1120 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1120 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file promotes memory references to be register references.  It promotes
 | 
						|
// alloca instructions which only have loads and stores as uses.  An alloca is
 | 
						|
// transformed by using iterated dominator frontiers to place PHI nodes, then
 | 
						|
// traversing the function in depth-first order to rewrite loads and stores as
 | 
						|
// appropriate.
 | 
						|
//
 | 
						|
// The algorithm used here is based on:
 | 
						|
//
 | 
						|
//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
 | 
						|
//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
 | 
						|
//   Programming Languages
 | 
						|
//   POPL '95. ACM, New York, NY, 62-73.
 | 
						|
//
 | 
						|
// It has been modified to not explicitly use the DJ graph data structure and to
 | 
						|
// directly compute pruned SSA using per-variable liveness information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "mem2reg"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Metadata.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/Analysis/DIBuilder.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
#include <queue>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
 | 
						|
STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
 | 
						|
STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
 | 
						|
STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template<>
 | 
						|
struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
 | 
						|
  typedef std::pair<BasicBlock*, unsigned> EltTy;
 | 
						|
  static inline EltTy getEmptyKey() {
 | 
						|
    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
 | 
						|
  }
 | 
						|
  static inline EltTy getTombstoneKey() {
 | 
						|
    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
 | 
						|
  }
 | 
						|
  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
 | 
						|
    return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
 | 
						|
  }
 | 
						|
  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
 | 
						|
/// This is true if there are only loads and stores to the alloca.
 | 
						|
///
 | 
						|
bool llvm::isAllocaPromotable(const AllocaInst *AI) {
 | 
						|
  // FIXME: If the memory unit is of pointer or integer type, we can permit
 | 
						|
  // assignments to subsections of the memory unit.
 | 
						|
 | 
						|
  // Only allow direct and non-volatile loads and stores...
 | 
						|
  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
 | 
						|
       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
 | 
						|
    const User *U = *UI;
 | 
						|
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
      if (LI->isVolatile())
 | 
						|
        return false;
 | 
						|
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
      if (SI->getOperand(0) == AI)
 | 
						|
        return false;   // Don't allow a store OF the AI, only INTO the AI.
 | 
						|
      if (SI->isVolatile())
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
 | 
						|
/// alloca 'V', if any.
 | 
						|
static DbgDeclareInst *FindAllocaDbgDeclare(Value *V) {
 | 
						|
  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), &V, 1))
 | 
						|
    for (Value::use_iterator UI = DebugNode->use_begin(),
 | 
						|
         E = DebugNode->use_end(); UI != E; ++UI)
 | 
						|
      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
 | 
						|
        return DDI;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct AllocaInfo;
 | 
						|
 | 
						|
  // Data package used by RenamePass()
 | 
						|
  class RenamePassData {
 | 
						|
  public:
 | 
						|
    typedef std::vector<Value *> ValVector;
 | 
						|
    
 | 
						|
    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
 | 
						|
    RenamePassData(BasicBlock *B, BasicBlock *P,
 | 
						|
                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
 | 
						|
    BasicBlock *BB;
 | 
						|
    BasicBlock *Pred;
 | 
						|
    ValVector Values;
 | 
						|
    
 | 
						|
    void swap(RenamePassData &RHS) {
 | 
						|
      std::swap(BB, RHS.BB);
 | 
						|
      std::swap(Pred, RHS.Pred);
 | 
						|
      Values.swap(RHS.Values);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
 | 
						|
  /// load/store instructions in the block that directly load or store an alloca.
 | 
						|
  ///
 | 
						|
  /// This functionality is important because it avoids scanning large basic
 | 
						|
  /// blocks multiple times when promoting many allocas in the same block.
 | 
						|
  class LargeBlockInfo {
 | 
						|
    /// InstNumbers - For each instruction that we track, keep the index of the
 | 
						|
    /// instruction.  The index starts out as the number of the instruction from
 | 
						|
    /// the start of the block.
 | 
						|
    DenseMap<const Instruction *, unsigned> InstNumbers;
 | 
						|
  public:
 | 
						|
    
 | 
						|
    /// isInterestingInstruction - This code only looks at accesses to allocas.
 | 
						|
    static bool isInterestingInstruction(const Instruction *I) {
 | 
						|
      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
 | 
						|
             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getInstructionIndex - Get or calculate the index of the specified
 | 
						|
    /// instruction.
 | 
						|
    unsigned getInstructionIndex(const Instruction *I) {
 | 
						|
      assert(isInterestingInstruction(I) &&
 | 
						|
             "Not a load/store to/from an alloca?");
 | 
						|
      
 | 
						|
      // If we already have this instruction number, return it.
 | 
						|
      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
 | 
						|
      if (It != InstNumbers.end()) return It->second;
 | 
						|
      
 | 
						|
      // Scan the whole block to get the instruction.  This accumulates
 | 
						|
      // information for every interesting instruction in the block, in order to
 | 
						|
      // avoid gratuitus rescans.
 | 
						|
      const BasicBlock *BB = I->getParent();
 | 
						|
      unsigned InstNo = 0;
 | 
						|
      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
 | 
						|
           BBI != E; ++BBI)
 | 
						|
        if (isInterestingInstruction(BBI))
 | 
						|
          InstNumbers[BBI] = InstNo++;
 | 
						|
      It = InstNumbers.find(I);
 | 
						|
      
 | 
						|
      assert(It != InstNumbers.end() && "Didn't insert instruction?");
 | 
						|
      return It->second;
 | 
						|
    }
 | 
						|
    
 | 
						|
    void deleteValue(const Instruction *I) {
 | 
						|
      InstNumbers.erase(I);
 | 
						|
    }
 | 
						|
    
