609 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by James M. Laskey and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a simple two pass scheduler.  The first pass attempts to push
 | 
						|
// backward any lengthy instructions and critical paths.  The second pass packs
 | 
						|
// instructions into semi-optimal time slots.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// BitsIterator - Provides iteration through individual bits in a bit vector.
 | 
						|
///
 | 
						|
template<class T>
 | 
						|
class BitsIterator {
 | 
						|
private:
 | 
						|
  T Bits;                               // Bits left to iterate through
 | 
						|
 | 
						|
public:
 | 
						|
  /// Ctor.
 | 
						|
  BitsIterator(T Initial) : Bits(Initial) {}
 | 
						|
  
 | 
						|
  /// Next - Returns the next bit set or zero if exhausted.
 | 
						|
  inline T Next() {
 | 
						|
    // Get the rightmost bit set
 | 
						|
    T Result = Bits & -Bits;
 | 
						|
    // Remove from rest
 | 
						|
    Bits &= ~Result;
 | 
						|
    // Return single bit or zero
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// ResourceTally - Manages the use of resources over time intervals.  Each
 | 
						|
/// item (slot) in the tally vector represents the resources used at a given
 | 
						|
/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
 | 
						|
/// available.  An assumption is made that the tally is large enough to schedule 
 | 
						|
/// all current instructions (asserts otherwise.)
 | 
						|
///
 | 
						|
template<class T>
 | 
						|
class ResourceTally {
 | 
						|
private:
 | 
						|
  std::vector<T> Tally;                 // Resources used per slot
 | 
						|
  typedef typename std::vector<T>::iterator Iter;
 | 
						|
                                        // Tally iterator 
 | 
						|
  
 | 
						|
  /// SlotsAvailable - Returns true if all units are available.
 | 
						|
	///
 | 
						|
  bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
 | 
						|
                                              unsigned &Resource) {
 | 
						|
    assert(N && "Must check availability with N != 0");
 | 
						|
    // Determine end of interval
 | 
						|
    Iter End = Begin + N;
 | 
						|
    assert(End <= Tally.end() && "Tally is not large enough for schedule");
 | 
						|
    
 | 
						|
    // Iterate thru each resource
 | 
						|
    BitsIterator<T> Resources(ResourceSet & ~*Begin);
 | 
						|
    while (unsigned Res = Resources.Next()) {
 | 
						|
      // Check if resource is available for next N slots
 | 
						|
      Iter Interval = End;
 | 
						|
      do {
 | 
						|
        Interval--;
 | 
						|
        if (*Interval & Res) break;
 | 
						|
      } while (Interval != Begin);
 | 
						|
      
 | 
						|
      // If available for N
 | 
						|
      if (Interval == Begin) {
 | 
						|
        // Success
 | 
						|
        Resource = Res;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // No luck
 | 
						|
    Resource = 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
	
 | 
						|
	/// RetrySlot - Finds a good candidate slot to retry search.
 | 
						|
  Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
 | 
						|
    assert(N && "Must check availability with N != 0");
 | 
						|
    // Determine end of interval
 | 
						|
    Iter End = Begin + N;
 | 
						|
    assert(End <= Tally.end() && "Tally is not large enough for schedule");
 | 
						|
		
 | 
						|
		while (Begin != End--) {
 | 
						|
			// Clear units in use
 | 
						|
			ResourceSet &= ~*End;
 | 
						|
			// If no units left then we should go no further 
 | 
						|
			if (!ResourceSet) return End + 1;
 | 
						|
		}
 | 
						|
		// Made it all the way through
 | 
						|
		return Begin;
 | 
						|
	}
 | 
						|
  
