2069 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2069 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ModuloScheduling.cpp - ModuloScheduling  ----------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// 
 | 
						|
//  This ModuloScheduling pass is based on the Swing Modulo Scheduling 
 | 
						|
//  algorithm. 
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ModuloSched"
 | 
						|
 | 
						|
#include "ModuloScheduling.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Target/TargetSchedInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include <cmath>
 | 
						|
#include <algorithm>
 | 
						|
#include <fstream>
 | 
						|
#include <sstream>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
#include "../MachineCodeForInstruction.h"
 | 
						|
#include "../SparcV9TmpInstr.h"
 | 
						|
#include "../SparcV9Internals.h"
 | 
						|
#include "../SparcV9RegisterInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Create ModuloSchedulingPass
 | 
						|
///
 | 
						|
FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
 | 
						|
  DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
 | 
						|
  return new ModuloSchedulingPass(targ); 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//Graph Traits for printing out the dependence graph
 | 
						|
template<typename GraphType>
 | 
						|
static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
 | 
						|
                             const GraphType >) {
 | 
						|
  std::string Filename = GraphName + ".dot";
 | 
						|
  O << "Writing '" << Filename << "'...";
 | 
						|
  std::ofstream F(Filename.c_str());
 | 
						|
  
 | 
						|
  if (F.good())
 | 
						|
    WriteGraph(F, GT);
 | 
						|
  else
 | 
						|
    O << "  error opening file for writing!";
 | 
						|
  O << "\n";
 | 
						|
};
 | 
						|
 | 
						|
//Graph Traits for printing out the dependence graph
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
 | 
						|
    static std::string getGraphName(MSchedGraph *F) {
 | 
						|
      return "Dependence Graph";
 | 
						|
    }
 | 
						|
    
 | 
						|
    static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
 | 
						|
      if (Node->getInst()) {
 | 
						|
	std::stringstream ss;
 | 
						|
	ss << *(Node->getInst());
 | 
						|
	return ss.str(); //((MachineInstr*)Node->getInst());
 | 
						|
      }
 | 
						|
      else
 | 
						|
	return "No Inst";
 | 
						|
    }
 | 
						|
    static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
 | 
						|
					  MSchedGraphNode::succ_iterator I) {
 | 
						|
      //Label each edge with the type of dependence
 | 
						|
      std::string edgelabel = "";
 | 
						|
      switch (I.getEdge().getDepOrderType()) {
 | 
						|
	
 | 
						|
      case MSchedGraphEdge::TrueDep: 
 | 
						|
	edgelabel = "True";
 | 
						|
	break;
 | 
						|
    
 | 
						|
      case MSchedGraphEdge::AntiDep: 
 | 
						|
	edgelabel =  "Anti";
 | 
						|
	break;
 | 
						|
	
 | 
						|
      case MSchedGraphEdge::OutputDep: 
 | 
						|
	edgelabel = "Output";
 | 
						|
	break;
 | 
						|
	
 | 
						|
      default:
 | 
						|
	edgelabel = "Unknown";
 | 
						|
	break;
 | 
						|
      }
 | 
						|
 | 
						|
      //FIXME
 | 
						|
      int iteDiff = I.getEdge().getIteDiff();
 | 
						|
      std::string intStr = "(IteDiff: ";
 | 
						|
      intStr += itostr(iteDiff);
 | 
						|
 | 
						|
      intStr += ")";
 | 
						|
      edgelabel += intStr;
 | 
						|
 | 
						|
      return edgelabel;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// ModuloScheduling::runOnFunction - main transformation entry point
 | 
						|
/// The Swing Modulo Schedule algorithm has three basic steps:
 | 
						|
/// 1) Computation and Analysis of the dependence graph
 | 
						|
/// 2) Ordering of the nodes
 | 
						|
/// 3) Scheduling
 | 
						|
/// 
 | 
						|
bool ModuloSchedulingPass::runOnFunction(Function &F) {
 | 
						|
  
 | 
						|
  bool Changed = false;
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
 | 
						|
  
 | 
						|
  //Get MachineFunction
 | 
						|
  MachineFunction &MF = MachineFunction::get(&F);
 | 
						|
  
 | 
						|
  //Worklist
 | 
						|
  std::vector<MachineBasicBlock*> Worklist;
 | 
						|
  
 | 
						|
  //Iterate over BasicBlocks and put them into our worklist if they are valid
 | 
						|
  for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
 | 
						|
    if(MachineBBisValid(BI)) 
 | 
						|
      Worklist.push_back(&*BI);
 | 
						|
  
 | 
						|
  DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
 | 
						|
 | 
						|
  //Iterate over the worklist and perform scheduling
 | 
						|
  for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),  
 | 
						|
	BE = Worklist.end(); BI != BE; ++BI) {
 | 
						|
    
 | 
						|
    MSchedGraph *MSG = new MSchedGraph(*BI, target);
 | 
						|
    
 | 
						|
    //Write Graph out to file
 | 
						|
    DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
 | 
						|
    
 | 
						|
    //Print out BB for debugging
 | 
						|
    DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
 | 
						|
    
 | 
						|
    //Calculate Resource II
 | 
						|
    int ResMII = calculateResMII(*BI);
 | 
						|
    
 | 
						|
    //Calculate Recurrence II
 | 
						|
    int RecMII = calculateRecMII(MSG, ResMII);
 | 
						|
    
 | 
						|
    //Our starting initiation interval is the maximum of RecMII and ResMII
 | 
						|
    II = std::max(RecMII, ResMII);
 | 
						|
    
 | 
						|
    //Print out II, RecMII, and ResMII
 | 
						|
    DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
 | 
						|
    
 | 
						|
    //Calculate Node Properties
 | 
						|
    calculateNodeAttributes(MSG, ResMII);
 | 
						|
    
 | 
						|
    //Dump node properties if in debug mode
 | 
						|
    DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I =  nodeToAttributesMap.begin(), 
 | 
						|
		E = nodeToAttributesMap.end(); I !=E; ++I) {
 | 
						|
      std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " 
 | 
						|
		<< I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth 
 | 
						|
		<< " Height: " << I->second.height << "\n";
 | 
						|
    });
 | 
						|
    
 | 
						|
    //Put nodes in order to schedule them
 | 
						|
    computePartialOrder();
 | 
						|
    
 | 
						|
    //Dump out partial order
 | 
						|
    DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), 
 | 
						|
		E = partialOrder.end(); I !=E; ++I) {
 | 
						|
      std::cerr << "Start set in PO\n";
 | 
						|
      for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
 | 
						|
	std::cerr << "PO:" << **J << "\n";
 | 
						|
    });
 | 
						|
    
 | 
						|
    //Place nodes in final order
 | 
						|
    orderNodes();
 | 
						|
    
 | 
						|
    //Dump out order of nodes
 | 
						|
    DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
 | 
						|
	  std::cerr << "FO:" << **I << "\n";
 | 
						|
    });
 | 
						|
    
 | 
						|
    //Finally schedule nodes
 | 
						|
    computeSchedule();
 | 
						|
    
 | 
						|
    //Print out final schedule
 | 
						|
    DEBUG(schedule.print(std::cerr));
 | 
						|
    
 | 
						|
 | 
						|
    //Final scheduling step is to reconstruct the loop
 | 
						|
    reconstructLoop(*BI);
 | 
						|
    
 | 
						|
    //Print out new loop
 | 
						|
    
 | 
						|
    
 | 
						|
    //Clear out our maps for the next basic block that is processed
 | 
						|
    nodeToAttributesMap.clear();
 | 
						|
    partialOrder.clear();
 | 
						|
    recurrenceList.clear();
 | 
						|
    FinalNodeOrder.clear();
 | 
						|
    schedule.clear();
 | 
						|
 | 
						|
    //Clean up. Nuke old MachineBB and llvmBB
 | 
						|
    //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
 | 
						|
    //Function *parent = (Function*) llvmBB->getParent();
 | 
						|
    //Should't std::find work??
 | 
						|
    //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
 | 
						|
    //parent->getBasicBlockList().erase(llvmBB);
 | 
						|
    
 | 
						|
    //delete(llvmBB);
 | 
						|
    //delete(*BI);
 | 
						|
  }
 | 
						|
  
 | 
						|
 
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// This function checks if a Machine Basic Block is valid for modulo
 | 
						|
/// scheduling. This means that it has no control flow (if/else or
 | 
						|
/// calls) in the block.  Currently ModuloScheduling only works on
 | 
						|
/// single basic block loops.
 | 
						|
bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
 | 
						|
 | 
						|
  bool isLoop = false;
 | 
						|
  
 | 
						|
  //Check first if its a valid loop
 | 
						|
  for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), 
 | 
						|
	E = succ_end(BI->getBasicBlock()); I != E; ++I) {
 | 
						|
    if (*I == BI->getBasicBlock())    // has single block loop
 | 
						|
      isLoop = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if(!isLoop)
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  //Get Target machine instruction info
 | 
						|
  const TargetInstrInfo *TMI = target.getInstrInfo();
 | 
						|
    
 | 
						|
  //Check each instruction and look for calls
 | 
						|
  for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | 
						|
    //Get opcode to check instruction type
 | 
						|
    MachineOpCode OC = I->getOpcode();
 | 
						|
    if(TMI->isCall(OC))
 | 
						|
      return false;
 | 
						|
 
