459 lines
15 KiB
C++
459 lines
15 KiB
C++
//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "gwp_asan/guarded_pool_allocator.h"
|
|
|
|
#include "gwp_asan/options.h"
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
using AllocationMetadata = gwp_asan::GuardedPoolAllocator::AllocationMetadata;
|
|
using Error = gwp_asan::GuardedPoolAllocator::Error;
|
|
|
|
namespace gwp_asan {
|
|
namespace {
|
|
// Forward declare the pointer to the singleton version of this class.
|
|
// Instantiated during initialisation, this allows the signal handler
|
|
// to find this class in order to deduce the root cause of failures. Must not be
|
|
// referenced by users outside this translation unit, in order to avoid
|
|
// init-order-fiasco.
|
|
GuardedPoolAllocator *SingletonPtr = nullptr;
|
|
} // anonymous namespace
|
|
|
|
// Gets the singleton implementation of this class. Thread-compatible until
|
|
// init() is called, thread-safe afterwards.
|
|
GuardedPoolAllocator *getSingleton() { return SingletonPtr; }
|
|
|
|
void GuardedPoolAllocator::AllocationMetadata::RecordAllocation(
|
|
uintptr_t AllocAddr, size_t AllocSize) {
|
|
Addr = AllocAddr;
|
|
Size = AllocSize;
|
|
IsDeallocated = false;
|
|
|
|
// TODO(hctim): Implement stack trace collection.
|
|
// TODO(hctim): Ask the caller to provide the thread ID, so we don't waste
|
|
// other thread's time getting the thread ID under lock.
|
|
AllocationTrace.ThreadID = getThreadID();
|
|
DeallocationTrace.ThreadID = kInvalidThreadID;
|
|
AllocationTrace.Trace[0] = 0;
|
|
DeallocationTrace.Trace[0] = 0;
|
|
}
|
|
|
|
void GuardedPoolAllocator::AllocationMetadata::RecordDeallocation() {
|
|
IsDeallocated = true;
|
|
// TODO(hctim): Implement stack trace collection. Ensure that the unwinder is
|
|
// not called if we have our recursive flag called, otherwise non-reentrant
|
|
// unwinders may deadlock.
|
|
DeallocationTrace.ThreadID = getThreadID();
|
|
}
|
|
|
|
void GuardedPoolAllocator::init(const options::Options &Opts) {
|
|
// Note: We return from the constructor here if GWP-ASan is not available.
|
|
// This will stop heap-allocation of class members, as well as mmap() of the
|
|
// guarded slots.
|
|
if (!Opts.Enabled || Opts.SampleRate == 0 ||
|
|
Opts.MaxSimultaneousAllocations == 0)
|
|
return;
|
|
|
|
// TODO(hctim): Add a death unit test for this.
|
|
if (SingletonPtr) {
|
|
(*SingletonPtr->Printf)(
|
|
"GWP-ASan Error: init() has already been called.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (Opts.SampleRate < 0) {
|
|
Opts.Printf("GWP-ASan Error: SampleRate is < 0.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (Opts.SampleRate > INT32_MAX) {
|
|
Opts.Printf("GWP-ASan Error: SampleRate is > 2^31.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (Opts.MaxSimultaneousAllocations < 0) {
|
|
Opts.Printf("GWP-ASan Error: MaxSimultaneousAllocations is < 0.\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
SingletonPtr = this;
|
|
|
|
MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
|
|
|
|
PageSize = getPlatformPageSize();
|
|
|
|
PerfectlyRightAlign = Opts.PerfectlyRightAlign;
|
|
Printf = Opts.Printf;
|
|
|
|
size_t PoolBytesRequired =
|
|
PageSize * (1 + MaxSimultaneousAllocations) +
|
|
MaxSimultaneousAllocations * maximumAllocationSize();
|
|
void *GuardedPoolMemory = mapMemory(PoolBytesRequired);
|
|
|
|
size_t BytesRequired = MaxSimultaneousAllocations * sizeof(*Metadata);
|
|
Metadata = reinterpret_cast<AllocationMetadata *>(mapMemory(BytesRequired));
|
|
markReadWrite(Metadata, BytesRequired);
|
|
|
|
// Allocate memory and set up the free pages queue.
