1132 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1132 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines ExprEngine's support for C expressions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
using llvm::APSInt;
 | 
						|
 | 
						|
/// Optionally conjure and return a symbol for offset when processing
 | 
						|
/// an expression \p Expression.
 | 
						|
/// If \p Other is a location, conjure a symbol for \p Symbol
 | 
						|
/// (offset) if it is unknown so that memory arithmetic always
 | 
						|
/// results in an ElementRegion.
 | 
						|
/// \p Count The number of times the current basic block was visited.
 | 
						|
static SVal conjureOffsetSymbolOnLocation(
 | 
						|
    SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
 | 
						|
    unsigned Count, const LocationContext *LCtx) {
 | 
						|
  QualType Ty = Expression->getType();
 | 
						|
  if (Other.getAs<Loc>() &&
 | 
						|
      Ty->isIntegralOrEnumerationType() &&
 | 
						|
      Symbol.isUnknown()) {
 | 
						|
    return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
 | 
						|
  }
 | 
						|
  return Symbol;
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
 | 
						|
                                     ExplodedNode *Pred,
 | 
						|
                                     ExplodedNodeSet &Dst) {
 | 
						|
 | 
						|
  Expr *LHS = B->getLHS()->IgnoreParens();
 | 
						|
  Expr *RHS = B->getRHS()->IgnoreParens();
 | 
						|
 | 
						|
  // FIXME: Prechecks eventually go in ::Visit().
 | 
						|
  ExplodedNodeSet CheckedSet;
 | 
						|
  ExplodedNodeSet Tmp2;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
 | 
						|
 | 
						|
  // With both the LHS and RHS evaluated, process the operation itself.
 | 
						|
  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
 | 
						|
         it != ei; ++it) {
 | 
						|
 | 
						|
    ProgramStateRef state = (*it)->getState();
 | 
						|
    const LocationContext *LCtx = (*it)->getLocationContext();
 | 
						|
    SVal LeftV = state->getSVal(LHS, LCtx);
 | 
						|
    SVal RightV = state->getSVal(RHS, LCtx);
 | 
						|
 | 
						|
    BinaryOperator::Opcode Op = B->getOpcode();
 | 
						|
 | 
						|
    if (Op == BO_Assign) {
 | 
						|
      // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
      // FIXME: Handle structs.
 | 
						|
      if (RightV.isUnknown()) {
 | 
						|
        unsigned Count = currBldrCtx->blockCount();
 | 
						|
        RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
 | 
						|
                                              Count);
 | 
						|
      }
 | 
						|
      // Simulate the effects of a "store":  bind the value of the RHS
 | 
						|
      // to the L-Value represented by the LHS.
 | 
						|
      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
 | 
						|
      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
 | 
						|
                LeftV, RightV);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!B->isAssignmentOp()) {
 | 
						|
      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
 | 
						|
 | 
						|
      if (B->isAdditiveOp()) {
 | 
						|
        // TODO: This can be removed after we enable history tracking with
 | 
						|
        // SymSymExpr.
 | 
						|
        unsigned Count = currBldrCtx->blockCount();
 | 
						|
        RightV = conjureOffsetSymbolOnLocation(
 | 
						|
            RightV, LeftV, RHS, svalBuilder, Count, LCtx);
 | 
						|
        LeftV = conjureOffsetSymbolOnLocation(
 | 
						|
            LeftV, RightV, LHS, svalBuilder, Count, LCtx);
 | 
						|
      }
 | 
						|
 | 
						|
      // Although we don't yet model pointers-to-members, we do need to make
 | 
						|
      // sure that the members of temporaries have a valid 'this' pointer for
 | 
						|
      // other checks.
 | 
						|
      if (B->getOpcode() == BO_PtrMemD)
 | 
						|
        state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
 | 
						|
 | 
						|
      // Process non-assignments except commas or short-circuited
 | 
						|
      // logical expressions (LAnd and LOr).
 | 
						|
      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
 | 
						|
      if (!Result.isUnknown()) {
 | 
						|
        state = state->BindExpr(B, LCtx, Result);
 | 
						|
      }
 | 
						|
 | 
						|
      Bldr.generateNode(B, *it, state);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert (B->isCompoundAssignmentOp());
 | 
						|
 | 
						|
    switch (Op) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Invalid opcode for compound assignment.");
 | 
						|
      case BO_MulAssign: Op = BO_Mul; break;
 | 
						|
      case BO_DivAssign: Op = BO_Div; break;
 | 
						|
      case BO_RemAssign: Op = BO_Rem; break;
 | 
						|
      case BO_AddAssign: Op = BO_Add; break;
 | 
						|
      case BO_SubAssign: Op = BO_Sub; break;
 | 
						|
      case BO_ShlAssign: Op = BO_Shl; break;
 | 
						|
      case BO_ShrAssign: Op = BO_Shr; break;
 | 
						|
      case BO_AndAssign: Op = BO_And; break;
 | 
						|
      case BO_XorAssign: Op = BO_Xor; break;
 | 
						|
      case BO_OrAssign:  Op = BO_Or;  break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform a load (the LHS).  This performs the checks for
 | 
						|
    // null dereferences, and so on.
 | 
						|
    ExplodedNodeSet Tmp;
 | 
						|
    SVal location = LeftV;
 | 
						|
    evalLoad(Tmp, B, LHS, *it, state, location);
 | 
						|
 | 
						|
    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
 | 
						|
         ++I) {
 | 
						|
 | 
						|
      state = (*I)->getState();
 | 
						|
      const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
      SVal V = state->getSVal(LHS, LCtx);
 | 
						|
 | 
						|
      // Get the computation type.
