any function G, and, symmetrically, ICS1(G) is neither
 | 
						|
  //      better nor worse than ICS1(F).
 | 
						|
  unsigned StartArg = 0;
 | 
						|
  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
 | 
						|
    StartArg = 1;
 | 
						|
 | 
						|
  // C++ [over.match.best]p1:
 | 
						|
  //   A viable function F1 is defined to be a better function than another
 | 
						|
  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
 | 
						|
  //   conversion sequence than ICSi(F2), and then...
 | 
						|
  unsigned NumArgs = Cand1.Conversions.size();
 | 
						|
  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
 | 
						|
  bool HasBetterConversion = false;
 | 
						|
  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
 | 
						|
                                               Cand2.Conversions[ArgIdx])) {
 | 
						|
    case ImplicitConversionSequence::Better:
 | 
						|
      // Cand1 has a better conversion sequence.
 | 
						|
      HasBetterConversion = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Worse:
 | 
						|
      // Cand1 can't be better than Cand2.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Indistinguishable:
 | 
						|
      // Do nothing.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
 | 
						|
  //       ICSj(F2), or, if not that,
 | 
						|
  if (HasBetterConversion)
 | 
						|
    return true;
 | 
						|
 | 
						|
  //     - F1 is a non-template function and F2 is a function template
 | 
						|
  //       specialization, or, if not that,
 | 
						|
  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
 | 
						|
      Cand2.Function && Cand2.Function->getPrimaryTemplate())
 | 
						|
    return true;
 | 
						|
 | 
						|
  //   -- F1 and F2 are function template specializations, and the function
 | 
						|
  //      template for F1 is more specialized than the template for F2
 | 
						|
  //      according to the partial ordering rules described in 14.5.5.2, or,
 | 
						|
  //      if not that,
 | 
						|
  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
 | 
						|
      Cand2.Function && Cand2.Function->getPrimaryTemplate())
 | 
						|
    if (FunctionTemplateDecl *BetterTemplate
 | 
						|
          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
 | 
						|
                                       Cand2.Function->getPrimaryTemplate(),
 | 
						|
                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 
 | 
						|
                                                             : TPOC_Call))
 | 
						|
      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
 | 
						|
 | 
						|
  //   -- the context is an initialization by user-defined conversion
 | 
						|
  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
 | 
						|
  //      from the return type of F1 to the destination type (i.e.,
 | 
						|
  //      the type of the entity being initialized) is a better
 | 
						|
  //      conversion sequence than the standard conversion sequence
 | 
						|
  //      from the return type of F2 to the destination type.
 | 
						|
  if (Cand1.Function && Cand2.Function &&
 | 
						|
      isa<CXXConversionDecl>(Cand1.Function) &&
 | 
						|
      isa<CXXConversionDecl>(Cand2.Function)) {
 | 
						|
    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
 | 
						|
                                               Cand2.FinalConversion)) {
 | 
						|
    case ImplicitConversionSequence::Better:
 | 
						|
      // Cand1 has a better conversion sequence.
 | 
						|
      return true;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Worse:
 | 
						|
      // Cand1 can't be better than Cand2.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Indistinguishable:
 | 
						|
      // Do nothing
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Computes the best viable function (C++ 13.3.3)
 | 
						|
/// within an overload candidate set.
 | 
						|
///
 | 
						|
/// \param CandidateSet the set of candidate functions.
 | 
						|
///
 | 
						|
/// \param Loc the location of the function name (or operator symbol) for
 | 
						|
/// which overload resolution occurs.
 | 
						|
///
 | 
						|
/// \param Best f overload resolution was successful or found a deleted
 | 
						|
/// function, Best points to the candidate function found.
 | 
						|
///
 | 
						|
/// \returns The result of overload resolution.
 | 
						|
Sema::OverloadingResult
 | 
						|
Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
 | 
						|
                         SourceLocation Loc,
 | 
						|
                         OverloadCandidateSet::iterator& Best) {
 | 
						|
  // Find the best viable function.
 | 
						|
  Best = CandidateSet.end();
 | 
						|
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
 | 
						|
       Cand != CandidateSet.end(); ++Cand) {
 | 
						|
    if (Cand->Viable) {
 | 
						|
      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
 | 
						|
        Best = Cand;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find any viable functions, abort.
 | 
						|
  if (Best == CandidateSet.end())
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
 | 
						|
  // Make sure that this function is better than every other viable
 | 
						|
  // function. If not, we have an ambiguity.
 | 
						|
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
 | 
						|
       Cand != CandidateSet.end(); ++Cand) {
 | 
						|
    if (Cand->Viable &&
 | 
						|
        Cand != Best &&
 | 
						|
        !isBetterOverloadCandidate(*Best, *Cand)) {
 | 
						|
      Best = CandidateSet.end();
 | 
						|
      return OR_Ambiguous;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Best is the best viable function.
 | 
						|
  if (Best->Function &&
 | 
						|
      (Best->Function->isDeleted() ||
 | 
						|
       Best->Function->getAttr<UnavailableAttr>()))
 | 
						|
    return OR_Deleted;
 | 
						|
 | 
						|
  // C++ [basic.def.odr]p2:
 | 
						|
  //   An overloaded function is used if it is selected by overload resolution
 | 
						|
  //   when referred to from a potentially-evaluated expression. [Note: this
 | 
						|
  //   covers calls to named functions (5.2.2), operator overloading
 | 
						|
  //   (clause 13), user-defined conversions (12.3.2), allocation function for
 | 
						|
  //   placement new (5.3.4), as well as non-default initialization (8.5).
 | 
						|
  if (Best->Function)
 | 
						|
    MarkDeclarationReferenced(Loc, Best->Function);
 | 
						|
  return OR_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// PrintOverloadCandidates - When overload resolution fails, prints
 | 
						|
/// diagnostic messages containing the candidates in the candidate
 | 
						|
/// set. If OnlyViable is true, only viable candidates will be printed.
 | 
						|
void
 | 
						|
Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
 | 
						|
                              bool OnlyViable) {
 | 
						|
  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
 | 
						|
                             LastCand = CandidateSet.end();
 | 
						|
  for (; Cand != LastCand; ++Cand) {
 | 
						|
    if (Cand->Viable || !OnlyViable) {
 | 
						|
      if (Cand->Function) {
 | 
						|
        if (Cand->Function->isDeleted() ||
 | 
						|
            Cand->Function->getAttr<UnavailableAttr>()) {
 | 
						|
          // Deleted or "unavailable" function.
