2511 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2511 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the SelectionDAGISel class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "isel"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/CodeGen/IntrinsicLowering.h"
 | 
						|
#include "llvm/CodeGen/MachineDebugInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetFrameInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <iostream>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool>
 | 
						|
ViewISelDAGs("view-isel-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show isel dags as they are selected"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show sched dags as they are processed"));
 | 
						|
#else
 | 
						|
static const bool ViewISelDAGs = 0;
 | 
						|
static const bool ViewSchedDAGs = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  cl::opt<SchedHeuristics>
 | 
						|
  ISHeuristic(
 | 
						|
    "sched",
 | 
						|
    cl::desc("Choose scheduling style"),
 | 
						|
    cl::init(defaultScheduling),
 | 
						|
    cl::values(
 | 
						|
      clEnumValN(defaultScheduling, "default",
 | 
						|
                 "Target preferred scheduling style"),
 | 
						|
      clEnumValN(noScheduling, "none",
 | 
						|
                 "No scheduling: breadth first sequencing"),
 | 
						|
      clEnumValN(simpleScheduling, "simple",
 | 
						|
                 "Simple two pass scheduling: minimize critical path "
 | 
						|
                 "and maximize processor utilization"),
 | 
						|
      clEnumValN(simpleNoItinScheduling, "simple-noitin",
 | 
						|
                 "Simple two pass scheduling: Same as simple "
 | 
						|
                 "except using generic latency"),
 | 
						|
      clEnumValN(listSchedulingBURR, "list-burr",
 | 
						|
                 "Bottom up register reduction list scheduling"),
 | 
						|
      clEnumValN(listSchedulingTD, "list-td",
 | 
						|
                 "Top-down list scheduler"),
 | 
						|
      clEnumValEnd));
 | 
						|
} // namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// RegsForValue - This struct represents the physical registers that a
 | 
						|
  /// particular value is assigned and the type information about the value.
 | 
						|
  /// This is needed because values can be promoted into larger registers and
 | 
						|
  /// expanded into multiple smaller registers than the value.
 | 
						|
  struct RegsForValue {
 | 
						|
    /// Regs - This list hold the register (for legal and promoted values)
 | 
						|
    /// or register set (for expanded values) that the value should be assigned
 | 
						|
    /// to.
 | 
						|
    std::vector<unsigned> Regs;
 | 
						|
    
 | 
						|
    /// RegVT - The value type of each register.
 | 
						|
    ///
 | 
						|
    MVT::ValueType RegVT;
 | 
						|
    
 | 
						|
    /// ValueVT - The value type of the LLVM value, which may be promoted from
 | 
						|
    /// RegVT or made from merging the two expanded parts.
 | 
						|
    MVT::ValueType ValueVT;
 | 
						|
    
 | 
						|
    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
 | 
						|
    
 | 
						|
    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
 | 
						|
      : RegVT(regvt), ValueVT(valuevt) {
 | 
						|
        Regs.push_back(Reg);
 | 
						|
    }
 | 
						|
    RegsForValue(const std::vector<unsigned> ®s, 
 | 
						|
                 MVT::ValueType regvt, MVT::ValueType valuevt)
 | 
						|
      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | 
						|
    /// this value and returns the result as a ValueVT value.  This uses 
 | 
						|
    /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
    SDOperand getCopyFromRegs(SelectionDAG &DAG,
 | 
						|
                              SDOperand &Chain, SDOperand &Flag) const;
 | 
						|
 | 
						|
    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | 
						|
    /// specified value into the registers specified by this object.  This uses 
 | 
						|
    /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | 
						|
                       SDOperand &Chain, SDOperand &Flag) const;
 | 
						|
    
 | 
						|
    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | 
						|
    /// operand list.  This adds the code marker and includes the number of 
 | 
						|
    /// values added into it.
 | 
						|
    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | 
						|
                              std::vector<SDOperand> &Ops) const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// FunctionLoweringInfo - This contains information that is global to a
 | 
						|
  /// function that is used when lowering a region of the function.
 | 
						|
  class FunctionLoweringInfo {
 | 
						|
  public:
 | 
						|
    TargetLowering &TLI;
 | 
						|
    Function &Fn;
 | 
						|
    MachineFunction &MF;
 | 
						|
    SSARegMap *RegMap;
 | 
						|
 | 
						|
    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
 | 
						|
 | 
						|
    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
 | 
						|
    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
 | 
						|
 | 
						|
    /// ValueMap - Since we emit code for the function a basic block at a time,
 | 
						|
    /// we must remember which virtual registers hold the values for
 | 
						|
    /// cross-basic-block values.
 | 
						|
    std::map<const Value*, unsigned> ValueMap;
 | 
						|
 | 
						|
    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
 | 
						|
    /// the entry block.  This allows the allocas to be efficiently referenced
 | 
						|
    /// anywhere in the function.
 | 
						|
    std::map<const AllocaInst*, int> StaticAllocaMap;
 | 
						|
 | 
						|
    unsigned MakeReg(MVT::ValueType VT) {
 | 
						|
      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned CreateRegForValue(const Value *V) {
 | 
						|
      MVT::ValueType VT = TLI.getValueType(V->getType());
 | 
						|
      // The common case is that we will only create one register for this
 | 
						|
      // value.  If we have that case, create and return the virtual register.
 | 
						|
      unsigned NV = TLI.getNumElements(VT);
 | 
						|
      if (NV == 1) {
 | 
						|
        // If we are promoting this value, pick the next largest supported type.
 | 
						|
        return MakeReg(TLI.getTypeToTransformTo(VT));
 | 
						|
      }
 | 
						|
 | 
						|
      // If this value is represented with multiple target registers, make sure
 | 
						|
      // to create enough consecutive registers of the right (smaller) type.
 | 
						|
      unsigned NT = VT-1;  // Find the type to use.
 | 
						|
      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
 | 
						|
        --NT;
 | 
						|
 | 
						|
      unsigned R = MakeReg((MVT::ValueType)NT);
 | 
						|
      for (unsigned i = 1; i != NV; ++i)
 | 
						|
        MakeReg((MVT::ValueType)NT);
 | 
						|
      return R;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned InitializeRegForValue(const Value *V) {
 | 
						|
      unsigned &R = ValueMap[V];
 | 
						|
      assert(R == 0 && "Already initialized this value register!");
 | 
						|
      return R = CreateRegForValue(V);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | 
						|
/// PHI nodes or outside of the basic block that defines it.
 | 
						|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | 
						|
  if (isa<PHINode>(I)) return true;
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | 
						|
/// entry block, return true.
 | 
						|
static bool isOnlyUsedInEntryBlock(Argument *A) {
 | 
						|
  BasicBlock *Entry = A->getParent()->begin();
 | 
						|
  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != Entry)
 | 
						|
      return false;  // Use not in entry block.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
 | 
						|
                                           Function &fn, MachineFunction &mf)
 | 
						|
    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
 | 
						|
 | 
						|
  // Create a vreg for each argument register that is not dead and is used
 | 
						|
  // outside of the entry block for the function.
 | 
						|
  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
 | 
						|
       AI != E; ++AI)
 | 
						|
    if (!isOnlyUsedInEntryBlock(AI))
 | 
						|
      InitializeRegForValue(AI);
 | 
						|
 | 
						|
  // Initialize the mapping of values to registers.  This is only set up for
 | 
						|
  // instruction values that are used outside of the block that defines
 | 
						|
  // them.
 | 
						|
  Function::iterator BB = Fn.begin(), EB = Fn.end();
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | 
						|
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
 | 
						|
        const Type *Ty = AI->getAllocatedType();
 | 
						|
        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | 
						|
        unsigned Align = 
 | 
						|
          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
 | 
						|
                   AI->getAlignment());
 | 
						|
 | 
						|
        // If the alignment of the value is smaller than the size of the value,
 | 
						|
        // and if the size of the value is particularly small (<= 8 bytes),
 | 
						|
        // round up to the size of the value for potentially better performance.
 | 
						|
        //
 | 
						|
        // FIXME: This could be made better with a preferred alignment hook in
 | 
						|
        // TargetData.  It serves primarily to 8-byte align doubles for X86.
 | 
						|
        if (Align < TySize && TySize <= 8) Align = TySize;
 | 
						|
        TySize *= CUI->getValue();   // Get total allocated size.
 | 
						|
        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | 
						|
        StaticAllocaMap[AI] =
 | 
						|
          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
 | 
						|
      }
 | 
						|
 | 
						|
  for (; BB != EB; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | 
						|
        if (!isa<AllocaInst>(I) ||
 | 
						|
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
          InitializeRegForValue(I);
 | 
						|
 | 
						|
  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | 
						|
  // also creates the initial PHI MachineInstrs, though none of the input
 | 
						|
  // operands are populated.
 | 
						|
  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
 | 
						|
    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
 | 
						|
    MBBMap[BB] = MBB;
 | 
						|
    MF.getBasicBlockList().push_back(MBB);
 | 
						|
 | 
						|
    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | 
						|
    // appropriate.
 | 
						|
    PHINode *PN;
 | 
						|
    for (BasicBlock::iterator I = BB->begin();
 | 
						|
         (PN = dyn_cast<PHINode>(I)); ++I)
 | 
						|
      if (!PN->use_empty()) {
 | 
						|
        unsigned NumElements =
 | 
						|
          TLI.getNumElements(TLI.getValueType(PN->getType()));
 | 
						|
        unsigned PHIReg = ValueMap[PN];
 | 
						|
        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
 | 
						|
        for (unsigned i = 0; i != NumElements; ++i)
 | 
						|
          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SelectionDAGLowering - This is the common target-independent lowering
 | 
						|
/// implementation that is parameterized by a TargetLowering object.
 | 
						|
/// Also, targets can overload any lowering method.
 | 
						|
///
 | 
						|
namespace llvm {
 | 
						|
class SelectionDAGLowering {
 | 
						|
  MachineBasicBlock *CurMBB;
 | 
						|
 | 
						|
  std::map<const Value*, SDOperand> NodeMap;
 | 
						|
 | 
						|
  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | 
						|
  /// them up and then emit token factor nodes when possible.  This allows us to
 | 
						|
  /// get simple disambiguation between loads without worrying about alias
 | 
						|
  /// analysis.
 | 
						|
  std::vector<SDOperand> PendingLoads;
 | 
						|
 | 
						|
public:
 | 
						|
  // TLI - This is information that describes the available target features we
 | 
						|
  // need for lowering.  This indicates when operations are unavailable,
 | 
						|
  // implemented with a libcall, etc.
 | 
						|
  TargetLowering &TLI;
 | 
						|
  SelectionDAG &DAG;
 | 
						|
  const TargetData &TD;
 | 
						|
 | 
						|
  /// FuncInfo - Information about the function as a whole.
 | 
						|
  ///
 | 
						|
  FunctionLoweringInfo &FuncInfo;
 | 
						|
 | 
						|
  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
 | 
						|
                       FunctionLoweringInfo &funcinfo)
 | 
						|
    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
 | 
						|
      FuncInfo(funcinfo) {
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRoot - Return the current virtual root of the Selection DAG.
 | 
						|
  ///
 | 
						|
  SDOperand getRoot() {
 | 
						|
    if (PendingLoads.empty())
 | 
						|
      return DAG.getRoot();
 | 
						|
 | 
						|
    if (PendingLoads.size() == 1) {
 | 
						|
      SDOperand Root = PendingLoads[0];
 | 
						|
      DAG.setRoot(Root);
 | 
						|
      PendingLoads.clear();
 | 
						|
      return Root;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have to make a token factor node.
 | 
						|
    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
 | 
						|
    PendingLoads.clear();
 | 
						|
    DAG.setRoot(Root);
 | 
						|
    return Root;
 | 
						|
  }
 | 
						|
 | 
						|
  void visit(Instruction &I) { visit(I.getOpcode(), I); }
 | 
						|
 | 
						|
  void visit(unsigned Opcode, User &I) {
 | 
						|
    switch (Opcode) {
 | 
						|
    default: assert(0 && "Unknown instruction type encountered!");
 | 
						|
             abort();
 | 
						|
      // Build the switch statement using the Instruction.def file.
 | 
						|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
 | 
						|
    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | 
						|
#include "llvm/Instruction.def"
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
 | 
						|
 | 
						|
 | 
						|
  SDOperand getIntPtrConstant(uint64_t Val) {
 | 
						|
    return DAG.getConstant(Val, TLI.getPointerTy());
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand getValue(const Value *V) {
 | 
						|
    SDOperand &N = NodeMap[V];
 | 
						|
    if (N.Val) return N;
 | 
						|
 | 
						|
    const Type *VTy = V->getType();
 | 
						|
    MVT::ValueType VT = TLI.getValueType(VTy);
 | 
						|
    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
 | 
						|
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
        visit(CE->getOpcode(), *CE);
 | 
						|
        assert(N.Val && "visit didn't populate the ValueMap!");
 | 
						|
        return N;
 | 
						|
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | 
						|
        return N = DAG.getGlobalAddress(GV, VT);
 | 
						|
      } else if (isa<ConstantPointerNull>(C)) {
 | 
						|
        return N = DAG.getConstant(0, TLI.getPointerTy());
 | 
						|
      } else if (isa<UndefValue>(C)) {
 | 
						|
        return N = DAG.getNode(ISD::UNDEF, VT);
 | 
						|
      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
        return N = DAG.getConstantFP(CFP->getValue(), VT);
 | 
						|
      } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
 | 
						|
        unsigned NumElements = PTy->getNumElements();
 | 
						|
        MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | 
						|
        MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
 | 
						|
        