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//ResMII is calculated by determining the usage count for each resource
 | 
						|
//and using the maximum.
 | 
						|
//FIXME: In future there should be a way to get alternative resources
 | 
						|
//for each instruction
 | 
						|
int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
 | 
						|
  
 | 
						|
  const TargetInstrInfo *mii = target.getInstrInfo();
 | 
						|
  const TargetSchedInfo *msi = target.getSchedInfo();
 | 
						|
 | 
						|
  int ResMII = 0;
 | 
						|
  
 | 
						|
  //Map to keep track of usage count of each resource
 | 
						|
  std::map<unsigned, unsigned> resourceUsageCount;
 | 
						|
 | 
						|
  for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | 
						|
 | 
						|
    //Get resource usage for this instruction
 | 
						|
    InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
 | 
						|
    std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
 | 
						|
 | 
						|
    //Loop over resources in each cycle and increments their usage count
 | 
						|
    for(unsigned i=0; i < resources.size(); ++i)
 | 
						|
      for(unsigned j=0; j < resources[i].size(); ++j) {
 | 
						|
	if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
 | 
						|
	  resourceUsageCount[resources[i][j]] = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	  resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
 | 
						|
	}
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  //Find maximum usage count
 | 
						|
  
 | 
						|
  //Get max number of instructions that can be issued at once. (FIXME)
 | 
						|
  int issueSlots = msi->maxNumIssueTotal;
 | 
						|
 | 
						|
  for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
 | 
						|
    
 | 
						|
    //Get the total number of the resources in our cpu
 | 
						|
    int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
 | 
						|
    
 | 
						|
    //Get total usage count for this resources
 | 
						|
    unsigned usageCount = RB->second;
 | 
						|
    
 | 
						|
    //Divide the usage count by either the max number we can issue or the number of
 | 
						|
    //resources (whichever is its upper bound)
 | 
						|
    double finalUsageCount;
 | 
						|
    if( resourceNum <= issueSlots)
 | 
						|
      finalUsageCount = ceil(1.0 * usageCount / resourceNum);
 | 
						|
    else
 | 
						|
      finalUsageCount = ceil(1.0 * usageCount / issueSlots);
 | 
						|
    
 | 
						|
    
 | 
						|
    //Only keep track of the max
 | 
						|
    ResMII = std::max( (int) finalUsageCount, ResMII);
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return ResMII;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// calculateRecMII - Calculates the value of the highest recurrence
 | 
						|
/// By value we mean the total latency
 | 
						|
int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
 | 
						|
  std::vector<MSchedGraphNode*> vNodes;
 | 
						|
  //Loop over all nodes in the graph
 | 
						|
  for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | 
						|
    findAllReccurrences(I->second, vNodes, MII);
 | 
						|
    vNodes.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  int RecMII = 0;
 | 
						|
  
 | 
						|
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
 | 
						|
    DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | 
						|
      std::cerr << **N << "\n";
 | 
						|
    });
 | 
						|
    RecMII = std::max(RecMII, I->first);
 | 
						|
  }
 | 
						|
    
 | 
						|
  return MII;
 | 
						|
}
 | 
						|
 | 
						|
/// calculateNodeAttributes - The following properties are calculated for
 | 
						|
/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
 | 
						|
/// MOB.
 | 
						|
void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
 | 
						|
 | 
						|
  //Loop over the nodes and add them to the map
 | 
						|
  for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | 
						|
    //Assert if its already in the map
 | 
						|
    assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
 | 
						|
    
 | 
						|
    //Put into the map with default attribute values
 | 
						|
    nodeToAttributesMap[I->second] = MSNodeAttributes();
 | 
						|
  }
 | 
						|
 | 
						|
  //Create set to deal with reccurrences
 | 
						|
  std::set<MSchedGraphNode*> visitedNodes;
 | 
						|
  
 | 
						|
  //Now Loop over map and calculate the node attributes
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
 | 
						|
    visitedNodes.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  int maxASAP = findMaxASAP();
 | 
						|
  //Calculate ALAP which depends on ASAP being totally calculated
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
 | 
						|
    visitedNodes.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
 | 
						|
   
 | 
						|
    DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
 | 
						|
    calculateDepth(I->first, (MSchedGraphNode*) 0);
 | 
						|
    calculateHeight(I->first, (MSchedGraphNode*) 0);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
 | 
						|
bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
 | 
						|
  if(destNode == 0 || srcNode ==0)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
 | 
						|
  
 | 
						|
  return findEdge;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// calculateASAP - Calculates the 
 | 
						|
int  ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
 | 
						|
    
 | 
						|
  DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
 | 
						|
 | 
						|
  //Get current node attributes
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.ASAP != -1)
 | 
						|
    return attributes.ASAP;
 | 
						|
  
 | 
						|
  int maxPredValue = 0;
 | 
						|
  
 | 
						|
  //Iterate over all of the predecessors and find max
 | 
						|
  for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | 
						|
    
 | 
						|
    //Only process if we are not ignoring the edge
 | 
						|
    if(!ignoreEdge(*P, node)) {
 | 
						|
      int predASAP = -1;
 | 
						|
      predASAP = calculateASAP(*P, MII, node);
 | 
						|
    
 | 
						|
      assert(predASAP != -1 && "ASAP has not been calculated");
 | 
						|
      int iteDiff = node->getInEdge(*P).getIteDiff();
 | 
						|
      
 | 
						|
      int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
 | 
						|
      DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
 | 
						|
      maxPredValue = std::max(maxPredValue, currentPredValue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  attributes.ASAP = maxPredValue;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
 | 
						|
  
 | 
						|
  return maxPredValue;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, 
 | 
						|
					int maxASAP, MSchedGraphNode *srcNode) {
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
 | 
						|
  
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 
 | 
						|
  if(attributes.ALAP != -1)
 | 
						|
    return attributes.ALAP;
 | 
						|
 
 | 
						|
  if(node->hasSuccessors()) {
 | 
						|
    
 | 
						|
    //Trying to deal with the issue where the node has successors, but
 | 
						|
    //we are ignoring all of the edges to them. So this is my hack for
 | 
						|
    //now.. there is probably a more elegant way of doing this (FIXME)
 | 
						|
    bool processedOneEdge = false;
 | 
						|
 | 
						|
    //FIXME, set to something high to start
 | 
						|
    int minSuccValue = 9999999;
 | 
						|
    
 | 
						|
    //Iterate over all of the predecessors and fine max
 | 
						|
    for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
 | 
						|
	  E = node->succ_end(); P != E; ++P) {
 | 
						|
      
 | 
						|
      //Only process if we are not ignoring the edge
 | 
						|
      if(!ignoreEdge(node, *P)) {
 | 
						|
	processedOneEdge = true;
 | 
						|
	int succALAP = -1;
 | 
						|
	succALAP = calculateALAP(*P, MII, maxASAP, node);
 | 
						|
	
 | 
						|
	assert(succALAP != -1 && "Successors ALAP should have been caclulated");
 | 
						|
	
 | 
						|
	int iteDiff = P.getEdge().getIteDiff();
 | 
						|
	
 | 
						|
	int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
 | 
						|
	
 | 
						|
	DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
 | 
						|
 | 
						|
	minSuccValue = std::min(minSuccValue, currentSuccValue);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if(processedOneEdge)
 | 
						|
    	attributes.ALAP = minSuccValue;
 | 
						|
    
 | 
						|
    else
 | 
						|
      attributes.ALAP = maxASAP;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    attributes.ALAP = maxASAP;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
 | 
						|
 | 
						|
  if(attributes.ALAP < 0)
 | 
						|
    attributes.ALAP = 0;
 | 
						|
 | 
						|
  return attributes.ALAP;
 | 
						|
}
 | 
						|
 | 
						|
int ModuloSchedulingPass::findMaxASAP() {
 | 
						|
  int maxASAP = 0;
 | 
						|
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
 | 
						|
	E = nodeToAttributesMap.end(); I != E; ++I)
 | 
						|
    maxASAP = std::max(maxASAP, I->second.ASAP);
 | 
						|
  return maxASAP;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
 | 
						|
  
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.height != -1)
 | 
						|
    return attributes.height;
 | 
						|
 | 
						|
  int maxHeight = 0;
 | 
						|
    
 | 
						|
  //Iterate over all of the predecessors and find max
 | 
						|
  for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
 | 
						|
	E = node->succ_end(); P != E; ++P) {
 | 
						|
    
 | 
						|
    
 | 
						|
    if(!ignoreEdge(node, *P)) {
 | 
						|
      int succHeight = calculateHeight(*P, node);
 | 
						|
 | 
						|
      assert(succHeight != -1 && "Successors Height should have been caclulated");
 | 
						|
 | 
						|
      int currentHeight = succHeight + node->getLatency();
 | 
						|
      maxHeight = std::max(maxHeight, currentHeight);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  attributes.height = maxHeight;
 | 
						|
  DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
 | 
						|
  return maxHeight;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, 
 | 
						|
					  MSchedGraphNode *destNode) {
 | 
						|
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.depth != -1)
 | 
						|
    return attributes.depth;
 | 
						|
 | 
						|
  int maxDepth = 0;
 | 
						|
      
 | 
						|
  //Iterate over all of the predecessors and fine max
 | 
						|
  for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | 
						|
 | 
						|
    if(!ignoreEdge(*P, node)) {
 | 
						|
      int predDepth = -1;
 | 
						|
      predDepth = calculateDepth(*P, node);
 | 
						|
      
 | 
						|
      assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
 | 
						|
 | 
						|
      int currentDepth = predDepth + (*P)->getLatency();
 | 
						|
      maxDepth = std::max(maxDepth, currentDepth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  attributes.depth = maxDepth;
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
 | 
						|
  return maxDepth;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
 | 
						|
  //Check to make sure that this recurrence is unique
 | 
						|
  bool same = false;
 | 
						|
 | 
						|
 | 
						|
  //Loop over all recurrences already in our list
 | 
						|
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
 | 
						|
    