 | 
						|
  /// FindAndReserveStages - Return true if the stages can be completed. If
 | 
						|
  /// so mark as busy.
 | 
						|
  bool FindAndReserveStages(Iter Begin,
 | 
						|
                            InstrStage *Stage, InstrStage *StageEnd) {
 | 
						|
    // If at last stage then we're done
 | 
						|
    if (Stage == StageEnd) return true;
 | 
						|
    // Get number of cycles for current stage
 | 
						|
    unsigned N = Stage->Cycles;
 | 
						|
    // Check to see if N slots are available, if not fail
 | 
						|
    unsigned Resource;
 | 
						|
    if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
 | 
						|
    // Check to see if remaining stages are available, if not fail
 | 
						|
    if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
 | 
						|
    // Reserve resource
 | 
						|
    Reserve(Begin, N, Resource);
 | 
						|
    // Success
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Reserve - Mark busy (set) the specified N slots.
 | 
						|
  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
 | 
						|
    // Determine end of interval
 | 
						|
    Iter End = Begin + N;
 | 
						|
    assert(End <= Tally.end() && "Tally is not large enough for schedule");
 | 
						|
 
 | 
						|
    // Set resource bit in each slot
 | 
						|
    for (; Begin < End; Begin++)
 | 
						|
      *Begin |= Resource;
 | 
						|
  }
 | 
						|
 | 
						|
  /// FindSlots - Starting from Begin, locate consecutive slots where all stages
 | 
						|
  /// can be completed.  Returns the address of first slot.
 | 
						|
  Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
 | 
						|
    // Track position      
 | 
						|
    Iter Cursor = Begin;
 | 
						|
    
 | 
						|
    // Try all possible slots forward
 | 
						|
    while (true) {
 | 
						|
      // Try at cursor, if successful return position.
 | 
						|
      if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
 | 
						|
      // Locate a better position
 | 
						|
			Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
public:
 | 
						|
  /// Initialize - Resize and zero the tally to the specified number of time
 | 
						|
  /// slots.
 | 
						|
  inline void Initialize(unsigned N) {
 | 
						|
    Tally.assign(N, 0);   // Initialize tally to all zeros.
 | 
						|
  }
 | 
						|
 | 
						|
  // FindAndReserve - Locate an ideal slot for the specified stages and mark
 | 
						|
  // as busy.
 | 
						|
  unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
 | 
						|
                                         InstrStage *StageEnd) {
 | 
						|
		// Where to begin 
 | 
						|
		Iter Begin = Tally.begin() + Slot;
 | 
						|
		// Find a free slot
 | 
						|
		Iter Where = FindSlots(Begin, StageBegin, StageEnd);
 | 
						|
		// Distance is slot number
 | 
						|
		unsigned Final = Where - Tally.begin();
 | 
						|
    return Final;
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// ScheduleDAGSimple - Simple two pass scheduler.
 | 
						|
///
 | 
						|
class ScheduleDAGSimple : public ScheduleDAG {
 | 
						|
private:
 | 
						|
  ResourceTally<unsigned> Tally;        // Resource usage tally
 | 
						|
  unsigned NSlots;                      // Total latency
 | 
						|
  static const unsigned NotFound = ~0U; // Search marker
 | 
						|
  
