1264 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1264 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- asan_allocator.cpp ------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of AddressSanitizer, an address sanity checker.
 | |
| //
 | |
| // Implementation of ASan's memory allocator, 2-nd version.
 | |
| // This variant uses the allocator from sanitizer_common, i.e. the one shared
 | |
| // with ThreadSanitizer and MemorySanitizer.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "asan_allocator.h"
 | |
| 
 | |
| #include "asan_mapping.h"
 | |
| #include "asan_poisoning.h"
 | |
| #include "asan_report.h"
 | |
| #include "asan_stack.h"
 | |
| #include "asan_thread.h"
 | |
| #include "lsan/lsan_common.h"
 | |
| #include "sanitizer_common/sanitizer_allocator_checks.h"
 | |
| #include "sanitizer_common/sanitizer_allocator_interface.h"
 | |
| #include "sanitizer_common/sanitizer_errno.h"
 | |
| #include "sanitizer_common/sanitizer_flags.h"
 | |
| #include "sanitizer_common/sanitizer_internal_defs.h"
 | |
| #include "sanitizer_common/sanitizer_list.h"
 | |
| #include "sanitizer_common/sanitizer_quarantine.h"
 | |
| #include "sanitizer_common/sanitizer_stackdepot.h"
 | |
| 
 | |
| namespace __asan {
 | |
| 
 | |
| // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
 | |
| // We use adaptive redzones: for larger allocation larger redzones are used.
 | |
| static u32 RZLog2Size(u32 rz_log) {
 | |
|   CHECK_LT(rz_log, 8);
 | |
|   return 16 << rz_log;
 | |
| }
 | |
| 
 | |
| static u32 RZSize2Log(u32 rz_size) {
 | |
|   CHECK_GE(rz_size, 16);
 | |
|   CHECK_LE(rz_size, 2048);
 | |
|   CHECK(IsPowerOfTwo(rz_size));
 | |
|   u32 res = Log2(rz_size) - 4;
 | |
|   CHECK_EQ(rz_size, RZLog2Size(res));
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| static AsanAllocator &get_allocator();
 | |
| 
 | |
| static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
 | |
|                                u32 tid, u32 stack) {
 | |
|   u64 context = tid;
 | |
|   context <<= 32;
 | |
|   context += stack;
 | |
|   atomic_store(atomic_context, context, memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
 | |
|                               u32 &tid, u32 &stack) {
 | |
|   u64 context = atomic_load(atomic_context, memory_order_relaxed);
 | |
|   stack = context;
 | |
|   context >>= 32;
 | |
|   tid = context;
 | |
| }
 | |
| 
 | |
| // The memory chunk allocated from the underlying allocator looks like this:
 | |
| // L L L L L L H H U U U U U U R R
 | |
| //   L -- left redzone words (0 or more bytes)
 | |
| //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
 | |
| //   U -- user memory.
 | |
| //   R -- right redzone (0 or more bytes)
 | |
| // ChunkBase consists of ChunkHeader and other bytes that overlap with user
 | |
| // memory.
 | |
| 
 | |
| // If the left redzone is greater than the ChunkHeader size we store a magic
 | |
| // value in the first uptr word of the memory block and store the address of
 | |
| // ChunkBase in the next uptr.
 | |
| // M B L L L L L L L L L  H H U U U U U U
 | |
| //   |                    ^
 | |
| //   ---------------------|
 | |
| //   M -- magic value kAllocBegMagic
 | |
| //   B -- address of ChunkHeader pointing to the first 'H'
 | |
| 
 | |
| class ChunkHeader {
 | |
|  public:
 | |
|   atomic_uint8_t chunk_state;
 | |
|   u8 alloc_type : 2;
 | |
|   u8 lsan_tag : 2;
 | |
| 
 | |
|   // align < 8 -> 0
 | |
|   // else      -> log2(min(align, 512)) - 2
 | |
|   u8 user_requested_alignment_log : 3;
 | |
| 
 | |
|  private:
 | |
|   u16 user_requested_size_hi;
 | |
|   u32 user_requested_size_lo;
 | |
|   atomic_uint64_t alloc_context_id;
 | |
| 
 | |
|  public:
 | |
|   uptr UsedSize() const {
 | |
|     uptr R = user_requested_size_lo;
 | |
|     if (sizeof(uptr) > sizeof(user_requested_size_lo))
 | |
|       R += (uptr)user_requested_size_hi << (8 * sizeof(user_requested_size_lo));
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   void SetUsedSize(uptr size) {
 | |
|     user_requested_size_lo = size;
 | |
|     if (sizeof(uptr) > sizeof(user_requested_size_lo)) {
 | |
|       size >>= (8 * sizeof(user_requested_size_lo));
 | |
|       user_requested_size_hi = size;
 | |
|       CHECK_EQ(user_requested_size_hi, size);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void SetAllocContext(u32 tid, u32 stack) {
 | |
|     AtomicContextStore(&alloc_context_id, tid, stack);
 | |
|   }
 | |
| 
 | |
|   void GetAllocContext(u32 &tid, u32 &stack) const {
 | |
|     AtomicContextLoad(&alloc_context_id, tid, stack);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ChunkBase : public ChunkHeader {
 | |
|   atomic_uint64_t free_context_id;
 | |
| 
 | |
|  public:
 | |
|   void SetFreeContext(u32 tid, u32 stack) {
 | |
|     AtomicContextStore(&free_context_id, tid, stack);
 | |
|   }
 | |
| 
 | |
|   void GetFreeContext(u32 &tid, u32 &stack) const {
 | |
|     AtomicContextLoad(&free_context_id, tid, stack);
 | |
|   }
 | |
| };
 | |
| 
 | |
| static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
 | |
| static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
 | |
| COMPILER_CHECK(kChunkHeaderSize == 16);
 | |
| COMPILER_CHECK(kChunkHeader2Size <= 16);
 | |
| 
 | |
| enum {
 | |
|   // Either just allocated by underlying allocator, but AsanChunk is not yet
 | |
|   // ready, or almost returned to undelying allocator and AsanChunk is already
 | |
|   // meaningless.