 | 
						|
          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
 | 
						|
            << Cand->Function->isDeleted();
 | 
						|
        } else if (FunctionTemplateDecl *FunTmpl 
 | 
						|
                     = Cand->Function->getPrimaryTemplate()) {
 | 
						|
          // Function template specialization
 | 
						|
          // FIXME: Give a better reason!
 | 
						|
          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
 | 
						|
            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
 | 
						|
                              *Cand->Function->getTemplateSpecializationArgs());
 | 
						|
        } else {
 | 
						|
          // Normal function
 | 
						|
          // FIXME: Give a better reason!
 | 
						|
          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
 | 
						|
        }
 | 
						|
      } else if (Cand->IsSurrogate) {
 | 
						|
        // Desugar the type of the surrogate down to a function type,
 | 
						|
        // retaining as many typedefs as possible while still showing
 | 
						|
        // the function type (and, therefore, its parameter types).
 | 
						|
        QualType FnType = Cand->Surrogate->getConversionType();
 | 
						|
        bool isLValueReference = false;
 | 
						|
        bool isRValueReference = false;
 | 
						|
        bool isPointer = false;
 | 
						|
        if (const LValueReferenceType *FnTypeRef =
 | 
						|
              FnType->getAs<LValueReferenceType>()) {
 | 
						|
          FnType = FnTypeRef->getPointeeType();
 | 
						|
          isLValueReference = true;
 | 
						|
        } else if (const RValueReferenceType *FnTypeRef =
 | 
						|
                     FnType->getAs<RValueReferenceType>()) {
 | 
						|
          FnType = FnTypeRef->getPointeeType();
 | 
						|
          isRValueReference = true;
 | 
						|
        }
 | 
						|
        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
 | 
						|
          FnType = FnTypePtr->getPointeeType();
 | 
						|
          isPointer = true;
 | 
						|
        }
 | 
						|
        // Desugar down to a function type.
 | 
						|
        FnType = QualType(FnType->getAs<FunctionType>(), 0);
 | 
						|
        // Reconstruct the pointer/reference as appropriate.
 | 
						|
        if (isPointer) FnType = Context.getPointerType(FnType);
 | 
						|
        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
 | 
						|
        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
 | 
						|
 | 
						|
        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
 | 
						|
          << FnType;
 | 
						|
      } else {
 | 
						|
        // FIXME: We need to get the identifier in here
 | 
						|
        // FIXME: Do we want the error message to point at the operator?
 | 
						|
        // (built-ins won't have a location)
 | 
						|
        QualType FnType
 | 
						|
          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
 | 
						|
                                    Cand->BuiltinTypes.ParamTypes,
 | 
						|
                                    Cand->Conversions.size(),
 | 
						|
                                    false, 0);
 | 
						|
 | 
						|
        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
 | 
						|
/// an overloaded function (C++ [over.over]), where @p From is an
 | 
						|
/// expression with overloaded function type and @p ToType is the type
 | 
						|
/// we're trying to resolve to. For example:
 | 
						|
///
 | 
						|
/// @code
 | 
						|
/// int f(double);
 | 
						|
/// int f(int);
 | 
						|
///
 | 
						|
/// int (*pfd)(double) = f; // selects f(double)
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// This routine returns the resulting FunctionDecl if it could be
 | 
						|
/// resolved, and NULL otherwise. When @p Complain is true, this
 | 
						|
/// routine will emit diagnostics if there is an error.
 | 
						|
FunctionDecl *
 | 
						|
Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
 | 
						|
                                         bool Complain) {
 | 
						|
  QualType FunctionType = ToType;
 | 
						|
  bool IsMember = false;
 | 
						|
  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
 | 
						|
    FunctionType = ToTypePtr->getPointeeType();
 | 
						|
  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
 | 
						|
    FunctionType = ToTypeRef->getPointeeType();
 | 
						|
  else if (const MemberPointerType *MemTypePtr =
 | 
						|
                    ToType->getAs<MemberPointerType>()) {
 | 
						|
    FunctionType = MemTypePtr->getPointeeType();
 | 
						|
    IsMember = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We only look at pointers or references to functions.
 | 
						|
  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
 | 
						|
  if (!FunctionType->isFunctionType())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Find the actual overloaded function declaration.
 | 
						|
  OverloadedFunctionDecl *Ovl = 0;
 | 
						|
 | 
						|
  // C++ [over.over]p1:
 | 
						|
  //   [...] [Note: any redundant set of parentheses surrounding the
 | 
						|
  //   overloaded function name is ignored (5.1). ]
 | 
						|
  Expr *OvlExpr = From->IgnoreParens();
 | 
						|
 | 
						|
  // C++ [over.over]p1:
 | 
						|
  //   [...] The overloaded function name can be preceded by the &
 | 
						|
  //   operator.
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
 | 
						|
    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
 | 
						|
      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to dig out the overloaded function.
 | 
						|
  FunctionTemplateDecl *FunctionTemplate = 0;
 | 
						|
  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
 | 
						|
    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
 | 
						|
    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's no overloaded function declaration or function template,
 | 
						|
  // we're done.
 | 
						|
  if (!Ovl && !FunctionTemplate)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  OverloadIterator Fun;
 | 
						|
  if (Ovl)
 | 
						|
    Fun = Ovl;
 | 
						|
  else
 | 
						|
    Fun = FunctionTemplate;
 | 
						|
 | 
						|
  // Look through all of the overloaded functions, searching for one
 | 
						|
  // whose type matches exactly.
 | 
						|
  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
 | 
						|
 | 
						|
  bool FoundNonTemplateFunction = false;
 | 
						|
  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
 | 
						|
    // C++ [over.over]p3:
 | 
						|
    //   Non-member functions and static member functions match
 | 
						|
    //   targets of type "pointer-to-function" or "reference-to-function."
 | 
						|
    //   Nonstatic member functions match targets of
 | 
						|
    //   type "pointer-to-member-function."
 | 
						|
    // Note that according to DR 247, the containing class does not matter.
 | 
						|
 | 
						|
    if (FunctionTemplateDecl *FunctionTemplate
 | 
						|
          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
 | 
						|
      if (CXXMethodDecl *Method
 | 
						|
            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
 | 
						|
        // Skip non-static function templates when converting to pointer, and
 | 
						|
        // static when converting to member pointer.
 | 
						|
        if (Method->isStatic() == IsMember)
 | 
						|
          continue;
 | 
						|
      } else if (IsMember)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // C++ [over.over]p2:
 | 
						|
      //   If the name is a function template, template argument deduction is
 | 
						|
      //   done (14.8.2.2), and if the argument deduction succeeds, the
 | 
						|
      //   resulting template argument list is used to generate a single
 | 
						|
      //   function template specialization, which is added to the set of
 | 
						|
      //   overloaded functions considered.