 | 
						|
    void clear() {
 | 
						|
      InstNumbers.clear();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct PromoteMem2Reg {
 | 
						|
    /// Allocas - The alloca instructions being promoted.
 | 
						|
    ///
 | 
						|
    std::vector<AllocaInst*> Allocas;
 | 
						|
    DominatorTree &DT;
 | 
						|
    DIBuilder *DIB;
 | 
						|
 | 
						|
    /// AST - An AliasSetTracker object to update.  If null, don't update it.
 | 
						|
    ///
 | 
						|
    AliasSetTracker *AST;
 | 
						|
    
 | 
						|
    /// AllocaLookup - Reverse mapping of Allocas.
 | 
						|
    ///
 | 
						|
    DenseMap<AllocaInst*, unsigned>  AllocaLookup;
 | 
						|
 | 
						|
    /// NewPhiNodes - The PhiNodes we're adding.
 | 
						|
    ///
 | 
						|
    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
 | 
						|
    
 | 
						|
    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
 | 
						|
    /// it corresponds to.
 | 
						|
    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
 | 
						|
    
 | 
						|
    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
 | 
						|
    /// each alloca that is of pointer type, we keep track of what to copyValue
 | 
						|
    /// to the inserted PHI nodes here.
 | 
						|
    ///
 | 
						|
    std::vector<Value*> PointerAllocaValues;
 | 
						|
 | 
						|
    /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
 | 
						|
    /// intrinsic that describes it, if any, so that we can convert it to a
 | 
						|
    /// dbg.value intrinsic if the alloca gets promoted.
 | 
						|
    SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
 | 
						|
 | 
						|
    /// Visited - The set of basic blocks the renamer has already visited.
 | 
						|
    ///
 | 
						|
    SmallPtrSet<BasicBlock*, 16> Visited;
 | 
						|
 | 
						|
    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
 | 
						|
    /// non-determinstic behavior.
 | 
						|
    DenseMap<BasicBlock*, unsigned> BBNumbers;
 | 
						|
 | 
						|
    /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
 | 
						|
    DenseMap<DomTreeNode*, unsigned> DomLevels;
 | 
						|
 | 
						|
    /// BBNumPreds - Lazily compute the number of predecessors a block has.
 | 
						|
    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
 | 
						|
  public:
 | 
						|
    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
 | 
						|
                   AliasSetTracker *ast)
 | 
						|
      : Allocas(A), DT(dt), DIB(0), AST(ast) {}
 | 
						|
    ~PromoteMem2Reg() {
 | 
						|
      delete DIB;
 | 
						|
    }
 | 
						|
 | 
						|
    void run();
 | 
						|
 | 
						|
    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
 | 
						|
    ///
 | 
						|
    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
 | 
						|
      return DT.dominates(BB1, BB2);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void RemoveFromAllocasList(unsigned &AllocaIdx) {
 | 
						|
      Allocas[AllocaIdx] = Allocas.back();
 | 
						|
      Allocas.pop_back();
 | 
						|
      --AllocaIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNumPreds(const BasicBlock *BB) {
 | 
						|
      unsigned &NP = BBNumPreds[BB];
 | 
						|
      if (NP == 0)
 | 
						|
        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
 | 
						|
      return NP-1;
 | 
						|
    }
 | 
						|
 | 
						|
    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
 | 
						|
                                 AllocaInfo &Info);
 | 
						|
    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 
 | 
						|
                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
 | 
						|
                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
 | 
						|
    
 | 
						|
    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
 | 
						|
                                  LargeBlockInfo &LBI);
 | 
						|
    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
 | 
						|
                                  LargeBlockInfo &LBI);
 | 
						|
    void ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI);
 | 
						|
 | 
						|
    
 | 
						|
    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
 | 
						|
                    RenamePassData::ValVector &IncVals,
 | 
						|
                    std::vector<RenamePassData> &Worklist);
 | 
						|
    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
 | 
						|
  };
 | 
						|
  
 | 
						|
  struct AllocaInfo {
 | 
						|
    SmallVector<BasicBlock*, 32> DefiningBlocks;
 | 
						|
    SmallVector<BasicBlock*, 32> UsingBlocks;
 | 
						|
    
 | 
						|
    StoreInst  *OnlyStore;
 | 
						|
    BasicBlock *OnlyBlock;
 | 
						|
    bool OnlyUsedInOneBlock;
 | 
						|
    
 | 
						|
    Value *AllocaPointerVal;
 | 
						|
    DbgDeclareInst *DbgDeclare;
 | 
						|
    