|
|
BytesRequired = MaxSimultaneousAllocations * sizeof(*FreeSlots);
|
|
FreeSlots = reinterpret_cast<size_t *>(mapMemory(BytesRequired));
|
|
markReadWrite(FreeSlots, BytesRequired);
|
|
|
|
// Multiply the sample rate by 2 to give a good, fast approximation for (1 /
|
|
// SampleRate) chance of sampling.
|
|
if (Opts.SampleRate != 1)
|
|
AdjustedSampleRate = static_cast<uint32_t>(Opts.SampleRate) * 2;
|
|
else
|
|
AdjustedSampleRate = 1;
|
|
|
|
GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
|
|
GuardedPagePoolEnd =
|
|
reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
|
|
|
|
// Ensure that signal handlers are installed as late as possible, as the class
|
|
// is not thread-safe until init() is finished, and thus a SIGSEGV may cause a
|
|
// race to members if recieved during init().
|
|
if (Opts.InstallSignalHandlers)
|
|
installSignalHandlers();
|
|
}
|
|
|
|
namespace {
|
|
class ScopedBoolean {
|
|
public:
|
|
ScopedBoolean(bool &B) : Bool(B) { Bool = true; }
|
|
~ScopedBoolean() { Bool = false; }
|
|
|
|
private:
|
|
bool &Bool;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void *GuardedPoolAllocator::allocate(size_t Size) {
|
|
// GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
|
|
// back to the supporting allocator.
|
|
if (GuardedPagePoolEnd == 0)
|
|
return nullptr;
|
|
|
|
// Protect against recursivity.
|
|
if (ThreadLocals.RecursiveGuard)
|
|
return nullptr;
|
|
ScopedBoolean SB(ThreadLocals.RecursiveGuard);
|
|
|
|
if (Size == 0 || Size > maximumAllocationSize())
|
|
return nullptr;
|
|
|
|
size_t Index;
|
|
{
|
|
ScopedLock L(PoolMutex);
|
|
Index = reserveSlot();
|
|
}
|
|
|
|
if (Index == kInvalidSlotID)
|
|
return nullptr;
|
|
|
|
uintptr_t Ptr = slotToAddr(Index);
|
|
Ptr += allocationSlotOffset(Size);
|
|
AllocationMetadata *Meta = addrToMetadata(Ptr);
|
|
|
|
// If a slot is multiple pages in size, and the allocation takes up a single
|
|
// page, we can improve overflow detection by leaving the unused pages as
|
|
// unmapped.
|
|
markReadWrite(reinterpret_cast<void *>(getPageAddr(Ptr)), Size);
|
|
|
|
Meta->RecordAllocation(Ptr, Size);
|
|
|
|
return reinterpret_cast<void *>(Ptr);
|
|
}
|
|
|
|
void GuardedPoolAllocator::deallocate(void *Ptr) {
|
|
assert(pointerIsMine(Ptr) && "Pointer is not mine!");
|
|
uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
|
|
uintptr_t SlotStart = slotToAddr(addrToSlot(UPtr));
|
|
AllocationMetadata *Meta = addrToMetadata(UPtr);
|
|
if (Meta->Addr != UPtr) {
|
|
reportError(UPtr, Error::INVALID_FREE);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Intentionally scope the mutex here, so that other threads can access the
|
|
// pool during the expensive markInaccessible() call.
|
|
{
|
|
ScopedLock L(PoolMutex);
|
|
if (Meta->IsDeallocated) {
|
|
reportError(UPtr, Error::DOUBLE_FREE);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Ensure that the deallocation is recorded before marking the page as
|
|
// inaccessible. Otherwise, a racy use-after-free will have inconsistent
|
|
// metadata.