 | 
						|
      FunctionDecl *Specialization = 0;
 | 
						|
      TemplateDeductionInfo Info(Context);
 | 
						|
      if (TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
 | 
						|
                                      /*FIXME:*/0, /*FIXME:*/0,
 | 
						|
                                      FunctionType, Specialization, Info)) {
 | 
						|
        // FIXME: make a note of the failed deduction for diagnostics.
 | 
						|
        (void)Result;
 | 
						|
      } else {
 | 
						|
        assert(FunctionType
 | 
						|
                 == Context.getCanonicalType(Specialization->getType()));
 | 
						|
        Matches.insert(
 | 
						|
                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
 | 
						|
      // Skip non-static functions when converting to pointer, and static
 | 
						|
      // when converting to member pointer.
 | 
						|
      if (Method->isStatic() == IsMember)
 | 
						|
        continue;
 | 
						|
    } else if (IsMember)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
 | 
						|
      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
 | 
						|
        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
 | 
						|
        FoundNonTemplateFunction = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there were 0 or 1 matches, we're done.
 | 
						|
  if (Matches.empty())
 | 
						|
    return 0;
 | 
						|
  else if (Matches.size() == 1)
 | 
						|
    return *Matches.begin();
 | 
						|
 | 
						|
  // C++ [over.over]p4:
 | 
						|
  //   If more than one function is selected, [...]
 | 
						|
  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
 | 
						|
  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
 | 
						|
  if (FoundNonTemplateFunction) {
 | 
						|
    //   [...] any function template specializations in the set are
 | 
						|
    //   eliminated if the set also contains a non-template function, [...]
 | 
						|
    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
 | 
						|
      if ((*M)->getPrimaryTemplate() == 0)
 | 
						|
        RemainingMatches.push_back(*M);
 | 
						|
  } else {
 | 
						|
    //   [...] and any given function template specialization F1 is
 | 
						|
    //   eliminated if the set contains a second function template
 | 
						|
    //   specialization whose function template is more specialized
 | 
						|
    //   than the function template of F1 according to the partial
 | 
						|
    //   ordering rules of 14.5.5.2.
 | 
						|
 | 
						|
    // The algorithm specified above is quadratic. We instead use a
 | 
						|
    // two-pass algorithm (similar to the one used to identify the
 | 
						|
    // best viable function in an overload set) that identifies the
 | 
						|
    // best function template (if it exists).
 | 
						|
    MatchIter Best = Matches.begin();
 | 
						|
    MatchIter M = Best, MEnd = Matches.end();
 | 
						|
    // Find the most specialized function.
 | 
						|
    for (++M; M != MEnd; ++M)
 | 
						|
      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
 | 
						|
                                     (*Best)->getPrimaryTemplate(),
 | 
						|
                                     TPOC_Other)
 | 
						|
            == (*M)->getPrimaryTemplate())
 | 
						|
        Best = M;
 | 
						|
 | 
						|
    // Determine whether this function template is more specialized
 | 
						|
    // that all of the others.
 | 
						|
    bool Ambiguous = false;
 | 
						|
    for (M = Matches.begin(); M != MEnd; ++M) {
 | 
						|
      if (M != Best &&
 | 
						|
          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
 | 
						|
                                     (*Best)->getPrimaryTemplate(),
 | 
						|
                                     TPOC_Other)
 | 
						|
           != (*Best)->getPrimaryTemplate()) {
 | 
						|
        Ambiguous = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If one function template was more specialized than all of the
 | 
						|
    // others, return it.
 | 
						|
    if (!Ambiguous)
 | 
						|
      return *Best;
 | 
						|
 | 
						|
    // We could not find a most-specialized function template, which
 | 
						|
    // is equivalent to having a set of function templates with more
 | 
						|
    // than one such template. So, we place all of the function
 | 
						|
    // templates into the set of remaining matches and produce a
 | 
						|
    // diagnostic below. FIXME: we could perform the quadratic
 | 
						|
    // algorithm here, pruning the result set to limit the number of
 | 
						|
    // candidates output later.
 | 
						|
    RemainingMatches.append(Matches.begin(), Matches.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // [...] After such eliminations, if any, there shall remain exactly one
 | 
						|
  // selected function.
 | 
						|
  if (RemainingMatches.size() == 1)
 | 
						|
    return RemainingMatches.front();
 | 
						|
 | 
						|
  // FIXME: We should probably return the same thing that BestViableFunction
 | 
						|
  // returns (even if we issue the diagnostics here).
 | 
						|
  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
 | 
						|
    << RemainingMatches[0]->getDeclName();
 | 
						|
  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
 | 
						|
    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add a single candidate to the overload set.
 | 
						|
static void AddOverloadedCallCandidate(Sema &S,
 | 
						|
                                       AnyFunctionDecl Callee,
 | 
						|
                                       bool &ArgumentDependentLookup,
 | 
						|
                                       bool HasExplicitTemplateArgs,
 | 
						|
                                 const TemplateArgument *ExplicitTemplateArgs,
 | 
						|
                                       unsigned NumExplicitTemplateArgs,
 | 
						|
                                       Expr **Args, unsigned NumArgs,
 | 
						|
                                       OverloadCandidateSet &CandidateSet,
 | 
						|
                                       bool PartialOverloading) {
 | 
						|
  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
 | 
						|
    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
 | 
						|
    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
 | 
						|
                           PartialOverloading);
 | 
						|
  
 | 
						|
    if (Func->getDeclContext()->isRecord() ||
 | 
						|
        Func->getDeclContext()->isFunctionOrMethod())
 | 
						|
      ArgumentDependentLookup = false;
 | 
						|
    return;
 | 
						|
  }  
 | 
						|
  
 | 
						|
  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
 | 
						|
  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
 | 
						|
                                 ExplicitTemplateArgs,
 | 
						|
                                 NumExplicitTemplateArgs,
 | 
						|
                                 Args, NumArgs, CandidateSet);
 | 
						|
  
 | 
						|
  if (FuncTemplate->getDeclContext()->isRecord())
 | 
						|
    ArgumentDependentLookup = false;
 | 
						|
}
 | 
						|
  
 | 
						|
/// \brief Add the overload candidates named by callee and/or found by argument
 | 
						|
/// dependent lookup to the given overload set.