 | 
						|
      QualType CTy =
 | 
						|
        cast<CompoundAssignOperator>(B)->getComputationResultType();
 | 
						|
      CTy = getContext().getCanonicalType(CTy);
 | 
						|
 | 
						|
      QualType CLHSTy =
 | 
						|
        cast<CompoundAssignOperator>(B)->getComputationLHSType();
 | 
						|
      CLHSTy = getContext().getCanonicalType(CLHSTy);
 | 
						|
 | 
						|
      QualType LTy = getContext().getCanonicalType(LHS->getType());
 | 
						|
 | 
						|
      // Promote LHS.
 | 
						|
      V = svalBuilder.evalCast(V, CLHSTy, LTy);
 | 
						|
 | 
						|
      // Compute the result of the operation.
 | 
						|
      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
 | 
						|
                                         B->getType(), CTy);
 | 
						|
 | 
						|
      // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
      // FIXME: Handle structs.
 | 
						|
 | 
						|
      SVal LHSVal;
 | 
						|
 | 
						|
      if (Result.isUnknown()) {
 | 
						|
        // The symbolic value is actually for the type of the left-hand side
 | 
						|
        // expression, not the computation type, as this is the value the
 | 
						|
        // LValue on the LHS will bind to.
 | 
						|
        LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
 | 
						|
                                              currBldrCtx->blockCount());
 | 
						|
        // However, we need to convert the symbol to the computation type.
 | 
						|
        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        // The left-hand side may bind to a different value then the
 | 
						|
        // computation type.
 | 
						|
        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // In C++, assignment and compound assignment operators return an
 | 
						|
      // lvalue.
 | 
						|
      if (B->isGLValue())
 | 
						|
        state = state->BindExpr(B, LCtx, location);
 | 
						|
      else
 | 
						|
        state = state->BindExpr(B, LCtx, Result);
 | 
						|
 | 
						|
      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: postvisits eventually go in ::Visit()
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
 | 
						|
                                ExplodedNodeSet &Dst) {
 | 
						|
 | 
						|
  CanQualType T = getContext().getCanonicalType(BE->getType());
 | 
						|
 | 
						|
  const BlockDecl *BD = BE->getBlockDecl();
 | 
						|
  // Get the value of the block itself.
 | 
						|
  SVal V = svalBuilder.getBlockPointer(BD, T,
 | 
						|
                                       Pred->getLocationContext(),
 | 
						|
                                       currBldrCtx->blockCount());
 | 
						|
 | 
						|
  ProgramStateRef State = Pred->getState();
 | 
						|
 | 
						|
  // If we created a new MemRegion for the block, we should explicitly bind
 | 
						|
  // the captured variables.
 | 
						|
  if (const BlockDataRegion *BDR =
 | 
						|
      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
 | 
						|
 | 
						|
    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
 | 
						|
                                              E = BDR->referenced_vars_end();
 | 
						|
 | 
						|
    auto CI = BD->capture_begin();
 | 
						|
    auto CE = BD->capture_end();
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      const VarRegion *capturedR = I.getCapturedRegion();
 | 
						|
      const VarRegion *originalR = I.getOriginalRegion();
 | 
						|
 | 
						|
      // If the capture had a copy expression, use the result of evaluating
 | 
						|
      // that expression, otherwise use the original value.
 | 
						|
      // We rely on the invariant that the block declaration's capture variables
 | 
						|
      // are a prefix of the BlockDataRegion's referenced vars (which may include
 | 
						|
      // referenced globals, etc.) to enable fast lookup of the capture for a
 | 
						|
      // given referenced var.
 | 
						|
      const Expr *copyExpr = nullptr;
 | 
						|
      if (CI != CE) {
 | 
						|
        assert(CI->getVariable() == capturedR->getDecl());
 | 
						|
        copyExpr = CI->getCopyExpr();
 | 
						|
        CI++;
 | 
						|
      }
 | 
						|
 | 
						|
      if (capturedR != originalR) {
 | 
						|
        SVal originalV;
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        if (copyExpr) {
 | 
						|
          originalV = State->getSVal(copyExpr, LCtx);
 | 
						|
        } else {
 | 
						|
          originalV = State->getSVal(loc::MemRegionVal(originalR));
 | 
						|
        }
 | 
						|
        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ExplodedNodeSet Tmp;
 | 
						|
  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
 | 
						|
  Bldr.generateNode(BE, Pred,
 | 
						|
                    State->BindExpr(BE, Pred->getLocationContext(), V),
 | 
						|
                    nullptr, ProgramPoint::PostLValueKind);
 | 
						|
 | 
						|
  // FIXME: Move all post/pre visits to ::Visit().
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef ExprEngine::handleLValueBitCast(
 | 
						|
    ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
 | 
						|
    QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
 | 
						|
    ExplodedNode* Pred) {
 | 
						|
  if (T->isLValueReferenceType()) {
 | 
						|
    assert(!CastE->getType()->isLValueReferenceType());
 | 
						|
    ExTy = getContext().getLValueReferenceType(ExTy);
 | 
						|
  } else if (T->isRValueReferenceType()) {
 | 
						|
    assert(!CastE->getType()->isRValueReferenceType());
 | 
						|
    ExTy = getContext().getRValueReferenceType(ExTy);
 | 
						|
  }
 | 
						|
  // Delegate to SValBuilder to process.