 | 
						|
public:
 | 
						|
 | 
						|
  // Ctor.
 | 
						|
  ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag,
 | 
						|
                    MachineBasicBlock *bb, const TargetMachine &tm)
 | 
						|
    : ScheduleDAG(hstc, dag, bb, tm), Tally(), NSlots(0) {
 | 
						|
    assert(&TII && "Target doesn't provide instr info?");
 | 
						|
    assert(&MRI && "Target doesn't provide register info?");
 | 
						|
  }
 | 
						|
 | 
						|
  virtual ~ScheduleDAGSimple() {};
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
private:
 | 
						|
  static bool isDefiner(NodeInfo *A, NodeInfo *B);
 | 
						|
  void IncludeNode(NodeInfo *NI);
 | 
						|
  void VisitAll();
 | 
						|
  void GatherSchedulingInfo();
 | 
						|
  void FakeGroupDominators(); 
 | 
						|
  bool isStrongDependency(NodeInfo *A, NodeInfo *B);
 | 
						|
  bool isWeakDependency(NodeInfo *A, NodeInfo *B);
 | 
						|
  void ScheduleBackward();
 | 
						|
  void ScheduleForward();
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// Special case itineraries.
 | 
						|
///
 | 
						|
enum {
 | 
						|
  CallLatency = 40,          // To push calls back in time
 | 
						|
 | 
						|
  RSInteger   = 0xC0000000,  // Two integer units
 | 
						|
  RSFloat     = 0x30000000,  // Two float units
 | 
						|
  RSLoadStore = 0x0C000000,  // Two load store units
 | 
						|
  RSBranch    = 0x02000000   // One branch unit
 | 
						|
};
 | 
						|
static InstrStage CallStage  = { CallLatency, RSBranch };
 | 
						|
static InstrStage LoadStage  = { 5, RSLoadStore };
 | 
						|
static InstrStage StoreStage = { 2, RSLoadStore };
 | 
						|
static InstrStage IntStage   = { 2, RSInteger };
 | 
						|
static InstrStage FloatStage = { 3, RSFloat };
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// isDefiner - Return true if node A is a definer for B.
 | 
						|
///
 | 
						|
bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
 | 
						|
  // While there are A nodes
 | 
						|
  NodeGroupIterator NII(A);
 | 
						|
  while (NodeInfo *NI = NII.next()) {
 | 
						|
    // Extract node
 | 
						|
    SDNode *Node = NI->Node;
 | 
						|
    // While there operands in nodes of B
 | 
						|
    NodeGroupOpIterator NGOI(B);
 | 
						|
    while (!NGOI.isEnd()) {
 | 
						|
      SDOperand Op = NGOI.next();
 | 
						|
      // If node from A defines a node in B
 | 
						|
      if (Node == Op.Val) return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IncludeNode - Add node to NodeInfo vector.
 | 
						|
///
 | 
						|
void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
 | 
						|
  // Get node
 | 
						|
  SDNode *Node = NI->Node;
 | 
						|
  // Ignore entry node
 | 
						|
  if (Node->getOpcode() == ISD::EntryToken) return;
 | 
						|
  // Check current count for node
 | 
						|
  int Count = NI->getPending();
 | 
						|
  // If the node is already in list
 | 
						|
  if (Count < 0) return;
 | 
						|
  // Decrement count to indicate a visit
 | 
						|
  Count--;
 | 
						|
  // If count has gone to zero then add node to list
 | 
						|
  if (!Count) {
 | 
						|
    // Add node
 | 
						|
    if (NI->isInGroup()) {
 | 
						|
      Ordering.push_back(NI->Group->getDominator());
 | 
						|
    } else {
 | 
						|
      Ordering.push_back(NI);
 | 
						|
    }
 | 
						|
    // indicate node has been added
 | 
						|
    Count--;
 | 
						|
  }
 | 
						|
  // Mark as visited with new count 
 | 
						|
  NI->setPending(Count);
 | 
						|
}
 | 
						|
 | 
						|
/// GatherSchedulingInfo - Get latency and resource information about each node.
 | 
						|
///
 | 
						|
void ScheduleDAGSimple::GatherSchedulingInfo() {
 | 
						|
  // Get instruction itineraries for the target
 | 
						|
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | 
						|
  
 | 
						|
  // For each node
 | 
						|
  for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | 
						|
    // Get node info
 | 
						|
    NodeInfo* NI = &Info[i];
 | 
						|
    SDNode *Node = NI->Node;
 | 
						|
    