 | 
						|
void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
 | 
						|
                                       DeclarationName &UnqualifiedName,
 | 
						|
                                       bool &ArgumentDependentLookup,
 | 
						|
                                       bool HasExplicitTemplateArgs,
 | 
						|
                                  const TemplateArgument *ExplicitTemplateArgs,
 | 
						|
                                       unsigned NumExplicitTemplateArgs,
 | 
						|
                                       Expr **Args, unsigned NumArgs,
 | 
						|
                                       OverloadCandidateSet &CandidateSet,
 | 
						|
                                       bool PartialOverloading) {
 | 
						|
  // Add the functions denoted by Callee to the set of candidate
 | 
						|
  // functions. While we're doing so, track whether argument-dependent
 | 
						|
  // lookup still applies, per:
 | 
						|
  //
 | 
						|
  // C++0x [basic.lookup.argdep]p3:
 | 
						|
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
 | 
						|
  //   and let Y be the lookup set produced by argument dependent
 | 
						|
  //   lookup (defined as follows). If X contains
 | 
						|
  //
 | 
						|
  //     -- a declaration of a class member, or
 | 
						|
  //
 | 
						|
  //     -- a block-scope function declaration that is not a
 | 
						|
  //        using-declaration (FIXME: check for using declaration), or
 | 
						|
  //
 | 
						|
  //     -- a declaration that is neither a function or a function
 | 
						|
  //        template
 | 
						|
  //
 | 
						|
  //   then Y is empty.
 | 
						|
  if (!Callee) {
 | 
						|
    // Nothing to do.
 | 
						|
  } else if (OverloadedFunctionDecl *Ovl
 | 
						|
               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
 | 
						|
    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
 | 
						|
                                                FuncEnd = Ovl->function_end();
 | 
						|
         Func != FuncEnd; ++Func)
 | 
						|
      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
 | 
						|
                                 HasExplicitTemplateArgs,
 | 
						|
                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
 | 
						|
                                 Args, NumArgs, CandidateSet, 
 | 
						|
                                 PartialOverloading);
 | 
						|
  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
 | 
						|
    AddOverloadedCallCandidate(*this, 
 | 
						|
                               AnyFunctionDecl::getFromNamedDecl(Callee),
 | 
						|
                               ArgumentDependentLookup,
 | 
						|
                               HasExplicitTemplateArgs,
 | 
						|
                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
 | 
						|
                               Args, NumArgs, CandidateSet,
 | 
						|
                               PartialOverloading);
 | 
						|
  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
 | 
						|
  // checking dynamically.
 | 
						|
  
 | 
						|
  if (Callee)
 | 
						|
    UnqualifiedName = Callee->getDeclName();
 | 
						|
  
 | 
						|
  if (ArgumentDependentLookup)
 | 
						|
    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
 | 
						|
                                         HasExplicitTemplateArgs,
 | 
						|
                                         ExplicitTemplateArgs,
 | 
						|
                                         NumExplicitTemplateArgs,
 | 
						|
                                         CandidateSet,
 | 
						|
                                         PartialOverloading);  
 | 
						|
}
 | 
						|
  
 | 
						|
/// ResolveOverloadedCallFn - Given the call expression that calls Fn
 | 
						|
/// (which eventually refers to the declaration Func) and the call
 | 
						|
/// arguments Args/NumArgs, attempt to resolve the function call down
 | 
						|
/// to a specific function. If overload resolution succeeds, returns
 | 
						|
/// the function declaration produced by overload
 | 
						|
/// resolution. Otherwise, emits diagnostics, deletes all of the
 | 
						|
/// arguments and Fn, and returns NULL.
 | 
						|
FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
 | 
						|
                                            DeclarationName UnqualifiedName,
 | 
						|
                                            bool HasExplicitTemplateArgs,
 | 
						|
                                 const TemplateArgument *ExplicitTemplateArgs,
 | 
						|
                                            unsigned NumExplicitTemplateArgs,
 | 
						|
                                            SourceLocation LParenLoc,
 | 
						|
                                            Expr **Args, unsigned NumArgs,
 | 
						|
                                            SourceLocation *CommaLocs,
 | 
						|
                                            SourceLocation RParenLoc,
 | 
						|
                                            bool &ArgumentDependentLookup) {
 | 
						|
  OverloadCandidateSet CandidateSet;
 | 
						|
 | 
						|
  // Add the functions denoted by Callee to the set of candidate
 | 
						|
  // functions. 
 | 
						|
  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
 | 
						|
                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
 | 
						|
                              NumExplicitTemplateArgs, Args, NumArgs, 
 | 
						|
                              CandidateSet);
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
 | 
						|
  case OR_Success:
 | 
						|
    return Best->Function;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    Diag(Fn->getSourceRange().getBegin(),
 | 
						|
         diag::err_ovl_no_viable_function_in_call)
 | 
						|
      << UnqualifiedName << Fn->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
 | 
						|
      << UnqualifiedName << Fn->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << UnqualifiedName
 | 
						|
      << Fn->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Overload resolution failed. Destroy all of the subexpressions and
 | 
						|
  // return NULL.
 | 
						|
  Fn->Destroy(Context);
 | 
						|
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
 | 
						|
    Args[Arg]->Destroy(Context);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a unary operation that may resolve to an overloaded
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param OpLoc The location of the operator itself (e.g., '*').
 | 
						|
///
 | 
						|
/// \param OpcIn The UnaryOperator::Opcode that describes this
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param Functions The set of non-member functions that will be
 | 
						|
/// considered by overload resolution. The caller needs to build this
 | 
						|
/// set based on the context using, e.g.,
 | 
						|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
 | 
						|
/// set should not contain any member functions; those will be added
 | 
						|
/// by CreateOverloadedUnaryOp().
 | 
						|
///
 | 
						|
/// \param input The input argument.
 | 
						|
Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
 | 
						|
                                                     unsigned OpcIn,
 | 
						|
                                                     FunctionSet &Functions,
 | 
						|
                                                     ExprArg input) {
 | 
						|
  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
 | 
						|
  Expr *Input = (Expr *)input.get();
 | 
						|
 | 
						|
  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
 | 
						|
  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
 | 
						|
  Expr *Args[2] = { Input, 0 };
 | 
						|
  unsigned NumArgs = 1;
 | 
						|
 | 
						|
  // For post-increment and post-decrement, add the implicit '0' as
 | 
						|
  // the second argument, so that we know this is a post-increment or
 | 
						|
  // post-decrement.
 | 
						|
  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
 | 
						|
    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
 | 
						|
    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
 | 
						|
                                           SourceLocation());
 | 
						|
    NumArgs = 2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Input->isTypeDependent()) {
 | 
						|
    OverloadedFunctionDecl *Overloads
 | 
						|
      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
 | 
						|
    for (FunctionSet::iterator Func = Functions.begin(),
 | 
						|
                            FuncEnd = Functions.end();
 | 
						|
         Func != FuncEnd; ++Func)
 | 
						|
      Overloads->addOverload(*Func);
 | 
						|
 | 
						|
    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
 | 
						|
                                                OpLoc, false, false);
 | 
						|
 | 
						|
    input.release();
 | 
						|
    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
 | 
						|
                                                   &Args[0], NumArgs,
 | 
						|
                                                   Context.DependentTy,
 | 
						|
                                                   OpLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build an empty overload set.