 | 
						|
    bool all_same = true;
 | 
						|
     //First compare size
 | 
						|
    if(R->second.size() == recurrence.size()) {
 | 
						|
      
 | 
						|
      for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
 | 
						|
	if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
 | 
						|
	  all_same = all_same && false;
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	  all_same = all_same && true;
 | 
						|
      }
 | 
						|
      if(all_same) {
 | 
						|
	same = true;
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if(!same) {
 | 
						|
    srcBENode = recurrence.back();
 | 
						|
    destBENode = recurrence.front();
 | 
						|
    
 | 
						|
    //FIXME
 | 
						|
    if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
 | 
						|
      //DEBUG(std::cerr << "NOT A BACKEDGE\n");
 | 
						|
      //find actual backedge HACK HACK 
 | 
						|
      for(unsigned i=0; i< recurrence.size()-1; ++i) {
 | 
						|
	if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
 | 
						|
	  srcBENode = recurrence[i];
 | 
						|
	  destBENode = recurrence[i+1];
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
	  
 | 
						|
      }
 | 
						|
      
 | 
						|
    }
 | 
						|
    DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
 | 
						|
    edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
 | 
						|
    recurrenceList.insert(std::make_pair(II, recurrence));
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, 
 | 
						|
					       std::vector<MSchedGraphNode*> &visitedNodes,
 | 
						|
					       int II) {
 | 
						|
 | 
						|
  if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
 | 
						|
    std::vector<MSchedGraphNode*> recurrence;
 | 
						|
    bool first = true;
 | 
						|
    int delay = 0;
 | 
						|
    int distance = 0;
 | 
						|
    int RecMII = II; //Starting value
 | 
						|
    MSchedGraphNode *last = node;
 | 
						|
    MSchedGraphNode *srcBackEdge = 0;
 | 
						|
    MSchedGraphNode *destBackEdge = 0;
 | 
						|
    
 | 
						|
 | 
						|
 | 
						|
    for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
 | 
						|
	I !=E; ++I) {
 | 
						|
 | 
						|
      if(*I == node) 
 | 
						|
	first = false;
 | 
						|
      if(first)
 | 
						|
	continue;
 | 
						|
 | 
						|
      delay = delay + (*I)->getLatency();
 | 
						|
 | 
						|
      if(*I != node) {
 | 
						|
	int diff = (*I)->getInEdge(last).getIteDiff();
 | 
						|
	distance += diff;
 | 
						|
	if(diff > 0) {
 | 
						|
	  srcBackEdge = last;
 | 
						|
	  destBackEdge = *I;
 | 
						|
	}
 | 
						|
      }
 | 
						|
 | 
						|
      recurrence.push_back(*I);
 | 
						|
      last = *I;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
      
 | 
						|
    //Get final distance calc
 | 
						|
    distance += node->getInEdge(last).getIteDiff();
 | 
						|
   
 | 
						|
 | 
						|
    //Adjust II until we get close to the inequality delay - II*distance <= 0
 | 
						|
    
 | 
						|
    int value = delay-(RecMII * distance);
 | 
						|
    int lastII = II;
 | 
						|
    while(value <= 0) {
 | 
						|
      
 | 
						|
      lastII = RecMII;
 | 
						|
      RecMII--;
 | 
						|
      value = delay-(RecMII * distance);
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
 | 
						|
    addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
 | 
						|
    assert(distance != 0 && "Recurrence distance should not be zero");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
 | 
						|
    visitedNodes.push_back(node);
 | 
						|
    findAllReccurrences(*I, visitedNodes, II);
 | 
						|
    visitedNodes.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::computePartialOrder() {
 | 
						|
  
 | 
						|
  
 | 
						|
  //Loop over all recurrences and add to our partial order
 | 
						|
  //be sure to remove nodes that are already in the partial order in
 | 
						|
  //a different recurrence and don't add empty recurrences.
 | 
						|
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
 | 
						|
    
 | 
						|
    //Add nodes that connect this recurrence to the previous recurrence
 | 
						|
    
 | 
						|
    //If this is the first recurrence in the partial order, add all predecessors
 | 
						|
    for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    std::vector<MSchedGraphNode*> new_recurrence;
 | 
						|
    //Loop through recurrence and remove any nodes already in the partial order
 | 
						|
    for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | 
						|
      bool found = false;
 | 
						|
      for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
	if(std::find(PO->begin(), PO->end(), *N) != PO->end())
 | 
						|
	  found = true;
 | 
						|
      }
 | 
						|
      if(!found) {
 | 
						|
	new_recurrence.push_back(*N);
 | 
						|
	 
 | 
						|
	if(partialOrder.size() == 0)
 | 
						|
	  //For each predecessors, add it to this recurrence ONLY if it is not already in it
 | 
						|
	  for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), 
 | 
						|
		PE = (*N)->pred_end(); P != PE; ++P) {
 | 
						|
	    
 | 
						|
	    //Check if we are supposed to ignore this edge or not
 | 
						|
	    if(!ignoreEdge(*P, *N))
 | 
						|
	      //Check if already in this recurrence
 | 
						|
	      if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
 | 
						|
		//Also need to check if in partial order
 | 
						|
		bool predFound = false;
 | 
						|
		for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
 | 
						|
		  if(std::find(PO->begin(), PO->end(), *P) != PO->end())
 | 
						|
		    predFound = true;
 | 
						|
		}
 | 
						|
		
 | 
						|
		if(!predFound)
 | 
						|
		  if(std::find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
 | 
						|
		     new_recurrence.push_back(*P);
 | 
						|
		
 | 
						|
	      }
 | 
						|
	  }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
        
 | 
						|
    if(new_recurrence.size() > 0)
 | 
						|
      partialOrder.push_back(new_recurrence);
 | 
						|
  }
 | 
						|
  
 | 
						|
  //Add any nodes that are not already in the partial order
 | 
						|
  std::vector<MSchedGraphNode*> lastNodes;
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    bool found = false;
 | 
						|
    //Check if its already in our partial order, if not add it to the final vector
 | 
						|
    for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
      if(std::find(PO->begin(), PO->end(), I->first) != PO->end())
 | 
						|
	found = true;
 | 
						|
    }
 | 
						|
    if(!found)
 | 
						|
      lastNodes.push_back(I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  if(lastNodes.size() > 0)
 | 
						|
    partialOrder.push_back(lastNodes);
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
 | 
						|
  
 | 
						|
  //Sort CurrentSet so we can use lowerbound
 | 
						|
  std::sort(CurrentSet.begin(), CurrentSet.end());
 | 
						|
  
 | 
						|
  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | 
						|
    for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), 
 | 
						|
	  E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
 | 
						|
   
 | 
						|
      //Check if we are supposed to ignore this edge or not
 | 
						|
      if(ignoreEdge(*P,FinalNodeOrder[j]))
 | 
						|
	continue;
 | 
						|
	 
 | 
						|
      if(std::find(CurrentSet.begin(), 
 | 
						|
		     CurrentSet.end(), *P) != CurrentSet.end())
 | 
						|
	if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | 
						|
	  IntersectResult.push_back(*P);
 | 
						|
    }
 | 
						|
  } 
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
 | 
						|
 | 
						|
  //Sort CurrentSet so we can use lowerbound
 | 
						|
  std::sort(CurrentSet.begin(), CurrentSet.end());
 | 
						|
  
 | 
						|
  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | 
						|
    for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), 
 | 
						|
	  E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
 | 
						|
 | 
						|
      //Check if we are supposed to ignore this edge or not
 | 
						|
      if(ignoreEdge(FinalNodeOrder[j],*P))
 | 
						|
	continue;
 | 
						|
 | 
						|
      if(std::find(CurrentSet.begin(), 
 | 
						|
		     CurrentSet.end(), *P) != CurrentSet.end())
 | 
						|
	if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | 
						|
	  IntersectResult.push_back(*P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
 | 
						|
  std::cerr << "Intersection (";
 | 
						|
  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
 | 
						|
    std::cerr << **I << ", ";
 | 
						|
  std::cerr << ")\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::orderNodes() {
 | 
						|
  
 | 
						|
  int BOTTOM_UP = 0;
 | 
						|
  int TOP_DOWN = 1;
 | 
						|
 | 
						|
  //Set default order
 | 
						|
  int order = BOTTOM_UP;
 | 
						|
 | 
						|
 | 
						|
  //Loop over all the sets and place them in the final node order
 | 
						|
  for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Processing set in S\n");
 | 
						|
    DEBUG(dumpIntersection(*CurrentSet));
 | 
						|
 | 
						|
    //Result of intersection
 | 
						|
    std::vector<MSchedGraphNode*> IntersectCurrent;
 | 
						|
 | 
						|
    predIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
 | 
						|
    //If the intersection of predecessor and current set is not empty
 | 
						|
    //sort nodes bottom up
 | 
						|
    if(IntersectCurrent.size() != 0) {
 | 
						|
      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
 | 
						|
      order = BOTTOM_UP;
 | 
						|
    }
 | 
						|
    //If empty, use successors
 | 
						|
    else {
 | 
						|
      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
 | 
						|
 | 
						|
      succIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
 | 
						|
      //sort top-down
 | 
						|
      if(IntersectCurrent.size() != 0) {
 | 
						|
	 DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
 | 
						|
	order = TOP_DOWN;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
	DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
 | 
						|
	//Find node with max ASAP in current Set
 | 
						|
	MSchedGraphNode *node;
 | 
						|
	int maxASAP = 0;
 | 
						|
	DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
 | 
						|
	for(unsigned j=0; j < CurrentSet->size(); ++j) {
 | 
						|
	  //Get node attributes
 | 
						|
	  MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
 | 
						|
	  //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
 | 
						|
	  DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
 | 
						|
	  if(maxASAP < nodeAttr.ASAP) {
 | 
						|
	    maxASAP = nodeAttr.ASAP;
 | 
						|
	    node = (*CurrentSet)[j];
 | 
						|
	  }
 | 
						|
	}
 | 
						|
	assert(node != 0 && "In node ordering node should not be null");
 | 
						|
	IntersectCurrent.push_back(node);
 | 
						|
	order = BOTTOM_UP;
 | 
						|
      }
 | 
						|
    }
 | 
						|
      