 | 
						|
  SVal OrigV = state->getSVal(Ex, LCtx);
 | 
						|
  SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
 | 
						|
  // Negate the result if we're treating the boolean as a signed i1
 | 
						|
  if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
 | 
						|
    V = evalMinus(V);
 | 
						|
  state = state->BindExpr(CastE, LCtx, V);
 | 
						|
  if (V.isUnknown() && !OrigV.isUnknown()) {
 | 
						|
    state = escapeValue(state, OrigV, PSK_EscapeOther);
 | 
						|
  }
 | 
						|
  Bldr.generateNode(CastE, Pred, state);
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef ExprEngine::handleLVectorSplat(
 | 
						|
    ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
 | 
						|
    StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
 | 
						|
  // Recover some path sensitivity by conjuring a new value.
 | 
						|
  QualType resultType = CastE->getType();
 | 
						|
  if (CastE->isGLValue())
 | 
						|
    resultType = getContext().getPointerType(resultType);
 | 
						|
  SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
 | 
						|
                                             resultType,
 | 
						|
                                             currBldrCtx->blockCount());
 | 
						|
  state = state->BindExpr(CastE, LCtx, result);
 | 
						|
  Bldr.generateNode(CastE, Pred, state);
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
 | 
						|
                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
 | 
						|
 | 
						|
  ExplodedNodeSet dstPreStmt;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
 | 
						|
 | 
						|
  if (CastE->getCastKind() == CK_LValueToRValue) {
 | 
						|
    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
 | 
						|
         I!=E; ++I) {
 | 
						|
      ExplodedNode *subExprNode = *I;
 | 
						|
      ProgramStateRef state = subExprNode->getState();
 | 
						|
      const LocationContext *LCtx = subExprNode->getLocationContext();
 | 
						|
      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // All other casts.
 | 
						|
  QualType T = CastE->getType();
 | 
						|
  QualType ExTy = Ex->getType();
 | 
						|
 | 
						|
  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
 | 
						|
    T = ExCast->getTypeAsWritten();
 | 
						|
 | 
						|
  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
 | 
						|
  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
 | 
						|
       I != E; ++I) {
 | 
						|
 | 
						|
    Pred = *I;
 | 
						|
    ProgramStateRef state = Pred->getState();
 | 
						|
    const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
 | 
						|
    switch (CastE->getCastKind()) {
 | 
						|
      case CK_LValueToRValue:
 | 
						|
        llvm_unreachable("LValueToRValue casts handled earlier.");
 | 
						|
      case CK_ToVoid:
 | 
						|
        continue;
 | 
						|
        // The analyzer doesn't do anything special with these casts,
 | 
						|
        // since it understands retain/release semantics already.
 | 
						|
      case CK_ARCProduceObject:
 | 
						|
      case CK_ARCConsumeObject:
 | 
						|
      case CK_ARCReclaimReturnedObject:
 | 
						|
      case CK_ARCExtendBlockObject: // Fall-through.
 | 
						|
      case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
        // The analyser can ignore atomic casts for now, although some future
 | 
						|
        // checkers may want to make certain that you're not modifying the same
 | 
						|
        // value through atomic and nonatomic pointers.
 | 
						|
      case CK_AtomicToNonAtomic:
 | 
						|
      case CK_NonAtomicToAtomic:
 | 
						|
        // True no-ops.
 | 
						|
      case CK_NoOp:
 | 
						|
      case CK_ConstructorConversion:
 | 
						|
      case CK_UserDefinedConversion:
 | 
						|
      case CK_FunctionToPointerDecay:
 | 
						|
      case CK_BuiltinFnToFnPtr: {
 | 
						|
        // Copy the SVal of Ex to CastE.
 | 
						|
        ProgramStateRef state = Pred->getState();
 | 
						|
        const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        state = state->BindExpr(CastE, LCtx, V);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_MemberPointerToBoolean:
 | 
						|
      case CK_PointerToBoolean: {
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        auto PTMSV = V.getAs<nonloc::PointerToMember>();
 | 
						|
        if (PTMSV)
 | 
						|
          V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
 | 
						|
        if (V.isUndef() || PTMSV) {
 | 
						|
          state = state->BindExpr(CastE, LCtx, V);
 | 
						|
          Bldr.generateNode(CastE, Pred, state);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Explicitly proceed with default handler for this case cascade.
 | 
						|
        state =
 | 
						|
            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_Dependent:
 | 
						|
      case CK_ArrayToPointerDecay:
 | 
						|
      case CK_BitCast:
 | 
						|
      case CK_AddressSpaceConversion:
 | 
						|
      case CK_BooleanToSignedIntegral:
 | 
						|
      case CK_IntegralToPointer:
 | 
						|
      case CK_PointerToIntegral: {
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        if (V.getAs<nonloc::PointerToMember>()) {
 | 
						|
          state = state->BindExpr(CastE, LCtx, UnknownVal());
 | 
						|
          Bldr.generateNode(CastE, Pred, state);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Explicitly proceed with default handler for this case cascade.
 | 
						|
        state =
 | 
						|
            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_IntegralToBoolean:
 | 
						|
      case CK_IntegralToFloating:
 | 
						|
      case CK_FloatingToIntegral:
 | 
						|
      case CK_FloatingToBoolean:
 | 
						|
      case CK_FloatingCast:
 | 
						|
      case CK_FloatingRealToComplex:
 | 
						|
      case CK_FloatingComplexToReal:
 | 
						|
      case CK_FloatingComplexToBoolean:
 | 
						|
      case CK_FloatingComplexCast:
 | 
						|
      case CK_FloatingComplexToIntegralComplex:
 | 
						|
      case CK_IntegralRealToComplex:
 | 
						|
      case CK_IntegralComplexToReal:
 | 
						|
      case CK_IntegralComplexToBoolean:
 | 
						|
      case CK_IntegralComplexCast:
 | 
						|
      case CK_IntegralComplexToFloatingComplex:
 | 
						|
      case CK_CPointerToObjCPointerCast:
 | 
						|
      case CK_BlockPointerToObjCPointerCast:
 | 
						|
      case CK_AnyPointerToBlockPointerCast:
 | 
						|
      case CK_ObjCObjectLValueCast:
 | 
						|
      case CK_ZeroToOCLOpaqueType:
 | 
						|
      case CK_IntToOCLSampler:
 | 
						|
      case CK_LValueBitCast:
 | 
						|
      case CK_FixedPointCast:
 | 
						|
      case CK_FixedPointToBoolean: {
 | 
						|
        state =
 | 
						|
            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_IntegralCast: {
 | 
						|
        // Delegate to SValBuilder to process.