 | 
						|
    // If there are itineraries and it is a machine instruction
 | 
						|
    if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) {
 | 
						|
      // If machine opcode
 | 
						|
      if (Node->isTargetOpcode()) {
 | 
						|
        // Get return type to guess which processing unit 
 | 
						|
        MVT::ValueType VT = Node->getValueType(0);
 | 
						|
        // Get machine opcode
 | 
						|
        MachineOpCode TOpc = Node->getTargetOpcode();
 | 
						|
        NI->IsCall = TII->isCall(TOpc);
 | 
						|
        NI->IsLoad = TII->isLoad(TOpc);
 | 
						|
        NI->IsStore = TII->isStore(TOpc);
 | 
						|
 | 
						|
        if (TII->isLoad(TOpc))             NI->StageBegin = &LoadStage;
 | 
						|
        else if (TII->isStore(TOpc))       NI->StageBegin = &StoreStage;
 | 
						|
        else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
 | 
						|
        else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
 | 
						|
        if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
 | 
						|
      }
 | 
						|
    } else if (Node->isTargetOpcode()) {
 | 
						|
      // get machine opcode
 | 
						|
      MachineOpCode TOpc = Node->getTargetOpcode();
 | 
						|
      // Check to see if it is a call
 | 
						|
      NI->IsCall = TII->isCall(TOpc);
 | 
						|
      // Get itinerary stages for instruction
 | 
						|
      unsigned II = TII->getSchedClass(TOpc);
 | 
						|
      NI->StageBegin = InstrItins.begin(II);
 | 
						|
      NI->StageEnd = InstrItins.end(II);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // One slot for the instruction itself
 | 
						|
    NI->Latency = 1;
 | 
						|
    
 | 
						|
    // Add long latency for a call to push it back in time
 | 
						|
    if (NI->IsCall) NI->Latency += CallLatency;
 | 
						|
    
 | 
						|
    // Sum up all the latencies
 | 
						|
    for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
 | 
						|
        Stage != E; Stage++) {
 | 
						|
      NI->Latency += Stage->Cycles;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Sum up all the latencies for max tally size
 | 
						|
    NSlots += NI->Latency;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Unify metrics if in a group
 | 
						|
  if (HasGroups) {
 | 
						|
    for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | 
						|
      NodeInfo* NI = &Info[i];
 | 
						|
      
 | 
						|
      if (NI->isInGroup()) {
 | 
						|
        NodeGroup *Group = NI->Group;
 | 
						|
        
 | 
						|
        if (!Group->getDominator()) {
 | 
						|
          NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
 | 
						|
          NodeInfo *Dominator = *NGI;
 | 
						|
          unsigned Latency = 0;
 | 
						|
          
 | 
						|
          for (NGI++; NGI != NGE; NGI++) {
 | 
						|
            NodeInfo* NGNI = *NGI;
 | 
						|
            Latency += NGNI->Latency;
 | 
						|
            if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
 | 
						|
          }
 | 
						|
          
 | 
						|
          Dominator->Latency = Latency;
 | 
						|
          Group->setDominator(Dominator);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
 | 
						|
/// Note that the ordering in the Nodes vector is reversed.
 | 
						|
void ScheduleDAGSimple::VisitAll() {
 | 
						|
  // Add first element to list
 | 
						|
  NodeInfo *NI = getNI(DAG.getRoot().Val);
 | 
						|
  if (NI->isInGroup()) {
 | 
						|
    Ordering.push_back(NI->Group->getDominator());
 | 
						|
  } else {
 | 
						|
    Ordering.push_back(NI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Iterate through all nodes that have been added
 | 
						|
  for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
 | 
						|
    // Visit all operands
 | 
						|
    NodeGroupOpIterator NGI(Ordering[i]);
 | 
						|
    while (!NGI.isEnd()) {
 | 
						|
      // Get next operand
 | 
						|
      SDOperand Op = NGI.next();
 | 
						|
      // Get node
 | 
						|
      SDNode *Node = Op.Val;
 | 
						|
      // Ignore passive nodes
 | 
						|
      if (isPassiveNode(Node)) continue;
 | 
						|
      // Check out node
 | 
						|
      IncludeNode(getNI(Node));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add entry node last (IncludeNode filters entry nodes)
 | 
						|
  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
 | 
						|
    Ordering.push_back(getNI(DAG.getEntryNode().Val));
 | 
						|
    
 | 
						|
  // Reverse the order
 | 
						|
  std::reverse(Ordering.begin(), Ordering.end());
 | 
						|
}
 | 
						|
 | 
						|
/// FakeGroupDominators - Set dominators for non-scheduling.
 | 
						|
/// 
 | 
						|
void ScheduleDAGSimple::FakeGroupDominators() {
 | 
						|
  for (unsigned i = 0, N = NodeCount; i < N; i++) {
 | 
						|
    NodeInfo* NI = &Info[i];
 | 
						|
    