 | 
						|
  OverloadCandidateSet CandidateSet;
 | 
						|
 | 
						|
  // Add the candidates from the given function set.
 | 
						|
  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
 | 
						|
 | 
						|
  // Add operator candidates that are member functions.
 | 
						|
  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
 | 
						|
 | 
						|
  // Add builtin operator candidates.
 | 
						|
  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
 | 
						|
  case OR_Success: {
 | 
						|
    // We found a built-in operator or an overloaded operator.
 | 
						|
    FunctionDecl *FnDecl = Best->Function;
 | 
						|
 | 
						|
    if (FnDecl) {
 | 
						|
      // We matched an overloaded operator. Build a call to that
 | 
						|
      // operator.
 | 
						|
 | 
						|
      // Convert the arguments.
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | 
						|
        if (PerformObjectArgumentInitialization(Input, Method))
 | 
						|
          return ExprError();
 | 
						|
      } else {
 | 
						|
        // Convert the arguments.
 | 
						|
        if (PerformCopyInitialization(Input,
 | 
						|
                                      FnDecl->getParamDecl(0)->getType(),
 | 
						|
                                      "passing"))
 | 
						|
          return ExprError();
 | 
						|
      }
 | 
						|
 | 
						|
      // Determine the result type
 | 
						|
      QualType ResultTy
 | 
						|
        = FnDecl->getType()->getAs<FunctionType>()->getResultType();
 | 
						|
      ResultTy = ResultTy.getNonReferenceType();
 | 
						|
 | 
						|
      // Build the actual expression node.
 | 
						|
      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
 | 
						|
                                               SourceLocation());
 | 
						|
      UsualUnaryConversions(FnExpr);
 | 
						|
 | 
						|
      input.release();
 | 
						|
 | 
						|
      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
 | 
						|
                                                   &Input, 1, ResultTy, OpLoc);
 | 
						|
      return MaybeBindToTemporary(CE);
 | 
						|
    } else {
 | 
						|
      // We matched a built-in operator. Convert the arguments, then
 | 
						|
      // break out so that we will build the appropriate built-in
 | 
						|
      // operator node.
 | 
						|
        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                      Best->Conversions[0], "passing"))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      // No viable function; fall through to handling this as a
 | 
						|
      // built-in operator, which will produce an error message for us.
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
 | 
						|
          << UnaryOperator::getOpcodeStr(Opc)
 | 
						|
          << Input->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      Diag(OpLoc, diag::err_ovl_deleted_oper)
 | 
						|
        << Best->Function->isDeleted()
 | 
						|
        << UnaryOperator::getOpcodeStr(Opc)
 | 
						|
        << Input->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
  // Either we found no viable overloaded operator or we matched a
 | 
						|
  // built-in operator. In either case, fall through to trying to
 | 
						|
  // build a built-in operation.
 | 
						|
  input.release();
 | 
						|
  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a binary operation that may resolve to an overloaded
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param OpLoc The location of the operator itself (e.g., '+').
 | 
						|
///
 | 
						|
/// \param OpcIn The BinaryOperator::Opcode that describes this
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param Functions The set of non-member functions that will be
 | 
						|
/// considered by overload resolution. The caller needs to build this
 | 
						|
/// set based on the context using, e.g.,
 | 
						|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
 | 
						|
/// set should not contain any member functions; those will be added
 | 
						|
/// by CreateOverloadedBinOp().
 | 
						|
///
 | 
						|
/// \param LHS Left-hand argument.
 | 
						|
/// \param RHS Right-hand argument.
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
 | 
						|
                            unsigned OpcIn,
 | 
						|
                            FunctionSet &Functions,
 | 
						|
                            Expr *LHS, Expr *RHS) {
 | 
						|
  Expr *Args[2] = { LHS, RHS };
 | 
						|
  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
 | 
						|
 | 
						|
  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
 | 
						|
  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
 | 
						|
  // If either side is type-dependent, create an appropriate dependent
 | 
						|
  // expression.
 | 
						|
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
 | 
						|
    // .* cannot be overloaded.
 | 
						|
    if (Opc == BinaryOperator::PtrMemD)
 | 
						|
      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
 | 
						|
                                                Context.DependentTy, OpLoc));
 | 
						|
 | 
						|
    OverloadedFunctionDecl *Overloads
 | 
						|
      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
 | 
						|
    for (FunctionSet::iterator Func = Functions.begin(),
 | 
						|
                            FuncEnd = Functions.end();
 | 
						|
         Func != FuncEnd; ++Func)
 | 
						|
      Overloads->addOverload(*Func);
 | 
						|
 | 
						|
    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
 | 
						|
                                                OpLoc, false, false);
 | 
						|
 | 
						|
    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
 | 
						|
                                                   Args, 2,
 | 
						|
                                                   Context.DependentTy,
 | 
						|
                                                   OpLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the .* operator, which is not overloadable, just
 | 
						|
  // create a built-in binary operator.
 | 
						|
  if (Opc == BinaryOperator::PtrMemD)
 | 
						|
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
 | 
						|
  // If this is one of the assignment operators, we only perform
 | 
						|
  // overload resolution if the left-hand side is a class or
 | 
						|
  // enumeration type (C++ [expr.ass]p3).
 | 
						|
  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
 | 
						|
      !Args[0]->getType()->isOverloadableType())
 | 
						|
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
 | 
						|
  // Build an empty overload set.
 | 
						|
  OverloadCandidateSet CandidateSet;
 | 
						|
 | 
						|
  // Add the candidates from the given function set.
 | 
						|
  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
 | 
						|
 | 
						|
  // Add operator candidates that are member functions.
 | 
						|
  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  // Add builtin operator candidates.
 | 
						|
  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
 | 
						|
    case OR_Success: {
 | 
						|
      // We found a built-in operator or an overloaded operator.
 | 
						|
      FunctionDecl *FnDecl = Best->Function;
 | 
						|
 | 
						|
      if (FnDecl) {
 | 
						|
        // We matched an overloaded operator. Build a call to that
 | 
						|
        // operator.
 | 
						|
 | 
						|
        // Convert the arguments.
 | 
						|
        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | 
						|
          if (PerformObjectArgumentInitialization(Args[0], Method) ||
 | 
						|
              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
 | 
						|
                                        "passing"))
 | 
						|
            return ExprError();
 | 
						|
        } else {
 | 
						|
          // Convert the arguments.