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
 | 
						|
        state = state->BindExpr(CastE, LCtx, V);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_DerivedToBase:
 | 
						|
      case CK_UncheckedDerivedToBase: {
 | 
						|
        // For DerivedToBase cast, delegate to the store manager.
 | 
						|
        SVal val = state->getSVal(Ex, LCtx);
 | 
						|
        val = getStoreManager().evalDerivedToBase(val, CastE);
 | 
						|
        state = state->BindExpr(CastE, LCtx, val);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Handle C++ dyn_cast.
 | 
						|
      case CK_Dynamic: {
 | 
						|
        SVal val = state->getSVal(Ex, LCtx);
 | 
						|
 | 
						|
        // Compute the type of the result.
 | 
						|
        QualType resultType = CastE->getType();
 | 
						|
        if (CastE->isGLValue())
 | 
						|
          resultType = getContext().getPointerType(resultType);
 | 
						|
 | 
						|
        bool Failed = false;
 | 
						|
 | 
						|
        // Check if the value being cast evaluates to 0.
 | 
						|
        if (val.isZeroConstant())
 | 
						|
          Failed = true;
 | 
						|
        // Else, evaluate the cast.
 | 
						|
        else
 | 
						|
          val = getStoreManager().attemptDownCast(val, T, Failed);
 | 
						|
 | 
						|
        if (Failed) {
 | 
						|
          if (T->isReferenceType()) {
 | 
						|
            // A bad_cast exception is thrown if input value is a reference.
 | 
						|
            // Currently, we model this, by generating a sink.
 | 
						|
            Bldr.generateSink(CastE, Pred, state);
 | 
						|
            continue;
 | 
						|
          } else {
 | 
						|
            // If the cast fails on a pointer, bind to 0.
 | 
						|
            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // If we don't know if the cast succeeded, conjure a new symbol.
 | 
						|
          if (val.isUnknown()) {
 | 
						|
            DefinedOrUnknownSVal NewSym =
 | 
						|
              svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
 | 
						|
                                           currBldrCtx->blockCount());
 | 
						|
            state = state->BindExpr(CastE, LCtx, NewSym);
 | 
						|
          } else
 | 
						|
            // Else, bind to the derived region value.
 | 
						|
            state = state->BindExpr(CastE, LCtx, val);
 | 
						|
        }
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_BaseToDerived: {
 | 
						|
        SVal val = state->getSVal(Ex, LCtx);
 | 
						|
        QualType resultType = CastE->getType();
 | 
						|
        if (CastE->isGLValue())
 | 
						|
          resultType = getContext().getPointerType(resultType);
 | 
						|
 | 
						|
        bool Failed = false;
 | 
						|
 | 
						|
        if (!val.isConstant()) {
 | 
						|
          val = getStoreManager().attemptDownCast(val, T, Failed);
 | 
						|
        }
 | 
						|
 | 
						|
        // Failed to cast or the result is unknown, fall back to conservative.
 | 
						|
        if (Failed || val.isUnknown()) {
 | 
						|
          val =
 | 
						|
            svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
 | 
						|
                                         currBldrCtx->blockCount());
 | 
						|
        }
 | 
						|
        state = state->BindExpr(CastE, LCtx, val);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_NullToPointer: {
 | 
						|
        SVal V = svalBuilder.makeNull();
 | 
						|
        state = state->BindExpr(CastE, LCtx, V);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_NullToMemberPointer: {
 | 
						|
        SVal V = svalBuilder.getMemberPointer(nullptr);
 | 
						|
        state = state->BindExpr(CastE, LCtx, V);
 | 
						|
        Bldr.generateNode(CastE, Pred, state);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case CK_DerivedToBaseMemberPointer:
 | 
						|
      case CK_BaseToDerivedMemberPointer:
 | 
						|
      case CK_ReinterpretMemberPointer: {
 | 
						|
        SVal V = state->getSVal(Ex, LCtx);
 | 
						|
        if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
 | 
						|
          SVal CastedPTMSV = svalBuilder.makePointerToMember(
 | 
						|
              getBasicVals().accumCXXBase(
 | 
						|
                  llvm::make_range<CastExpr::path_const_iterator>(
 | 
						|
                      CastE->path_begin(), CastE->path_end()), *PTMSV));
 | 
						|
          state = state->BindExpr(CastE, LCtx, CastedPTMSV);
 | 
						|
          Bldr.generateNode(CastE, Pred, state);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Explicitly proceed with default handler for this case cascade.
 | 
						|
        state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Various C++ casts that are not handled yet.
 | 
						|
      case CK_ToUnion:
 | 
						|
      case CK_VectorSplat: {
 | 
						|
        state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
 | 
						|
                                          ExplodedNode *Pred,
 | 
						|
                                          ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | 
						|
 | 
						|
  ProgramStateRef State = Pred->getState();
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
 | 
						|
  const Expr *Init = CL->getInitializer();
 | 
						|
  SVal V = State->getSVal(CL->getInitializer(), LCtx);
 | 
						|
 | 
						|
  if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
 | 
						|
    // No work needed. Just pass the value up to this expression.