 | |
|   CHUNK_INVALID = 0,
 | |
|   // The chunk is allocated and not yet freed.
 | |
|   CHUNK_ALLOCATED = 2,
 | |
|   // The chunk was freed and put into quarantine zone.
 | |
|   CHUNK_QUARANTINE = 3,
 | |
| };
 | |
| 
 | |
| class AsanChunk : public ChunkBase {
 | |
|  public:
 | |
|   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
 | |
|   bool AddrIsInside(uptr addr) {
 | |
|     return (addr >= Beg()) && (addr < Beg() + UsedSize());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class LargeChunkHeader {
 | |
|   static constexpr uptr kAllocBegMagic =
 | |
|       FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
 | |
|   atomic_uintptr_t magic;
 | |
|   AsanChunk *chunk_header;
 | |
| 
 | |
|  public:
 | |
|   AsanChunk *Get() const {
 | |
|     return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
 | |
|                ? chunk_header
 | |
|                : nullptr;
 | |
|   }
 | |
| 
 | |
|   void Set(AsanChunk *p) {
 | |
|     if (p) {
 | |
|       chunk_header = p;
 | |
|       atomic_store(&magic, kAllocBegMagic, memory_order_release);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     uptr old = kAllocBegMagic;
 | |
|     if (!atomic_compare_exchange_strong(&magic, &old, 0,
 | |
|                                         memory_order_release)) {
 | |
|       CHECK_EQ(old, kAllocBegMagic);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct QuarantineCallback {
 | |
|   QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
 | |
|       : cache_(cache),
 | |
|         stack_(stack) {
 | |
|   }
 | |
| 
 | |
|   void Recycle(AsanChunk *m) {
 | |
|     void *p = get_allocator().GetBlockBegin(m);
 | |
|     if (p != m) {
 | |
|       // Clear the magic value, as allocator internals may overwrite the
 | |
|       // contents of deallocated chunk, confusing GetAsanChunk lookup.
 | |
|       reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
 | |
|     }
 | |
| 
 | |
|     u8 old_chunk_state = CHUNK_QUARANTINE;
 | |
|     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
 | |
|                                         CHUNK_INVALID, memory_order_acquire)) {
 | |
|       CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
 | |
|     }
 | |
| 
 | |
|     PoisonShadow(m->Beg(),
 | |
|                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
 | |
|                  kAsanHeapLeftRedzoneMagic);
 | |
| 
 | |
|     // Statistics.
 | |
|     AsanStats &thread_stats = GetCurrentThreadStats();
 | |
|     thread_stats.real_frees++;
 | |
|     thread_stats.really_freed += m->UsedSize();
 | |
| 
 | |
|     get_allocator().Deallocate(cache_, p);
 | |
|   }
 | |
| 
 | |
|   void *Allocate(uptr size) {
 | |
|     void *res = get_allocator().Allocate(cache_, size, 1);
 | |
|     // TODO(alekseys): Consider making quarantine OOM-friendly.
 | |
|     if (UNLIKELY(!res))
 | |
|       ReportOutOfMemory(size, stack_);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   void Deallocate(void *p) {
 | |
|     get_allocator().Deallocate(cache_, p);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   AllocatorCache* const cache_;
 | |
|   BufferedStackTrace* const stack_;
 | |
| };
 | |
| 
 | |
| typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
 | |
| typedef AsanQuarantine::Cache QuarantineCache;
 | |
| 
 | |
| void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
 | |
|   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
 | |
|   // Statistics.