 | 
						|
        // Now that we know the number and type of the elements, push a
 | 
						|
        // Constant or ConstantFP node onto the ops list for each element of
 | 
						|
        // the packed constant.
 | 
						|
        std::vector<SDOperand> Ops;
 | 
						|
        if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
 | 
						|
          if (MVT::isFloatingPoint(PVT)) {
 | 
						|
            for (unsigned i = 0; i != NumElements; ++i) {
 | 
						|
              const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
 | 
						|
              Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            for (unsigned i = 0; i != NumElements; ++i) {
 | 
						|
              const ConstantIntegral *El = 
 | 
						|
                cast<ConstantIntegral>(CP->getOperand(i));
 | 
						|
              Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
 | 
						|
          SDOperand Op;
 | 
						|
          if (MVT::isFloatingPoint(PVT))
 | 
						|
            Op = DAG.getConstantFP(0, PVT);
 | 
						|
          else
 | 
						|
            Op = DAG.getConstant(0, PVT);
 | 
						|
          Ops.assign(NumElements, Op);
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Handle the case where we have a 1-element vector, in which
 | 
						|
        // case we want to immediately turn it into a scalar constant.
 | 
						|
        if (Ops.size() == 1) {
 | 
						|
          return N = Ops[0];
 | 
						|
        } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
 | 
						|
          return N = DAG.getNode(ISD::ConstantVec, TVT, Ops);
 | 
						|
        } else {
 | 
						|
          // If the packed type isn't legal, then create a ConstantVec node with
 | 
						|
          // generic Vector type instead.
 | 
						|
          SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
 | 
						|
          SDOperand Typ = DAG.getValueType(PVT);
 | 
						|
          Ops.insert(Ops.begin(), Typ);
 | 
						|
          Ops.insert(Ops.begin(), Num);
 | 
						|
          return N = DAG.getNode(ISD::VConstant, MVT::Vector, Ops);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Canonicalize all constant ints to be unsigned.
 | 
						|
        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
 | 
						|
      }
 | 
						|
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
      std::map<const AllocaInst*, int>::iterator SI =
 | 
						|
        FuncInfo.StaticAllocaMap.find(AI);
 | 
						|
      if (SI != FuncInfo.StaticAllocaMap.end())
 | 
						|
        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | 
						|
    }
 | 
						|
 | 
						|
    std::map<const Value*, unsigned>::const_iterator VMI =
 | 
						|
      FuncInfo.ValueMap.find(V);
 | 
						|
    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
 | 
						|
 | 
						|
    unsigned InReg = VMI->second;
 | 
						|
   
 | 
						|
    // If this type is not legal, make it so now.
 | 
						|
    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
 | 
						|
    
 | 
						|
    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
 | 
						|
    if (DestVT < VT) {
 | 
						|
      // Source must be expanded.  This input value is actually coming from the
 | 
						|
      // register pair VMI->second and VMI->second+1.
 | 
						|
      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
 | 
						|
                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
 | 
						|
    } else {
 | 
						|
      if (DestVT > VT) { // Promotion case
 | 
						|
        if (MVT::isFloatingPoint(VT))
 | 
						|
          N = DAG.getNode(ISD::FP_ROUND, VT, N);
 | 
						|
        else
 | 
						|
          N = DAG.getNode(ISD::TRUNCATE, VT, N);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
 | 
						|
  const SDOperand &setValue(const Value *V, SDOperand NewN) {
 | 
						|
    SDOperand &N = NodeMap[V];
 | 
						|
    assert(N.Val == 0 && "Already set a value for this node!");
 | 
						|
    return N = NewN;
 | 
						|
  }
 | 
						|
  
 | 
						|
  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
 | 
						|
                                    MVT::ValueType VT,
 | 
						|
                                    bool OutReg, bool InReg,
 | 
						|
                                    std::set<unsigned> &OutputRegs, 
 | 
						|
                                    std::set<unsigned> &InputRegs);
 | 
						|
                                                
 | 
						|
  // Terminator instructions.
 | 
						|
  void visitRet(ReturnInst &I);
 | 
						|
  void visitBr(BranchInst &I);
 | 
						|
  void visitUnreachable(UnreachableInst &I) { /* noop */ }
 | 
						|
 | 
						|
  // These all get lowered before this pass.
 | 
						|
  void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
 | 
						|
  void visitInsertElement(InsertElementInst &I) { assert(0 && "TODO"); }
 | 
						|
  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
 | 
						|
  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
 | 
						|
  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
 | 
						|
 | 
						|
  //
 | 
						|
  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
 | 
						|
  void visitShift(User &I, unsigned Opcode);
 | 
						|
  void visitAdd(User &I) { 
 | 
						|
    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); 
 | 
						|
  }
 | 
						|
  void visitSub(User &I);
 | 
						|
  void visitMul(User &I) { 
 | 
						|
    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); 
 | 
						|
  }
 | 
						|
  void visitDiv(User &I) {
 | 
						|
    const Type *Ty = I.getType();
 | 
						|
    visitBinary(I,
 | 
						|
                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
 | 
						|
                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
 | 
						|
  }
 | 
						|
  void visitRem(User &I) {
 | 
						|
    const Type *Ty = I.getType();
 | 
						|
    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
 | 
						|
  }
 | 
						|
  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
 | 
						|
  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
 | 
						|
  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
 | 
						|
  void visitShl(User &I) { visitShift(I, ISD::SHL); }
 | 
						|
  void visitShr(User &I) { 
 | 
						|
    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
 | 
						|
  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
 | 
						|
  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
 | 
						|
  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
 | 
						|
  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
 | 
						|
  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
 | 
						|
  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
 | 
						|
 | 
						|
  void visitGetElementPtr(User &I);
 | 
						|
  void visitCast(User &I);
 | 
						|
  void visitSelect(User &I);
 | 
						|
  //
 | 
						|
 | 
						|
  void visitMalloc(MallocInst &I);
 | 
						|
  void visitFree(FreeInst &I);
 | 
						|
  void visitAlloca(AllocaInst &I);
 | 
						|
  void visitLoad(LoadInst &I);
 | 
						|
  void visitStore(StoreInst &I);
 | 
						|
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
 | 
						|
  void visitCall(CallInst &I);
 | 
						|
  void visitInlineAsm(CallInst &I);
 | 
						|
  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
 | 
						|
 | 
						|
  void visitVAStart(CallInst &I);
 | 
						|
  void visitVAArg(VAArgInst &I);
 | 
						|
  void visitVAEnd(CallInst &I);
 | 
						|
  void visitVACopy(CallInst &I);
 | 
						|
  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
 | 
						|
 | 
						|
  void visitMemIntrinsic(CallInst &I, unsigned Op);
 | 
						|
 | 
						|
  void visitUserOp1(Instruction &I) {
 | 
						|
    assert(0 && "UserOp1 should not exist at instruction selection time!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  void visitUserOp2(Instruction &I) {
 | 
						|
    assert(0 && "UserOp2 should not exist at instruction selection time!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | 
						|
  if (I.getNumOperands() == 0) {
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  std::vector<SDOperand> NewValues;
 | 
						|
  NewValues.push_back(getRoot());
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    SDOperand RetOp = getValue(I.getOperand(i));
 | 
						|
    
 | 
						|
    // If this is an integer return value, we need to promote it ourselves to
 | 
						|
    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
 | 
						|
    // than sign/zero.
 | 
						|
    if (MVT::isInteger(RetOp.getValueType()) && 
 | 
						|
        RetOp.getValueType() < MVT::i64) {
 | 
						|
      MVT::ValueType TmpVT;
 | 
						|
      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
 | 
						|
        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
 | 
						|
      else
 | 
						|
        TmpVT = MVT::i32;
 | 
						|
 | 
						|
      if (I.getOperand(i)->getType()->isSigned())
 | 
						|
        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
 | 
						|
      else
 | 
						|
        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
 | 
						|
    }
 | 
						|
    NewValues.push_back(RetOp);
 | 
						|
  }
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBr(BranchInst &I) {
 | 
						|
  // Update machine-CFG edges.
 | 
						|
  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  if (I.isUnconditional()) {
 | 
						|
    // If this is not a fall-through branch, emit the branch.
 | 
						|
    if (Succ0MBB != NextBlock)
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | 
						|
                              DAG.getBasicBlock(Succ0MBB)));
 | 
						|
  } else {
 | 
						|
    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | 
						|
 | 
						|
    SDOperand Cond = getValue(I.getCondition());
 | 
						|
    if (Succ1MBB == NextBlock) {
 | 
						|
      // If the condition is false, fall through.  This means we should branch
 | 
						|
      // if the condition is true to Succ #0.
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | 
						|
                              Cond, DAG.getBasicBlock(Succ0MBB)));
 | 
						|
    } else if (Succ0MBB == NextBlock) {
 | 
						|
      // If the condition is true, fall through.  This means we should branch if
 | 
						|
      // the condition is false to Succ #1.  Invert the condition first.
 | 
						|
      SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | 
						|
      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | 
						|
                              Cond, DAG.getBasicBlock(Succ1MBB)));
 | 
						|
    } else {
 | 
						|
      std::vector<SDOperand> Ops;
 | 
						|
      Ops.push_back(getRoot());
 | 
						|
      // If the false case is the current basic block, then this is a self
 | 
						|
      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
 | 
						|
      // adds an extra instruction in the loop.  Instead, invert the
 | 
						|
      // condition and emit "Loop: ... br!cond Loop; br Out. 
 | 
						|
      if (CurMBB == Succ1MBB) {
 | 
						|
        std::swap(Succ0MBB, Succ1MBB);
 | 
						|
        SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | 
						|
        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | 
						|
      }
 | 
						|
      Ops.push_back(Cond);
 | 
						|
      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
 | 
						|
      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSub(User &I) {
 | 
						|
  // -0.0 - X --> fneg
 | 
						|
  if (I.getType()->isFloatingPoint()) {
 | 
						|
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
 | 
						|
      if (CFP->isExactlyValue(-0.0)) {
 | 
						|
        SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, 
 | 
						|
                                       unsigned VecOp) {
 | 
						|
  const Type *Ty = I.getType();
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
 | 
						|
  if (Ty->isIntegral()) {
 | 
						|
    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
 | 
						|
  } else if (Ty->isFloatingPoint()) {
 | 
						|
    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
 | 
						|
  } else {
 | 
						|
    const PackedType *PTy = cast<PackedType>(Ty);
 | 
						|
    unsigned NumElements = PTy->getNumElements();
 | 
						|
    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | 
						|
    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
 | 
						|
    