 | 
						|
  } else {
 | 
						|
    assert(isa<InitListExpr>(Init));
 | 
						|
    Loc CLLoc = State->getLValue(CL, LCtx);
 | 
						|
    State = State->bindLoc(CLLoc, V, LCtx);
 | 
						|
 | 
						|
    if (CL->isGLValue())
 | 
						|
      V = CLLoc;
 | 
						|
  }
 | 
						|
 | 
						|
  B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
 | 
						|
                               ExplodedNodeSet &Dst) {
 | 
						|
  // Assumption: The CFG has one DeclStmt per Decl.
 | 
						|
  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
 | 
						|
 | 
						|
  if (!VD) {
 | 
						|
    //TODO:AZ: remove explicit insertion after refactoring is done.
 | 
						|
    Dst.insert(Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: all pre/post visits should eventually be handled by ::Visit().
 | 
						|
  ExplodedNodeSet dstPreVisit;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
 | 
						|
 | 
						|
  ExplodedNodeSet dstEvaluated;
 | 
						|
  StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
 | 
						|
  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
 | 
						|
       I!=E; ++I) {
 | 
						|
    ExplodedNode *N = *I;
 | 
						|
    ProgramStateRef state = N->getState();
 | 
						|
    const LocationContext *LC = N->getLocationContext();
 | 
						|
 | 
						|
    // Decls without InitExpr are not initialized explicitly.
 | 
						|
    if (const Expr *InitEx = VD->getInit()) {
 | 
						|
 | 
						|
      // Note in the state that the initialization has occurred.
 | 
						|
      ExplodedNode *UpdatedN = N;
 | 
						|
      SVal InitVal = state->getSVal(InitEx, LC);
 | 
						|
 | 
						|
      assert(DS->isSingleDecl());
 | 
						|
      if (getObjectUnderConstruction(state, DS, LC)) {
 | 
						|
        state = finishObjectConstruction(state, DS, LC);
 | 
						|
        // We constructed the object directly in the variable.
 | 
						|
        // No need to bind anything.
 | 
						|
        B.generateNode(DS, UpdatedN, state);
 | 
						|
      } else {
 | 
						|
        // Recover some path-sensitivity if a scalar value evaluated to
 | 
						|
        // UnknownVal.
 | 
						|
        if (InitVal.isUnknown()) {
 | 
						|
          QualType Ty = InitEx->getType();
 | 
						|
          if (InitEx->isGLValue()) {
 | 
						|
            Ty = getContext().getPointerType(Ty);
 | 
						|
          }
 | 
						|
 | 
						|
          InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
 | 
						|
                                                 currBldrCtx->blockCount());
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        B.takeNodes(UpdatedN);
 | 
						|
        ExplodedNodeSet Dst2;
 | 
						|
        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
 | 
						|
        B.addNodes(Dst2);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      B.generateNode(DS, N, state);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
 | 
						|
                                  ExplodedNodeSet &Dst) {
 | 
						|
  assert(B->getOpcode() == BO_LAnd ||
 | 
						|
         B->getOpcode() == BO_LOr);
 | 
						|
 | 
						|
  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
 | 
						|
  if (B->getType()->isVectorType()) {
 | 
						|
    // FIXME: We do not model vector arithmetic yet. When adding support for
 | 
						|
    // that, note that the CFG-based reasoning below does not apply, because
 | 
						|
    // logical operators on vectors are not short-circuit. Currently they are
 | 
						|
    // modeled as short-circuit in Clang CFG but this is incorrect.
 | 
						|
    // Do not set the value for the expression. It'd be UnknownVal by default.
 | 
						|
    Bldr.generateNode(B, Pred, state);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ExplodedNode *N = Pred;
 | 
						|
  while (!N->getLocation().getAs<BlockEntrance>()) {
 | 
						|
    ProgramPoint P = N->getLocation();
 | 
						|
    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
 | 
						|
    (void) P;
 | 
						|
    assert(N->pred_size() == 1);
 | 
						|
    N = *N->pred_begin();
 | 
						|
  }
 | 
						|
  assert(N->pred_size() == 1);
 | 
						|
  N = *N->pred_begin();
 | 
						|
  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
 | 
						|
  SVal X;
 | 
						|
 | 
						|
  // Determine the value of the expression by introspecting how we
 | 
						|
  // got this location in the CFG.  This requires looking at the previous
 | 
						|
  // block we were in and what kind of control-flow transfer was involved.
 | 
						|
  const CFGBlock *SrcBlock = BE.getSrc();
 | 
						|
  // The only terminator (if there is one) that makes sense is a logical op.
 | 
						|
  CFGTerminator T = SrcBlock->getTerminator();
 | 
						|
  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
 | 
						|
    (void) Term;
 | 
						|
    assert(Term->isLogicalOp());
 | 
						|
    assert(SrcBlock->succ_size() == 2);
 | 
						|
    // Did we take the true or false branch?
 | 
						|
    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
 | 
						|
    X = svalBuilder.makeIntVal(constant, B->getType());
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // If there is no terminator, by construction the last statement
 | 
						|
    // in SrcBlock is the value of the enclosing expression.
 | 
						|
    // However, we still need to constrain that value to be 0 or 1.
 | 
						|
    assert(!SrcBlock->empty());
 | 
						|
    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
 | 
						|
    const Expr *RHS = cast<Expr>(Elem.getStmt());
 | 
						|
    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
 | 
						|
 | 
						|
    if (RHSVal.isUndef()) {
 | 
						|
      X = RHSVal;
 | 
						|
    } else {
 | 
						|
      // We evaluate "RHSVal != 0" expression which result in 0 if the value is
 | 
						|
      // known to be false, 1 if the value is known to be true and a new symbol
 | 
						|
      // when the assumption is unknown.