 | 
						|
    //Repeat until all nodes are put into the final order from current set
 | 
						|
    while(IntersectCurrent.size() > 0) {
 | 
						|
 | 
						|
      if(order == TOP_DOWN) {
 | 
						|
	DEBUG(std::cerr << "Order is TOP DOWN\n");
 | 
						|
 | 
						|
	while(IntersectCurrent.size() > 0) {
 | 
						|
	  DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
 | 
						|
	  
 | 
						|
	  int MOB = 0;
 | 
						|
	  int height = 0;
 | 
						|
	  MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
 | 
						|
	  	  
 | 
						|
	  //Find node in intersection with highest heigh and lowest MOB
 | 
						|
	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
 | 
						|
		E = IntersectCurrent.end(); I != E; ++I) {
 | 
						|
	    
 | 
						|
	    //Get current nodes properties
 | 
						|
	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | 
						|
 | 
						|
	    if(height < nodeAttr.height) {
 | 
						|
	      highestHeightNode = *I;
 | 
						|
	      height = nodeAttr.height;
 | 
						|
	      MOB = nodeAttr.MOB;
 | 
						|
	    }
 | 
						|
	    else if(height ==  nodeAttr.height) {
 | 
						|
	      if(MOB > nodeAttr.height) {
 | 
						|
		highestHeightNode = *I;
 | 
						|
		height =  nodeAttr.height;
 | 
						|
		MOB = nodeAttr.MOB;
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  //Append our node with greatest height to the NodeOrder
 | 
						|
	  if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
 | 
						|
	    DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
 | 
						|
	    FinalNodeOrder.push_back(highestHeightNode);
 | 
						|
	  }
 | 
						|
 | 
						|
	  //Remove V from IntersectOrder
 | 
						|
	  IntersectCurrent.erase(std::find(IntersectCurrent.begin(), 
 | 
						|
				      IntersectCurrent.end(), highestHeightNode));
 | 
						|
 | 
						|
 | 
						|
	  //Intersect V's successors with CurrentSet
 | 
						|
	  for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
 | 
						|
		E = highestHeightNode->succ_end(); P != E; ++P) {
 | 
						|
	    //if(lower_bound(CurrentSet->begin(), 
 | 
						|
	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
 | 
						|
	    if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {  
 | 
						|
	      if(ignoreEdge(highestHeightNode, *P))
 | 
						|
		continue;
 | 
						|
	      //If not already in Intersect, add
 | 
						|
	      if(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
 | 
						|
		IntersectCurrent.push_back(*P);
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
     	} //End while loop over Intersect Size
 | 
						|
 | 
						|
	//Change direction
 | 
						|
	order = BOTTOM_UP;
 | 
						|
 | 
						|
	//Reset Intersect to reflect changes in OrderNodes
 | 
						|
	IntersectCurrent.clear();
 | 
						|
	predIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
	
 | 
						|
      } //End If TOP_DOWN
 | 
						|
	
 | 
						|
	//Begin if BOTTOM_UP
 | 
						|
      else {
 | 
						|
	DEBUG(std::cerr << "Order is BOTTOM UP\n");
 | 
						|
	while(IntersectCurrent.size() > 0) {
 | 
						|
	  DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
 | 
						|
 | 
						|
	  //dump intersection
 | 
						|
	  DEBUG(dumpIntersection(IntersectCurrent));
 | 
						|
	  //Get node with highest depth, if a tie, use one with lowest
 | 
						|
	  //MOB
 | 
						|
	  int MOB = 0;
 | 
						|
	  int depth = 0;
 | 
						|
	  MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
 | 
						|
	  
 | 
						|
	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
 | 
						|
		E = IntersectCurrent.end(); I != E; ++I) {
 | 
						|
	    //Find node attribute in graph
 | 
						|
	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | 
						|
	    
 | 
						|
	    if(depth < nodeAttr.depth) {
 | 
						|
	      highestDepthNode = *I;
 | 
						|
	      depth = nodeAttr.depth;
 | 
						|
	      MOB = nodeAttr.MOB;
 | 
						|
	    }
 | 
						|
	    else if(depth == nodeAttr.depth) {
 | 
						|
	      if(MOB > nodeAttr.MOB) {
 | 
						|
		highestDepthNode = *I;
 | 
						|
		depth = nodeAttr.depth;
 | 
						|
		MOB = nodeAttr.MOB;
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  
 | 
						|
 | 
						|
	  //Append highest depth node to the NodeOrder
 | 
						|
	   if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
 | 
						|
	     DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
 | 
						|
	     FinalNodeOrder.push_back(highestDepthNode);
 | 
						|
	   }
 | 
						|
	  //Remove heightestDepthNode from IntersectOrder
 | 
						|
	  IntersectCurrent.erase(std::find(IntersectCurrent.begin(), 
 | 
						|
				      IntersectCurrent.end(),highestDepthNode));
 | 
						|
	  
 | 
						|
 | 
						|
	  //Intersect heightDepthNode's pred with CurrentSet
 | 
						|
	  for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), 
 | 
						|
		E = highestDepthNode->pred_end(); P != E; ++P) {
 | 
						|
	    //if(lower_bound(CurrentSet->begin(), 
 | 
						|
	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
 | 
						|
	    if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
 | 
						|
	    
 | 
						|
	      if(ignoreEdge(*P, highestDepthNode))
 | 
						|
		continue;
 | 
						|
	    
 | 
						|
	    //If not already in Intersect, add
 | 
						|
	    if(std::find(IntersectCurrent.begin(), 
 | 
						|
		      IntersectCurrent.end(), *P) == IntersectCurrent.end())
 | 
						|
		IntersectCurrent.push_back(*P);
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	} //End while loop over Intersect Size
 | 
						|
	
 | 
						|
	  //Change order
 | 
						|
	order = TOP_DOWN;
 | 
						|
	
 | 
						|
	//Reset IntersectCurrent to reflect changes in OrderNodes
 | 
						|
	IntersectCurrent.clear();
 | 
						|
	succIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
	} //End if BOTTOM_DOWN
 | 
						|
	
 | 
						|
      DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
 | 
						|
    }
 | 
						|
    //End Wrapping while loop
 | 
						|
    DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");  
 | 
						|
  }//End for over all sets of nodes
 | 
						|
  
 | 
						|
  //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
 | 
						|
  //data dependencies) to the final order. We add this manually. It will always be
 | 
						|
  //in the last set of S since its not part of a recurrence
 | 
						|
    //Loop over all the sets and place them in the final node order
 | 
						|
  std::vector<std::vector<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
 | 
						|
  for(std::vector<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
 | 
						|
      CurrentNode != LastNode; ++CurrentNode) {
 | 
						|
    if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
 | 
						|
      FinalNodeOrder.push_back(*CurrentNode);
 | 
						|
  }
 | 
						|
  //Return final Order
 | 
						|
  //return FinalNodeOrder;
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::computeSchedule() {
 | 
						|
 | 
						|
  bool success = false;
 | 
						|
  
 | 
						|
  while(!success) {
 | 
						|
    
 | 
						|
    //Loop over the final node order and process each node
 | 
						|
    for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), 
 | 
						|
	  E = FinalNodeOrder.end(); I != E; ++I) {
 | 
						|
      
 | 
						|
      //CalculateEarly and Late start
 | 
						|
      int EarlyStart = -1;
 | 
						|
      int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
 | 
						|
      bool hasSucc = false;
 | 
						|
      bool hasPred = false;
 | 
						|
      
 | 
						|
      if(!(*I)->isBranch()) {
 | 
						|
	//Loop over nodes in the schedule and determine if they are predecessors
 | 
						|
	//or successors of the node we are trying to schedule
 | 
						|
	for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); 
 | 
						|
	    nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
 | 
						|
	  
 | 
						|
	  //For this cycle, get the vector of nodes schedule and loop over it
 | 
						|
	  for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
 | 
						|
	    
 | 
						|
	    if((*I)->isPredecessor(*schedNode)) {
 | 
						|
	      if(!ignoreEdge(*schedNode, *I)) {
 | 
						|
		int diff = (*I)->getInEdge(*schedNode).getIteDiff();
 | 
						|
		int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
 | 
						|
		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | 
						|
		DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
 | 
						|
		EarlyStart = std::max(EarlyStart, ES_Temp);
 | 
						|
		hasPred = true;
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	    if((*I)->isSuccessor(*schedNode)) {
 | 
						|
	      if(!ignoreEdge(*I,*schedNode)) {
 | 
						|
		int diff = (*schedNode)->getInEdge(*I).getIteDiff();
 | 
						|
		int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
 | 
						|
		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | 
						|
		DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
 | 
						|
		LateStart = std::min(LateStart, LS_Temp);
 | 
						|
		hasSucc = true;
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
      else {
 | 
						|
	//WARNING: HACK! FIXME!!!!
 | 
						|
	if((*I)->getInst()->getOpcode() == V9::BA) {
 | 
						|
	  EarlyStart = II-1;
 | 
						|
	  LateStart = II-1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	  EarlyStart = II-1;
 | 
						|
	  LateStart = II-1;
 | 
						|
	  assert( (EarlyStart >= 0) && (LateStart >=0) && "EarlyStart and LateStart must be greater then 0"); 
 | 
						|
	}
 | 
						|
	hasPred = 1;
 | 
						|
	hasSucc = 1;
 | 
						|
      }
 | 
						|
 