 | 
						|
    // Immediately scalarize packed types containing only one element, so that
 | 
						|
    // the Legalize pass does not have to deal with them.  Similarly, if the
 | 
						|
    // abstract vector is going to turn into one that the target natively
 | 
						|
    // supports, generate that type now so that Legalize doesn't have to deal
 | 
						|
    // with that either.  These steps ensure that Legalize only has to handle
 | 
						|
    // vector types in its Expand case.
 | 
						|
    unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp;
 | 
						|
    if (NumElements == 1) {
 | 
						|
      setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2));
 | 
						|
    } else if (TVT != MVT::Other &&
 | 
						|
               TLI.isTypeLegal(TVT) && TLI.isOperationLegal(Opc, TVT)) {
 | 
						|
      setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2));
 | 
						|
    } else {
 | 
						|
      SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
 | 
						|
      SDOperand Typ = DAG.getValueType(PVT);
 | 
						|
      setValue(&I, DAG.getNode(VecOp, MVT::Vector, Num, Typ, Op1, Op2));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  
 | 
						|
  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
 | 
						|
  
 | 
						|
  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
 | 
						|
                                      ISD::CondCode UnsignedOpcode) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  ISD::CondCode Opcode = SignedOpcode;
 | 
						|
  if (I.getOperand(0)->getType()->isUnsigned())
 | 
						|
    Opcode = UnsignedOpcode;
 | 
						|
  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSelect(User &I) {
 | 
						|
  SDOperand Cond     = getValue(I.getOperand(0));
 | 
						|
  SDOperand TrueVal  = getValue(I.getOperand(1));
 | 
						|
  SDOperand FalseVal = getValue(I.getOperand(2));
 | 
						|
  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
 | 
						|
                           TrueVal, FalseVal));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitCast(User &I) {
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
 | 
						|
  MVT::ValueType DestTy = TLI.getValueType(I.getType());
 | 
						|
 | 
						|
  if (N.getValueType() == DestTy) {
 | 
						|
    setValue(&I, N);  // noop cast.
 | 
						|
  } else if (DestTy == MVT::i1) {
 | 
						|
    // Cast to bool is a comparison against zero, not truncation to zero.
 | 
						|
    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
 | 
						|
                                       DAG.getConstantFP(0.0, N.getValueType());
 | 
						|
    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
 | 
						|
  } else if (isInteger(SrcTy)) {
 | 
						|
    if (isInteger(DestTy)) {        // Int -> Int cast
 | 
						|
      if (DestTy < SrcTy)   // Truncating cast?
 | 
						|
        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
 | 
						|
      else if (I.getOperand(0)->getType()->isSigned())
 | 
						|
        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
 | 
						|
    } else {                        // Int -> FP cast
 | 
						|
      if (I.getOperand(0)->getType()->isSigned())
 | 
						|
        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
 | 
						|
    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
 | 
						|
      if (DestTy < SrcTy)   // Rounding cast?
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
 | 
						|
    } else {                        // FP -> Int cast.
 | 
						|
      if (I.getType()->isSigned())
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  const Type *Ty = I.getOperand(0)->getType();
 | 
						|
  const Type *UIntPtrTy = TD.getIntPtrType();
 | 
						|
 | 
						|
  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | 
						|
       OI != E; ++OI) {
 | 
						|
    Value *Idx = *OI;
 | 
						|
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | 
						|
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | 
						|
      if (Field) {
 | 
						|
        // N = N + Offset
 | 
						|
        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | 
						|
                        getIntPtrConstant(Offset));
 | 
						|
      }
 | 
						|
      Ty = StTy->getElementType(Field);
 | 
						|
    } else {
 | 
						|
      Ty = cast<SequentialType>(Ty)->getElementType();
 | 
						|
 | 
						|
      // If this is a constant subscript, handle it quickly.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | 
						|
        if (CI->getRawValue() == 0) continue;
 | 
						|
 | 
						|
        uint64_t Offs;
 | 
						|
        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
 | 
						|
          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
 | 
						|
        else
 | 
						|
          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // N = N + Idx * ElementSize;
 | 
						|
      uint64_t ElementSize = TD.getTypeSize(Ty);
 | 
						|
      SDOperand IdxN = getValue(Idx);
 | 
						|
 | 
						|
      // If the index is smaller or larger than intptr_t, truncate or extend
 | 
						|
      // it.
 | 
						|
      if (IdxN.getValueType() < N.getValueType()) {
 | 
						|
        if (Idx->getType()->isSigned())
 | 
						|
          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
 | 
						|
        else
 | 
						|
          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
 | 
						|
      } else if (IdxN.getValueType() > N.getValueType())
 | 
						|
        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
 | 
						|
 | 
						|
      // If this is a multiply by a power of two, turn it into a shl
 | 
						|
      // immediately.  This is a very common case.
 | 
						|
      if (isPowerOf2_64(ElementSize)) {
 | 
						|
        unsigned Amt = Log2_64(ElementSize);
 | 
						|
        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
 | 
						|
                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      SDOperand Scale = getIntPtrConstant(ElementSize);
 | 
						|
      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
 | 
						|
      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  setValue(&I, N);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | 
						|
  // If this is a fixed sized alloca in the entry block of the function,
 | 
						|
  // allocate it statically on the stack.
 | 
						|
  if (FuncInfo.StaticAllocaMap.count(&I))
 | 
						|
    return;   // getValue will auto-populate this.
 | 
						|
 | 
						|
  const Type *Ty = I.getAllocatedType();
 | 
						|
  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | 
						|
  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
 | 
						|
                            I.getAlignment());
 | 
						|
 | 
						|
  SDOperand AllocSize = getValue(I.getArraySize());
 | 
						|
  MVT::ValueType IntPtr = TLI.getPointerTy();
 | 
						|
  if (IntPtr < AllocSize.getValueType())
 | 
						|
    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
 | 
						|
  else if (IntPtr > AllocSize.getValueType())
 | 
						|
    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
 | 
						|
 | 
						|
  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
 | 
						|
                          getIntPtrConstant(TySize));
 | 
						|
 | 
						|
  // Handle alignment.  If the requested alignment is less than or equal to the
 | 
						|
  // stack alignment, ignore it and round the size of the allocation up to the
 | 
						|
  // stack alignment size.  If the size is greater than the stack alignment, we
 | 
						|
  // note this in the DYNAMIC_STACKALLOC node.
 | 
						|
  unsigned StackAlign =
 | 
						|
    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | 
						|
  if (Align <= StackAlign) {
 | 
						|
    Align = 0;
 | 
						|
    // Add SA-1 to the size.
 | 
						|
    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
 | 
						|
                            getIntPtrConstant(StackAlign-1));
 | 
						|
    // Mask out the low bits for alignment purposes.
 | 
						|
    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
 | 
						|
                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<MVT::ValueType> VTs;
 | 
						|
  VTs.push_back(AllocSize.getValueType());
 | 
						|
  VTs.push_back(MVT::Other);
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  Ops.push_back(getRoot());
 | 
						|
  Ops.push_back(AllocSize);
 | 
						|
  Ops.push_back(getIntPtrConstant(Align));
 | 
						|
  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
 | 
						|
  DAG.setRoot(setValue(&I, DSA).getValue(1));
 | 
						|
 | 
						|
  // Inform the Frame Information that we have just allocated a variable-sized
 | 
						|
  // object.
 | 
						|
  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | 
						|
  SDOperand Ptr = getValue(I.getOperand(0));
 | 
						|
 | 
						|
  SDOperand Root;
 | 
						|
  if (I.isVolatile())
 | 
						|
    Root = getRoot();
 | 
						|
  else {
 | 
						|
    // Do not serialize non-volatile loads against each other.
 | 
						|
    Root = DAG.getRoot();
 | 
						|
  }
 | 
						|
  
 | 
						|
  const Type *Ty = I.getType();
 | 
						|
  SDOperand L;
 | 
						|
  
 | 
						|
  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
 | 
						|
    unsigned NumElements = PTy->getNumElements();
 | 
						|
    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | 
						|
    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
 | 
						|
    
 | 
						|
    // Immediately scalarize packed types containing only one element, so that
 | 
						|
    // the Legalize pass does not have to deal with them.
 | 
						|
    if (NumElements == 1) {
 | 
						|
      L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
 | 
						|
    } else if (TVT != MVT::Other &&
 | 
						|
               TLI.isTypeLegal(TVT) && TLI.isOperationLegal(ISD::LOAD, TVT)) {
 | 
						|
      L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
 | 
						|
    } else {
 | 
						|
      L = DAG.getVecLoad(NumElements, PVT, Root, Ptr, 
 | 
						|
                         DAG.getSrcValue(I.getOperand(0)));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, 
 | 
						|
                    DAG.getSrcValue(I.getOperand(0)));
 | 
						|
  }
 | 
						|
  setValue(&I, L);
 | 
						|
 | 
						|
  if (I.isVolatile())
 | 
						|
    DAG.setRoot(L.getValue(1));
 | 
						|
  else
 | 
						|
    PendingLoads.push_back(L.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitStore(StoreInst &I) {
 | 
						|
  Value *SrcV = I.getOperand(0);
 | 
						|
  SDOperand Src = getValue(SrcV);
 | 
						|
  SDOperand Ptr = getValue(I.getOperand(1));
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
 | 
						|
                          DAG.getSrcValue(I.getOperand(1))));
 | 
						|
}
 | 
						|
 | 
						|
/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | 
						|
/// we want to emit this as a call to a named external function, return the name
 | 
						|
/// otherwise lower it and return null.
 | 
						|
const char *
 | 
						|
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
 | 
						|
  switch (Intrinsic) {
 | 
						|
  case Intrinsic::vastart:  visitVAStart(I); return 0;
 | 
						|
  case Intrinsic::vaend:    visitVAEnd(I); return 0;
 | 
						|
  case Intrinsic::vacopy:   visitVACopy(I); return 0;
 | 
						|
  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
 | 
						|
  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
 | 
						|
  case Intrinsic::setjmp:
 | 
						|
    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
 | 
						|
    break;
 | 
						|
  case Intrinsic::longjmp:
 | 
						|
    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
 | 
						|
    break;
 | 
						|
  case Intrinsic::memcpy_i32:
 | 
						|
  case Intrinsic::memcpy_i64:
 | 
						|
    visitMemIntrinsic(I, ISD::MEMCPY);
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::memset_i32:
 | 
						|
  case Intrinsic::memset_i64:
 | 
						|
    visitMemIntrinsic(I, ISD::MEMSET);
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::memmove_i32:
 | 
						|
  case Intrinsic::memmove_i64:
 | 
						|
    visitMemIntrinsic(I, ISD::MEMMOVE);
 | 
						|
    return 0;
 | 
						|
    
 | 
						|
  case Intrinsic::dbg_stoppoint: {
 | 
						|
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | 
						|
      return "llvm_debugger_stop";
 | 
						|
    
 | 
						|
    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
 | 
						|
    if (DebugInfo &&  DebugInfo->Verify(I.getOperand(4))) {
 | 
						|
      std::vector<SDOperand> Ops;
 | 
						|
 | 
						|
      // Input Chain
 | 
						|
      Ops.push_back(getRoot());
 | 
						|
      