 | 
						|
      nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
 | 
						|
      X = evalBinOp(N->getState(), BO_NE,
 | 
						|
                    svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
 | 
						|
                    Zero, B->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
 | 
						|
                                   ExplodedNode *Pred,
 | 
						|
                                   ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | 
						|
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  QualType T = getContext().getCanonicalType(IE->getType());
 | 
						|
  unsigned NumInitElements = IE->getNumInits();
 | 
						|
 | 
						|
  if (!IE->isGLValue() &&
 | 
						|
      (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
 | 
						|
       T->isAnyComplexType())) {
 | 
						|
    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
 | 
						|
 | 
						|
    // Handle base case where the initializer has no elements.
 | 
						|
    // e.g: static int* myArray[] = {};
 | 
						|
    if (NumInitElements == 0) {
 | 
						|
      SVal V = svalBuilder.makeCompoundVal(T, vals);
 | 
						|
      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
 | 
						|
         ei = IE->rend(); it != ei; ++it) {
 | 
						|
      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
 | 
						|
      vals = getBasicVals().prependSVal(V, vals);
 | 
						|
    }
 | 
						|
 | 
						|
    B.generateNode(IE, Pred,
 | 
						|
                   state->BindExpr(IE, LCtx,
 | 
						|
                                   svalBuilder.makeCompoundVal(T, vals)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle scalars: int{5} and int{} and GLvalues.
 | 
						|
  // Note, if the InitListExpr is a GLvalue, it means that there is an address
 | 
						|
  // representing it, so it must have a single init element.
 | 
						|
  assert(NumInitElements <= 1);
 | 
						|
 | 
						|
  SVal V;
 | 
						|
  if (NumInitElements == 0)
 | 
						|
    V = getSValBuilder().makeZeroVal(T);
 | 
						|
  else
 | 
						|
    V = state->getSVal(IE->getInit(0), LCtx);
 | 
						|
 | 
						|
  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitGuardedExpr(const Expr *Ex,
 | 
						|
                                  const Expr *L,
 | 
						|
                                  const Expr *R,
 | 
						|
                                  ExplodedNode *Pred,
 | 
						|
                                  ExplodedNodeSet &Dst) {
 | 
						|
  assert(L && R);
 | 
						|
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  const CFGBlock *SrcBlock = nullptr;
 | 
						|
 | 
						|
  // Find the predecessor block.
 | 
						|
  ProgramStateRef SrcState = state;
 | 
						|
  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
 | 
						|
    ProgramPoint PP = N->getLocation();
 | 
						|
    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
 | 
						|
      // If the state N has multiple predecessors P, it means that successors
 | 
						|
      // of P are all equivalent.
 | 
						|
      // In turn, that means that all nodes at P are equivalent in terms
 | 
						|
      // of observable behavior at N, and we can follow any of them.
 | 
						|
      // FIXME: a more robust solution which does not walk up the tree.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SrcBlock = PP.castAs<BlockEdge>().getSrc();
 | 
						|
    SrcState = N->getState();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(SrcBlock && "missing function entry");
 | 
						|
 | 
						|
  // Find the last expression in the predecessor block.  That is the
 | 
						|
  // expression that is used for the value of the ternary expression.
 | 
						|
  bool hasValue = false;
 | 
						|
  SVal V;
 | 
						|
 | 
						|
  for (CFGElement CE : llvm::reverse(*SrcBlock)) {
 | 
						|
    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
 | 
						|
      const Expr *ValEx = cast<Expr>(CS->getStmt());
 | 
						|
      ValEx = ValEx->IgnoreParens();
 | 
						|
 | 
						|
      // For GNU extension '?:' operator, the left hand side will be an
 | 
						|
      // OpaqueValueExpr, so get the underlying expression.
 | 
						|
      if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
 | 
						|
        L = OpaqueEx->getSourceExpr();
 | 
						|
 | 
						|
      // If the last expression in the predecessor block matches true or false
 | 
						|
      // subexpression, get its the value.
 | 
						|
      if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
 | 
						|
        hasValue = true;
 | 
						|
        V = SrcState->getSVal(ValEx, LCtx);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!hasValue)
 | 
						|
    V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
 | 
						|
                                     currBldrCtx->blockCount());
 | 
						|
 | 
						|
  // Generate a new node with the binding from the appropriate path.
 | 
						|
  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::
 | 
						|
VisitOffsetOfExpr(const OffsetOfExpr *OOE,
 | 
						|
                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
 | 
						|
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
 | 
						|
  APSInt IV;
 | 
						|
  if (OOE->EvaluateAsInt(IV, getContext())) {
 | 
						|
    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
 | 
						|
    assert(OOE->getType()->isBuiltinType());
 | 
						|
    assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
 | 
						|
    assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
 | 
						|
    SVal X = svalBuilder.makeIntVal(IV);
 | 
						|
    B.generateNode(OOE, Pred,
 | 
						|
                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
 | 
						|
                                              X));
 | 
						|
  }
 | 
						|
  // FIXME: Handle the case where __builtin_offsetof is not a constant.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ExprEngine::
 | 
						|
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
 | 
						|
                              ExplodedNode *Pred,
 | 
						|
                              ExplodedNodeSet &Dst) {
 | 
						|
  // FIXME: Prechecks eventually go in ::Visit().