 | 
						|
      
 | 
						|
      DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
 | 
						|
      DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
 | 
						|
 | 
						|
      //Check if the node has no pred or successors and set Early Start to its ASAP
 | 
						|
      if(!hasSucc && !hasPred)
 | 
						|
	EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
 | 
						|
      
 | 
						|
      //Now, try to schedule this node depending upon its pred and successor in the schedule
 | 
						|
      //already
 | 
						|
      if(!hasSucc && hasPred)
 | 
						|
	success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
 | 
						|
      else if(!hasPred && hasSucc)
 | 
						|
	success = scheduleNode(*I, LateStart, (LateStart - II +1));
 | 
						|
      else if(hasPred && hasSucc)
 | 
						|
	success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
 | 
						|
      else
 | 
						|
	success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
 | 
						|
      
 | 
						|
      if(!success) {
 | 
						|
	++II; 
 | 
						|
	schedule.clear();
 | 
						|
	break;
 | 
						|
      }
 | 
						|
     
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Constructing Kernel\n");
 | 
						|
    success = schedule.constructKernel(II);
 | 
						|
    if(!success) {
 | 
						|
      ++II;
 | 
						|
      schedule.clear();
 | 
						|
    }
 | 
						|
  } 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, 
 | 
						|
				      int start, int end) {
 | 
						|
  bool success = false;
 | 
						|
 | 
						|
  DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
 | 
						|
 | 
						|
  //Make sure start and end are not negative
 | 
						|
  if(start < 0)
 | 
						|
    start = 0;
 | 
						|
  if(end < 0)
 | 
						|
    end = 0;
 | 
						|
 | 
						|
  bool forward = true;
 | 
						|
  if(start > end)
 | 
						|
    forward = false;
 | 
						|
 | 
						|
  bool increaseSC = true;
 | 
						|
  int cycle = start ;
 | 
						|
 | 
						|
 | 
						|
  while(increaseSC) {
 | 
						|
    
 | 
						|
    increaseSC = false;
 | 
						|
 | 
						|
    increaseSC = schedule.insert(node, cycle);
 | 
						|
    
 | 
						|
    if(!increaseSC) 
 | 
						|
      return true;
 | 
						|
 | 
						|
    //Increment cycle to try again
 | 
						|
    if(forward) {
 | 
						|
      ++cycle;
 | 
						|
      DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
 | 
						|
      if(cycle > end)
 | 
						|
	return false;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      --cycle;
 | 
						|
      DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
 | 
						|
      if(cycle < end)
 | 
						|
	return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return success;
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | 
						|
 | 
						|
  //Keep a map to easily know whats in the kernel
 | 
						|
  std::map<int, std::set<const MachineInstr*> > inKernel;
 | 
						|
  int maxStageCount = 0;
 | 
						|
 | 
						|
  MSchedGraphNode *branch = 0;
 | 
						|
 | 
						|
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
    maxStageCount = std::max(maxStageCount, I->second);
 | 
						|
    
 | 
						|
    //Ignore the branch, we will handle this separately
 | 
						|
    if(I->first->isBranch()) {
 | 
						|
      if (I->first->getInst()->getOpcode() != V9::BA)
 | 
						|
	branch = I->first;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    //Put int the map so we know what instructions in each stage are in the kernel
 | 
						|
    DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
 | 
						|
    inKernel[I->second].insert(I->first->getInst());
 | 
						|
  }
 | 
						|
 | 
						|
  //Get target information to look at machine operands
 | 
						|
  const TargetInstrInfo *mii = target.getInstrInfo();
 | 
						|
 | 
						|
 //Now write the prologues
 | 
						|
  for(int i = 0; i < maxStageCount; ++i) {
 | 
						|
    BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
 | 
						|
    MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | 
						|
  
 | 
						|
    DEBUG(std::cerr << "i=" << i << "\n");
 | 
						|
    for(int j = 0; j <= i; ++j) {
 | 
						|
      for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | 
						|
	if(inKernel[j].count(&*MI)) {
 | 
						|
	  MachineInstr *instClone = MI->clone();
 | 
						|
	  machineBB->push_back(instClone);
 | 
						|
	  
 | 
						|
	  DEBUG(std::cerr << "Cloning: " << *MI << "\n");
 | 
						|
 | 
						|
	  Instruction *tmp;
 | 
						|
 | 
						|
	  //After cloning, we may need to save the value that this instruction defines
 | 
						|
	  for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
 | 
						|
	    //get machine operand
 | 
						|
	    const MachineOperand &mOp = instClone->getOperand(opNum);
 | 
						|
	    if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | 
						|
 | 
						|
	      //Check if this is a value we should save
 | 
						|
	      if(valuesToSave.count(mOp.getVRegValue())) {
 | 
						|
		//Save copy in tmpInstruction
 | 
						|
		tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
		
 | 
						|
		//Get machine code for this instruction
 | 
						|
		MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) mOp.getVRegValue());
 | 
						|
		tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
		DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n");
 | 
						|
		
 | 
						|
		newValues[mOp.getVRegValue()][i]= tmp;
 | 
						|
		newValLocation[tmp] = machineBB;
 | 
						|
 | 
						|
		DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
 | 
						|
		
 | 
						|
		//Create machine instruction and put int machineBB
 | 
						|
		MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
		
 | 
						|
		DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
 | 
						|
	    //We may also need to update the value that we use if its from an earlier prologue
 | 
						|
	    if(j != 0) {
 | 
						|
	      if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
		if(newValues.count(mOp.getVRegValue()))
 | 
						|
		  if(newValues[mOp.getVRegValue()].count(j-1)) {
 | 
						|
		    DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
 | 
						|
		    //Update the operand with the right value
 | 
						|
		    instClone->getOperand(opNum).setValueReg(newValues[mOp.getVRegValue()][i-1]);
 | 
						|
		  }
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    //Stick in branch at the end
 | 
						|
    machineBB->push_back(branch->getInst()->clone());
 | 
						|
    
 | 
						|
 | 
						|
  (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);  
 | 
						|
    prologues.push_back(machineBB);
 | 
						|
    llvm_prologues.push_back(llvmBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
 | 
						|
  
 | 
						|
  std::map<int, std::set<const MachineInstr*> > inKernel;
 | 
						|
  
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
    
 | 
						|
    //Ignore the branch, we will handle this separately
 | 
						|
    if(I->first->isBranch())
 | 
						|
      continue;
 | 
						|
 | 
						|
    //Put int the map so we know what instructions in each stage are in the kernel
 | 
						|
    inKernel[I->second].insert(I->first->getInst());
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<Value*, Value*> valPHIs;
 | 
						|
 | 
						|
  //some debug stuff, will remove later
 | 
						|
  DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
 | 
						|
    std::cerr << "Old Value: " << *(V->first) << "\n";
 | 
						|
    for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
 | 
						|
      std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  //some debug stuff, will remove later
 | 
						|
  DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) {
 | 
						|
    std::cerr << "Old Value: " << *(V->first) << "\n";
 | 
						|
    for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
 | 
						|
      std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  //Now write the epilogues
 | 
						|
  for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
 | 
						|
    BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
 | 
						|
    MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | 
						|
   
 | 
						|
    DEBUG(std::cerr << " Epilogue #: " << i << "\n");
 | 
						|
 | 
						|
 | 
						|
    std::map<Value*, int> inEpilogue;
 | 
						|
 | 
						|
     for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | 
						|
      for(int j=schedule.getMaxStage(); j > i; --j) {
 | 
						|
	if(inKernel[j].count(&*MI)) {
 | 
						|
	  DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
 | 
						|
	  MachineInstr *clone = MI->clone();
 | 
						|
	  
 | 
						|
	  //Update operands that need to use the result from the phi
 | 
						|
	  for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
 | 
						|
	    //get machine operand
 | 
						|
	    const MachineOperand &mOp = clone->getOperand(opNum);
 | 
						|
	    
 | 
						|
	    if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
 | 
						|
	      
 | 
						|
	      DEBUG(std::cerr << "Writing PHI for " << *(mOp.getVRegValue()) << "\n");
 | 
						|
	    
 | 
						|
	      //If this is the last instructions for the max iterations ago, don't update operands
 | 
						|
	      if(inEpilogue.count(mOp.getVRegValue()))
 | 
						|
		if(inEpilogue[mOp.getVRegValue()] == i)
 | 
						|
		  continue;
 | 
						|
	      
 | 
						|
	      //Quickly write appropriate phis for this operand
 | 
						|
	      if(newValues.count(mOp.getVRegValue())) {
 | 
						|
		if(newValues[mOp.getVRegValue()].count(i)) {
 | 
						|
		  Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
 | 
						|
		 