 | 
						|
          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
 | 
						|
                                        "passing") ||
 | 
						|
              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
 | 
						|
                                        "passing"))
 | 
						|
            return ExprError();
 | 
						|
        }
 | 
						|
 | 
						|
        // Determine the result type
 | 
						|
        QualType ResultTy
 | 
						|
          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
 | 
						|
        ResultTy = ResultTy.getNonReferenceType();
 | 
						|
 | 
						|
        // Build the actual expression node.
 | 
						|
        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
 | 
						|
                                                 OpLoc);
 | 
						|
        UsualUnaryConversions(FnExpr);
 | 
						|
 | 
						|
        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
 | 
						|
                                                     Args, 2, ResultTy, OpLoc);
 | 
						|
        return MaybeBindToTemporary(CE);
 | 
						|
      } else {
 | 
						|
        // We matched a built-in operator. Convert the arguments, then
 | 
						|
        // break out so that we will build the appropriate built-in
 | 
						|
        // operator node.
 | 
						|
        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                      Best->Conversions[0], "passing") ||
 | 
						|
            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
 | 
						|
                                      Best->Conversions[1], "passing"))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      // For class as left operand for assignment or compound assigment operator
 | 
						|
      // do not fall through to handling in built-in, but report that no overloaded
 | 
						|
      // assignment operator found
 | 
						|
      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
 | 
						|
        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
 | 
						|
             << BinaryOperator::getOpcodeStr(Opc)
 | 
						|
             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
      // No viable function; fall through to handling this as a
 | 
						|
      // built-in operator, which will produce an error message for us.
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
 | 
						|
          << BinaryOperator::getOpcodeStr(Opc)
 | 
						|
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      Diag(OpLoc, diag::err_ovl_deleted_oper)
 | 
						|
        << Best->Function->isDeleted()
 | 
						|
        << BinaryOperator::getOpcodeStr(Opc)
 | 
						|
        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
  // Either we found no viable overloaded operator or we matched a
 | 
						|
  // built-in operator. In either case, try to build a built-in
 | 
						|
  // operation.
 | 
						|
  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildCallToMemberFunction - Build a call to a member
 | 
						|
/// function. MemExpr is the expression that refers to the member
 | 
						|
/// function (and includes the object parameter), Args/NumArgs are the
 | 
						|
/// arguments to the function call (not including the object
 | 
						|
/// parameter). The caller needs to validate that the member
 | 
						|
/// expression refers to a member function or an overloaded member
 | 
						|
/// function.
 | 
						|
Sema::ExprResult
 | 
						|
Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
 | 
						|
                                SourceLocation LParenLoc, Expr **Args,
 | 
						|
                                unsigned NumArgs, SourceLocation *CommaLocs,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  // Dig out the member expression. This holds both the object
 | 
						|
  // argument and the member function we're referring to.
 | 
						|
  MemberExpr *MemExpr = 0;
 | 
						|
  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
 | 
						|
    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
 | 
						|
  else
 | 
						|
    MemExpr = dyn_cast<MemberExpr>(MemExprE);
 | 
						|
  assert(MemExpr && "Building member call without member expression");
 | 
						|
 | 
						|
  // Extract the object argument.
 | 
						|
  Expr *ObjectArg = MemExpr->getBase();
 | 
						|
 | 
						|
  CXXMethodDecl *Method = 0;
 | 
						|
  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
 | 
						|
      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
 | 
						|
    // Add overload candidates
 | 
						|
    OverloadCandidateSet CandidateSet;
 | 
						|
    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
 | 
						|
 | 
						|
    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
 | 
						|
         Func != FuncEnd; ++Func) {
 | 
						|
      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
 | 
						|
        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
 | 
						|
                           /*SuppressUserConversions=*/false);
 | 
						|
      else
 | 
						|
        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
 | 
						|
                                   MemExpr->hasExplicitTemplateArgumentList(),
 | 
						|
                                   MemExpr->getTemplateArgs(),
 | 
						|
                                   MemExpr->getNumTemplateArgs(),
 | 
						|
                                   ObjectArg, Args, NumArgs,
 | 
						|
                                   CandidateSet,
 | 
						|
                                   /*SuppressUsedConversions=*/false);
 | 
						|
    }
 | 
						|
 | 
						|
    OverloadCandidateSet::iterator Best;
 | 
						|
    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
 | 
						|
    case OR_Success:
 | 
						|
      Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      Diag(MemExpr->getSourceRange().getBegin(),
 | 
						|
           diag::err_ovl_no_viable_member_function_in_call)
 | 
						|
        << DeclName << MemExprE->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
      // FIXME: Leaking incoming expressions!
 | 
						|
      return true;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Diag(MemExpr->getSourceRange().getBegin(),
 | 
						|
           diag::err_ovl_ambiguous_member_call)
 | 
						|
        << DeclName << MemExprE->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
      // FIXME: Leaking incoming expressions!
 | 
						|
      return true;
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      Diag(MemExpr->getSourceRange().getBegin(),
 | 
						|
           diag::err_ovl_deleted_member_call)
 | 
						|
        << Best->Function->isDeleted()
 | 
						|
        << DeclName << MemExprE->getSourceRange();
 | 
						|
      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
      // FIXME: Leaking incoming expressions!
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    FixOverloadedFunctionReference(MemExpr, Method);
 | 
						|
  } else {
 | 
						|
    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Method && "Member call to something that isn't a method?");
 | 
						|
  ExprOwningPtr<CXXMemberCallExpr>
 | 
						|
    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
 | 
						|
                                                  NumArgs,
 | 
						|
                                  Method->getResultType().getNonReferenceType(),
 | 
						|
                                  RParenLoc));
 | 
						|
 | 
						|
  // Convert the object argument (for a non-static member function call).
 | 
						|
  if (!Method->isStatic() &&
 | 
						|
      PerformObjectArgumentInitialization(ObjectArg, Method))
 | 
						|
    return true;
 | 
						|
  MemExpr->setBase(ObjectArg);
 | 
						|
 | 
						|
  // Convert the rest of the arguments
 | 
						|
  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
 | 
						|
  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
 | 
						|
                              RParenLoc))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (CheckFunctionCall(Method, TheCall.get()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return MaybeBindToTemporary(TheCall.release()).release();
 | 
						|
}
 | 
						|
 | 
						|
/// BuildCallToObjectOfClassType - Build a call to an object of class
 | 
						|
/// type (C++ [over.call.object]), which can end up invoking an
 | 
						|
/// overloaded function call operator (@c operator()) or performing a
 | 
						|
/// user-defined conversion on the object argument.