 | 
						|
    void clear() {
 | 
						|
      DefiningBlocks.clear();
 | 
						|
      UsingBlocks.clear();
 | 
						|
      OnlyStore = 0;
 | 
						|
      OnlyBlock = 0;
 | 
						|
      OnlyUsedInOneBlock = true;
 | 
						|
      AllocaPointerVal = 0;
 | 
						|
      DbgDeclare = 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
 | 
						|
    /// ivars.
 | 
						|
    void AnalyzeAlloca(AllocaInst *AI) {
 | 
						|
      clear();
 | 
						|
 | 
						|
      // As we scan the uses of the alloca instruction, keep track of stores,
 | 
						|
      // and decide whether all of the loads and stores to the alloca are within
 | 
						|
      // the same basic block.
 | 
						|
      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | 
						|
           UI != E;)  {
 | 
						|
        Instruction *User = cast<Instruction>(*UI++);
 | 
						|
 | 
						|
        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
          // Remember the basic blocks which define new values for the alloca
 | 
						|
          DefiningBlocks.push_back(SI->getParent());
 | 
						|
          AllocaPointerVal = SI->getOperand(0);
 | 
						|
          OnlyStore = SI;
 | 
						|
        } else {
 | 
						|
          LoadInst *LI = cast<LoadInst>(User);
 | 
						|
          // Otherwise it must be a load instruction, keep track of variable
 | 
						|
          // reads.
 | 
						|
          UsingBlocks.push_back(LI->getParent());
 | 
						|
          AllocaPointerVal = LI;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (OnlyUsedInOneBlock) {
 | 
						|
          if (OnlyBlock == 0)
 | 
						|
            OnlyBlock = User->getParent();
 | 
						|
          else if (OnlyBlock != User->getParent())
 | 
						|
            OnlyUsedInOneBlock = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      DbgDeclare = FindAllocaDbgDeclare(AI);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
 | 
						|
 | 
						|
  struct DomTreeNodeCompare {
 | 
						|
    bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
 | 
						|
      return LHS.second < RHS.second;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}  // end of anonymous namespace
 | 
						|
 | 
						|
 | 
						|
void PromoteMem2Reg::run() {
 | 
						|
  Function &F = *DT.getRoot()->getParent();
 | 
						|
 | 
						|
  if (AST) PointerAllocaValues.resize(Allocas.size());
 | 
						|
  AllocaDbgDeclares.resize(Allocas.size());
 | 
						|
 | 
						|
  AllocaInfo Info;
 | 
						|
  LargeBlockInfo LBI;
 | 
						|
 | 
						|
  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
 | 
						|
    AllocaInst *AI = Allocas[AllocaNum];
 | 
						|
 | 
						|
    assert(isAllocaPromotable(AI) &&
 | 
						|
           "Cannot promote non-promotable alloca!");
 | 
						|
    assert(AI->getParent()->getParent() == &F &&
 | 
						|
           "All allocas should be in the same function, which is same as DF!");
 | 
						|
 | 
						|
    if (AI->use_empty()) {
 | 
						|
      // If there are no uses of the alloca, just delete it now.
 | 
						|
      if (AST) AST->deleteValue(AI);
 | 
						|
      AI->eraseFromParent();
 | 
						|
 | 
						|
      // Remove the alloca from the Allocas list, since it has been processed
 | 
						|
      RemoveFromAllocasList(AllocaNum);
 | 
						|
      ++NumDeadAlloca;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Calculate the set of read and write-locations for each alloca.  This is
 | 
						|
    // analogous to finding the 'uses' and 'definitions' of each variable.
 | 
						|
    Info.AnalyzeAlloca(AI);
 | 
						|
 | 
						|
    // If there is only a single store to this value, replace any loads of
 | 
						|
    // it that are directly dominated by the definition with the value stored.
 | 
						|
    if (Info.DefiningBlocks.size() == 1) {
 | 
						|
      RewriteSingleStoreAlloca(AI, Info, LBI);
 | 
						|
 | 
						|
      // Finally, after the scan, check to see if the store is all that is left.
 | 
						|
      if (Info.UsingBlocks.empty()) {
 | 
						|
        // Record debuginfo for the store and remove the declaration's debuginfo.
 | 
						|
        if (DbgDeclareInst *DDI = Info.DbgDeclare) {
 | 
						|
          ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore);
 | 
						|
          DDI->eraseFromParent();
 | 
						|
        }
 | 
						|
        // Remove the (now dead) store and alloca.
 | 
						|
        Info.OnlyStore->eraseFromParent();
 | 
						|
        LBI.deleteValue(Info.OnlyStore);
 | 
						|
 | 
						|
        if (AST) AST->deleteValue(AI);
 | 
						|
        AI->eraseFromParent();
 | 
						|
        LBI.deleteValue(AI);
 | 
						|
        
 | 
						|
        // The alloca has been processed, move on.
 | 
						|
        RemoveFromAllocasList(AllocaNum);
 | 
						|
        
 | 
						|
        ++NumSingleStore;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the alloca is only read and written in one basic block, just perform a
 | 
						|
    // linear sweep over the block to eliminate it.
 | 
						|
    if (Info.OnlyUsedInOneBlock) {
 | 
						|
      PromoteSingleBlockAlloca(AI, Info, LBI);
 | 
						|
      
 | 
						|
      // Finally, after the scan, check to see if the stores are all that is
 | 
						|
      // left.
 | 
						|
      if (Info.UsingBlocks.empty()) {
 | 
						|
        
 | 
						|
        // Remove the (now dead) stores and alloca.
 | 
						|
        while (!AI->use_empty()) {
 | 
						|
          StoreInst *SI = cast<StoreInst>(AI->use_back());
 | 
						|
          // Record debuginfo for the store before removing it.
 | 
						|
          if (DbgDeclareInst *DDI = Info.DbgDeclare)
 | 
						|
            ConvertDebugDeclareToDebugValue(DDI, SI);
 | 
						|
          SI->eraseFromParent();
 | 
						|
          LBI.deleteValue(SI);
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (AST) AST->deleteValue(AI);
 | 
						|
        AI->eraseFromParent();
 | 
						|
        LBI.deleteValue(AI);
 | 
						|
        
 | 
						|
        // The alloca has been processed, move on.
 | 
						|
        RemoveFromAllocasList(AllocaNum);
 | 
						|
        