 | 
						|
		  //Get machine code for this instruction
 | 
						|
		  MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) mOp.getVRegValue());
 | 
						|
		  tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
		  MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
 | 
						|
		  DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
		  valPHIs[mOp.getVRegValue()] = tmp;
 | 
						|
		}
 | 
						|
	      }
 | 
						|
	      
 | 
						|
	      if(valPHIs.count(mOp.getVRegValue())) {
 | 
						|
		//Update the operand in the cloned instruction
 | 
						|
		clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); 
 | 
						|
	      }
 | 
						|
	    }
 | 
						|
	    else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) {
 | 
						|
	      inEpilogue[mOp.getVRegValue()] = i;
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	  machineBB->push_back(clone);
 | 
						|
	}
 | 
						|
      }
 | 
						|
     }
 | 
						|
 | 
						|
    (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
 | 
						|
    epilogues.push_back(machineBB);
 | 
						|
    llvm_epilogues.push_back(llvmBB);
 | 
						|
  
 | 
						|
    DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
 | 
						|
    DEBUG(machineBB->print(std::cerr));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
 | 
						|
  
 | 
						|
  //Keep track of operands that are read and saved from a previous iteration. The new clone
 | 
						|
  //instruction will use the result of the phi instead.
 | 
						|
  std::map<Value*, Value*> finalPHIValue;
 | 
						|
  std::map<Value*, Value*> kernelValue;
 | 
						|
 | 
						|
    //Create TmpInstructions for the final phis
 | 
						|
 for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
 | 
						|
   DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first->getInst()) << "\n";);
 | 
						|
 | 
						|
   //Clone instruction
 | 
						|
   const MachineInstr *inst = I->first->getInst();
 | 
						|
   MachineInstr *instClone = inst->clone();
 | 
						|
 | 
						|
   //Insert into machine basic block
 | 
						|
   machineBB->push_back(instClone);
 | 
						|
 | 
						|
   if(I->first->isBranch()) {
 | 
						|
     //Add kernel noop
 | 
						|
     BuildMI(machineBB, V9::NOP, 0);
 | 
						|
   }
 | 
						|
   
 | 
						|
   //Loop over Machine Operands
 | 
						|
   for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | 
						|
     //get machine operand
 | 
						|
     const MachineOperand &mOp = inst->getOperand(i);
 | 
						|
   
 | 
						|
     if(I->second != 0) {
 | 
						|
       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
 | 
						|
	 //Check to see where this operand is defined if this instruction is from max stage
 | 
						|
	 if(I->second == schedule.getMaxStage()) {
 | 
						|
	   DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
 | 
						|
	 }
 | 
						|
 | 
						|
	 //If its in the value saved, we need to create a temp instruction and use that instead
 | 
						|
	 if(valuesToSave.count(mOp.getVRegValue())) {
 | 
						|
	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
	   	
 | 
						|
	   //Get machine code for this instruction
 | 
						|
	   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) mOp.getVRegValue());
 | 
						|
	   tempMvec.addTemp((Value*) tmp);
 | 
						|
	   
 | 
						|
	   //Update the operand in the cloned instruction
 | 
						|
	   instClone->getOperand(i).setValueReg(tmp);
 | 
						|
	   
 | 
						|
	   //save this as our final phi
 | 
						|
	   finalPHIValue[mOp.getVRegValue()] = tmp;
 | 
						|
	   newValLocation[tmp] = machineBB;
 | 
						|
	 }
 | 
						|
       }
 | 
						|
     }
 | 
						|
     if(I->second != schedule.getMaxStage()) {
 | 
						|
       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | 
						|
	 if(valuesToSave.count(mOp.getVRegValue())) {
 | 
						|
	   
 | 
						|
	   TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
	   
 | 
						|
	   //Get machine code for this instruction
 | 
						|
	   MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get((Instruction*) mOp.getVRegValue());
 | 
						|
	   tempVec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
	   //Create new machine instr and put in MBB
 | 
						|
	   MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
	   
 | 
						|
	   //Save for future cleanup
 | 
						|
	   kernelValue[mOp.getVRegValue()] = tmp;
 | 
						|
	   newValLocation[tmp] = machineBB;
 | 
						|
	   kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
 | 
						|
	 }
 | 
						|
       }
 | 
						|
     }
 | 
						|
   }
 | 
						|
   
 | 
						|
 }
 | 
						|
 | 
						|
  DEBUG(std::cerr << "KERNEL before PHIs\n");
 | 
						|
  DEBUG(machineBB->print(std::cerr));
 | 
						|
 | 
						|
 | 
						|
 //Loop over each value we need to generate phis for
 | 
						|
 for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), 
 | 
						|
       E = newValues.end(); V != E; ++V) {
 | 
						|
 | 
						|
 | 
						|
   DEBUG(std::cerr << "Writing phi for" << *(V->first));
 | 
						|
   DEBUG(std::cerr << "\nMap of Value* for this phi\n");
 | 
						|
   DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), 
 | 
						|
	       IE = V->second.end(); I != IE; ++I) { 
 | 
						|
     std::cerr << "Stage: " << I->first;
 | 
						|
     std::cerr << " Value: " << *(I->second) << "\n";
 | 
						|
   });
 | 
						|
 | 
						|
   //If we only have one current iteration live, its safe to set lastPhi = to kernel value
 | 
						|
   if(V->second.size() == 1) {
 | 
						|
     assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
 | 
						|
     MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); 
 | 
						|
     DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
     kernelPHIs[V->first][schedule.getMaxStage()-1] = kernelValue[V->first];
 | 
						|
   }
 | 
						|
   else {
 | 
						|
 | 
						|
     //Keep track of last phi created.
 | 
						|
     Instruction *lastPhi = 0;
 | 
						|
     
 | 
						|
     unsigned count = 1;
 | 
						|
     //Loop over the the map backwards to generate phis
 | 
						|
     for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); 
 | 
						|
	 I != IE; ++I) {
 | 
						|
 | 
						|
       if(count < (V->second).size()) {
 | 
						|
	 if(lastPhi == 0) {
 | 
						|
	   lastPhi = new TmpInstruction(I->second);
 | 
						|
 | 
						|
	   //Get machine code for this instruction
 | 
						|
	   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) V->first);
 | 
						|
	   tempMvec.addTemp((Value*) lastPhi);
 | 
						|
 | 
						|
	   MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
 | 
						|
	   DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
	   newValLocation[lastPhi] = machineBB;
 | 
						|
	 }
 | 
						|
	 else {
 | 
						|
	   Instruction *tmp = new TmpInstruction(I->second);
 | 
						|
 | 
						|
	   //Get machine code for this instruction
 | 
						|
	   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) V->first);
 | 
						|
	   tempMvec.addTemp((Value*) tmp);
 | 
						|
	   
 | 
						|
 | 
						|
	   MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
 | 
						|
	   DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
	   lastPhi = tmp;
 | 
						|
	   kernelPHIs[V->first][I->first] = lastPhi;
 | 
						|
	   newValLocation[lastPhi] = machineBB;
 | 
						|
	 }
 | 
						|
       }
 | 
						|
       //Final phi value
 | 
						|
       else {
 | 
						|
	 //The resulting value must be the Value* we created earlier
 | 
						|
	 assert(lastPhi != 0 && "Last phi is NULL!\n");
 | 
						|
	 MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
 | 
						|
	 DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
	 kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
 | 
						|
       }
 | 
						|
 | 
						|
       ++count;
 | 
						|
     }
 | 
						|
 | 
						|
   }
 | 
						|
 } 
 | 
						|
 | 
						|
  DEBUG(std::cerr << "KERNEL after PHIs\n");
 | 
						|
  DEBUG(machineBB->print(std::cerr));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | 
						|
 | 
						|
  //Worklist to delete things
 | 
						|
  std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
 | 
						|
 | 
						|
  //Worklist of TmpInstructions that need to be added to a MCFI
 | 
						|
  std::vector<Instruction*> addToMCFI;
 | 
						|
  
 | 
						|
  //Worklist to add OR instructions to end of kernel so not to invalidate the iterator
 | 
						|
  //std::vector<std::pair<Instruction*, Value*> > newORs;
 | 
						|
 | 
						|
  const TargetInstrInfo *TMI = target.getInstrInfo();
 | 
						|
 | 
						|
  //Start with the kernel and for each phi insert a copy for the phi def and for each arg
 | 
						|
  for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
 | 
						|
  
 | 
						|
    //Get op code and check if its a phi
 | 
						|
    if(I->getOpcode() == V9::PHI) {
 | 
						|
      
 | 
						|
      DEBUG(std::cerr << "Replacing PHI: " << *I << "\n");
 | 
						|
      Instruction *tmp = 0;
 | 
						|
 | 
						|
      for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
	//Get Operand
 | 
						|
	const MachineOperand &mOp = I->getOperand(i);
 | 
						|
	assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | 
						|
	
 | 
						|
	if(!tmp) {
 | 
						|
	  tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
	  addToMCFI.push_back(tmp);
 | 
						|
	}
 | 
						|
 | 
						|
	//Now for all our arguments we read, OR to the new TmpInstruction that we created
 | 
						|
	if(mOp.isUse()) {
 | 
						|
	  DEBUG(std::cerr << "Use: " << mOp << "\n");
 | 
						|
	  //Place a copy at the end of its BB but before the branches
 | 
						|
	  assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | 
						|
	  //Reverse iterate to find the branches, we can safely assume no instructions have been
 | 
						|
	  //put in the nop positions
 | 
						|
	  for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | 
						|
	    MachineOpCode opc = inst->getOpcode();
 | 
						|
	    if(TMI->isBranch(opc) || TMI->isNop(opc))
 | 
						|
	      continue;
 | 
						|
	    else {
 | 
						|
	      BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	    
 | 
						|
	  }
 | 
						|
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	  //Remove the phi and replace it with an OR
 | 
						|
	  DEBUG(std::cerr << "Def: " << mOp << "\n");
 | 
						|
	  //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
 | 
						|
	  BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | 
						|
	  worklist.push_back(std::make_pair(kernelBB, I));
 | 
						|
	}
 | 
						|
	