 | 
						|
    if (NI->isInGroup()) {
 | 
						|
      NodeGroup *Group = NI->Group;
 | 
						|
      
 | 
						|
      if (!Group->getDominator()) {
 | 
						|
        Group->setDominator(NI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isStrongDependency - Return true if node A has results used by node B. 
 | 
						|
/// I.E., B must wait for latency of A.
 | 
						|
bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
 | 
						|
  // If A defines for B then it's a strong dependency or
 | 
						|
  // if a load follows a store (may be dependent but why take a chance.)
 | 
						|
  return isDefiner(A, B) || (A->IsStore && B->IsLoad);
 | 
						|
}
 | 
						|
 | 
						|
/// isWeakDependency Return true if node A produces a result that will
 | 
						|
/// conflict with operands of B.  It is assumed that we have called
 | 
						|
/// isStrongDependency prior.
 | 
						|
bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
 | 
						|
  // TODO check for conflicting real registers and aliases
 | 
						|
#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
 | 
						|
  return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
 | 
						|
#else
 | 
						|
  return A->Node->getOpcode() == ISD::EntryToken;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleBackward - Schedule instructions so that any long latency
 | 
						|
/// instructions and the critical path get pushed back in time. Time is run in
 | 
						|
/// reverse to allow code reuse of the Tally and eliminate the overhead of
 | 
						|
/// biasing every slot indices against NSlots.
 | 
						|
void ScheduleDAGSimple::ScheduleBackward() {
 | 
						|
  // Size and clear the resource tally
 | 
						|
  Tally.Initialize(NSlots);
 | 
						|
  // Get number of nodes to schedule
 | 
						|
  unsigned N = Ordering.size();
 | 
						|
  
 | 
						|
  // For each node being scheduled
 | 
						|
  for (unsigned i = N; 0 < i--;) {
 | 
						|
    NodeInfo *NI = Ordering[i];
 | 
						|
    // Track insertion
 | 
						|
    unsigned Slot = NotFound;
 | 
						|
    
 | 
						|
    // Compare against those previously scheduled nodes
 | 
						|
    unsigned j = i + 1;
 | 
						|
    for (; j < N; j++) {
 | 
						|
      // Get following instruction
 | 
						|
      NodeInfo *Other = Ordering[j];
 | 
						|
      
 | 
						|
      // Check dependency against previously inserted nodes
 | 
						|
      if (isStrongDependency(NI, Other)) {
 | 
						|
        Slot = Other->Slot + Other->Latency;
 | 
						|
        break;
 | 
						|
      } else if (isWeakDependency(NI, Other)) {
 | 
						|
        Slot = Other->Slot;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If independent of others (or first entry)
 | 
						|
    if (Slot == NotFound) Slot = 0;
 | 
						|
    
 | 
						|
#if 0 // FIXME - measure later
 | 
						|
    // Find a slot where the needed resources are available
 | 
						|
    if (NI->StageBegin != NI->StageEnd)
 | 
						|
      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
 | 
						|
#endif
 | 
						|
      
 | 
						|
    // Set node slot
 | 
						|
    NI->Slot = Slot;
 | 
						|
    
 | 
						|
    // Insert sort based on slot
 | 
						|
    j = i + 1;
 | 
						|
    for (; j < N; j++) {
 | 
						|
      // Get following instruction
 | 
						|
      NodeInfo *Other = Ordering[j];
 | 
						|
      // Should we look further (remember slots are in reverse time)
 | 
						|
      if (Slot >= Other->Slot) break;
 | 
						|
      // Shuffle other into ordering
 | 
						|
      Ordering[j - 1] = Other;
 | 
						|
    }
 | 
						|
    // Insert node in proper slot
 | 
						|
    if (j != i + 1) Ordering[j - 1] = NI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleForward - Schedule instructions to maximize packing.
 | 
						|
///
 | 
						|
void ScheduleDAGSimple::ScheduleForward() {
 | 
						|
  // Size and clear the resource tally
 | 
						|
  Tally.Initialize(NSlots);
 | 
						|
  // Get number of nodes to schedule
 | 
						|
  unsigned N = Ordering.size();
 | 
						|
  