 | 
						|
  ExplodedNodeSet CheckedSet;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
 | 
						|
 | 
						|
  ExplodedNodeSet EvalSet;
 | 
						|
  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
 | 
						|
 | 
						|
  QualType T = Ex->getTypeOfArgument();
 | 
						|
 | 
						|
  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (Ex->getKind() == UETT_SizeOf) {
 | 
						|
      if (!T->isIncompleteType() && !T->isConstantSizeType()) {
 | 
						|
        assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
 | 
						|
 | 
						|
        // FIXME: Add support for VLA type arguments and VLA expressions.
 | 
						|
        // When that happens, we should probably refactor VLASizeChecker's code.
 | 
						|
        continue;
 | 
						|
      } else if (T->getAs<ObjCObjectType>()) {
 | 
						|
        // Some code tries to take the sizeof an ObjCObjectType, relying that
 | 
						|
        // the compiler has laid out its representation.  Just report Unknown
 | 
						|
        // for these.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    APSInt Value = Ex->EvaluateKnownConstInt(getContext());
 | 
						|
    CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
 | 
						|
 | 
						|
    ProgramStateRef state = (*I)->getState();
 | 
						|
    state = state->BindExpr(Ex, (*I)->getLocationContext(),
 | 
						|
                            svalBuilder.makeIntVal(amt.getQuantity(),
 | 
						|
                                                   Ex->getType()));
 | 
						|
    Bldr.generateNode(Ex, *I, state);
 | 
						|
  }
 | 
						|
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
 | 
						|
                                   const UnaryOperator *U,
 | 
						|
                                   StmtNodeBuilder &Bldr) {
 | 
						|
  // FIXME: We can probably just have some magic in Environment::getSVal()
 | 
						|
  // that propagates values, instead of creating a new node here.
 | 
						|
  //
 | 
						|
  // Unary "+" is a no-op, similar to a parentheses.  We still have places
 | 
						|
  // where it may be a block-level expression, so we need to
 | 
						|
  // generate an extra node that just propagates the value of the
 | 
						|
  // subexpression.
 | 
						|
  const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
  ProgramStateRef state = (*I)->getState();
 | 
						|
  const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
  Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
 | 
						|
                                           state->getSVal(Ex, LCtx)));
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
 | 
						|
                                    ExplodedNodeSet &Dst) {
 | 
						|
  // FIXME: Prechecks eventually go in ::Visit().
 | 
						|
  ExplodedNodeSet CheckedSet;
 | 
						|
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
 | 
						|
 | 
						|
  ExplodedNodeSet EvalSet;
 | 
						|
  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
 | 
						|
 | 
						|
  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    switch (U->getOpcode()) {
 | 
						|
    default: {
 | 
						|
      Bldr.takeNodes(*I);
 | 
						|
      ExplodedNodeSet Tmp;
 | 
						|
      VisitIncrementDecrementOperator(U, *I, Tmp);
 | 
						|
      Bldr.addNodes(Tmp);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case UO_Real: {
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
 | 
						|
      // FIXME: We don't have complex SValues yet.
 | 
						|
      if (Ex->getType()->isAnyComplexType()) {
 | 
						|
        // Just report "Unknown."
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // For all other types, UO_Real is an identity operation.
 | 
						|
      assert (U->getType() == Ex->getType());
 | 
						|
      ProgramStateRef state = (*I)->getState();
 | 
						|
      const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
 | 
						|
                                               state->getSVal(Ex, LCtx)));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case UO_Imag: {
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      // FIXME: We don't have complex SValues yet.
 | 
						|
      if (Ex->getType()->isAnyComplexType()) {
 | 
						|
        // Just report "Unknown."
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // For all other types, UO_Imag returns 0.
 | 
						|
      ProgramStateRef state = (*I)->getState();
 | 
						|
      const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
      SVal X = svalBuilder.makeZeroVal(Ex->getType());
 | 
						|
      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case UO_AddrOf: {
 | 
						|
      // Process pointer-to-member address operation.
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
 | 
						|
        const ValueDecl *VD = DRE->getDecl();
 | 
						|
 | 
						|
        if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) {
 | 
						|
          ProgramStateRef State = (*I)->getState();
 | 
						|
          const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
          SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD));
 | 
						|
          Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Explicitly proceed with default handler for this case cascade.
 | 
						|
      handleUOExtension(I, U, Bldr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case UO_Plus:
 | 
						|
      assert(!U->isGLValue());
 | 
						|
      // FALL-THROUGH.
 | 
						|
    case UO_Deref:
 | 
						|
    case UO_Extension: {
 | 
						|
      handleUOExtension(I, U, Bldr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case UO_LNot:
 | 
						|
    case UO_Minus:
 | 
						|
    case UO_Not: {
 | 
						|
      assert (!U->isGLValue());
 | 
						|
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      ProgramStateRef state = (*I)->getState();
 | 
						|
      const LocationContext *LCtx = (*I)->getLocationContext();
 | 
						|
 | 
						|
      // Get the value of the subexpression.
 | 
						|
      SVal V = state->getSVal(Ex, LCtx);
 | 
						|
 | 
						|
      if (V.isUnknownOrUndef()) {
 | 
						|
        Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (U->getOpcode()) {
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Invalid Opcode.");
 | 
						|
        case UO_Not:
 | 
						|
          // FIXME: Do we need to handle promotions?
 | 
						|
          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
 | 
						|
          break;
 | 
						|
        case UO_Minus:
 | 
						|
          // FIXME: Do we need to handle promotions?
 | 
						|
          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
 | 
						|
          break;
 | 
						|
        case UO_LNot:
 | 
						|
          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
 | 
						|
          //
 | 
						|
          //  Note: technically we do "E == 0", but this is the same in the
 | 
						|
          //    transfer functions as "0 == E".