 | 
						|
        // The alloca's debuginfo can be removed as well.
 | 
						|
        if (DbgDeclareInst *DDI = Info.DbgDeclare)
 | 
						|
          DDI->eraseFromParent();
 | 
						|
 | 
						|
        ++NumLocalPromoted;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we haven't computed dominator tree levels, do so now.
 | 
						|
    if (DomLevels.empty()) {
 | 
						|
      SmallVector<DomTreeNode*, 32> Worklist;
 | 
						|
 | 
						|
      DomTreeNode *Root = DT.getRootNode();
 | 
						|
      DomLevels[Root] = 0;
 | 
						|
      Worklist.push_back(Root);
 | 
						|
 | 
						|
      while (!Worklist.empty()) {
 | 
						|
        DomTreeNode *Node = Worklist.pop_back_val();
 | 
						|
        unsigned ChildLevel = DomLevels[Node] + 1;
 | 
						|
        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
 | 
						|
             CI != CE; ++CI) {
 | 
						|
          DomLevels[*CI] = ChildLevel;
 | 
						|
          Worklist.push_back(*CI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we haven't computed a numbering for the BB's in the function, do so
 | 
						|
    // now.
 | 
						|
    if (BBNumbers.empty()) {
 | 
						|
      unsigned ID = 0;
 | 
						|
      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | 
						|
        BBNumbers[I] = ID++;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an AST to keep updated, remember some pointer value that is
 | 
						|
    // stored into the alloca.
 | 
						|
    if (AST)
 | 
						|
      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
 | 
						|
      
 | 
						|
    // Remember the dbg.declare intrinsic describing this alloca, if any.
 | 
						|
    if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
 | 
						|
    
 | 
						|
    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
 | 
						|
    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
 | 
						|
 | 
						|
    // At this point, we're committed to promoting the alloca using IDF's, and
 | 
						|
    // the standard SSA construction algorithm.  Determine which blocks need PHI
 | 
						|
    // nodes and see if we can optimize out some work by avoiding insertion of
 | 
						|
    // dead phi nodes.
 | 
						|
    DetermineInsertionPoint(AI, AllocaNum, Info);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Allocas.empty())
 | 
						|
    return; // All of the allocas must have been trivial!
 | 
						|
 | 
						|
  LBI.clear();
 | 
						|
  
 | 
						|
  
 | 
						|
  // Set the incoming values for the basic block to be null values for all of
 | 
						|
  // the alloca's.  We do this in case there is a load of a value that has not
 | 
						|
  // been stored yet.  In this case, it will get this null value.
 | 
						|
  //
 | 
						|
  RenamePassData::ValVector Values(Allocas.size());
 | 
						|
  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
 | 
						|
    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
 | 
						|
 | 
						|
  // Walks all basic blocks in the function performing the SSA rename algorithm
 | 
						|
  // and inserting the phi nodes we marked as necessary
 | 
						|
  //
 | 
						|
  std::vector<RenamePassData> RenamePassWorkList;
 | 
						|
  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
 | 
						|
  do {
 | 
						|
    RenamePassData RPD;
 | 
						|
    RPD.swap(RenamePassWorkList.back());
 | 
						|
    RenamePassWorkList.pop_back();
 | 
						|
    // RenamePass may add new worklist entries.
 | 
						|
    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
 | 
						|
  } while (!RenamePassWorkList.empty());
 | 
						|
  
 | 
						|
  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  // Remove the allocas themselves from the function.
 | 
						|
  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
 | 
						|
    Instruction *A = Allocas[i];
 | 
						|
 | 
						|
    // If there are any uses of the alloca instructions left, they must be in
 | 
						|
    // unreachable basic blocks that were not processed by walking the dominator
 | 
						|
    // tree. Just delete the users now.
 | 
						|
    if (!A->use_empty())
 | 
						|
      A->replaceAllUsesWith(UndefValue::get(A->getType()));
 | 
						|
    if (AST) AST->deleteValue(A);
 | 
						|
    A->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove alloca's dbg.declare instrinsics from the function.
 | 
						|
  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
 | 
						|
    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
 | 
						|
      DDI->eraseFromParent();
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes and see if there are any that we can get
 | 
						|
  // rid of because they merge all of the same incoming values.  This can
 | 
						|
  // happen due to undef values coming into the PHI nodes.  This process is
 | 
						|
  // iterative, because eliminating one PHI node can cause others to be removed.
 | 
						|
  bool EliminatedAPHI = true;
 | 
						|
  while (EliminatedAPHI) {
 | 
						|
    EliminatedAPHI = false;
 | 
						|
    
 | 
						|
    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
 | 
						|
           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
 | 
						|
      PHINode *PN = I->second;
 | 
						|
 | 
						|
      // If this PHI node merges one value and/or undefs, get the value.
 | 
						|
      if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
 | 
						|
        if (AST && PN->getType()->isPointerTy())
 | 
						|
          AST->deleteValue(PN);
 | 
						|
        PN->replaceAllUsesWith(V);
 | 
						|
        PN->eraseFromParent();
 | 
						|
        NewPhiNodes.erase(I++);
 | 
						|
        EliminatedAPHI = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // At this point, the renamer has added entries to PHI nodes for all reachable
 | 
						|
  // code.  Unfortunately, there may be unreachable blocks which the renamer
 | 
						|
  // hasn't traversed.  If this is the case, the PHI nodes may not
 | 
						|
  // have incoming values for all predecessors.  Loop over all PHI nodes we have
 | 
						|
  // created, inserting undef values if they are missing any incoming values.
 | 
						|
  //
 | 
						|
  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
 | 
						|
         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
 | 
						|
    // We want to do this once per basic block.  As such, only process a block
 | 
						|
    // when we find the PHI that is the first entry in the block.
 | 
						|
    PHINode *SomePHI = I->second;
 | 
						|
    BasicBlock *BB = SomePHI->getParent();
 | 
						|
    if (&BB->front() != SomePHI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Only do work here if there the PHI nodes are missing incoming values.  We
 | 
						|
    // know that all PHI nodes that were inserted in a block will have the same
 | 
						|
    // number of incoming values, so we can just check any of them.
 | 
						|
    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the preds for BB.
 | 
						|
    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
 | 
						|
    