 | |
|   AsanStats &thread_stats = GetCurrentThreadStats();
 | |
|   thread_stats.mmaps++;
 | |
|   thread_stats.mmaped += size;
 | |
| }
 | |
| void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
 | |
|   PoisonShadow(p, size, 0);
 | |
|   // We are about to unmap a chunk of user memory.
 | |
|   // Mark the corresponding shadow memory as not needed.
 | |
|   FlushUnneededASanShadowMemory(p, size);
 | |
|   // Statistics.
 | |
|   AsanStats &thread_stats = GetCurrentThreadStats();
 | |
|   thread_stats.munmaps++;
 | |
|   thread_stats.munmaped += size;
 | |
| }
 | |
| 
 | |
| // We can not use THREADLOCAL because it is not supported on some of the
 | |
| // platforms we care about (OSX 10.6, Android).
 | |
| // static THREADLOCAL AllocatorCache cache;
 | |
| AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
 | |
|   CHECK(ms);
 | |
|   return &ms->allocator_cache;
 | |
| }
 | |
| 
 | |
| QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
 | |
|   CHECK(ms);
 | |
|   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
 | |
|   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
 | |
| }
 | |
| 
 | |
| void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
 | |
|   quarantine_size_mb = f->quarantine_size_mb;
 | |
|   thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
 | |
|   min_redzone = f->redzone;
 | |
|   max_redzone = f->max_redzone;
 | |
|   may_return_null = cf->allocator_may_return_null;
 | |
|   alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
 | |
|   release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
 | |
| }
 | |
| 
 | |
| void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
 | |
|   f->quarantine_size_mb = quarantine_size_mb;
 | |
|   f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
 | |
|   f->redzone = min_redzone;
 | |
|   f->max_redzone = max_redzone;
 | |
|   cf->allocator_may_return_null = may_return_null;
 | |
|   f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
 | |
|   cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
 | |
| }
 | |
| 
 | |
| struct Allocator {
 | |
|   static const uptr kMaxAllowedMallocSize =
 | |
|       FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
 | |
| 
 | |
|   AsanAllocator allocator;
 | |
|   AsanQuarantine quarantine;
 | |
|   StaticSpinMutex fallback_mutex;
 | |
|   AllocatorCache fallback_allocator_cache;
 | |
|   QuarantineCache fallback_quarantine_cache;
 | |
| 
 | |
|   uptr max_user_defined_malloc_size;
 | |
|   atomic_uint8_t rss_limit_exceeded;
 | |
| 
 | |
|   // ------------------- Options --------------------------
 | |
|   atomic_uint16_t min_redzone;
 | |
|   atomic_uint16_t max_redzone;
 | |
|   atomic_uint8_t alloc_dealloc_mismatch;
 | |
| 
 | |
|   // ------------------- Initialization ------------------------
 | |
|   explicit Allocator(LinkerInitialized)
 | |
|       : quarantine(LINKER_INITIALIZED),
 | |
|         fallback_quarantine_cache(LINKER_INITIALIZED) {}
 | |
| 
 | |
|   void CheckOptions(const AllocatorOptions &options) const {
 | |
|     CHECK_GE(options.min_redzone, 16);
 | |
|     CHECK_GE(options.max_redzone, options.min_redzone);
 | |
|     CHECK_LE(options.max_redzone, 2048);
 | |
|     CHECK(IsPowerOfTwo(options.min_redzone));
 | |
|     CHECK(IsPowerOfTwo(options.max_redzone));
 | |
|   }
 | |
| 
 | |
|   void SharedInitCode(const AllocatorOptions &options) {
 | |
|     CheckOptions(options);
 | |
|     quarantine.Init((uptr)options.quarantine_size_mb << 20,
 | |
|                     (uptr)options.thread_local_quarantine_size_kb << 10);
 | |
|     atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
 | |
|                  memory_order_release);
 | |
|     atomic_store(&min_redzone, options.min_redzone, memory_order_release);
 | |
|     atomic_store(&max_redzone, options.max_redzone, memory_order_release);
 | |
|   }
 | |
| 
 | |
|   void InitLinkerInitialized(const AllocatorOptions &options) {
 | |
|     SetAllocatorMayReturnNull(options.may_return_null);
 | |
|     allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
 | |
|     SharedInitCode(options);
 | |
|     max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
 | |
|                                        ? common_flags()->max_allocation_size_mb
 | |
|                                              << 20
 | |
|                                        : kMaxAllowedMallocSize;
 | |
|   }
 | |
| 
 | |
|   bool RssLimitExceeded() {
 | |
|     return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
 | |
|   }
 | |
| 
 | |
|   void SetRssLimitExceeded(bool limit_exceeded) {
 | |
|     atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
 | |
|   }
 | |
| 
 | |
|   void RePoisonChunk(uptr chunk) {
 | |
|     // This could be a user-facing chunk (with redzones), or some internal
 | |
|     // housekeeping chunk, like TransferBatch. Start by assuming the former.