 | 
						|
Sema::ExprResult
 | 
						|
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
 | 
						|
                                   SourceLocation LParenLoc,
 | 
						|
                                   Expr **Args, unsigned NumArgs,
 | 
						|
                                   SourceLocation *CommaLocs,
 | 
						|
                                   SourceLocation RParenLoc) {
 | 
						|
  assert(Object->getType()->isRecordType() && "Requires object type argument");
 | 
						|
  const RecordType *Record = Object->getType()->getAs<RecordType>();
 | 
						|
 | 
						|
  // C++ [over.call.object]p1:
 | 
						|
  //  If the primary-expression E in the function call syntax
 | 
						|
  //  evaluates to a class object of type "cv T", then the set of
 | 
						|
  //  candidate functions includes at least the function call
 | 
						|
  //  operators of T. The function call operators of T are obtained by
 | 
						|
  //  ordinary lookup of the name operator() in the context of
 | 
						|
  //  (E).operator().
 | 
						|
  OverloadCandidateSet CandidateSet;
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
 | 
						|
  DeclContext::lookup_const_iterator Oper, OperEnd;
 | 
						|
  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
 | 
						|
       Oper != OperEnd; ++Oper)
 | 
						|
    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
 | 
						|
                       CandidateSet, /*SuppressUserConversions=*/false);
 | 
						|
 | 
						|
  // C++ [over.call.object]p2:
 | 
						|
  //   In addition, for each conversion function declared in T of the
 | 
						|
  //   form
 | 
						|
  //
 | 
						|
  //        operator conversion-type-id () cv-qualifier;
 | 
						|
  //
 | 
						|
  //   where cv-qualifier is the same cv-qualification as, or a
 | 
						|
  //   greater cv-qualification than, cv, and where conversion-type-id
 | 
						|
  //   denotes the type "pointer to function of (P1,...,Pn) returning
 | 
						|
  //   R", or the type "reference to pointer to function of
 | 
						|
  //   (P1,...,Pn) returning R", or the type "reference to function
 | 
						|
  //   of (P1,...,Pn) returning R", a surrogate call function [...]
 | 
						|
  //   is also considered as a candidate function. Similarly,
 | 
						|
  //   surrogate call functions are added to the set of candidate
 | 
						|
  //   functions for each conversion function declared in an
 | 
						|
  //   accessible base class provided the function is not hidden
 | 
						|
  //   within T by another intervening declaration.
 | 
						|
 | 
						|
  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
 | 
						|
    // FIXME: Look in base classes for more conversion operators!
 | 
						|
    OverloadedFunctionDecl *Conversions
 | 
						|
      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
 | 
						|
    for (OverloadedFunctionDecl::function_iterator
 | 
						|
           Func = Conversions->function_begin(),
 | 
						|
           FuncEnd = Conversions->function_end();
 | 
						|
         Func != FuncEnd; ++Func) {
 | 
						|
      CXXConversionDecl *Conv;
 | 
						|
      FunctionTemplateDecl *ConvTemplate;
 | 
						|
      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
 | 
						|
 | 
						|
      // Skip over templated conversion functions; they aren't
 | 
						|
      // surrogates.
 | 
						|
      if (ConvTemplate)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Strip the reference type (if any) and then the pointer type (if
 | 
						|
      // any) to get down to what might be a function type.
 | 
						|
      QualType ConvType = Conv->getConversionType().getNonReferenceType();
 | 
						|
      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | 
						|
        ConvType = ConvPtrType->getPointeeType();
 | 
						|
 | 
						|
      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
 | 
						|
        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
 | 
						|
  case OR_Success:
 | 
						|
    // Overload resolution succeeded; we'll build the appropriate call
 | 
						|
    // below.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    Diag(Object->getSourceRange().getBegin(),
 | 
						|
         diag::err_ovl_no_viable_object_call)
 | 
						|
      << Object->getType() << Object->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(Object->getSourceRange().getBegin(),
 | 
						|
         diag::err_ovl_ambiguous_object_call)
 | 
						|
      << Object->getType() << Object->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(Object->getSourceRange().getBegin(),
 | 
						|
         diag::err_ovl_deleted_object_call)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << Object->getType() << Object->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Best == CandidateSet.end()) {
 | 
						|
    // We had an error; delete all of the subexpressions and return
 | 
						|
    // the error.
 | 
						|
    Object->Destroy(Context);
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
      Args[ArgIdx]->Destroy(Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Best->Function == 0) {
 | 
						|
    // Since there is no function declaration, this is one of the
 | 
						|
    // surrogate candidates. Dig out the conversion function.
 | 
						|
    CXXConversionDecl *Conv
 | 
						|
      = cast<CXXConversionDecl>(
 | 
						|
                         Best->Conversions[0].UserDefined.ConversionFunction);
 | 
						|
 | 
						|
    // We selected one of the surrogate functions that converts the
 | 
						|
    // object parameter to a function pointer. Perform the conversion
 | 
						|
    // on the object argument, then let ActOnCallExpr finish the job.
 | 
						|
    // FIXME: Represent the user-defined conversion in the AST!
 | 
						|
    ImpCastExprToType(Object,
 | 
						|
                      Conv->getConversionType().getNonReferenceType(),
 | 
						|
                      CastExpr::CK_Unknown,
 | 
						|
                      Conv->getConversionType()->isLValueReferenceType());
 | 
						|
    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
 | 
						|
                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
 | 
						|
                         CommaLocs, RParenLoc).release();
 | 
						|
  }
 | 
						|
 | 
						|
  // We found an overloaded operator(). Build a CXXOperatorCallExpr
 | 
						|
  // that calls this method, using Object for the implicit object
 | 
						|
  // parameter and passing along the remaining arguments.
 | 
						|
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
  unsigned NumArgsToCheck = NumArgs;
 | 
						|
 | 
						|
  // Build the full argument list for the method call (the
 | 
						|
  // implicit object parameter is placed at the beginning of the
 | 
						|
  // list).
 | 
						|
  Expr **MethodArgs;
 | 
						|
  if (NumArgs < NumArgsInProto) {
 | 
						|
    NumArgsToCheck = NumArgsInProto;
 | 
						|
    MethodArgs = new Expr*[NumArgsInProto + 1];
 | 
						|
  } else {
 | 
						|
    MethodArgs = new Expr*[NumArgs + 1];
 | 
						|
  }
 | 
						|
  MethodArgs[0] = Object;
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
 | 
						|
 | 
						|
  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
 | 
						|
                                          SourceLocation());
 | 
						|
  UsualUnaryConversions(NewFn);
 | 
						|
 | 
						|
  // Once we've built TheCall, all of the expressions are properly
 | 
						|
  // owned.