 | 
						|
    // Ok, now we know that all of the PHI nodes are missing entries for some
 | 
						|
    // basic blocks.  Start by sorting the incoming predecessors for efficient
 | 
						|
    // access.
 | 
						|
    std::sort(Preds.begin(), Preds.end());
 | 
						|
    
 | 
						|
    // Now we loop through all BB's which have entries in SomePHI and remove
 | 
						|
    // them from the Preds list.
 | 
						|
    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      // Do a log(n) search of the Preds list for the entry we want.
 | 
						|
      SmallVector<BasicBlock*, 16>::iterator EntIt =
 | 
						|
        std::lower_bound(Preds.begin(), Preds.end(),
 | 
						|
                         SomePHI->getIncomingBlock(i));
 | 
						|
      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
 | 
						|
             "PHI node has entry for a block which is not a predecessor!");
 | 
						|
 | 
						|
      // Remove the entry
 | 
						|
      Preds.erase(EntIt);
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, the blocks left in the preds list must have dummy
 | 
						|
    // entries inserted into every PHI nodes for the block.  Update all the phi
 | 
						|
    // nodes in this block that we are inserting (there could be phis before
 | 
						|
    // mem2reg runs).
 | 
						|
    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
 | 
						|
    BasicBlock::iterator BBI = BB->begin();
 | 
						|
    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
 | 
						|
           SomePHI->getNumIncomingValues() == NumBadPreds) {
 | 
						|
      Value *UndefVal = UndefValue::get(SomePHI->getType());
 | 
						|
      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
 | 
						|
        SomePHI->addIncoming(UndefVal, Preds[pred]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
        
 | 
						|
  NewPhiNodes.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
 | 
						|
/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
 | 
						|
/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
 | 
						|
/// would be dead).
 | 
						|
void PromoteMem2Reg::
 | 
						|
ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 
 | 
						|
                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
 | 
						|
                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
 | 
						|
  
 | 
						|
  // To determine liveness, we must iterate through the predecessors of blocks
 | 
						|
  // where the def is live.  Blocks are added to the worklist if we need to
 | 
						|
  // check their predecessors.  Start with all the using blocks.
 | 
						|
  SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
 | 
						|
                                                   Info.UsingBlocks.end());
 | 
						|
  
 | 
						|
  // If any of the using blocks is also a definition block, check to see if the
 | 
						|
  // definition occurs before or after the use.  If it happens before the use,
 | 
						|
  // the value isn't really live-in.
 | 
						|
  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = LiveInBlockWorklist[i];
 | 
						|
    if (!DefBlocks.count(BB)) continue;
 | 
						|
    
 | 
						|
    // Okay, this is a block that both uses and defines the value.  If the first
 | 
						|
    // reference to the alloca is a def (store), then we know it isn't live-in.
 | 
						|
    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
        if (SI->getOperand(1) != AI) continue;
 | 
						|
        
 | 
						|
        // We found a store to the alloca before a load.  The alloca is not
 | 
						|
        // actually live-in here.
 | 
						|
        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
 | 
						|
        LiveInBlockWorklist.pop_back();
 | 
						|
        --i, --e;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
        if (LI->getOperand(0) != AI) continue;
 | 
						|
        
 | 
						|
        // Okay, we found a load before a store to the alloca.  It is actually
 | 
						|
        // live into this block.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now that we have a set of blocks where the phi is live-in, recursively add
 | 
						|
  // their predecessors until we find the full region the value is live.
 | 
						|
  while (!LiveInBlockWorklist.empty()) {
 | 
						|
    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
 | 
						|
    
 | 
						|
    // The block really is live in here, insert it into the set.  If already in
 | 
						|
    // the set, then it has already been processed.
 | 
						|
    if (!LiveInBlocks.insert(BB))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Since the value is live into BB, it is either defined in a predecessor or
 | 
						|
    // live into it to.  Add the preds to the worklist unless they are a
 | 
						|
    // defining block.
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
      BasicBlock *P = *PI;
 | 
						|
      