 | 
						|
      // line number
 | 
						|
      Ops.push_back(getValue(I.getOperand(2)));
 | 
						|
     
 | 
						|
      // column
 | 
						|
      Ops.push_back(getValue(I.getOperand(3)));
 | 
						|
 | 
						|
      DebugInfoDesc *DD = DebugInfo->getDescFor(I.getOperand(4));
 | 
						|
      assert(DD && "Not a debug information descriptor");
 | 
						|
      CompileUnitDesc *CompileUnit = dyn_cast<CompileUnitDesc>(DD);
 | 
						|
      assert(CompileUnit && "Not a compile unit");
 | 
						|
      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
 | 
						|
      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
 | 
						|
      
 | 
						|
      if (Ops.size() == 5)  // Found filename/workingdir.
 | 
						|
        DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
 | 
						|
    }
 | 
						|
    
 | 
						|
    setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_region_start:
 | 
						|
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | 
						|
      return "llvm_dbg_region_start";
 | 
						|
    if (I.getType() != Type::VoidTy)
 | 
						|
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::dbg_region_end:
 | 
						|
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | 
						|
      return "llvm_dbg_region_end";
 | 
						|
    if (I.getType() != Type::VoidTy)
 | 
						|
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::dbg_func_start:
 | 
						|
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
 | 
						|
      return "llvm_dbg_subprogram";
 | 
						|
    if (I.getType() != Type::VoidTy)
 | 
						|
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::dbg_declare:
 | 
						|
    if (I.getType() != Type::VoidTy)
 | 
						|
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
 | 
						|
    return 0;
 | 
						|
    
 | 
						|
  case Intrinsic::isunordered_f32:
 | 
						|
  case Intrinsic::isunordered_f64:
 | 
						|
    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
 | 
						|
                              getValue(I.getOperand(2)), ISD::SETUO));
 | 
						|
    return 0;
 | 
						|
    
 | 
						|
  case Intrinsic::sqrt_f32:
 | 
						|
  case Intrinsic::sqrt_f64:
 | 
						|
    setValue(&I, DAG.getNode(ISD::FSQRT,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::pcmarker: {
 | 
						|
    SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::readcyclecounter: {
 | 
						|
    std::vector<MVT::ValueType> VTs;
 | 
						|
    VTs.push_back(MVT::i64);
 | 
						|
    VTs.push_back(MVT::Other);
 | 
						|
    std::vector<SDOperand> Ops;
 | 
						|
    Ops.push_back(getRoot());
 | 
						|
    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
 | 
						|
    setValue(&I, Tmp);
 | 
						|
    DAG.setRoot(Tmp.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::bswap_i16:
 | 
						|
  case Intrinsic::bswap_i32:
 | 
						|
  case Intrinsic::bswap_i64:
 | 
						|
    setValue(&I, DAG.getNode(ISD::BSWAP,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::cttz_i8:
 | 
						|
  case Intrinsic::cttz_i16:
 | 
						|
  case Intrinsic::cttz_i32:
 | 
						|
  case Intrinsic::cttz_i64:
 | 
						|
    setValue(&I, DAG.getNode(ISD::CTTZ,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::ctlz_i8:
 | 
						|
  case Intrinsic::ctlz_i16:
 | 
						|
  case Intrinsic::ctlz_i32:
 | 
						|
  case Intrinsic::ctlz_i64:
 | 
						|
    setValue(&I, DAG.getNode(ISD::CTLZ,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::ctpop_i8:
 | 
						|
  case Intrinsic::ctpop_i16:
 | 
						|
  case Intrinsic::ctpop_i32:
 | 
						|
  case Intrinsic::ctpop_i64:
 | 
						|
    setValue(&I, DAG.getNode(ISD::CTPOP,
 | 
						|
                             getValue(I.getOperand(1)).getValueType(),
 | 
						|
                             getValue(I.getOperand(1))));
 | 
						|
    return 0;
 | 
						|
  case Intrinsic::stacksave: {
 | 
						|
    std::vector<MVT::ValueType> VTs;
 | 
						|
    VTs.push_back(TLI.getPointerTy());
 | 
						|
    VTs.push_back(MVT::Other);
 | 
						|
    std::vector<SDOperand> Ops;
 | 
						|
    Ops.push_back(getRoot());
 | 
						|
    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
 | 
						|
    setValue(&I, Tmp);
 | 
						|
    DAG.setRoot(Tmp.getValue(1));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::stackrestore: {
 | 
						|
    SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Intrinsic::prefetch:
 | 
						|
    // FIXME: Currently discarding prefetches.
 | 
						|
    return 0;
 | 
						|
  default:
 | 
						|
    std::cerr << I;
 | 
						|
    assert(0 && "This intrinsic is not implemented yet!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitCall(CallInst &I) {
 | 
						|
  const char *RenameFn = 0;
 | 
						|
  if (Function *F = I.getCalledFunction()) {
 | 
						|
    if (F->isExternal())
 | 
						|
      if (unsigned IID = F->getIntrinsicID()) {
 | 
						|
        RenameFn = visitIntrinsicCall(I, IID);
 | 
						|
        if (!RenameFn)
 | 
						|
          return;
 | 
						|
      } else {    // Not an LLVM intrinsic.
 | 
						|
        const std::string &Name = F->getName();
 | 
						|
        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
 | 
						|
          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
 | 
						|
              I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
              I.getType() == I.getOperand(1)->getType() &&
 | 
						|
              I.getType() == I.getOperand(2)->getType()) {
 | 
						|
            SDOperand LHS = getValue(I.getOperand(1));
 | 
						|
            SDOperand RHS = getValue(I.getOperand(2));
 | 
						|
            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
 | 
						|
                                     LHS, RHS));
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
 | 
						|
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | 
						|
              I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
              I.getType() == I.getOperand(1)->getType()) {
 | 
						|
            SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
 | 
						|
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | 
						|
              I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
              I.getType() == I.getOperand(1)->getType()) {
 | 
						|
            SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
 | 
						|
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | 
						|
              I.getOperand(1)->getType()->isFloatingPoint() &&
 | 
						|
              I.getType() == I.getOperand(1)->getType()) {
 | 
						|
            SDOperand Tmp = getValue(I.getOperand(1));
 | 
						|
            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
  } else if (isa<InlineAsm>(I.getOperand(0))) {
 | 
						|
    visitInlineAsm(I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand Callee;
 | 
						|
  if (!RenameFn)
 | 
						|
    Callee = getValue(I.getOperand(0));
 | 
						|
  else
 | 
						|
    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | 
						|
  std::vector<std::pair<SDOperand, const Type*> > Args;
 | 
						|
  Args.reserve(I.getNumOperands());
 | 
						|
  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    Value *Arg = I.getOperand(i);
 | 
						|
    SDOperand ArgNode = getValue(Arg);
 | 
						|
    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | 
						|
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
 | 
						|
                    I.isTailCall(), Callee, Args, DAG);
 | 
						|
  if (I.getType() != Type::VoidTy)
 | 
						|
    setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
 | 
						|
                                        SDOperand &Chain, SDOperand &Flag)const{
 | 
						|
  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
 | 
						|
  Chain = Val.getValue(1);
 | 
						|
  Flag  = Val.getValue(2);
 | 
						|
  
 | 
						|
  // If the result was expanded, copy from the top part.
 | 
						|
  if (Regs.size() > 1) {
 | 
						|
    assert(Regs.size() == 2 &&
 | 
						|
           "Cannot expand to more than 2 elts yet!");
 | 
						|
    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
 | 
						|
    Chain = Val.getValue(1);
 | 
						|
    Flag  = Val.getValue(2);
 | 
						|
    if (DAG.getTargetLoweringInfo().isLittleEndian())
 | 
						|
      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
 | 
						|
    else
 | 
						|
      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if the return value was promoted, truncate it to the
 | 
						|
  // appropriate type.
 | 
						|
  if (RegVT == ValueVT)
 | 
						|
    return Val;
 | 
						|
  
 | 
						|
  if (MVT::isInteger(RegVT))
 | 
						|
    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
 | 
						|
  else
 | 
						|
    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
 | 
						|
}
 | 
						|
 | 
						|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | 
						|
/// specified value into the registers specified by this object.  This uses 
 | 
						|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
 | 
						|
void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | 
						|
                                 SDOperand &Chain, SDOperand &Flag) const {
 | 
						|
  if (Regs.size() == 1) {
 | 
						|
    // If there is a single register and the types differ, this must be
 | 
						|
    // a promotion.
 | 
						|
    if (RegVT != ValueVT) {
 | 
						|
      if (MVT::isInteger(RegVT))
 | 
						|
        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
 | 
						|
      else
 | 
						|
        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
 | 
						|
    }
 | 
						|
    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
  } else {
 | 
						|
    std::vector<unsigned> R(Regs);
 | 
						|
    if (!DAG.getTargetLoweringInfo().isLittleEndian())
 | 
						|
      std::reverse(R.begin(), R.end());
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = R.size(); i != e; ++i) {
 | 
						|
      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val, 
 | 
						|
                                   DAG.getConstant(i, MVT::i32));
 | 
						|
      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
 | 
						|
      Flag = Chain.getValue(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | 
						|
/// operand list.  This adds the code marker and includes the number of 
 | 
						|
/// values added into it.
 | 
						|
void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | 
						|
                                        std::vector<SDOperand> &Ops) const {
 | 
						|
  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
 | 
						|
  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
 | 
						|
    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
 | 
						|
}
 | 
						|
 | 
						|
/// isAllocatableRegister - If the specified register is safe to allocate, 
 | 
						|
/// i.e. it isn't a stack pointer or some other special register, return the
 | 
						|
/// register class for the register.  Otherwise, return null.
 | 
						|
static const TargetRegisterClass *
 | 
						|
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
 | 
						|
                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
 | 
						|
  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
 | 
						|
       E = MRI->regclass_end(); RCI != E; ++RCI) {
 | 
						|
    const TargetRegisterClass *RC = *RCI;
 | 
						|
    // If none of the the value types for this register class are valid, we 
 | 
						|
    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | 
						|
    bool isLegal = false;
 | 
						|
    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (TLI.isTypeLegal(*I)) {
 | 
						|
        isLegal = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!isLegal) continue;
 | 
						|
    
 | 
						|
    // NOTE: This isn't ideal.  In particular, this might allocate the
 | 
						|
    // frame pointer in functions that need it (due to them not being taken
 | 
						|
    // out of allocation, because a variable sized allocation hasn't been seen
 | 
						|
    // yet).  This is a slight code pessimization, but should still work.
 | 
						|
    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
 | 
						|
         E = RC->allocation_order_end(MF); I != E; ++I)
 | 
						|
      if (*I == Reg)
 | 
						|
        return RC;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}    
 | 
						|
 | 
						|
RegsForValue SelectionDAGLowering::
 | 
						|
GetRegistersForValue(const std::string &ConstrCode,
 | 
						|
                     MVT::ValueType VT, bool isOutReg, bool isInReg,
 | 
						|
                     std::set<unsigned> &OutputRegs, 
 | 
						|
                     std::set<unsigned> &InputRegs) {
 | 
						|
  std::pair<unsigned, const TargetRegisterClass*> PhysReg = 
 | 
						|
    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
 | 
						|
  std::vector<unsigned> Regs;
 | 
						|
 | 
						|
  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
 | 
						|
  MVT::ValueType RegVT;
 | 
						|
  MVT::ValueType ValueVT = VT;
 | 
						|
  
 | 
						|
  if (PhysReg.first) {
 | 
						|
    if (VT == MVT::Other)
 | 
						|
      ValueVT = *PhysReg.second->vt_begin();
 | 
						|
    RegVT = VT;
 | 
						|
    