 | |
|     AsanChunk *ac = GetAsanChunk((void *)chunk);
 | |
|     uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
 | |
|     if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
 | |
|                   CHUNK_ALLOCATED) {
 | |
|       uptr beg = ac->Beg();
 | |
|       uptr end = ac->Beg() + ac->UsedSize();
 | |
|       uptr chunk_end = chunk + allocated_size;
 | |
|       if (chunk < beg && beg < end && end <= chunk_end) {
 | |
|         // Looks like a valid AsanChunk in use, poison redzones only.
 | |
|         PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
 | |
|         uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
 | |
|         FastPoisonShadowPartialRightRedzone(
 | |
|             end_aligned_down, end - end_aligned_down,
 | |
|             chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This is either not an AsanChunk or freed or quarantined AsanChunk.
 | |
|     // In either case, poison everything.
 | |
|     PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
 | |
|   }
 | |
| 
 | |
|   void ReInitialize(const AllocatorOptions &options) {
 | |
|     SetAllocatorMayReturnNull(options.may_return_null);
 | |
|     allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
 | |
|     SharedInitCode(options);
 | |
| 
 | |
|     // Poison all existing allocation's redzones.
 | |
|     if (CanPoisonMemory()) {
 | |
|       allocator.ForceLock();
 | |
|       allocator.ForEachChunk(
 | |
|           [](uptr chunk, void *alloc) {
 | |
|             ((Allocator *)alloc)->RePoisonChunk(chunk);
 | |
|           },
 | |
|           this);
 | |
|       allocator.ForceUnlock();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void GetOptions(AllocatorOptions *options) const {
 | |
|     options->quarantine_size_mb = quarantine.GetSize() >> 20;
 | |
|     options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
 | |
|     options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
 | |
|     options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
 | |
|     options->may_return_null = AllocatorMayReturnNull();
 | |
|     options->alloc_dealloc_mismatch =
 | |
|         atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
 | |
|     options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
 | |
|   }
 | |
| 
 | |
|   // -------------------- Helper methods. -------------------------
 | |
|   uptr ComputeRZLog(uptr user_requested_size) {
 | |
|     u32 rz_log = user_requested_size <= 64 - 16            ? 0
 | |
|                  : user_requested_size <= 128 - 32         ? 1
 | |
|                  : user_requested_size <= 512 - 64         ? 2
 | |
|                  : user_requested_size <= 4096 - 128       ? 3
 | |
|                  : user_requested_size <= (1 << 14) - 256  ? 4
 | |
|                  : user_requested_size <= (1 << 15) - 512  ? 5
 | |
|                  : user_requested_size <= (1 << 16) - 1024 ? 6
 | |
|                                                            : 7;
 | |
|     u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
 | |
|     u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
 | |
|     u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
 | |
|     return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
 | |
|   }
 | |
| 
 | |
|   static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
 | |
|     if (user_requested_alignment < 8)
 | |
|       return 0;
 | |
|     if (user_requested_alignment > 512)
 | |
|       user_requested_alignment = 512;
 | |
|     return Log2(user_requested_alignment) - 2;
 | |
|   }
 | |
| 
 | |
|   static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
 | |
|     if (user_requested_alignment_log == 0)
 | |
|       return 0;
 | |
|     return 1LL << (user_requested_alignment_log + 2);
 | |
|   }
 | |
| 
 | |
|   // We have an address between two chunks, and we want to report just one.
 | |
|   AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
 | |
|                          AsanChunk *right_chunk) {
 | |
|     if (!left_chunk)
 | |
|       return right_chunk;
 | |
|     if (!right_chunk)
 | |
|       return left_chunk;
 | |
|     // Prefer an allocated chunk over freed chunk and freed chunk
 | |
|     // over available chunk.
 | |
|     u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
 | |
|     u8 right_state =
 | |
|         atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
 | |
|     if (left_state != right_state) {
 | |
|       if (left_state == CHUNK_ALLOCATED)
 | |
|         return left_chunk;
 | |
|       if (right_state == CHUNK_ALLOCATED)
 | |
|         return right_chunk;
 | |
|       if (left_state == CHUNK_QUARANTINE)
 | |
|         return left_chunk;
 | |
|       if (right_state == CHUNK_QUARANTINE)
 | |
|         return right_chunk;
 | |
|     }
 | |
|     // Same chunk_state: choose based on offset.