 | 
						|
  QualType ResultTy = Method->getResultType().getNonReferenceType();
 | 
						|
  ExprOwningPtr<CXXOperatorCallExpr>
 | 
						|
    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
 | 
						|
                                                    MethodArgs, NumArgs + 1,
 | 
						|
                                                    ResultTy, RParenLoc));
 | 
						|
  delete [] MethodArgs;
 | 
						|
 | 
						|
  // We may have default arguments. If so, we need to allocate more
 | 
						|
  // slots in the call for them.
 | 
						|
  if (NumArgs < NumArgsInProto)
 | 
						|
    TheCall->setNumArgs(Context, NumArgsInProto + 1);
 | 
						|
  else if (NumArgs > NumArgsInProto)
 | 
						|
    NumArgsToCheck = NumArgsInProto;
 | 
						|
 | 
						|
  bool IsError = false;
 | 
						|
 | 
						|
  // Initialize the implicit object parameter.
 | 
						|
  IsError |= PerformObjectArgumentInitialization(Object, Method);
 | 
						|
  TheCall->setArg(0, Object);
 | 
						|
 | 
						|
 | 
						|
  // Check the argument types.
 | 
						|
  for (unsigned i = 0; i != NumArgsToCheck; i++) {
 | 
						|
    Expr *Arg;
 | 
						|
    if (i < NumArgs) {
 | 
						|
      Arg = Args[i];
 | 
						|
 | 
						|
      // Pass the argument.
 | 
						|
      QualType ProtoArgType = Proto->getArgType(i);
 | 
						|
      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
 | 
						|
    } else {
 | 
						|
      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
 | 
						|
    }
 | 
						|
 | 
						|
    TheCall->setArg(i + 1, Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a variadic call, handle args passed through "...".
 | 
						|
  if (Proto->isVariadic()) {
 | 
						|
    // Promote the arguments (C99 6.5.2.2p7).
 | 
						|
    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
 | 
						|
      Expr *Arg = Args[i];
 | 
						|
      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
 | 
						|
      TheCall->setArg(i + 1, Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsError) return true;
 | 
						|
 | 
						|
  if (CheckFunctionCall(Method, TheCall.get()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return MaybeBindToTemporary(TheCall.release()).release();
 | 
						|
}
 | 
						|
 | 
						|
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
 | 
						|
///  (if one exists), where @c Base is an expression of class type and
 | 
						|
/// @c Member is the name of the member we're trying to find.
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
 | 
						|
  Expr *Base = static_cast<Expr *>(BaseIn.get());
 | 
						|
  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
 | 
						|
 | 
						|
  // C++ [over.ref]p1:
 | 
						|
  //
 | 
						|
  //   [...] An expression x->m is interpreted as (x.operator->())->m
 | 
						|
  //   for a class object x of type T if T::operator->() exists and if
 | 
						|
  //   the operator is selected as the best match function by the
 | 
						|
  //   overload resolution mechanism (13.3).
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
 | 
						|
  OverloadCandidateSet CandidateSet;
 | 
						|
  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
 | 
						|
 | 
						|
  LookupResult R = LookupQualifiedName(BaseRecord->getDecl(), OpName, 
 | 
						|
                                       LookupOrdinaryName);
 | 
						|
 | 
						|
  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
 | 
						|
       Oper != OperEnd; ++Oper)
 | 
						|
    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
 | 
						|
                       /*SuppressUserConversions=*/false);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
 | 
						|
  case OR_Success:
 | 
						|
    // Overload resolution succeeded; we'll build the call below.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    if (CandidateSet.empty())
 | 
						|
      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
 | 
						|
        << Base->getType() << Base->getSourceRange();
 | 
						|
    else
 | 
						|
      Diag(OpLoc, diag::err_ovl_no_viable_oper)
 | 
						|
        << "operator->" << Base->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
 | 
						|
      << "->" << Base->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(OpLoc,  diag::err_ovl_deleted_oper)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << "->" << Base->getSourceRange();
 | 
						|
    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the object parameter.
 | 
						|
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
  if (PerformObjectArgumentInitialization(Base, Method))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // No concerns about early exits now.
 | 
						|
  BaseIn.release();
 | 
						|
 | 
						|
  // Build the operator call.
 | 
						|
  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
 | 
						|
                                           SourceLocation());
 | 
						|
  UsualUnaryConversions(FnExpr);
 | 
						|
  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
 | 
						|
                                 Method->getResultType().getNonReferenceType(),
 | 
						|
                                 OpLoc);
 | 
						|
  return Owned(Base);
 | 
						|
}
 | 
						|
 | 
						|
/// FixOverloadedFunctionReference - E is an expression that refers to
 | 
						|
/// a C++ overloaded function (possibly with some parentheses and
 | 
						|
/// perhaps a '&' around it). We have resolved the overloaded function
 | 
						|
/// to the function declaration Fn, so patch up the expression E to
 | 
						|
/// refer (possibly indirectly) to Fn.
 | 
						|
void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
 | 
						|
  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
 | 
						|
    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
 | 
						|
    E->setType(PE->getSubExpr()->getType());
 | 
						|
  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
 | 
						|
           "Can only take the address of an overloaded function");
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
 | 
						|
      if (Method->isStatic()) {
 | 
						|
        // Do nothing: static member functions aren't any different
 | 
						|
        // from non-member functions.
 | 
						|
      } else if (QualifiedDeclRefExpr *DRE
 | 
						|
                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
 | 
						|
        // We have taken the address of a pointer to member
 | 
						|
        // function. Perform the computation here so that we get the
 | 
						|
        // appropriate pointer to member type.
 | 
						|
        DRE->setDecl(Fn);
 | 
						|
        DRE->setType(Fn->getType());
 | 
						|
        QualType ClassType
 | 
						|
          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
 | 
						|
        E->setType(Context.getMemberPointerType(Fn->getType(),
 | 
						|
                                                ClassType.getTypePtr()));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
 | 
						|
    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
 | 
						|
  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
 | 
						|
            isa<FunctionTemplateDecl>(DR->getDecl())) &&
 | 
						|
           "Expected overloaded function or function template");
 | 
						|
    DR->setDecl(Fn);
 | 
						|
    E->setType(Fn->getType());
 | 
						|
  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
 | 
						|
    MemExpr->setMemberDecl(Fn);
 | 
						|
    E->setType(Fn->getType());
 | 
						|
  } else {
 | 
						|
    assert(false && "Invalid reference to overloaded function");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace clang
 |