 | 
						|
      // The value is not live into a predecessor if it defines the value.
 | 
						|
      if (DefBlocks.count(P))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Otherwise it is, add to the worklist.
 | 
						|
      LiveInBlockWorklist.push_back(P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DetermineInsertionPoint - At this point, we're committed to promoting the
 | 
						|
/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
 | 
						|
/// which blocks need phi nodes and see if we can optimize out some work by
 | 
						|
/// avoiding insertion of dead phi nodes.
 | 
						|
void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
 | 
						|
                                             AllocaInfo &Info) {
 | 
						|
  // Unique the set of defining blocks for efficient lookup.
 | 
						|
  SmallPtrSet<BasicBlock*, 32> DefBlocks;
 | 
						|
  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
 | 
						|
 | 
						|
  // Determine which blocks the value is live in.  These are blocks which lead
 | 
						|
  // to uses.
 | 
						|
  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
 | 
						|
  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
 | 
						|
 | 
						|
  // Use a priority queue keyed on dominator tree level so that inserted nodes
 | 
						|
  // are handled from the bottom of the dominator tree upwards.
 | 
						|
  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
 | 
						|
                              DomTreeNodeCompare> IDFPriorityQueue;
 | 
						|
  IDFPriorityQueue PQ;
 | 
						|
 | 
						|
  for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
 | 
						|
       E = DefBlocks.end(); I != E; ++I) {
 | 
						|
    if (DomTreeNode *Node = DT.getNode(*I))
 | 
						|
      PQ.push(std::make_pair(Node, DomLevels[Node]));
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
 | 
						|
  SmallPtrSet<DomTreeNode*, 32> Visited;
 | 
						|
  SmallVector<DomTreeNode*, 32> Worklist;
 | 
						|
  while (!PQ.empty()) {
 | 
						|
    DomTreeNodePair RootPair = PQ.top();
 | 
						|
    PQ.pop();
 | 
						|
    DomTreeNode *Root = RootPair.first;
 | 
						|
    unsigned RootLevel = RootPair.second;
 | 
						|
 | 
						|
    // Walk all dominator tree children of Root, inspecting their CFG edges with
 | 
						|
    // targets elsewhere on the dominator tree. Only targets whose level is at
 | 
						|
    // most Root's level are added to the iterated dominance frontier of the
 | 
						|
    // definition set.
 | 
						|
 | 
						|
    Worklist.clear();
 | 
						|
    Worklist.push_back(Root);
 | 
						|
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      DomTreeNode *Node = Worklist.pop_back_val();
 | 
						|
      BasicBlock *BB = Node->getBlock();
 | 
						|
 | 
						|
      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
 | 
						|
           ++SI) {
 | 
						|
        DomTreeNode *SuccNode = DT.getNode(*SI);
 | 
						|
 | 
						|
        // Quickly skip all CFG edges that are also dominator tree edges instead
 | 
						|
        // of catching them below.
 | 
						|
        if (SuccNode->getIDom() == Node)
 | 
						|
          continue;
 | 
						|
 | 
						|
        unsigned SuccLevel = DomLevels[SuccNode];
 | 
						|
        if (SuccLevel > RootLevel)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (!Visited.insert(SuccNode))
 | 
						|
          continue;
 | 
						|
 | 
						|
        BasicBlock *SuccBB = SuccNode->getBlock();
 | 
						|
        if (!LiveInBlocks.count(SuccBB))
 | 
						|
          continue;
 | 
						|
 | 
						|
        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
 | 
						|
        if (!DefBlocks.count(SuccBB))
 | 
						|
          PQ.push(std::make_pair(SuccNode, SuccLevel));
 | 
						|
      }
 | 
						|
 | 
						|
      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
 | 
						|
           ++CI) {
 | 
						|
        if (!Visited.count(*CI))
 | 
						|
          Worklist.push_back(*CI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DFBlocks.size() > 1)
 | 
						|
    std::sort(DFBlocks.begin(), DFBlocks.end());
 | 
						|
 | 
						|
  unsigned CurrentVersion = 0;
 | 
						|
  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
 | 
						|
    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteSingleStoreAlloca - If there is only a single store to this value,
 | 
						|
/// replace any loads of it that are directly dominated by the definition with
 | 
						|
/// the value stored.
 | 
						|
void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
 | 
						|
                                              AllocaInfo &Info,
 | 
						|
                                              LargeBlockInfo &LBI) {
 | 
						|
  StoreInst *OnlyStore = Info.OnlyStore;
 | 
						|
  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
 | 
						|
  BasicBlock *StoreBB = OnlyStore->getParent();
 | 
						|
  int StoreIndex = -1;
 | 
						|
 | 
						|
  // Clear out UsingBlocks.  We will reconstruct it here if needed.
 | 
						|
  Info.UsingBlocks.clear();
 | 
						|
  
 | 
						|
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
 | 
						|
    Instruction *UserInst = cast<Instruction>(*UI++);
 | 
						|
    if (!isa<LoadInst>(UserInst)) {
 | 
						|
      assert(UserInst == OnlyStore && "Should only have load/stores");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    LoadInst *LI = cast<LoadInst>(UserInst);
 | 
						|
    
 | 
						|
    // Okay, if we have a load from the alloca, we want to replace it with the
 | 
						|
    // only value stored to the alloca.  We can do this if the value is
 | 
						|
    // dominated by the store.  If not, we use the rest of the mem2reg machinery
 | 
						|
    // to insert the phi nodes as needed.
 | 
						|
    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
 | 
						|
      if (LI->getParent() == StoreBB) {
 | 
						|
        // If we have a use that is in the same block as the store, compare the
 | 
						|
        // indices of the two instructions to see which one came first.  If the
 | 
						|
        // load came before the store, we can't handle it.
 | 
						|
        if (StoreIndex == -1)
 | 
						|
          StoreIndex = LBI.getInstructionIndex(OnlyStore);
 | 
						|
 | 
						|
        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
 | 
						|
          // Can't handle this load, bail out.
 | 
						|
          Info.UsingBlocks.push_back(StoreBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
      } else if (LI->getParent() != StoreBB &&
 | 
						|
                 !dominates(StoreBB, LI->getParent())) {
 | 
						|
        // If the load and store are in different blocks, use BB dominance to
 | 
						|
        // check their relationships.  If the store doesn't dom the use, bail
 | 
						|
        // out.
 | 
						|
        Info.UsingBlocks.push_back(LI->getParent());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we *can* safely rewrite this load.
 | 
						|
    Value *ReplVal = OnlyStore->getOperand(0);
 | 
						|
    // If the replacement value is the load, this must occur in unreachable
 | 
						|
    // code.
 | 
						|
    if (ReplVal == LI)
 | 
						|
      ReplVal = UndefValue::get(LI->getType());
 | 
						|
    LI->replaceAllUsesWith(ReplVal);
 | 
						|
    if (AST && LI->getType()->isPointerTy())
 | 
						|
      AST->deleteValue(LI);
 | 
						|
    LI->eraseFromParent();
 | 
						|
    LBI.deleteValue(LI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
 | 
						|
/// first element of a pair.
 | 
						|
struct StoreIndexSearchPredicate {
 | 
						|
  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
 | 
						|
                  const std::pair<unsigned, StoreInst*> &RHS) {
 | 
						|
    return LHS.first < RHS.first;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
 | 
						|
/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
 | 
						|
/// potentially useless PHI nodes by just performing a single linear pass over
 | 
						|
/// the basic block using the Alloca.
 | 
						|
///
 | 
						|
/// If we cannot promote this alloca (because it is read before it is written),
 | 
						|
/// return true.  This is necessary in cases where, due to control flow, the
 | 
						|
/// alloca is potentially undefined on some control flow paths.  e.g. code like
 | 
						|
/// this is potentially correct:
 | 
						|
///
 | 
						|
///   for (...) { if (c) { A = undef; undef = B; } }
 | 
						|
///
 | 
						|
/// ... so long as A is not used before undef is set.
 | 
						|
///
 | 
						|
void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
 | 
						|
                                              LargeBlockInfo &LBI) {
 | 
						|
  // The trickiest case to handle is when we have large blocks. Because of this,
 | 
						|
  // this code is optimized assuming that large blocks happen.  This does not
 | 
						|
  // significantly pessimize the small block case.  This uses LargeBlockInfo to
 | 
						|
  // make it efficient to get the index of various operations in the block.
 | 
						|
  