 | 
						|
    // This is a explicit reference to a physical register.
 | 
						|
    Regs.push_back(PhysReg.first);
 | 
						|
 | 
						|
    // If this is an expanded reference, add the rest of the regs to Regs.
 | 
						|
    if (NumRegs != 1) {
 | 
						|
      RegVT = *PhysReg.second->vt_begin();
 | 
						|
      TargetRegisterClass::iterator I = PhysReg.second->begin();
 | 
						|
      TargetRegisterClass::iterator E = PhysReg.second->end();
 | 
						|
      for (; *I != PhysReg.first; ++I)
 | 
						|
        assert(I != E && "Didn't find reg!"); 
 | 
						|
      
 | 
						|
      // Already added the first reg.
 | 
						|
      --NumRegs; ++I;
 | 
						|
      for (; NumRegs; --NumRegs, ++I) {
 | 
						|
        assert(I != E && "Ran out of registers to allocate!");
 | 
						|
        Regs.push_back(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return RegsForValue(Regs, RegVT, ValueVT);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // This is a reference to a register class.  Allocate NumRegs consecutive,
 | 
						|
  // available, registers from the class.
 | 
						|
  std::vector<unsigned> RegClassRegs =
 | 
						|
    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
 | 
						|
 | 
						|
  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
 | 
						|
  MachineFunction &MF = *CurMBB->getParent();
 | 
						|
  unsigned NumAllocated = 0;
 | 
						|
  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = RegClassRegs[i];
 | 
						|
    // See if this register is available.
 | 
						|
    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
 | 
						|
        (isInReg  && InputRegs.count(Reg))) {    // Already used.
 | 
						|
      // Make sure we find consecutive registers.
 | 
						|
      NumAllocated = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check to see if this register is allocatable (i.e. don't give out the
 | 
						|
    // stack pointer).
 | 
						|
    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
 | 
						|
    if (!RC) {
 | 
						|
      // Make sure we find consecutive registers.
 | 
						|
      NumAllocated = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, this register is good, we can use it.
 | 
						|
    ++NumAllocated;
 | 
						|
 | 
						|
    // If we allocated enough consecutive   
 | 
						|
    if (NumAllocated == NumRegs) {
 | 
						|
      unsigned RegStart = (i-NumAllocated)+1;
 | 
						|
      unsigned RegEnd   = i+1;
 | 
						|
      // Mark all of the allocated registers used.
 | 
						|
      for (unsigned i = RegStart; i != RegEnd; ++i) {
 | 
						|
        unsigned Reg = RegClassRegs[i];
 | 
						|
        Regs.push_back(Reg);
 | 
						|
        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
 | 
						|
        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
 | 
						|
      }
 | 
						|
      
 | 
						|
      return RegsForValue(Regs, *RC->vt_begin(), VT);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we couldn't allocate enough registers for this.
 | 
						|
  return RegsForValue();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitInlineAsm - Handle a call to an InlineAsm object.
 | 
						|
///
 | 
						|
void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
 | 
						|
  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
 | 
						|
  
 | 
						|
  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
 | 
						|
                                                 MVT::Other);
 | 
						|
 | 
						|
  // Note, we treat inline asms both with and without side-effects as the same.
 | 
						|
  // If an inline asm doesn't have side effects and doesn't access memory, we
 | 
						|
  // could not choose to not chain it.
 | 
						|
  bool hasSideEffects = IA->hasSideEffects();
 | 
						|
 | 
						|
  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
 | 
						|
  std::vector<MVT::ValueType> ConstraintVTs;
 | 
						|
  
 | 
						|
  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
 | 
						|
  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
 | 
						|
  /// if it is a def of that register.
 | 
						|
  std::vector<SDOperand> AsmNodeOperands;
 | 
						|
  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
 | 
						|
  AsmNodeOperands.push_back(AsmStr);
 | 
						|
  
 | 
						|
  SDOperand Chain = getRoot();
 | 
						|
  SDOperand Flag;
 | 
						|
  
 | 
						|
  // We fully assign registers here at isel time.  This is not optimal, but
 | 
						|
  // should work.  For register classes that correspond to LLVM classes, we
 | 
						|
  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
 | 
						|
  // over the constraints, collecting fixed registers that we know we can't use.
 | 
						|
  std::set<unsigned> OutputRegs, InputRegs;
 | 
						|
  unsigned OpNum = 1;
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
 | 
						|
    std::string &ConstraintCode = Constraints[i].Codes[0];
 | 
						|
    
 | 
						|
    MVT::ValueType OpVT;
 | 
						|
 | 
						|
    // Compute the value type for each operand and add it to ConstraintVTs.
 | 
						|
    switch (Constraints[i].Type) {
 | 
						|
    case InlineAsm::isOutput:
 | 
						|
      if (!Constraints[i].isIndirectOutput) {
 | 
						|
        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
 | 
						|
        OpVT = TLI.getValueType(I.getType());
 | 
						|
      } else {
 | 
						|
        const Type *OpTy = I.getOperand(OpNum)->getType();
 | 
						|
        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
 | 
						|
        OpNum++;  // Consumes a call operand.
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case InlineAsm::isInput:
 | 
						|
      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
 | 
						|
      OpNum++;  // Consumes a call operand.
 | 
						|
      break;
 | 
						|
    case InlineAsm::isClobber:
 | 
						|
      OpVT = MVT::Other;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    ConstraintVTs.push_back(OpVT);
 | 
						|
 | 
						|
    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
 | 
						|
      continue;  // Not assigned a fixed reg.
 | 
						|
    
 | 
						|
    // Build a list of regs that this operand uses.  This always has a single
 | 
						|
    // element for promoted/expanded operands.
 | 
						|
    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
 | 
						|
                                             false, false,
 | 
						|
                                             OutputRegs, InputRegs);
 | 
						|
    
 | 
						|
    switch (Constraints[i].Type) {
 | 
						|
    case InlineAsm::isOutput:
 | 
						|
      // We can't assign any other output to this register.
 | 
						|
      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | 
						|
      // If this is an early-clobber output, it cannot be assigned to the same
 | 
						|
      // value as the input reg.
 | 
						|
      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
 | 
						|
        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | 
						|
      break;
 | 
						|
    case InlineAsm::isInput:
 | 
						|
      // We can't assign any other input to this register.
 | 
						|
      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | 
						|
      break;
 | 
						|
    case InlineAsm::isClobber:
 | 
						|
      // Clobbered regs cannot be used as inputs or outputs.
 | 
						|
      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | 
						|
      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }      
 | 
						|
  
 | 
						|
  // Loop over all of the inputs, copying the operand values into the
 | 
						|
  // appropriate registers and processing the output regs.
 | 
						|
  RegsForValue RetValRegs;
 | 
						|
  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
 | 
						|
  OpNum = 1;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
 | 
						|
    std::string &ConstraintCode = Constraints[i].Codes[0];
 | 
						|
 | 
						|
    switch (Constraints[i].Type) {
 | 
						|
    case InlineAsm::isOutput: {
 | 
						|
      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
 | 
						|
      if (ConstraintCode.size() == 1)   // not a physreg name.
 | 
						|
        CTy = TLI.getConstraintType(ConstraintCode[0]);
 | 
						|
      
 | 
						|
      if (CTy == TargetLowering::C_Memory) {
 | 
						|
        // Memory output.
 | 
						|
        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
 | 
						|
        
 | 
						|
        // Check that the operand (the address to store to) isn't a float.
 | 
						|
        if (!MVT::isInteger(InOperandVal.getValueType()))
 | 
						|
          assert(0 && "MATCH FAIL!");
 | 
						|
        
 | 
						|
        if (!Constraints[i].isIndirectOutput)
 | 
						|
          assert(0 && "MATCH FAIL!");
 | 
						|
 | 
						|
        OpNum++;  // Consumes a call operand.
 | 
						|
        
 | 
						|
        // Extend/truncate to the right pointer type if needed.
 | 
						|
        MVT::ValueType PtrType = TLI.getPointerTy();
 | 
						|
        if (InOperandVal.getValueType() < PtrType)
 | 
						|
          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
 | 
						|
        else if (InOperandVal.getValueType() > PtrType)
 | 
						|
          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
 | 
						|
        
 | 
						|
        // Add information to the INLINEASM node to know about this output.
 | 
						|
        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | 
						|
        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | 
						|
        AsmNodeOperands.push_back(InOperandVal);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, this is a register output.
 | 
						|
      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
 | 
						|
 | 
						|
      // If this is an early-clobber output, or if there is an input
 | 
						|
      // constraint that matches this, we need to reserve the input register
 | 
						|
      // so no other inputs allocate to it.
 | 
						|
      bool UsesInputRegister = false;
 | 
						|
      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
 | 
						|
        UsesInputRegister = true;
 | 
						|
      
 | 
						|
      // Copy the output from the appropriate register.  Find a register that
 | 
						|
      // we can use.
 | 
						|
      RegsForValue Regs =
 | 
						|
        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
 | 
						|
                             true, UsesInputRegister, 
 | 
						|
                             OutputRegs, InputRegs);
 | 
						|
      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
 | 
						|
 | 
						|
      if (!Constraints[i].isIndirectOutput) {
 | 
						|
        assert(RetValRegs.Regs.empty() &&
 | 
						|
               "Cannot have multiple output constraints yet!");
 | 
						|
        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
 | 
						|
        RetValRegs = Regs;
 | 
						|
      } else {
 | 
						|
        IndirectStoresToEmit.push_back(std::make_pair(Regs, 
 | 
						|
                                                      I.getOperand(OpNum)));
 | 
						|
        OpNum++;  // Consumes a call operand.
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Add information to the INLINEASM node to know that this register is
 | 
						|
      // set.
 | 
						|
      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case InlineAsm::isInput: {
 | 
						|
      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
 | 
						|
      OpNum++;  // Consumes a call operand.
 | 
						|
      
 | 
						|
      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
 | 
						|
        // If this is required to match an output register we have already set,
 | 
						|
        // just use its register.
 | 
						|
        unsigned OperandNo = atoi(ConstraintCode.c_str());
 | 
						|
        
 | 
						|
        // Scan until we find the definition we already emitted of this operand.
 | 
						|
        // When we find it, create a RegsForValue operand.
 | 
						|
        unsigned CurOp = 2;  // The first operand.
 | 
						|
        for (; OperandNo; --OperandNo) {
 | 
						|
          // Advance to the next operand.
 | 
						|
          unsigned NumOps = 
 | 
						|
            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | 
						|
          assert((NumOps & 7) == 2 /*REGDEF*/ &&
 | 
						|
                 "Skipped past definitions?");
 | 
						|
          CurOp += (NumOps>>3)+1;
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned NumOps = 
 | 
						|
          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | 
						|
        assert((NumOps & 7) == 2 /*REGDEF*/ &&
 | 
						|
               "Skipped past definitions?");
 | 
						|
        
 | 
						|
        // Add NumOps>>3 registers to MatchedRegs.
 | 
						|
        RegsForValue MatchedRegs;
 | 
						|
        MatchedRegs.ValueVT = InOperandVal.getValueType();
 | 
						|
        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
 | 
						|
        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
 | 
						|
          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
 | 
						|
          MatchedRegs.Regs.push_back(Reg);
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Use the produced MatchedRegs object to 
 | 
						|
        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
 | 
						|
        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
 | 
						|
      if (ConstraintCode.size() == 1)   // not a physreg name.
 | 
						|
        CTy = TLI.getConstraintType(ConstraintCode[0]);
 | 
						|
        
 | 
						|
      if (CTy == TargetLowering::C_Other) {
 | 
						|
        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
 | 
						|
          assert(0 && "MATCH FAIL!");
 | 
						|
        