 | 
						|
          SVal Result;
 | 
						|
          if (Optional<Loc> LV = V.getAs<Loc>()) {
 | 
						|
            Loc X = svalBuilder.makeNullWithType(Ex->getType());
 | 
						|
            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
 | 
						|
          } else if (Ex->getType()->isFloatingType()) {
 | 
						|
            // FIXME: handle floating point types.
 | 
						|
            Result = UnknownVal();
 | 
						|
          } else {
 | 
						|
            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
 | 
						|
            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
 | 
						|
                               U->getType());
 | 
						|
          }
 | 
						|
 | 
						|
          state = state->BindExpr(U, LCtx, Result);
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      Bldr.generateNode(U, *I, state);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
 | 
						|
}
 | 
						|
 | 
						|
void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
 | 
						|
                                                 ExplodedNode *Pred,
 | 
						|
                                                 ExplodedNodeSet &Dst) {
 | 
						|
  // Handle ++ and -- (both pre- and post-increment).
 | 
						|
  assert (U->isIncrementDecrementOp());
 | 
						|
  const Expr *Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
 | 
						|
  const LocationContext *LCtx = Pred->getLocationContext();
 | 
						|
  ProgramStateRef state = Pred->getState();
 | 
						|
  SVal loc = state->getSVal(Ex, LCtx);
 | 
						|
 | 
						|
  // Perform a load.
 | 
						|
  ExplodedNodeSet Tmp;
 | 
						|
  evalLoad(Tmp, U, Ex, Pred, state, loc);
 | 
						|
 | 
						|
  ExplodedNodeSet Dst2;
 | 
						|
  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
 | 
						|
  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
 | 
						|
 | 
						|
    state = (*I)->getState();
 | 
						|
    assert(LCtx == (*I)->getLocationContext());
 | 
						|
    SVal V2_untested = state->getSVal(Ex, LCtx);
 | 
						|
 | 
						|
    // Propagate unknown and undefined values.
 | 
						|
    if (V2_untested.isUnknownOrUndef()) {
 | 
						|
      state = state->BindExpr(U, LCtx, V2_untested);
 | 
						|
 | 
						|
      // Perform the store, so that the uninitialized value detection happens.
 | 
						|
      Bldr.takeNodes(*I);
 | 
						|
      ExplodedNodeSet Dst3;
 | 
						|
      evalStore(Dst3, U, U, *I, state, loc, V2_untested);
 | 
						|
      Bldr.addNodes(Dst3);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
 | 
						|
 | 
						|
    // Handle all other values.
 | 
						|
    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
 | 
						|
 | 
						|
    // If the UnaryOperator has non-location type, use its type to create the
 | 
						|
    // constant value. If the UnaryOperator has location type, create the
 | 
						|
    // constant with int type and pointer width.
 | 
						|
    SVal RHS;
 | 
						|
    SVal Result;
 | 
						|
 | 
						|
    if (U->getType()->isAnyPointerType())
 | 
						|
      RHS = svalBuilder.makeArrayIndex(1);
 | 
						|
    else if (U->getType()->isIntegralOrEnumerationType())
 | 
						|
      RHS = svalBuilder.makeIntVal(1, U->getType());
 | 
						|
    else
 | 
						|
      RHS = UnknownVal();
 | 
						|
 | 
						|
    // The use of an operand of type bool with the ++ operators is deprecated
 | 
						|
    // but valid until C++17. And if the operand of the ++ operator is of type
 | 
						|
    // bool, it is set to true until C++17. Note that for '_Bool', it is also
 | 
						|
    // set to true when it encounters ++ operator.
 | 
						|
    if (U->getType()->isBooleanType() && U->isIncrementOp())
 | 
						|
      Result = svalBuilder.makeTruthVal(true, U->getType());
 | 
						|
    else
 | 
						|
      Result = evalBinOp(state, Op, V2, RHS, U->getType());
 | 
						|
 | 
						|
    // Conjure a new symbol if necessary to recover precision.
 | 
						|
    if (Result.isUnknown()){
 | 
						|
      DefinedOrUnknownSVal SymVal =
 | 
						|
        svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
 | 
						|
                                     currBldrCtx->blockCount());
 | 
						|
      Result = SymVal;
 | 
						|
 | 
						|
      // If the value is a location, ++/-- should always preserve
 | 
						|
      // non-nullness.  Check if the original value was non-null, and if so
 | 
						|
      // propagate that constraint.
 | 
						|
      if (Loc::isLocType(U->getType())) {
 | 
						|
        DefinedOrUnknownSVal Constraint =
 | 
						|
        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
 | 
						|
 | 
						|
        if (!state->assume(Constraint, true)) {
 | 
						|
          // It isn't feasible for the original value to be null.
 | 
						|
          // Propagate this constraint.
 | 
						|
          Constraint = svalBuilder.evalEQ(state, SymVal,
 | 
						|
                                       svalBuilder.makeZeroVal(U->getType()));
 | 
						|
 | 
						|
          state = state->assume(Constraint, false);
 | 
						|
          assert(state);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Since the lvalue-to-rvalue conversion is explicit in the AST,
 | 
						|
    // we bind an l-value if the operator is prefix and an lvalue (in C++).
 | 
						|
    if (U->isGLValue())
 | 
						|
      state = state->BindExpr(U, LCtx, loc);
 | 
						|
    else
 | 
						|
      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
 | 
						|
 | 
						|
    // Perform the store.
 | 
						|
    Bldr.takeNodes(*I);
 | 
						|
    ExplodedNodeSet Dst3;
 | 
						|
    evalStore(Dst3, U, U, *I, state, loc, Result);
 | 
						|
    Bldr.addNodes(Dst3);
 | 
						|
  }
 | 
						|
  Dst.insert(Dst2);
 | 
						|
}
 |