|
|
Meta->RecordDeallocation();
|
|
}
|
|
|
|
markInaccessible(reinterpret_cast<void *>(SlotStart),
|
|
maximumAllocationSize());
|
|
|
|
// And finally, lock again to release the slot back into the pool.
|
|
ScopedLock L(PoolMutex);
|
|
freeSlot(addrToSlot(UPtr));
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::getSize(const void *Ptr) {
|
|
assert(pointerIsMine(Ptr));
|
|
ScopedLock L(PoolMutex);
|
|
AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
|
|
assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
|
|
return Meta->Size;
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::maximumAllocationSize() const { return PageSize; }
|
|
|
|
AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
|
|
return &Metadata[addrToSlot(Ptr)];
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::addrToSlot(uintptr_t Ptr) const {
|
|
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
|
|
size_t ByteOffsetFromPoolStart = Ptr - GuardedPagePool;
|
|
return ByteOffsetFromPoolStart / (maximumAllocationSize() + PageSize);
|
|
}
|
|
|
|
uintptr_t GuardedPoolAllocator::slotToAddr(size_t N) const {
|
|
return GuardedPagePool + (PageSize * (1 + N)) + (maximumAllocationSize() * N);
|
|
}
|
|
|
|
uintptr_t GuardedPoolAllocator::getPageAddr(uintptr_t Ptr) const {
|
|
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
|
|
return Ptr & ~(static_cast<uintptr_t>(PageSize) - 1);
|
|
}
|
|
|
|
bool GuardedPoolAllocator::isGuardPage(uintptr_t Ptr) const {
|
|
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
|
|
size_t PageOffsetFromPoolStart = (Ptr - GuardedPagePool) / PageSize;
|
|
size_t PagesPerSlot = maximumAllocationSize() / PageSize;
|
|
return (PageOffsetFromPoolStart % (PagesPerSlot + 1)) == 0;
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::reserveSlot() {
|
|
// Avoid potential reuse of a slot before we have made at least a single
|
|
// allocation in each slot. Helps with our use-after-free detection.
|
|
if (NumSampledAllocations < MaxSimultaneousAllocations)
|
|
return NumSampledAllocations++;
|
|
|
|
if (FreeSlotsLength == 0)
|
|
return kInvalidSlotID;
|
|
|
|
size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
|
|
size_t SlotIndex = FreeSlots[ReservedIndex];
|
|
FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
|
|
return SlotIndex;
|
|
}
|
|
|
|
void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
|
|
assert(FreeSlotsLength < MaxSimultaneousAllocations);
|
|
FreeSlots[FreeSlotsLength++] = SlotIndex;
|
|
}
|
|
|
|
uintptr_t GuardedPoolAllocator::allocationSlotOffset(size_t Size) const {
|
|
assert(Size > 0);
|
|
|
|
bool ShouldRightAlign = getRandomUnsigned32() % 2 == 0;
|
|
if (!ShouldRightAlign)
|
|
return 0;
|
|
|
|
uintptr_t Offset = maximumAllocationSize();
|
|
if (!PerfectlyRightAlign) {
|
|
if (Size == 3)
|
|
Size = 4;
|
|
else if (Size > 4 && Size <= 8)
|
|
Size = 8;
|
|
else if (Size > 8 && (Size % 16) != 0)
|
|
Size += 16 - (Size % 16);
|
|
}
|
|
Offset -= Size;
|
|
return Offset;
|
|
}
|
|
|
|
void GuardedPoolAllocator::reportError(uintptr_t AccessPtr, Error E) {
|
|
if (SingletonPtr)
|
|
SingletonPtr->reportErrorInternal(AccessPtr, E);
|
|
}
|
|
|
|
size_t GuardedPoolAllocator::getNearestSlot(uintptr_t Ptr) const {
|
|
if (Ptr <= GuardedPagePool + PageSize)
|
|
return 0;
|
|
if (Ptr > GuardedPagePoolEnd - PageSize)
|
|
return MaxSimultaneousAllocations - 1;
|
|
|
|
if (!isGuardPage(Ptr))
|
|
return addrToSlot(Ptr);
|
|
|
|
if (Ptr % PageSize <= PageSize / 2)
|
|
return addrToSlot(Ptr - PageSize); // Round down.