 | 
						|
        // Add information to the INLINEASM node to know about this input.
 | 
						|
        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
 | 
						|
        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | 
						|
        AsmNodeOperands.push_back(InOperandVal);
 | 
						|
        break;
 | 
						|
      } else if (CTy == TargetLowering::C_Memory) {
 | 
						|
        // Memory input.
 | 
						|
        
 | 
						|
        // Check that the operand isn't a float.
 | 
						|
        if (!MVT::isInteger(InOperandVal.getValueType()))
 | 
						|
          assert(0 && "MATCH FAIL!");
 | 
						|
        
 | 
						|
        // Extend/truncate to the right pointer type if needed.
 | 
						|
        MVT::ValueType PtrType = TLI.getPointerTy();
 | 
						|
        if (InOperandVal.getValueType() < PtrType)
 | 
						|
          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
 | 
						|
        else if (InOperandVal.getValueType() > PtrType)
 | 
						|
          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
 | 
						|
 | 
						|
        // Add information to the INLINEASM node to know about this input.
 | 
						|
        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | 
						|
        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | 
						|
        AsmNodeOperands.push_back(InOperandVal);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
 | 
						|
 | 
						|
      // Copy the input into the appropriate registers.
 | 
						|
      RegsForValue InRegs =
 | 
						|
        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
 | 
						|
                             false, true, OutputRegs, InputRegs);
 | 
						|
      // FIXME: should be match fail.
 | 
						|
      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
 | 
						|
 | 
						|
      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
 | 
						|
      
 | 
						|
      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case InlineAsm::isClobber: {
 | 
						|
      RegsForValue ClobberedRegs =
 | 
						|
        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
 | 
						|
                             OutputRegs, InputRegs);
 | 
						|
      // Add the clobbered value to the operand list, so that the register
 | 
						|
      // allocator is aware that the physreg got clobbered.
 | 
						|
      if (!ClobberedRegs.Regs.empty())
 | 
						|
        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finish up input operands.
 | 
						|
  AsmNodeOperands[0] = Chain;
 | 
						|
  if (Flag.Val) AsmNodeOperands.push_back(Flag);
 | 
						|
  
 | 
						|
  std::vector<MVT::ValueType> VTs;
 | 
						|
  VTs.push_back(MVT::Other);
 | 
						|
  VTs.push_back(MVT::Flag);
 | 
						|
  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
 | 
						|
  Flag = Chain.getValue(1);
 | 
						|
 | 
						|
  // If this asm returns a register value, copy the result from that register
 | 
						|
  // and set it as the value of the call.
 | 
						|
  if (!RetValRegs.Regs.empty())
 | 
						|
    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
 | 
						|
  
 | 
						|
  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
 | 
						|
  
 | 
						|
  // Process indirect outputs, first output all of the flagged copies out of
 | 
						|
  // physregs.
 | 
						|
  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
 | 
						|
    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
 | 
						|
    Value *Ptr = IndirectStoresToEmit[i].second;
 | 
						|
    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
 | 
						|
    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the non-flagged stores from the physregs.
 | 
						|
  std::vector<SDOperand> OutChains;
 | 
						|
  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
 | 
						|
    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, 
 | 
						|
                                    StoresToEmit[i].first,
 | 
						|
                                    getValue(StoresToEmit[i].second),
 | 
						|
                                    DAG.getSrcValue(StoresToEmit[i].second)));
 | 
						|
  if (!OutChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
 | 
						|
  DAG.setRoot(Chain);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
 | 
						|
  SDOperand Src = getValue(I.getOperand(0));
 | 
						|
 | 
						|
  MVT::ValueType IntPtr = TLI.getPointerTy();
 | 
						|
 | 
						|
  if (IntPtr < Src.getValueType())
 | 
						|
    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
 | 
						|
  else if (IntPtr > Src.getValueType())
 | 
						|
    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
 | 
						|
 | 
						|
  // Scale the source by the type size.
 | 
						|
  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
 | 
						|
  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
 | 
						|
                    Src, getIntPtrConstant(ElementSize));
 | 
						|
 | 
						|
  std::vector<std::pair<SDOperand, const Type*> > Args;
 | 
						|
  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
 | 
						|
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
 | 
						|
                    DAG.getExternalSymbol("malloc", IntPtr),
 | 
						|
                    Args, DAG);
 | 
						|
  setValue(&I, Result.first);  // Pointers always fit in registers
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFree(FreeInst &I) {
 | 
						|
  std::vector<std::pair<SDOperand, const Type*> > Args;
 | 
						|
  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
 | 
						|
                                TLI.getTargetData().getIntPtrType()));
 | 
						|
  MVT::ValueType IntPtr = TLI.getPointerTy();
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
 | 
						|
                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
// InsertAtEndOfBasicBlock - This method should be implemented by targets that
 | 
						|
// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | 
						|
// instructions are special in various ways, which require special support to
 | 
						|
// insert.  The specified MachineInstr is created but not inserted into any
 | 
						|
// basic blocks, and the scheduler passes ownership of it to this method.
 | 
						|
MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | 
						|
                                                       MachineBasicBlock *MBB) {
 | 
						|
  std::cerr << "If a target marks an instruction with "
 | 
						|
               "'usesCustomDAGSchedInserter', it must implement "
 | 
						|
               "TargetLowering::InsertAtEndOfBasicBlock!\n";
 | 
						|
  abort();
 | 
						|
  return 0;  
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), 
 | 
						|
                          getValue(I.getOperand(1)), 
 | 
						|
                          DAG.getSrcValue(I.getOperand(1))));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | 
						|
  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
 | 
						|
                             getValue(I.getOperand(0)),
 | 
						|
                             DAG.getSrcValue(I.getOperand(0)));
 | 
						|
  setValue(&I, V);
 | 
						|
  DAG.setRoot(V.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
 | 
						|
                          getValue(I.getOperand(1)), 
 | 
						|
                          DAG.getSrcValue(I.getOperand(1))));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), 
 | 
						|
                          getValue(I.getOperand(1)), 
 | 
						|
                          getValue(I.getOperand(2)),
 | 
						|
                          DAG.getSrcValue(I.getOperand(1)),
 | 
						|
                          DAG.getSrcValue(I.getOperand(2))));
 | 
						|
}
 | 
						|
 | 
						|
// It is always conservatively correct for llvm.returnaddress and
 | 
						|
// llvm.frameaddress to return 0.
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
 | 
						|
                                        unsigned Depth, SelectionDAG &DAG) {
 | 
						|
  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | 
						|
  assert(0 && "LowerOperation not implemented for this target!");
 | 
						|
  abort();
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
 | 
						|
                                                 SelectionDAG &DAG) {
 | 
						|
  assert(0 && "CustomPromoteOperation not implemented for this target!");
 | 
						|
  abort();
 | 
						|
  return SDOperand();
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
 | 
						|
  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
 | 
						|
  setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
/// getMemsetValue - Vectorized representation of the memset value
 | 
						|
/// operand.
 | 
						|
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
 | 
						|
                                SelectionDAG &DAG) {
 | 
						|
  MVT::ValueType CurVT = VT;
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | 
						|
    uint64_t Val   = C->getValue() & 255;
 | 
						|
    unsigned Shift = 8;
 | 
						|
    while (CurVT != MVT::i8) {
 | 
						|
      Val = (Val << Shift) | Val;
 | 
						|
      Shift <<= 1;
 | 
						|
      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | 
						|
    }
 | 
						|
    return DAG.getConstant(Val, VT);
 | 
						|
  } else {
 | 
						|
    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
 | 
						|
    unsigned Shift = 8;
 | 
						|
    while (CurVT != MVT::i8) {
 | 
						|
      Value =
 | 
						|
        DAG.getNode(ISD::OR, VT,
 | 
						|
                    DAG.getNode(ISD::SHL, VT, Value,
 | 
						|
                                DAG.getConstant(Shift, MVT::i8)), Value);
 | 
						|
      Shift <<= 1;
 | 
						|
      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    return Value;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | 
						|
/// used when a memcpy is turned into a memset when the source is a constant
 | 
						|
/// string ptr.
 | 
						|
static SDOperand getMemsetStringVal(MVT::ValueType VT,
 | 
						|
                                    SelectionDAG &DAG, TargetLowering &TLI,
 | 
						|
                                    std::string &Str, unsigned Offset) {
 | 
						|
  MVT::ValueType CurVT = VT;
 | 
						|
  uint64_t Val = 0;
 | 
						|
  unsigned MSB = getSizeInBits(VT) / 8;
 | 
						|
  if (TLI.isLittleEndian())
 | 
						|
    Offset = Offset + MSB - 1;
 | 
						|
  for (unsigned i = 0; i != MSB; ++i) {
 | 
						|
    Val = (Val << 8) | Str[Offset];
 | 
						|
    Offset += TLI.isLittleEndian() ? -1 : 1;
 | 
						|
  }
 | 
						|
  return DAG.getConstant(Val, VT);
 | 
						|
}
 | 
						|
 | 
						|
/// getMemBasePlusOffset - Returns base and offset node for the 
 | 
						|
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
 | 
						|
                                      SelectionDAG &DAG, TargetLowering &TLI) {
 | 
						|
  MVT::ValueType VT = Base.getValueType();
 | 
						|
  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
 | 
						|
}
 | 
						|
 | 
						|
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
 | 
						|
/// to replace the memset / memcpy is below the threshold. It also returns the
 | 
						|
/// types of the sequence of  memory ops to perform memset / memcpy.
 | 
						|
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
 | 
						|
                                     unsigned Limit, uint64_t Size,
 | 
						|
                                     unsigned Align, TargetLowering &TLI) {
 | 
						|
  MVT::ValueType VT;
 | 
						|
 | 
						|
  if (TLI.allowsUnalignedMemoryAccesses()) {
 | 
						|
    VT = MVT::i64;
 | 
						|
  } else {
 | 
						|
    switch (Align & 7) {
 | 
						|
    case 0:
 | 
						|
      VT = MVT::i64;
 | 
						|
      break;
 | 
						|
    case 4:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MVT::ValueType LVT = MVT::i64;
 | 
						|
  while (!TLI.isTypeLegal(LVT))
 | 
						|
    LVT = (MVT::ValueType)((unsigned)LVT - 1);
 | 
						|
  assert(MVT::isInteger(LVT));
 | 
						|
 | 
						|
  if (VT > LVT)
 | 
						|
    VT = LVT;
 | 
						|
 | 
						|
  unsigned NumMemOps = 0;
 | 
						|
  while (Size != 0) {
 | 
						|
    unsigned VTSize = getSizeInBits(VT) / 8;
 | 
						|
    while (VTSize > Size) {
 | 
						|
      VT = (MVT::ValueType)((unsigned)VT - 1);
 | 
						|
      VTSize >>= 1;
 | 
						|
    }
 | 
						|
    assert(MVT::isInteger(VT));
 | 
						|
 | 
						|
    if (++NumMemOps > Limit)
 | 
						|
      return false;
 | 
						|
    MemOps.push_back(VT);
 | 
						|
    Size -= VTSize;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(1));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(2));
 | 
						|
  SDOperand Op3 = getValue(I.getOperand(3));
 | 
						|
  SDOperand Op4 = getValue(I.getOperand(4));
 | 
						|
  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
 | 
						|
  if (Align == 0) Align = 1;
 | 
						|
 | 
						|
  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
 | 
						|
    std::vector<MVT::ValueType> MemOps;
 | 
						|
 | 
						|
    // Expand memset / memcpy to a series of load / store ops
 | 
						|
    // if the size operand falls below a certain threshold.
 | 
						|
    std::vector<SDOperand> OutChains;
 | 
						|
    switch (Op) {
 | 
						|
    default: break;  // Do nothing for now.
 | 
						|
    case ISD::MEMSET: {
 | 
						|
      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
 | 
						|
                                   Size->getValue(), Align, TLI)) {
 | 
						|
        unsigned NumMemOps = MemOps.size();
 | 
						|
        unsigned Offset = 0;
 | 
						|
        for (unsigned i = 0; i < NumMemOps; i++) {
 | 
						|
          MVT::ValueType VT = MemOps[i];
 | 
						|
          unsigned VTSize = getSizeInBits(VT) / 8;
 | 
						|
          SDOperand Value = getMemsetValue(Op2, VT, DAG);
 | 
						|
          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
 | 
						|
                                        Value,
 | 
						|
                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
 | 
						|
                                      DAG.getSrcValue(I.getOperand(1), Offset));
 | 
						|
          OutChains.push_back(Store);
 | 
						|
          Offset += VTSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ISD::MEMCPY: {
 | 
						|
      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
 | 
						|
                                   Size->getValue(), Align, TLI)) {
 | 
						|
        unsigned NumMemOps = MemOps.size();
 | 
						|
        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
 | 
						|
        GlobalAddressSDNode *G = NULL;
 | 
						|
        std::string Str;
 | 
						|
        bool CopyFromStr = false;
 | 
						|
 | 
						|
        if (Op2.getOpcode() == ISD::GlobalAddress)
 | 
						|
          G = cast<GlobalAddressSDNode>(Op2);
 | 
						|
        else if (Op2.getOpcode() == ISD::ADD &&
 | 
						|
                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | 
						|
                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
 | 
						|
          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
 | 
						|
          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
 | 
						|
        }
 | 
						|
        if (G) {
 | 
						|
          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
 | 
						|
          if (GV) {
 | 
						|
            Str = GV->getStringValue();
 | 
						|
            if (!Str.empty()) {
 | 
						|
              CopyFromStr = true;
 | 
						|
              SrcOff += SrcDelta;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        for (unsigned i = 0; i < NumMemOps; i++) {
 | 
						|
          MVT::ValueType VT = MemOps[i];
 | 
						|
          unsigned VTSize = getSizeInBits(VT) / 8;
 | 
						|
          SDOperand Value, Chain, Store;
 | 
						|
 | 
						|
          if (CopyFromStr) {
 | 
						|
            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
 | 
						|
            Chain = getRoot();
 | 
						|
            Store =
 | 
						|
              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
 | 
						|
                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
 | 
						|
                          DAG.getSrcValue(I.getOperand(1), DstOff));
 | 
						|
          } else {
 | 
						|
            Value = DAG.getLoad(VT, getRoot(),
 | 
						|
                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
 | 
						|
                        DAG.getSrcValue(I.getOperand(2), SrcOff));
 | 
						|
            Chain = Value.getValue(1);
 | 
						|
            Store =
 | 
						|
              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
 | 
						|
                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
 | 
						|
                          DAG.getSrcValue(I.getOperand(1), DstOff));
 | 
						|
          }
 | 
						|
          OutChains.push_back(Store);
 | 
						|
          SrcOff += VTSize;
 | 
						|
          DstOff += VTSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!OutChains.empty()) {
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  Ops.push_back(getRoot());
 | 
						|
  Ops.push_back(Op1);
 | 
						|
  Ops.push_back(Op2);
 | 
						|
  Ops.push_back(Op3);
 | 
						|
  Ops.push_back(Op4);
 | 
						|
  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SelectionDAGISel code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
 | 
						|
  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  // FIXME: we only modify the CFG to split critical edges.  This
 | 
						|
  // updates dom and loop info.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
 | 
						|
/// casting to the type of GEPI.
 | 
						|
static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
 | 
						|
                                   Value *Ptr, Value *PtrOffset) {
 | 
						|
  if (V) return V;   // Already computed.
 | 
						|
  