 | |
|     sptr l_offset = 0, r_offset = 0;
 | |
|     CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
 | |
|     CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
 | |
|     if (l_offset < r_offset)
 | |
|       return left_chunk;
 | |
|     return right_chunk;
 | |
|   }
 | |
| 
 | |
|   bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
 | |
|     AsanChunk *m = GetAsanChunkByAddr(addr);
 | |
|     if (!m) return false;
 | |
|     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
 | |
|       return false;
 | |
|     if (m->Beg() != addr) return false;
 | |
|     AsanThread *t = GetCurrentThread();
 | |
|     m->SetAllocContext(t ? t->tid() : 0, StackDepotPut(*stack));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // -------------------- Allocation/Deallocation routines ---------------
 | |
|   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
 | |
|                  AllocType alloc_type, bool can_fill) {
 | |
|     if (UNLIKELY(!asan_inited))
 | |
|       AsanInitFromRtl();
 | |
|     if (RssLimitExceeded()) {
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       ReportRssLimitExceeded(stack);
 | |
|     }
 | |
|     Flags &fl = *flags();
 | |
|     CHECK(stack);
 | |
|     const uptr min_alignment = SHADOW_GRANULARITY;
 | |
|     const uptr user_requested_alignment_log =
 | |
|         ComputeUserRequestedAlignmentLog(alignment);
 | |
|     if (alignment < min_alignment)
 | |
|       alignment = min_alignment;
 | |
|     if (size == 0) {
 | |
|       // We'd be happy to avoid allocating memory for zero-size requests, but
 | |
|       // some programs/tests depend on this behavior and assume that malloc
 | |
|       // would not return NULL even for zero-size allocations. Moreover, it
 | |
|       // looks like operator new should never return NULL, and results of
 | |
|       // consecutive "new" calls must be different even if the allocated size
 | |
|       // is zero.
 | |
|       size = 1;
 | |
|     }
 | |
|     CHECK(IsPowerOfTwo(alignment));
 | |
|     uptr rz_log = ComputeRZLog(size);
 | |
|     uptr rz_size = RZLog2Size(rz_log);
 | |
|     uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
 | |
|     uptr needed_size = rounded_size + rz_size;
 | |
|     if (alignment > min_alignment)
 | |
|       needed_size += alignment;
 | |
|     // If we are allocating from the secondary allocator, there will be no
 | |
|     // automatic right redzone, so add the right redzone manually.
 | |
|     if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
 | |
|       needed_size += rz_size;
 | |
|     CHECK(IsAligned(needed_size, min_alignment));
 | |
|     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
 | |
|         size > max_user_defined_malloc_size) {
 | |
|       if (AllocatorMayReturnNull()) {
 | |
|         Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
 | |
|                (void*)size);
 | |
|         return nullptr;
 | |
|       }
 | |
|       uptr malloc_limit =
 | |
|           Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
 | |
|       ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
 | |
|     }
 | |
| 
 | |
|     AsanThread *t = GetCurrentThread();
 | |
|     void *allocated;
 | |
|     if (t) {
 | |
|       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
 | |
|       allocated = allocator.Allocate(cache, needed_size, 8);
 | |
|     } else {
 | |
|       SpinMutexLock l(&fallback_mutex);
 | |
|       AllocatorCache *cache = &fallback_allocator_cache;
 | |
|       allocated = allocator.Allocate(cache, needed_size, 8);
 | |
|     }
 | |
|     if (UNLIKELY(!allocated)) {
 | |
|       SetAllocatorOutOfMemory();
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       ReportOutOfMemory(size, stack);
 | |
|     }
 | |
| 
 | |
|     if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
 | |
|       // Heap poisoning is enabled, but the allocator provides an unpoisoned
 | |
|       // chunk. This is possible if CanPoisonMemory() was false for some
 | |
|       // time, for example, due to flags()->start_disabled.
 | |
|       // Anyway, poison the block before using it for anything else.
 | |
|       uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
 | |
|       PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
 | |
|     }
 | |
| 
 | |
|     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
 | |
|     uptr alloc_end = alloc_beg + needed_size;
 | |
|     uptr user_beg = alloc_beg + rz_size;
 | |
|     if (!IsAligned(user_beg, alignment))
 | |
|       user_beg = RoundUpTo(user_beg, alignment);
 | |
|     uptr user_end = user_beg + size;
 | |
|     CHECK_LE(user_end, alloc_end);
 | |
|     uptr chunk_beg = user_beg - kChunkHeaderSize;
 | |
|     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
 | |
|     m->alloc_type = alloc_type;
 | |
|     CHECK(size);
 | |
|     m->SetUsedSize(size);
 | |
|     m->user_requested_alignment_log = user_requested_alignment_log;
 | |
| 
 | |
|     m->SetAllocContext(t ? t->tid() : 0, StackDepotPut(*stack));
 | |
| 
 | |
|     uptr size_rounded_down_to_granularity =
 | |
|         RoundDownTo(size, SHADOW_GRANULARITY);
 | |
|     // Unpoison the bulk of the memory region.