 | 
						|
  // Clear out UsingBlocks.  We will reconstruct it here if needed.
 | 
						|
  Info.UsingBlocks.clear();
 | 
						|
  
 | 
						|
  // Walk the use-def list of the alloca, getting the locations of all stores.
 | 
						|
  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
 | 
						|
  StoresByIndexTy StoresByIndex;
 | 
						|
  
 | 
						|
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | 
						|
       UI != E; ++UI) 
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
 | 
						|
      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
 | 
						|
 | 
						|
  // If there are no stores to the alloca, just replace any loads with undef.
 | 
						|
  if (StoresByIndex.empty()) {
 | 
						|
    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) 
 | 
						|
      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
 | 
						|
        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
 | 
						|
        if (AST && LI->getType()->isPointerTy())
 | 
						|
          AST->deleteValue(LI);
 | 
						|
        LBI.deleteValue(LI);
 | 
						|
        LI->eraseFromParent();
 | 
						|
      }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Sort the stores by their index, making it efficient to do a lookup with a
 | 
						|
  // binary search.
 | 
						|
  std::sort(StoresByIndex.begin(), StoresByIndex.end());
 | 
						|
  
 | 
						|
  // Walk all of the loads from this alloca, replacing them with the nearest
 | 
						|
  // store above them, if any.
 | 
						|
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
 | 
						|
    if (!LI) continue;
 | 
						|
    
 | 
						|
    unsigned LoadIdx = LBI.getInstructionIndex(LI);
 | 
						|
    
 | 
						|
    // Find the nearest store that has a lower than this load. 
 | 
						|
    StoresByIndexTy::iterator I = 
 | 
						|
      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
 | 
						|
                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
 | 
						|
                       StoreIndexSearchPredicate());
 | 
						|
    
 | 
						|
    // If there is no store before this load, then we can't promote this load.
 | 
						|
    if (I == StoresByIndex.begin()) {
 | 
						|
      // Can't handle this load, bail out.
 | 
						|
      Info.UsingBlocks.push_back(LI->getParent());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
      
 | 
						|
    // Otherwise, there was a store before this load, the load takes its value.
 | 
						|
    --I;
 | 
						|
    LI->replaceAllUsesWith(I->second->getOperand(0));
 | 
						|
    if (AST && LI->getType()->isPointerTy())
 | 
						|
      AST->deleteValue(LI);
 | 
						|
    LI->eraseFromParent();
 | 
						|
    LBI.deleteValue(LI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
 | 
						|
// that has an associated llvm.dbg.decl intrinsic.
 | 
						|
void PromoteMem2Reg::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | 
						|
                                                     StoreInst *SI) {
 | 
						|
  DIVariable DIVar(DDI->getVariable());
 | 
						|
  if (!DIVar.Verify())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!DIB)
 | 
						|
    DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
 | 
						|
  Instruction *DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
 | 
						|
                                                     DIVar, SI);
 | 
						|
  
 | 
						|
  // Propagate any debug metadata from the store onto the dbg.value.
 | 
						|
  DebugLoc SIDL = SI->getDebugLoc();
 | 
						|
  if (!SIDL.isUnknown())
 | 
						|
    DbgVal->setDebugLoc(SIDL);
 | 
						|
  // Otherwise propagate debug metadata from dbg.declare.
 | 
						|
  else
 | 
						|
    DbgVal->setDebugLoc(DDI->getDebugLoc());
 | 
						|
}
 | 
						|
 | 
						|
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
 | 
						|
// Alloca returns true if there wasn't already a phi-node for that variable
 | 
						|
//
 | 
						|
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
 | 
						|
                                  unsigned &Version) {
 | 
						|
  // Look up the basic-block in question.
 | 
						|
  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
 | 
						|
 | 
						|
  // If the BB already has a phi node added for the i'th alloca then we're done!
 | 
						|
  if (PN) return false;
 | 
						|
 | 
						|
  // Create a PhiNode using the dereferenced type... and add the phi-node to the
 | 
						|
  // BasicBlock.
 | 
						|
  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
 | 
						|
                       Allocas[AllocaNo]->getName() + "." + Twine(Version++), 
 | 
						|
                       BB->begin());
 | 
						|
  ++NumPHIInsert;
 | 
						|
  PhiToAllocaMap[PN] = AllocaNo;
 | 
						|
  PN->reserveOperandSpace(getNumPreds(BB));
 | 
						|
 | 
						|
  if (AST && PN->getType()->isPointerTy())
 | 
						|
    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
 | 
						|
// stores to the allocas which we are promoting.  IncomingVals indicates what
 | 
						|
// value each Alloca contains on exit from the predecessor block Pred.
 | 
						|
//
 | 
						|
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
 | 
						|
                                RenamePassData::ValVector &IncomingVals,
 | 
						|
                                std::vector<RenamePassData> &Worklist) {
 | 
						|
NextIteration:
 | 
						|
  // If we are inserting any phi nodes into this BB, they will already be in the
 | 
						|
  // block.
 | 
						|
  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    // If we have PHI nodes to update, compute the number of edges from Pred to
 | 
						|
    // BB.
 | 
						|
    if (PhiToAllocaMap.count(APN)) {
 | 
						|
      // We want to be able to distinguish between PHI nodes being inserted by
 | 
						|
      // this invocation of mem2reg from those phi nodes that already existed in
 | 
						|
      // the IR before mem2reg was run.  We determine that APN is being inserted
 | 
						|
      // because it is missing incoming edges.  All other PHI nodes being
 | 
						|
      // inserted by this pass of mem2reg will have the same number of incoming
 | 
						|
      // operands so far.  Remember this count.
 | 
						|
      unsigned NewPHINumOperands = APN->getNumOperands();
 | 
						|
      