|
|
return addrToSlot(Ptr + PageSize); // Round up.
|
|
}
|
|
|
|
Error GuardedPoolAllocator::diagnoseUnknownError(uintptr_t AccessPtr,
|
|
AllocationMetadata **Meta) {
|
|
// Let's try and figure out what the source of this error is.
|
|
if (isGuardPage(AccessPtr)) {
|
|
size_t Slot = getNearestSlot(AccessPtr);
|
|
AllocationMetadata *SlotMeta = addrToMetadata(slotToAddr(Slot));
|
|
|
|
// Ensure that this slot was allocated once upon a time.
|
|
if (!SlotMeta->Addr)
|
|
return Error::UNKNOWN;
|
|
*Meta = SlotMeta;
|
|
|
|
if (SlotMeta->Addr < AccessPtr)
|
|
return Error::BUFFER_OVERFLOW;
|
|
return Error::BUFFER_UNDERFLOW;
|
|
}
|
|
|
|
// Access wasn't a guard page, check for use-after-free.
|
|
AllocationMetadata *SlotMeta = addrToMetadata(AccessPtr);
|
|
if (SlotMeta->IsDeallocated) {
|
|
*Meta = SlotMeta;
|
|
return Error::USE_AFTER_FREE;
|
|
}
|
|
|
|
// If we have reached here, the error is still unknown. There is no metadata
|
|
// available.
|
|
return Error::UNKNOWN;
|
|
}
|
|
|
|
// Prints the provided error and metadata information. Returns true if there is
|
|
// additional context that can be provided, false otherwise (i.e. returns false
|
|
// if Error == {UNKNOWN, INVALID_FREE without metadata}).
|
|
bool printErrorType(Error E, uintptr_t AccessPtr, AllocationMetadata *Meta,
|
|
options::Printf_t Printf) {
|
|
switch (E) {
|
|
case Error::UNKNOWN:
|
|
Printf("GWP-ASan couldn't automatically determine the source of the "
|
|
"memory error when accessing 0x%zx. It was likely caused by a wild "
|
|
"memory access into the GWP-ASan pool.\n",
|
|
AccessPtr);
|
|
return false;
|
|
case Error::USE_AFTER_FREE:
|
|
Printf("Use after free occurred when accessing memory at: 0x%zx\n",
|
|
AccessPtr);
|
|
break;
|
|
case Error::DOUBLE_FREE:
|
|
Printf("Double free occurred when trying to free memory at: 0x%zx\n",
|
|
AccessPtr);
|
|
break;
|
|
case Error::INVALID_FREE:
|
|
Printf(
|
|
"Invalid (wild) free occurred when trying to free memory at: 0x%zx\n",
|
|
AccessPtr);
|
|
// It's possible for an invalid free to fall onto a slot that has never been
|
|
// allocated. If this is the case, there is no valid metadata.