 | |
|     if (size_rounded_down_to_granularity)
 | |
|       PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
 | |
|     // Deal with the end of the region if size is not aligned to granularity.
 | |
|     if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
 | |
|       u8 *shadow =
 | |
|           (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
 | |
|       *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
 | |
|     }
 | |
| 
 | |
|     AsanStats &thread_stats = GetCurrentThreadStats();
 | |
|     thread_stats.mallocs++;
 | |
|     thread_stats.malloced += size;
 | |
|     thread_stats.malloced_redzones += needed_size - size;
 | |
|     if (needed_size > SizeClassMap::kMaxSize)
 | |
|       thread_stats.malloc_large++;
 | |
|     else
 | |
|       thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
 | |
| 
 | |
|     void *res = reinterpret_cast<void *>(user_beg);
 | |
|     if (can_fill && fl.max_malloc_fill_size) {
 | |
|       uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
 | |
|       REAL(memset)(res, fl.malloc_fill_byte, fill_size);
 | |
|     }
 | |
| #if CAN_SANITIZE_LEAKS
 | |
|     m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
 | |
|                                                  : __lsan::kDirectlyLeaked;
 | |
| #endif
 | |
|     // Must be the last mutation of metadata in this function.
 | |
|     atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
 | |
|     if (alloc_beg != chunk_beg) {
 | |
|       CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
 | |
|       reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
 | |
|     }
 | |
|     ASAN_MALLOC_HOOK(res, size);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   // Set quarantine flag if chunk is allocated, issue ASan error report on
 | |
|   // available and quarantined chunks. Return true on success, false otherwise.
 | |
|   bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
 | |
|                                               BufferedStackTrace *stack) {
 | |
|     u8 old_chunk_state = CHUNK_ALLOCATED;
 | |
|     // Flip the chunk_state atomically to avoid race on double-free.
 | |
|     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
 | |
|                                         CHUNK_QUARANTINE,
 | |
|                                         memory_order_acquire)) {
 | |
|       ReportInvalidFree(ptr, old_chunk_state, stack);
 | |
|       // It's not safe to push a chunk in quarantine on invalid free.
 | |
|       return false;
 | |
|     }
 | |
|     CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
 | |
|     // It was a user data.
 | |
|     m->SetFreeContext(kInvalidTid, 0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Expects the chunk to already be marked as quarantined by using
 | |
|   // AtomicallySetQuarantineFlagIfAllocated.
 | |
|   void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
 | |
|     CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
 | |
|              CHUNK_QUARANTINE);
 | |
|     AsanThread *t = GetCurrentThread();
 | |
|     m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
 | |
| 
 | |
|     Flags &fl = *flags();
 | |
|     if (fl.max_free_fill_size > 0) {
 | |
|       // We have to skip the chunk header, it contains free_context_id.
 | |
|       uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
 | |
|       if (m->UsedSize() >= kChunkHeader2Size) {  // Skip Header2 in user area.
 | |
|         uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
 | |
|         size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
 | |
|         REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Poison the region.
 | |
|     PoisonShadow(m->Beg(),
 | |
|                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
 | |
|                  kAsanHeapFreeMagic);
 | |
| 
 | |
|     AsanStats &thread_stats = GetCurrentThreadStats();
 | |
|     thread_stats.frees++;
 | |
|     thread_stats.freed += m->UsedSize();
 | |
| 
 | |
|     // Push into quarantine.
 | |
|     if (t) {
 | |
|       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
 | |
|       AllocatorCache *ac = GetAllocatorCache(ms);
 | |
|       quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
 | |
|                      m->UsedSize());
 | |
|     } else {
 | |
|       SpinMutexLock l(&fallback_mutex);
 | |
|       AllocatorCache *ac = &fallback_allocator_cache;
 | |
|       quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
 | |
|                      m, m->UsedSize());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
 | |
|                   BufferedStackTrace *stack, AllocType alloc_type) {
 | |
|     uptr p = reinterpret_cast<uptr>(ptr);
 | |
|     if (p == 0) return;
 | |
| 
 | |
|     uptr chunk_beg = p - kChunkHeaderSize;
 | |
|     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
 | |
| 
 | |
|     // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
 | |
|     // malloc. Don't report an invalid free in this case.