 | 
						|
      }
 | 
						|
      
 | 
						|
    }
 | 
						|
 | 
						|
    else {
 | 
						|
      //We found an instruction that we can add to its mcfi
 | 
						|
      if(addToMCFI.size() > 0) {
 | 
						|
	for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
	  const MachineOperand &mOp = I->getOperand(i);
 | 
						|
	  if(mOp.getType() == MachineOperand::MO_VirtualRegister) {
 | 
						|
	    if(!isa<TmpInstruction>(mOp.getVRegValue()) && !isa<PHINode>(mOp.getVRegValue())) {
 | 
						|
	      //Get machine code for this instruction
 | 
						|
	      MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) mOp.getVRegValue());
 | 
						|
	      for(unsigned x = 0; x < addToMCFI.size(); ++x) {
 | 
						|
		tempMvec.addTemp(addToMCFI[x]);
 | 
						|
	      }
 | 
						|
	      addToMCFI.clear();
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
  }
 | 
						|
 | 
						|
  //for(std::vector<std::pair<Instruction*, Value*> >::reverse_iterator I = newORs.rbegin(), IE = newORs.rend(); I != IE; ++I)
 | 
						|
  //BuildMI(*kernelBB, kernelBB->begin(), V9::ORr, 3).addReg(I->first).addImm(0).addRegDef(I->second);
 | 
						|
 | 
						|
  //Remove phis from epilogue
 | 
						|
  for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
 | 
						|
    for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
 | 
						|
      //Get op code and check if its a phi
 | 
						|
      if(I->getOpcode() == V9::PHI) {
 | 
						|
	Instruction *tmp = 0;
 | 
						|
 | 
						|
	for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
	  //Get Operand
 | 
						|
	  const MachineOperand &mOp = I->getOperand(i);
 | 
						|
	  assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | 
						|
	  
 | 
						|
	  if(!tmp) {
 | 
						|
	    tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
	    addToMCFI.push_back(tmp);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  //Now for all our arguments we read, OR to the new TmpInstruction that we created
 | 
						|
	  if(mOp.isUse()) {
 | 
						|
	    DEBUG(std::cerr << "Use: " << mOp << "\n");
 | 
						|
	    //Place a copy at the end of its BB but before the branches
 | 
						|
	    assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | 
						|
	    //Reverse iterate to find the branches, we can safely assume no instructions have been
 | 
						|
	    //put in the nop positions
 | 
						|
	    for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | 
						|
	      MachineOpCode opc = inst->getOpcode();
 | 
						|
	      if(TMI->isBranch(opc) || TMI->isNop(opc))
 | 
						|
		continue;
 | 
						|
	      else {
 | 
						|
		BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
		break;
 | 
						|
	      }
 | 
						|
	      
 | 
						|
	    }
 | 
						|
	  	  	    
 | 
						|
	  }
 | 
						|
	  else {
 | 
						|
	    //Remove the phi and replace it with an OR
 | 
						|
	    DEBUG(std::cerr << "Def: " << mOp << "\n");
 | 
						|
	    BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | 
						|
	    worklist.push_back(std::make_pair(*MB,I));
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	}
 | 
						|
      }
 | 
						|
 | 
						|
      else {
 | 
						|
	//We found an instruction that we can add to its mcfi
 | 
						|
	if(addToMCFI.size() > 0) {
 | 
						|
	  for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
	    const MachineOperand &mOp = I->getOperand(i);
 | 
						|
	    if(mOp.getType() == MachineOperand::MO_VirtualRegister) {
 | 
						|
 | 
						|
	       if(!isa<TmpInstruction>(mOp.getVRegValue()) && !isa<PHINode>(mOp.getVRegValue())) {
 | 
						|
		 //Get machine code for this instruction
 | 
						|
		 MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get((Instruction*) mOp.getVRegValue());
 | 
						|
		 for(unsigned x = 0; x < addToMCFI.size(); ++x) {
 | 
						|
		   tempMvec.addTemp(addToMCFI[x]);
 | 
						|
		 }
 | 
						|
		 addToMCFI.clear();
 | 
						|
		 break;
 | 
						|
	       }
 | 
						|
	    }
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
    //Delete the phis
 | 
						|
  for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
 | 
						|
  
 | 
						|
    DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n");
 | 
						|
    I->first->erase(I->second);
 | 
						|
		    
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Reconstructing Loop\n");
 | 
						|
 | 
						|
  //First find the value *'s that we need to "save"
 | 
						|
  std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave;
 | 
						|
 | 
						|
  //Keep track of instructions we have already seen and their stage because
 | 
						|
  //we don't want to "save" values if they are used in the kernel immediately
 | 
						|
  std::map<const MachineInstr*, int> lastInstrs;
 | 
						|
 | 
						|
  //Loop over kernel and only look at instructions from a stage > 0
 | 
						|
  //Look at its operands and save values *'s that are read
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
 | 
						|
    if(I->second !=0) {
 | 
						|
      //For this instruction, get the Value*'s that it reads and put them into the set.
 | 
						|
      //Assert if there is an operand of another type that we need to save
 | 
						|
      const MachineInstr *inst = I->first->getInst();
 | 
						|
      lastInstrs[inst] = I->second;
 | 
						|
 | 
						|
      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | 
						|
	//get machine operand
 | 
						|
	const MachineOperand &mOp = inst->getOperand(i);
 | 
						|
	
 | 
						|
	if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
	  //find the value in the map
 | 
						|
	  if (const Value* srcI = mOp.getVRegValue()) {
 | 
						|
 | 
						|
	    //Before we declare this Value* one that we should save
 | 
						|
	    //make sure its def is not of the same stage as this instruction
 | 
						|
	    //because it will be consumed before its used
 | 
						|
	    Instruction *defInst = (Instruction*) srcI;
 | 
						|
	    
 | 
						|
	    //Should we save this value?
 | 
						|
	    bool save = true;
 | 
						|
 | 
						|
	    //Get Machine code for this instruction, and loop backwards over the array
 | 
						|
	    //to find the def
 | 
						|
	    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defInst);
 | 
						|
	    for (int j = tempMvec.size()-1; j >= 0; j--) {
 | 
						|
	       MachineInstr *temp = tempMvec[j];
 | 
						|
	       
 | 
						|
	       //Loop over instructions
 | 
						|
	       for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | 
						|
		 MachineOperand &mDefOp = temp->getOperand(opNum);
 | 
						|
		 
 | 
						|
		 if (mDefOp.getType() == MachineOperand::MO_VirtualRegister && mDefOp.isDef()) {
 | 
						|
		   const Value* defVReg = mDefOp.getVRegValue();
 | 
						|
		   if(defVReg == srcI) {
 | 
						|
		     //Check if instruction has been seen already and is of same stage
 | 
						|
		     if(lastInstrs.count(temp)) {
 | 
						|
		       if(lastInstrs[temp] == I->second)
 | 
						|
			 save = false;
 | 
						|
		     }
 | 
						|
		   }
 | 
						|
		 }
 | 
						|
	       }
 | 
						|
	    }
 | 
						|
	    if(save)
 | 
						|
	      valuesToSave[srcI] = std::make_pair(I->first, i);
 | 
						|
	  }	  
 | 
						|
	}
 | 
						|
	
 | 
						|
	if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
	  assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
 | 
						|
 | 
						|
  //Map to keep track of old to new values
 | 
						|
  std::map<Value*, std::map<int, Value*> > newValues;
 | 
						|
 
 | 
						|
  //Map to keep track of old to new values in kernel
 | 
						|
  std::map<Value*, std::map<int, Value*> > kernelPHIs;
 | 
						|
 | 
						|
  //Another map to keep track of what machine basic blocks these new value*s are in since
 | 
						|
  //they have no llvm instruction equivalent
 | 
						|
  std::map<Value*, MachineBasicBlock*> newValLocation;
 | 
						|
 | 
						|
  std::vector<MachineBasicBlock*> prologues;
 | 
						|
  std::vector<BasicBlock*> llvm_prologues;
 | 
						|
 | 
						|
 | 
						|
  //Write prologue
 | 
						|
  writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);
 | 
						|
    
 | 
						|
  //Print out epilogues and prologue
 | 
						|
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); 
 | 
						|
      I != E; ++I) {
 | 
						|
    std::cerr << "PROLOGUE\n";
 | 
						|
    (*I)->print(std::cerr);
 | 
						|
  });
 | 
						|
 | 
						|
  BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
 | 
						|
  MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
 | 
						|
  (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
 | 
						|
  writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
 | 
						|
  
 | 
						|
 
 | 
						|
  std::vector<MachineBasicBlock*> epilogues;
 | 
						|
  std::vector<BasicBlock*> llvm_epilogues;
 | 
						|
 | 
						|
  //Write epilogues
 | 
						|
  writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
 | 
						|
 | 
						|
 | 
						|
  const TargetInstrInfo *TMI = target.getInstrInfo();
 | 
						|
 | 
						|
  //Fix up machineBB and llvmBB branches
 | 
						|
  for(unsigned I = 0; I <  prologues.size(); ++I) {
 | 
						|
   
 | 
						|
    MachineInstr *branch = 0;
 | 
						|
    
 | 
						|
    //Find terminator since getFirstTerminator does not work!
 | 
						|
    for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
 | 
						|
      MachineOpCode OC = mInst->getOpcode();
 | 
						|
      if(TMI->isBranch(OC)) {
 | 
						|
	branch = &*mInst;
 | 
						|
	DEBUG(std::cerr << *mInst << "\n");
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    //Update branch
 | 
						|
    for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
 | 
						|
      MachineOperand &mOp = branch->getOperand(opNum);
 | 
						|
      if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
	mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
 | 
						|
	