|
|
if (Meta == nullptr)
|
|
return false;
|
|
break;
|
|
case Error::BUFFER_OVERFLOW:
|
|
Printf("Buffer overflow occurred when accessing memory at: 0x%zx\n",
|
|
AccessPtr);
|
|
break;
|
|
case Error::BUFFER_UNDERFLOW:
|
|
Printf("Buffer underflow occurred when accessing memory at: 0x%zx\n",
|
|
AccessPtr);
|
|
break;
|
|
}
|
|
|
|
Printf("0x%zx is ", AccessPtr);
|
|
if (AccessPtr < Meta->Addr)
|
|
Printf("located %zu bytes to the left of a %zu-byte allocation located at "
|
|
"0x%zx\n",
|
|
Meta->Addr - AccessPtr, Meta->Size, Meta->Addr);
|
|
else if (AccessPtr > Meta->Addr)
|
|
Printf("located %zu bytes to the right of a %zu-byte allocation located at "
|
|
"0x%zx\n",
|
|
AccessPtr - Meta->Addr, Meta->Size, Meta->Addr);
|
|
else
|
|
Printf("a %zu-byte allocation\n", Meta->Size);
|
|
return true;
|
|
}
|
|
|
|
void printThreadInformation(Error E, uintptr_t AccessPtr,
|
|
AllocationMetadata *Meta,
|
|
options::Printf_t Printf) {
|
|
Printf("0x%zx was allocated by thread ", AccessPtr);
|
|
if (Meta->AllocationTrace.ThreadID == UINT64_MAX)
|
|
Printf("UNKNOWN.\n");
|
|
else
|
|
Printf("%zu.\n", Meta->AllocationTrace.ThreadID);
|
|
|
|
if (E == Error::USE_AFTER_FREE || E == Error::DOUBLE_FREE) {
|
|
Printf("0x%zx was freed by thread ", AccessPtr);
|
|
if (Meta->AllocationTrace.ThreadID == UINT64_MAX)
|
|
Printf("UNKNOWN.\n");
|
|
else
|
|
Printf("%zu.\n", Meta->AllocationTrace.ThreadID);
|
|
}
|
|
}
|
|
|
|
struct ScopedEndOfReportDecorator {
|
|
ScopedEndOfReportDecorator(options::Printf_t Printf) : Printf(Printf) {}
|
|
~ScopedEndOfReportDecorator() { Printf("*** End GWP-ASan report ***\n"); }
|
|
options::Printf_t Printf;
|
|
};
|
|
|
|
void GuardedPoolAllocator::reportErrorInternal(uintptr_t AccessPtr, Error E) {
|
|
if (!pointerIsMine(reinterpret_cast<void *>(AccessPtr))) {
|
|
return;
|
|
}
|
|
|
|
// Attempt to prevent races to re-use the same slot that triggered this error.
|
|
// This does not guarantee that there are no races, because another thread can
|
|
// take the locks during the time that the signal handler is being called.
|
|
PoolMutex.tryLock();
|
|
ThreadLocals.RecursiveGuard = true;
|
|
|
|
Printf("*** GWP-ASan detected a memory error ***\n");
|
|
ScopedEndOfReportDecorator Decorator(Printf);
|
|
|
|
AllocationMetadata *Meta = nullptr;
|
|
|
|
if (E == Error::UNKNOWN) {
|
|
E = diagnoseUnknownError(AccessPtr, &Meta);
|
|
} else {
|
|
size_t Slot = getNearestSlot(AccessPtr);
|
|
Meta = addrToMetadata(slotToAddr(Slot));
|
|
// Ensure that this slot has been previously allocated.
|
|
if (!Meta->Addr)
|
|
Meta = nullptr;
|
|
}
|
|
|
|
// Print the error information, and if there is no valid metadata, stop here.
|
|
if (!printErrorType(E, AccessPtr, Meta, Printf)) {
|
|
return;
|
|
}
|
|
|
|
// Ensure that we have a valid metadata pointer from this point forward.
|
|
if (Meta == nullptr) {
|
|
Printf("GWP-ASan internal unreachable error. Metadata is not null.\n");
|
|
return;
|
|
}
|
|
|
|
printThreadInformation(E, AccessPtr, Meta, Printf);
|
|
// TODO(hctim): Implement stack unwinding here. Ask the caller to provide us
|
|
// with the base pointer, and we unwind the stack to give a stack trace for
|
|
// the access.
|
|
// TODO(hctim): Implement dumping here of allocation/deallocation traces.
|
|
}
|
|
|
|
TLS_INITIAL_EXEC
|
|
GuardedPoolAllocator::ThreadLocalPackedVariables
|
|
GuardedPoolAllocator::ThreadLocals;
|
|
} // namespace gwp_asan
|