 | 
						|
  // For each node being scheduled
 | 
						|
  for (unsigned i = 0; i < N; i++) {
 | 
						|
    NodeInfo *NI = Ordering[i];
 | 
						|
    // Track insertion
 | 
						|
    unsigned Slot = NotFound;
 | 
						|
    
 | 
						|
    // Compare against those previously scheduled nodes
 | 
						|
    unsigned j = i;
 | 
						|
    for (; 0 < j--;) {
 | 
						|
      // Get following instruction
 | 
						|
      NodeInfo *Other = Ordering[j];
 | 
						|
      
 | 
						|
      // Check dependency against previously inserted nodes
 | 
						|
      if (isStrongDependency(Other, NI)) {
 | 
						|
        Slot = Other->Slot + Other->Latency;
 | 
						|
        break;
 | 
						|
      } else if (Other->IsCall || isWeakDependency(Other, NI)) {
 | 
						|
        Slot = Other->Slot;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If independent of others (or first entry)
 | 
						|
    if (Slot == NotFound) Slot = 0;
 | 
						|
    
 | 
						|
    // Find a slot where the needed resources are available
 | 
						|
    if (NI->StageBegin != NI->StageEnd)
 | 
						|
      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
 | 
						|
      
 | 
						|
    // Set node slot
 | 
						|
    NI->Slot = Slot;
 | 
						|
    
 | 
						|
    // Insert sort based on slot
 | 
						|
    j = i;
 | 
						|
    for (; 0 < j--;) {
 | 
						|
      // Get prior instruction
 | 
						|
      NodeInfo *Other = Ordering[j];
 | 
						|
      // Should we look further
 | 
						|
      if (Slot >= Other->Slot) break;
 | 
						|
      // Shuffle other into ordering
 | 
						|
      Ordering[j + 1] = Other;
 | 
						|
    }
 | 
						|
    // Insert node in proper slot
 | 
						|
    if (j != i) Ordering[j + 1] = NI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Schedule - Order nodes according to selected style.
 | 
						|
///
 | 
						|
void ScheduleDAGSimple::Schedule() {
 | 
						|
  // Test to see if scheduling should occur
 | 
						|
  bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling;
 | 
						|
  // Don't waste time if is only entry and return
 | 
						|
  if (ShouldSchedule) {
 | 
						|
    // Get latency and resource requirements
 | 
						|
    GatherSchedulingInfo();
 | 
						|
  } else if (HasGroups) {
 | 
						|
    // Make sure all the groups have dominators
 | 
						|
    FakeGroupDominators();
 | 
						|
  }
 | 
						|
 | 
						|
  // Breadth first walk of DAG
 | 
						|
  VisitAll();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  static unsigned Count = 0;
 | 
						|
  Count++;
 | 
						|
  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
 | 
						|
    NodeInfo *NI = Ordering[i];
 | 
						|
    NI->Preorder = i;
 | 
						|
  }
 | 
						|
#endif  
 | 
						|
  
 | 
						|
  // Don't waste time if is only entry and return
 | 
						|
  if (ShouldSchedule) {
 | 
						|
    // Push back long instructions and critical path
 | 
						|
    ScheduleBackward();
 | 
						|
    
 | 
						|
    // Pack instructions to maximize resource utilization
 | 
						|
    ScheduleForward();
 | 
						|
  }
 | 
						|
  
 | 
						|
  DEBUG(printChanges(Count));
 | 
						|
  
 | 
						|
  // Emit in scheduled order
 | 
						|
  EmitAll();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createSimpleDAGScheduler - This creates a simple two pass instruction
 | 
						|
/// scheduler.
 | 
						|
llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic,
 | 
						|
                                                  SelectionDAG &DAG,
 | 
						|
                                                  MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGSimple(Heuristic, DAG, BB,  DAG.getTarget());
 | 
						|
}
 |