 | 
						|
  BasicBlock::iterator InsertPt;
 | 
						|
  if (BB == GEPI->getParent()) {
 | 
						|
    // If insert into the GEP's block, insert right after the GEP.
 | 
						|
    InsertPt = GEPI;
 | 
						|
    ++InsertPt;
 | 
						|
  } else {
 | 
						|
    // Otherwise, insert at the top of BB, after any PHI nodes
 | 
						|
    InsertPt = BB->begin();
 | 
						|
    while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
 | 
						|
  // BB so that there is only one value live across basic blocks (the cast 
 | 
						|
  // operand).
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
 | 
						|
    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
 | 
						|
      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
 | 
						|
  
 | 
						|
  // Add the offset, cast it to the right type.
 | 
						|
  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
 | 
						|
  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
 | 
						|
  return V = Ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
 | 
						|
/// selection, we want to be a bit careful about some things.  In particular, if
 | 
						|
/// we have a GEP instruction that is used in a different block than it is
 | 
						|
/// defined, the addressing expression of the GEP cannot be folded into loads or
 | 
						|
/// stores that use it.  In this case, decompose the GEP and move constant
 | 
						|
/// indices into blocks that use it.
 | 
						|
static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
 | 
						|
                                  const TargetData &TD) {
 | 
						|
  // If this GEP is only used inside the block it is defined in, there is no
 | 
						|
  // need to rewrite it.
 | 
						|
  bool isUsedOutsideDefBB = false;
 | 
						|
  BasicBlock *DefBB = GEPI->getParent();
 | 
						|
  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); 
 | 
						|
       UI != E; ++UI) {
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != DefBB) {
 | 
						|
      isUsedOutsideDefBB = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!isUsedOutsideDefBB) return;
 | 
						|
 | 
						|
  // If this GEP has no non-zero constant indices, there is nothing we can do,
 | 
						|
  // ignore it.
 | 
						|
  bool hasConstantIndex = false;
 | 
						|
  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
 | 
						|
       E = GEPI->op_end(); OI != E; ++OI) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
 | 
						|
      if (CI->getRawValue()) {
 | 
						|
        hasConstantIndex = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
 | 
						|
  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
 | 
						|
  
 | 
						|
  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
 | 
						|
  // constant offset (which we now know is non-zero) and deal with it later.
 | 
						|
  uint64_t ConstantOffset = 0;
 | 
						|
  const Type *UIntPtrTy = TD.getIntPtrType();
 | 
						|
  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
 | 
						|
  const Type *Ty = GEPI->getOperand(0)->getType();
 | 
						|
 | 
						|
  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
 | 
						|
       E = GEPI->op_end(); OI != E; ++OI) {
 | 
						|
    Value *Idx = *OI;
 | 
						|
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | 
						|
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | 
						|
      if (Field)
 | 
						|
        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
 | 
						|
      Ty = StTy->getElementType(Field);
 | 
						|
    } else {
 | 
						|
      Ty = cast<SequentialType>(Ty)->getElementType();
 | 
						|
 | 
						|
      // Handle constant subscripts.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | 
						|
        if (CI->getRawValue() == 0) continue;
 | 
						|
        
 | 
						|
        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
 | 
						|
          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
 | 
						|
        else
 | 
						|
          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Ptr = Ptr + Idx * ElementSize;
 | 
						|
      
 | 
						|
      // Cast Idx to UIntPtrTy if needed.
 | 
						|
      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
 | 
						|
      
 | 
						|
      uint64_t ElementSize = TD.getTypeSize(Ty);
 | 
						|
      // Mask off bits that should not be set.
 | 
						|
      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
 | 
						|
      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
 | 
						|
 | 
						|
      // Multiply by the element size and add to the base.
 | 
						|
      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
 | 
						|
      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Make sure that the offset fits in uintptr_t.
 | 
						|
  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
 | 
						|
  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
 | 
						|
  
 | 
						|
  // Okay, we have now emitted all of the variable index parts to the BB that
 | 
						|
  // the GEP is defined in.  Loop over all of the using instructions, inserting
 | 
						|
  // an "add Ptr, ConstantOffset" into each block that uses it and update the
 | 
						|
  // instruction to use the newly computed value, making GEPI dead.  When the
 | 
						|
  // user is a load or store instruction address, we emit the add into the user
 | 
						|
  // block, otherwise we use a canonical version right next to the gep (these 
 | 
						|
  // won't be foldable as addresses, so we might as well share the computation).
 | 
						|
  
 | 
						|
  std::map<BasicBlock*,Value*> InsertedExprs;
 | 
						|
  while (!GEPI->use_empty()) {
 | 
						|
    Instruction *User = cast<Instruction>(GEPI->use_back());
 | 
						|
 | 
						|
    // If this use is not foldable into the addressing mode, use a version 
 | 
						|
    // emitted in the GEP block.
 | 
						|
    Value *NewVal;
 | 
						|
    if (!isa<LoadInst>(User) &&
 | 
						|
        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
 | 
						|
      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, 
 | 
						|
                                    Ptr, PtrOffset);
 | 
						|
    } else {
 | 
						|
      // Otherwise, insert the code in the User's block so it can be folded into
 | 
						|
      // any users in that block.
 | 
						|
      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], 
 | 
						|
                                    User->getParent(), GEPI, 
 | 
						|
                                    Ptr, PtrOffset);
 | 
						|
    }
 | 
						|
    User->replaceUsesOfWith(GEPI, NewVal);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally, the GEP is dead, remove it.
 | 
						|
  GEPI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | 
						|
  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
 | 
						|
  RegMap = MF.getSSARegMap();
 | 
						|
  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
 | 
						|
 | 
						|
  // First, split all critical edges for PHI nodes with incoming values that are
 | 
						|
  // constants, this way the load of the constant into a vreg will not be placed
 | 
						|
  // into MBBs that are used some other way.
 | 
						|
  //
 | 
						|
  // In this pass we also look for GEP instructions that are used across basic
 | 
						|
  // blocks and rewrites them to improve basic-block-at-a-time selection.
 | 
						|
  // 
 | 
						|
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    PHINode *PN;
 | 
						|
    BasicBlock::iterator BBI;
 | 
						|
    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        if (isa<Constant>(PN->getIncomingValue(i)))
 | 
						|
          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
 | 
						|
    
 | 
						|
    for (BasicBlock::iterator E = BB->end(); BBI != E; )
 | 
						|
      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
 | 
						|
        OptimizeGEPExpression(GEPI, TLI.getTargetData());
 | 
						|
  }
 | 
						|
  
 | 
						|
  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
 | 
						|
 | 
						|
  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    SelectBasicBlock(I, MF, FuncInfo);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDOperand SelectionDAGISel::
 | 
						|
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
 | 
						|
  SDOperand Op = SDL.getValue(V);
 | 
						|
  assert((Op.getOpcode() != ISD::CopyFromReg ||
 | 
						|
          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | 
						|
         "Copy from a reg to the same reg!");
 | 
						|
  
 | 
						|
  // If this type is not legal, we must make sure to not create an invalid
 | 
						|
  // register use.
 | 
						|
  MVT::ValueType SrcVT = Op.getValueType();
 | 
						|
  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
 | 
						|
  SelectionDAG &DAG = SDL.DAG;
 | 
						|
  if (SrcVT == DestVT) {
 | 
						|
    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
 | 
						|
  } else if (SrcVT < DestVT) {
 | 
						|
    // The src value is promoted to the register.
 | 
						|
    if (MVT::isFloatingPoint(SrcVT))
 | 
						|
      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
 | 
						|
    else
 | 
						|
      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
 | 
						|
    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
 | 
						|
  } else  {
 | 
						|
    // The src value is expanded into multiple registers.
 | 
						|
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | 
						|
                               Op, DAG.getConstant(0, MVT::i32));
 | 
						|
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | 
						|
                               Op, DAG.getConstant(1, MVT::i32));
 | 
						|
    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
 | 
						|
    return DAG.getCopyToReg(Op, Reg+1, Hi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::
 | 
						|
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
 | 
						|
               std::vector<SDOperand> &UnorderedChains) {
 | 
						|
  // If this is the entry block, emit arguments.
 | 
						|
  Function &F = *BB->getParent();
 | 
						|
  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
 | 
						|
  SDOperand OldRoot = SDL.DAG.getRoot();
 | 
						|
  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | 
						|
 | 
						|
  unsigned a = 0;
 | 
						|
  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
 | 
						|
       AI != E; ++AI, ++a)
 | 
						|
    if (!AI->use_empty()) {
 | 
						|
      SDL.setValue(AI, Args[a]);
 | 
						|
      