 | |
|     if (SANITIZER_WINDOWS &&
 | |
|         !get_allocator().PointerIsMine(ptr)) {
 | |
|       if (!IsSystemHeapAddress(p))
 | |
|         ReportFreeNotMalloced(p, stack);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     ASAN_FREE_HOOK(ptr);
 | |
| 
 | |
|     // Must mark the chunk as quarantined before any changes to its metadata.
 | |
|     // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
 | |
|     if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
 | |
| 
 | |
|     if (m->alloc_type != alloc_type) {
 | |
|       if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
 | |
|         ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
 | |
|                                 (AllocType)alloc_type);
 | |
|       }
 | |
|     } else {
 | |
|       if (flags()->new_delete_type_mismatch &&
 | |
|           (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
 | |
|           ((delete_size && delete_size != m->UsedSize()) ||
 | |
|            ComputeUserRequestedAlignmentLog(delete_alignment) !=
 | |
|                m->user_requested_alignment_log)) {
 | |
|         ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     QuarantineChunk(m, ptr, stack);
 | |
|   }
 | |
| 
 | |
|   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
 | |
|     CHECK(old_ptr && new_size);
 | |
|     uptr p = reinterpret_cast<uptr>(old_ptr);
 | |
|     uptr chunk_beg = p - kChunkHeaderSize;
 | |
|     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
 | |
| 
 | |
|     AsanStats &thread_stats = GetCurrentThreadStats();
 | |
|     thread_stats.reallocs++;
 | |
|     thread_stats.realloced += new_size;
 | |
| 
 | |
|     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
 | |
|     if (new_ptr) {
 | |
|       u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
 | |
|       if (chunk_state != CHUNK_ALLOCATED)
 | |
|         ReportInvalidFree(old_ptr, chunk_state, stack);
 | |
|       CHECK_NE(REAL(memcpy), nullptr);
 | |
|       uptr memcpy_size = Min(new_size, m->UsedSize());
 | |
|       // If realloc() races with free(), we may start copying freed memory.
 | |
|       // However, we will report racy double-free later anyway.
 | |
|       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
 | |
|       Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
 | |
|     }
 | |
|     return new_ptr;
 | |
|   }
 | |
| 
 | |
|   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
 | |
|     if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       ReportCallocOverflow(nmemb, size, stack);
 | |
|     }
 | |
|     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
 | |
|     // If the memory comes from the secondary allocator no need to clear it
 | |
|     // as it comes directly from mmap.
 | |
|     if (ptr && allocator.FromPrimary(ptr))
 | |
|       REAL(memset)(ptr, 0, nmemb * size);
 | |
|     return ptr;
 | |
|   }
 | |
| 
 | |
|   void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
 | |
|     if (chunk_state == CHUNK_QUARANTINE)
 | |
|       ReportDoubleFree((uptr)ptr, stack);
 | |
|     else
 | |
|       ReportFreeNotMalloced((uptr)ptr, stack);
 | |
|   }
 | |
| 
 | |
|   void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
 | |
|     AllocatorCache *ac = GetAllocatorCache(ms);
 | |
|     quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
 | |
|     allocator.SwallowCache(ac);
 | |
|   }
 | |
| 
 | |
|   // -------------------------- Chunk lookup ----------------------
 | |
| 
 | |
|   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
 | |
|   // Returns nullptr if AsanChunk is not yet initialized just after
 | |
|   // get_allocator().Allocate(), or is being destroyed just before
 | |
|   // get_allocator().Deallocate().
 | |
|   AsanChunk *GetAsanChunk(void *alloc_beg) {
 | |
|     if (!alloc_beg)
 | |
|       return nullptr;
 | |
|     AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
 | |
|     if (!p) {
 | |
|       if (!allocator.FromPrimary(alloc_beg))
 | |
|         return nullptr;
 | |
|       p = reinterpret_cast<AsanChunk *>(alloc_beg);
 | |
|     }
 | |
|     u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
 | |
|     // It does not guaranty that Chunk is initialized, but it's
 | |
|     // definitely not for any other value.
 | |
|     if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
 | |
|       return p;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   AsanChunk *GetAsanChunkByAddr(uptr p) {
 | |
|     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
 | |
|     return GetAsanChunk(alloc_beg);
 | |
|   }
 | |
| 
 | |
|   // Allocator must be locked when this function is called.
 | |
|   AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
 | |
|     void *alloc_beg =
 | |
|         allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
 | |
|     return GetAsanChunk(alloc_beg);
 | |
|   }
 | |
| 
 | |
|   uptr AllocationSize(uptr p) {
 | |
|     AsanChunk *m = GetAsanChunkByAddr(p);
 | |
|     if (!m) return 0;
 | |
|     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
 | |
|       return 0;
 | |
|     if (m->Beg() != p) return 0;
 | |
|     return m->UsedSize();
 | |
|   }
 | |
| 
 | |
|   AsanChunkView FindHeapChunkByAddress(uptr addr) {
 | |
|     AsanChunk *m1 = GetAsanChunkByAddr(addr);
 | |
|     sptr offset = 0;
 | |
|     if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
 | |
|       // The address is in the chunk's left redzone, so maybe it is actually
 | |
|       // a right buffer overflow from the other chunk to the left.