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    //Update llvm basic block with our new branch instr
 | 
						|
    DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
 | 
						|
    const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | 
						|
    //TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition());
 | 
						|
 | 
						|
    //Add TmpInstruction to original branches MCFI
 | 
						|
    //MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(branchVal);
 | 
						|
    //tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
    if(I == prologues.size()-1) {
 | 
						|
      TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | 
						|
						 llvm_epilogues[(llvm_epilogues.size()-1-I)], 
 | 
						|
						 branchVal->getCondition(), 
 | 
						|
						 llvm_prologues[I]);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
 | 
						|
						 llvm_epilogues[(llvm_epilogues.size()-1-I)], 
 | 
						|
						 branchVal->getCondition(), 
 | 
						|
						 llvm_prologues[I]);
 | 
						|
 | 
						|
    assert(branch != 0 && "There must be a terminator for this machine basic block!\n");
 | 
						|
  
 | 
						|
    //Push nop onto end of machine basic block
 | 
						|
    BuildMI(prologues[I], V9::NOP, 0);
 | 
						|
    
 | 
						|
    //Add a unconditional branch to the next prologue
 | 
						|
    if(I != prologues.size()-1) {
 | 
						|
      BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvm_prologues[I+1]);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvmKernelBB);
 | 
						|
 | 
						|
    //Add one more nop!
 | 
						|
    BuildMI(prologues[I], V9::NOP, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  //Fix up kernel machine branches
 | 
						|
  MachineInstr *branch = 0;
 | 
						|
  MachineInstr *BAbranch = 0;
 | 
						|
 | 
						|
  for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
 | 
						|
    MachineOpCode OC = mInst->getOpcode();
 | 
						|
    if(TMI->isBranch(OC)) {
 | 
						|
      if(mInst->getOpcode() == V9::BA) {
 | 
						|
	BAbranch = &*mInst;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
	branch = &*mInst;
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n");
 | 
						|
   
 | 
						|
  //Update kernel self loop branch
 | 
						|
  for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
 | 
						|
    MachineOperand &mOp = branch->getOperand(opNum);
 | 
						|
    
 | 
						|
    if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
      mOp.setValueReg(llvmKernelBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *origBAVal = 0;
 | 
						|
 | 
						|
  //Update kernel BA branch
 | 
						|
  for(unsigned opNum = 0; opNum < BAbranch->getNumOperands(); ++opNum) {
 | 
						|
    MachineOperand &mOp = BAbranch->getOperand(opNum);
 | 
						|
    if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
      origBAVal = mOp.getVRegValue();
 | 
						|
      if(llvm_epilogues.size() > 0)
 | 
						|
	mOp.setValueReg(llvm_epilogues[0]);
 | 
						|
      
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert((origBAVal != 0) && "Could not find original branch always value");
 | 
						|
 | 
						|
  //Update kernelLLVM branches
 | 
						|
  const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | 
						|
  //TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition());
 | 
						|
 | 
						|
  //Add TmpInstruction to original branches MCFI
 | 
						|
  //MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(branchVal);
 | 
						|
  //tempMvec.addTemp((Value*) tmp);
 | 
						|
  
 | 
						|
  TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | 
						|
					     llvm_epilogues[0], 
 | 
						|
					     branchVal->getCondition(), 
 | 
						|
					     llvmKernelBB);
 | 
						|
 | 
						|
 | 
						|
   //Lastly add unconditional branches for the epilogues
 | 
						|
   for(unsigned I = 0; I <  epilogues.size(); ++I) {
 | 
						|
     
 | 
						|
    //Now since we don't have fall throughs, add a unconditional branch to the next prologue
 | 
						|
     if(I != epilogues.size()-1) {
 | 
						|
       BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]);
 | 
						|
       //Add unconditional branch to end of epilogue
 | 
						|
       TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], 
 | 
						|
						  llvm_epilogues[I]);
 | 
						|
 | 
						|
     }
 | 
						|
     else {
 | 
						|
       BuildMI(epilogues[I], V9::BA, 1).addPCDisp(origBAVal);
 | 
						|
       
 | 
						|
      
 | 
						|
       //Update last epilogue exit branch
 | 
						|
       BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | 
						|
       //Find where we are supposed to branch to
 | 
						|
       BasicBlock *nextBlock = 0;
 | 
						|
       for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
 | 
						|
	 if(branchVal->getSuccessor(j) != BB->getBasicBlock())
 | 
						|
	   nextBlock = branchVal->getSuccessor(j);
 | 
						|
       }
 | 
						|
       
 | 
						|
       assert((nextBlock != 0) && "Next block should not be null!");
 | 
						|
       TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
 | 
						|
     }
 | 
						|
     //Add one more nop!
 | 
						|
     BuildMI(epilogues[I], V9::NOP, 0);
 | 
						|
     
 | 
						|
   }
 | 
						|
 | 
						|
   //FIX UP Machine BB entry!!
 | 
						|
   //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
 | 
						|
   
 | 
						|
 | 
						|
   //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
 | 
						|
   const BasicBlock *llvmBB = BB->getBasicBlock();
 | 
						|
 | 
						|
   for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
 | 
						|
     if(*P == llvmBB)
 | 
						|
       continue;
 | 
						|
     else {
 | 
						|
       DEBUG(std::cerr << "Found our entry BB\n");
 | 
						|
       //Get the Terminator instruction for this basic block and print it out
 | 
						|
       DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
 | 
						|
       //Update the terminator
 | 
						|
       TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
 | 
						|
       for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
 | 
						|
	 if(term->getSuccessor(i) == llvmBB) {
 | 
						|
	   DEBUG(std::cerr << "Replacing successor bb\n");
 | 
						|
	   if(llvm_prologues.size() > 0) {
 | 
						|
	     term->setSuccessor(i, llvm_prologues[0]);
 | 
						|
	     //Also update its corresponding machine instruction
 | 
						|
	     MachineCodeForInstruction & tempMvec =
 | 
						|
	       MachineCodeForInstruction::get(term);
 | 
						|
	     for (unsigned j = 0; j < tempMvec.size(); j++) {
 | 
						|
	       MachineInstr *temp = tempMvec[j];
 | 
						|
	       MachineOpCode opc = temp->getOpcode();
 | 
						|
	       if(TMI->isBranch(opc)) {
 | 
						|
		 DEBUG(std::cerr << *temp << "\n");
 | 
						|
		 //Update branch
 | 
						|
		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | 
						|
		   MachineOperand &mOp = temp->getOperand(opNum);
 | 
						|
		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
		     mOp.setValueReg(llvm_prologues[0]);
 | 
						|
		   }
 | 
						|
		 }
 | 
						|
	       }
 | 
						|
	     }        
 | 
						|
	   }
 | 
						|
	   else {
 | 
						|
	     term->setSuccessor(i, llvmKernelBB);
 | 
						|
	   //Also update its corresponding machine instruction
 | 
						|
	     MachineCodeForInstruction & tempMvec =
 | 
						|
	       MachineCodeForInstruction::get(term);
 | 
						|
	     for (unsigned j = 0; j < tempMvec.size(); j++) {
 | 
						|
	       MachineInstr *temp = tempMvec[j];
 | 
						|
	       MachineOpCode opc = temp->getOpcode();
 | 
						|
	       if(TMI->isBranch(opc)) {
 | 
						|
		 DEBUG(std::cerr << *temp << "\n");
 | 
						|
		 //Update branch
 | 
						|
		 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | 
						|
		   MachineOperand &mOp = temp->getOperand(opNum);
 | 
						|
		   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
		     mOp.setValueReg(llvmKernelBB);
 | 
						|
		   }
 | 
						|
		 }
 | 
						|
	       }
 | 
						|
	     }
 | 
						|
	   }
 | 
						|
	 }
 | 
						|
       }
 | 
						|
       break;
 | 
						|
     }
 | 
						|
   }
 | 
						|
   
 | 
						|
   removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);
 | 
						|
 | 
						|
 | 
						|
    
 | 
						|
  //Print out epilogues and prologue
 | 
						|
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); 
 | 
						|
      I != E; ++I) {
 | 
						|
    std::cerr << "PROLOGUE\n";
 | 
						|
    (*I)->print(std::cerr);
 | 
						|
  });
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "KERNEL\n");
 | 
						|
  DEBUG(machineKernelBB->print(std::cerr));
 | 
						|
 | 
						|
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); 
 | 
						|
      I != E; ++I) {
 | 
						|
    std::cerr << "EPILOGUE\n";
 | 
						|
    (*I)->print(std::cerr);
 | 
						|
  });
 | 
						|
 | 
						|
 | 
						|
  DEBUG(std::cerr << "New Machine Function" << "\n");
 | 
						|
  DEBUG(std::cerr << BB->getParent() << "\n");
 | 
						|
 | 
						|
  //BB->getParent()->getBasicBlockList().erase(BB);
 | 
						|
 | 
						|
}
 | 
						|
 |