 | 
						|
      unsigned NumEdges = 0;
 | 
						|
      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
 | 
						|
        if (*I == BB)
 | 
						|
          ++NumEdges;
 | 
						|
      assert(NumEdges && "Must be at least one edge from Pred to BB!");
 | 
						|
      
 | 
						|
      // Add entries for all the phis.
 | 
						|
      BasicBlock::iterator PNI = BB->begin();
 | 
						|
      do {
 | 
						|
        unsigned AllocaNo = PhiToAllocaMap[APN];
 | 
						|
        
 | 
						|
        // Add N incoming values to the PHI node.
 | 
						|
        for (unsigned i = 0; i != NumEdges; ++i)
 | 
						|
          APN->addIncoming(IncomingVals[AllocaNo], Pred);
 | 
						|
        
 | 
						|
        // The currently active variable for this block is now the PHI.
 | 
						|
        IncomingVals[AllocaNo] = APN;
 | 
						|
        
 | 
						|
        // Get the next phi node.
 | 
						|
        ++PNI;
 | 
						|
        APN = dyn_cast<PHINode>(PNI);
 | 
						|
        if (APN == 0) break;
 | 
						|
        
 | 
						|
        // Verify that it is missing entries.  If not, it is not being inserted
 | 
						|
        // by this mem2reg invocation so we want to ignore it.
 | 
						|
      } while (APN->getNumOperands() == NewPHINumOperands);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Don't revisit blocks.
 | 
						|
  if (!Visited.insert(BB)) return;
 | 
						|
 | 
						|
  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
 | 
						|
    Instruction *I = II++; // get the instruction, increment iterator
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
 | 
						|
      if (!Src) continue;
 | 
						|
  
 | 
						|
      DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
 | 
						|
      if (AI == AllocaLookup.end()) continue;
 | 
						|
 | 
						|
      Value *V = IncomingVals[AI->second];
 | 
						|
 | 
						|
      // Anything using the load now uses the current value.
 | 
						|
      LI->replaceAllUsesWith(V);
 | 
						|
      if (AST && LI->getType()->isPointerTy())
 | 
						|
        AST->deleteValue(LI);
 | 
						|
      BB->getInstList().erase(LI);
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
      // Delete this instruction and mark the name as the current holder of the
 | 
						|
      // value
 | 
						|
      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
 | 
						|
      if (!Dest) continue;
 | 
						|
      
 | 
						|
      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
 | 
						|
      if (ai == AllocaLookup.end())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // what value were we writing?
 | 
						|
      IncomingVals[ai->second] = SI->getOperand(0);
 | 
						|
      // Record debuginfo for the store before removing it.
 | 
						|
      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
 | 
						|
        ConvertDebugDeclareToDebugValue(DDI, SI);
 | 
						|
      BB->getInstList().erase(SI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // 'Recurse' to our successors.
 | 
						|
  succ_iterator I = succ_begin(BB), E = succ_end(BB);
 | 
						|
  if (I == E) return;
 | 
						|
 | 
						|
  // Keep track of the successors so we don't visit the same successor twice
 | 
						|
  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
 | 
						|
 | 
						|
  // Handle the first successor without using the worklist.
 | 
						|
  VisitedSuccs.insert(*I);
 | 
						|
  Pred = BB;
 | 
						|
  BB = *I;
 | 
						|
  ++I;
 | 
						|
 | 
						|
  for (; I != E; ++I)
 | 
						|
    if (VisitedSuccs.insert(*I))
 | 
						|
      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
 | 
						|
 | 
						|
  goto NextIteration;
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteMemToReg - Promote the specified list of alloca instructions into
 | 
						|
/// scalar registers, inserting PHI nodes as appropriate.  This function does
 | 
						|
/// not modify the CFG of the function at all.  All allocas must be from the
 | 
						|
/// same function.
 | 
						|
///
 | 
						|
/// If AST is specified, the specified tracker is updated to reflect changes
 | 
						|
/// made to the IR.
 | 
						|
///
 | 
						|
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
 | 
						|
                           DominatorTree &DT, AliasSetTracker *AST) {
 | 
						|
  // If there is nothing to do, bail out...
 | 
						|
  if (Allocas.empty()) return;
 | 
						|
 | 
						|
  PromoteMem2Reg(Allocas, DT, AST).run();
 | 
						|
}
 |