 | 
						|
      // If this argument is live outside of the entry block, insert a copy from
 | 
						|
      // whereever we got it to the vreg that other BB's will reference it as.
 | 
						|
      if (FuncInfo.ValueMap.count(AI)) {
 | 
						|
        SDOperand Copy =
 | 
						|
          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
 | 
						|
        UnorderedChains.push_back(Copy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Next, if the function has live ins that need to be copied into vregs,
 | 
						|
  // emit the copies now, into the top of the block.
 | 
						|
  MachineFunction &MF = SDL.DAG.getMachineFunction();
 | 
						|
  if (MF.livein_begin() != MF.livein_end()) {
 | 
						|
    SSARegMap *RegMap = MF.getSSARegMap();
 | 
						|
    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
 | 
						|
    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
 | 
						|
         E = MF.livein_end(); LI != E; ++LI)
 | 
						|
      if (LI->second)
 | 
						|
        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
 | 
						|
                         LI->first, RegMap->getRegClass(LI->second));
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Finally, if the target has anything special to do, allow it to do so.
 | 
						|
  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
 | 
						|
       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
 | 
						|
                                    FunctionLoweringInfo &FuncInfo) {
 | 
						|
  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
 | 
						|
 | 
						|
  std::vector<SDOperand> UnorderedChains;
 | 
						|
 | 
						|
  // Lower any arguments needed in this block if this is the entry block.
 | 
						|
  if (LLVMBB == &LLVMBB->getParent()->front())
 | 
						|
    LowerArguments(LLVMBB, SDL, UnorderedChains);
 | 
						|
 | 
						|
  BB = FuncInfo.MBBMap[LLVMBB];
 | 
						|
  SDL.setCurrentBasicBlock(BB);
 | 
						|
 | 
						|
  // Lower all of the non-terminator instructions.
 | 
						|
  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
 | 
						|
       I != E; ++I)
 | 
						|
    SDL.visit(*I);
 | 
						|
 | 
						|
  // Ensure that all instructions which are used outside of their defining
 | 
						|
  // blocks are available as virtual registers.
 | 
						|
  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
 | 
						|
    if (!I->use_empty() && !isa<PHINode>(I)) {
 | 
						|
      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
 | 
						|
      if (VMI != FuncInfo.ValueMap.end())
 | 
						|
        UnorderedChains.push_back(
 | 
						|
                           CopyValueToVirtualRegister(SDL, I, VMI->second));
 | 
						|
    }
 | 
						|
 | 
						|
  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | 
						|
  // ensure constants are generated when needed.  Remember the virtual registers
 | 
						|
  // that need to be added to the Machine PHI nodes as input.  We cannot just
 | 
						|
  // directly add them, because expansion might result in multiple MBB's for one
 | 
						|
  // BB.  As such, the start of the BB might correspond to a different MBB than
 | 
						|
  // the end.
 | 
						|
  //
 | 
						|
 | 
						|
  // Emit constants only once even if used by multiple PHI nodes.
 | 
						|
  std::map<Constant*, unsigned> ConstantsOut;
 | 
						|
 | 
						|
  // Check successor nodes PHI nodes that expect a constant to be available from
 | 
						|
  // this block.
 | 
						|
  TerminatorInst *TI = LLVMBB->getTerminator();
 | 
						|
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | 
						|
    BasicBlock *SuccBB = TI->getSuccessor(succ);
 | 
						|
    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
 | 
						|
    PHINode *PN;
 | 
						|
 | 
						|
    // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | 
						|
    // nodes and Machine PHI nodes, but the incoming operands have not been
 | 
						|
    // emitted yet.
 | 
						|
    for (BasicBlock::iterator I = SuccBB->begin();
 | 
						|
         (PN = dyn_cast<PHINode>(I)); ++I)
 | 
						|
      if (!PN->use_empty()) {
 | 
						|
        unsigned Reg;
 | 
						|
        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | 
						|
        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | 
						|
          unsigned &RegOut = ConstantsOut[C];
 | 
						|
          if (RegOut == 0) {
 | 
						|
            RegOut = FuncInfo.CreateRegForValue(C);
 | 
						|
            UnorderedChains.push_back(
 | 
						|
                             CopyValueToVirtualRegister(SDL, C, RegOut));
 | 
						|
          }
 | 
						|
          Reg = RegOut;
 | 
						|
        } else {
 | 
						|
          Reg = FuncInfo.ValueMap[PHIOp];
 | 
						|
          if (Reg == 0) {
 | 
						|
            assert(isa<AllocaInst>(PHIOp) &&
 | 
						|
                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | 
						|
                   "Didn't codegen value into a register!??");
 | 
						|
            Reg = FuncInfo.CreateRegForValue(PHIOp);
 | 
						|
            UnorderedChains.push_back(
 | 
						|
                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Remember that this register needs to added to the machine PHI node as
 | 
						|
        // the input for this MBB.
 | 
						|
        unsigned NumElements =
 | 
						|
          TLI.getNumElements(TLI.getValueType(PN->getType()));
 | 
						|
        for (unsigned i = 0, e = NumElements; i != e; ++i)
 | 
						|
          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | 
						|
      }
 | 
						|
  }
 | 
						|
  ConstantsOut.clear();
 | 
						|
 | 
						|
  // Turn all of the unordered chains into one factored node.
 | 
						|
  if (!UnorderedChains.empty()) {
 | 
						|
    SDOperand Root = SDL.getRoot();
 | 
						|
    if (Root.getOpcode() != ISD::EntryToken) {
 | 
						|
      unsigned i = 0, e = UnorderedChains.size();
 | 
						|
      for (; i != e; ++i) {
 | 
						|
        assert(UnorderedChains[i].Val->getNumOperands() > 1);
 | 
						|
        if (UnorderedChains[i].Val->getOperand(0) == Root)
 | 
						|
          break;  // Don't add the root if we already indirectly depend on it.
 | 
						|
      }
 | 
						|
        
 | 
						|
      if (i == e)
 | 
						|
        UnorderedChains.push_back(Root);
 | 
						|
    }
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower the terminator after the copies are emitted.
 | 
						|
  SDL.visit(*LLVMBB->getTerminator());
 | 
						|
 | 
						|
  // Make sure the root of the DAG is up-to-date.
 | 
						|
  DAG.setRoot(SDL.getRoot());
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
 | 
						|
                                        FunctionLoweringInfo &FuncInfo) {
 | 
						|
  SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
 | 
						|
  CurDAG = &DAG;
 | 
						|
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
 | 
						|
 | 
						|
  // First step, lower LLVM code to some DAG.  This DAG may use operations and
 | 
						|
  // types that are not supported by the target.
 | 
						|
  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
 | 
						|
 | 
						|
  // Run the DAG combiner in pre-legalize mode.
 | 
						|
  DAG.Combine(false);
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "Lowered selection DAG:\n");
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
 | 
						|
  // Second step, hack on the DAG until it only uses operations and types that
 | 
						|
  // the target supports.
 | 
						|
  DAG.Legalize();
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Legalized selection DAG:\n");
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
 | 
						|
  // Run the DAG combiner in post-legalize mode.
 | 
						|
  DAG.Combine(true);
 | 
						|
  
 | 
						|
  if (ViewISelDAGs) DAG.viewGraph();
 | 
						|
  
 | 
						|
  // Third, instruction select all of the operations to machine code, adding the
 | 
						|
  // code to the MachineBasicBlock.
 | 
						|
  InstructionSelectBasicBlock(DAG);
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Selected machine code:\n");
 | 
						|
  DEBUG(BB->dump());
 | 
						|
 | 
						|
  // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | 
						|
  // PHI nodes in successors.
 | 
						|
  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | 
						|
    MachineInstr *PHI = PHINodesToUpdate[i].first;
 | 
						|
    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
           "This is not a machine PHI node that we are updating!");
 | 
						|
    PHI->addRegOperand(PHINodesToUpdate[i].second);
 | 
						|
    PHI->addMachineBasicBlockOperand(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, add the CFG edges from the last selected MBB to the successor
 | 
						|
  // MBBs.
 | 
						|
  TerminatorInst *TI = LLVMBB->getTerminator();
 | 
						|
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
 | 
						|
    BB->addSuccessor(Succ0MBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
 | 
						|
/// target node in the graph.
 | 
						|
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
 | 
						|
  if (ViewSchedDAGs) DAG.viewGraph();
 | 
						|
  ScheduleDAG *SL = NULL;
 | 
						|
 | 
						|
  switch (ISHeuristic) {
 | 
						|
  default: assert(0 && "Unrecognized scheduling heuristic");
 | 
						|
  case defaultScheduling:
 | 
						|
    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
 | 
						|
      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
 | 
						|
    else /* TargetLowering::SchedulingForRegPressure */
 | 
						|
      SL = createBURRListDAGScheduler(DAG, BB);
 | 
						|
    break;
 | 
						|
  case noScheduling:
 | 
						|
  case simpleScheduling:
 | 
						|
  case simpleNoItinScheduling:
 | 
						|
    SL = createSimpleDAGScheduler(ISHeuristic, DAG, BB);
 | 
						|
    break;
 | 
						|
  case listSchedulingBURR:
 | 
						|
    SL = createBURRListDAGScheduler(DAG, BB);
 | 
						|
    break;
 | 
						|
  case listSchedulingTD:
 | 
						|
    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  BB = SL->Run();
 | 
						|
  delete SL;
 | 
						|
}
 | 
						|
 | 
						|
HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
 | 
						|
  return new HazardRecognizer();
 | 
						|
}
 | 
						|
 | 
						|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | 
						|
/// by tblgen.  Others should not call it.
 | 
						|
void SelectionDAGISel::
 | 
						|
SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
 | 
						|
  std::vector<SDOperand> InOps;
 | 
						|
  std::swap(InOps, Ops);
 | 
						|
 | 
						|
  Ops.push_back(InOps[0]);  // input chain.
 | 
						|
  Ops.push_back(InOps[1]);  // input asm string.
 | 
						|
 | 
						|
  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
 | 
						|
  unsigned i = 2, e = InOps.size();
 | 
						|
  if (InOps[e-1].getValueType() == MVT::Flag)
 | 
						|
    --e;  // Don't process a flag operand if it is here.
 | 
						|
  
 | 
						|
  while (i != e) {
 | 
						|
    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
 | 
						|
    if ((Flags & 7) != 4 /*MEM*/) {
 | 
						|
      // Just skip over this operand, copying the operands verbatim.
 | 
						|
      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
 | 
						|
      i += (Flags >> 3) + 1;
 | 
						|
    } else {
 | 
						|
      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
 | 
						|
      // Otherwise, this is a memory operand.  Ask the target to select it.
 | 
						|
      std::vector<SDOperand> SelOps;
 | 
						|
      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
 | 
						|
        std::cerr << "Could not match memory address.  Inline asm failure!\n";
 | 
						|
        exit(1);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Add this to the output node.
 | 
						|
      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
 | 
						|
      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | 
						|
      i += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add the flag input back if present.
 | 
						|
  if (e != InOps.size())
 | 
						|
    Ops.push_back(InOps.back());
 | 
						|
}
 |