 | |
|       // Search a bit to the left to see if there is another chunk.
 | |
|       AsanChunk *m2 = nullptr;
 | |
|       for (uptr l = 1; l < GetPageSizeCached(); l++) {
 | |
|         m2 = GetAsanChunkByAddr(addr - l);
 | |
|         if (m2 == m1) continue;  // Still the same chunk.
 | |
|         break;
 | |
|       }
 | |
|       if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
 | |
|         m1 = ChooseChunk(addr, m2, m1);
 | |
|     }
 | |
|     return AsanChunkView(m1);
 | |
|   }
 | |
| 
 | |
|   void Purge(BufferedStackTrace *stack) {
 | |
|     AsanThread *t = GetCurrentThread();
 | |
|     if (t) {
 | |
|       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
 | |
|       quarantine.DrainAndRecycle(GetQuarantineCache(ms),
 | |
|                                  QuarantineCallback(GetAllocatorCache(ms),
 | |
|                                                     stack));
 | |
|     }
 | |
|     {
 | |
|       SpinMutexLock l(&fallback_mutex);
 | |
|       quarantine.DrainAndRecycle(&fallback_quarantine_cache,
 | |
|                                  QuarantineCallback(&fallback_allocator_cache,
 | |
|                                                     stack));
 | |
|     }
 | |
| 
 | |
|     allocator.ForceReleaseToOS();
 | |
|   }
 | |
| 
 | |
|   void PrintStats() {
 | |
|     allocator.PrintStats();
 | |
|     quarantine.PrintStats();
 | |
|   }
 | |
| 
 | |
|   void ForceLock() {
 | |
|     allocator.ForceLock();
 | |
|     fallback_mutex.Lock();
 | |
|   }
 | |
| 
 | |
|   void ForceUnlock() {
 | |
|     fallback_mutex.Unlock();
 | |
|     allocator.ForceUnlock();
 | |
|   }
 | |
| };
 | |
| 
 | |
| static Allocator instance(LINKER_INITIALIZED);
 | |
| 
 | |
| static AsanAllocator &get_allocator() {
 | |
|   return instance.allocator;
 | |
| }
 | |
| 
 | |
| bool AsanChunkView::IsValid() const {
 | |
|   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
 | |
|                        CHUNK_INVALID;
 | |
| }
 | |
| bool AsanChunkView::IsAllocated() const {
 | |
|   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
 | |
|                        CHUNK_ALLOCATED;
 | |
| }
 | |
| bool AsanChunkView::IsQuarantined() const {
 | |
|   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
 | |
|                        CHUNK_QUARANTINE;
 | |
| }
 | |
| uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
 | |
| uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
 | |
| uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
 | |
| u32 AsanChunkView::UserRequestedAlignment() const {
 | |
|   return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
 | |
| }
 | |
| 
 | |
| uptr AsanChunkView::AllocTid() const {
 | |
|   u32 tid = 0;
 | |
|   u32 stack = 0;
 | |
|   chunk_->GetAllocContext(tid, stack);
 | |
|   return tid;
 | |
| }
 | |
| 
 | |
| uptr AsanChunkView::FreeTid() const {
 | |
|   if (!IsQuarantined())
 | |
|     return kInvalidTid;
 | |
|   u32 tid = 0;
 | |
|   u32 stack = 0;
 | |
|   chunk_->GetFreeContext(tid, stack);
 | |
|   return tid;
 | |
| }
 | |
| 
 | |
| AllocType AsanChunkView::GetAllocType() const {
 | |
|   return (AllocType)chunk_->alloc_type;
 | |
| }
 | |
| 
 | |
| static StackTrace GetStackTraceFromId(u32 id) {
 | |
|   CHECK(id);
 | |
|   StackTrace res = StackDepotGet(id);
 | |
|   CHECK(res.trace);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| u32 AsanChunkView::GetAllocStackId() const {
 | |
|   u32 tid = 0;
 | |
|   u32 stack = 0;
 | |
|   chunk_->GetAllocContext(tid, stack);
 | |
|   return stack;
 | |
| }
 | |
| 
 | |
| u32 AsanChunkView::GetFreeStackId() const {
 | |
|   if (!IsQuarantined())
 | |
|     return 0;
 | |
|   u32 tid = 0;
 | |
|   u32 stack = 0;
 | |
|   chunk_->GetFreeContext(tid, stack);
 | |
|   return stack;
 | |
| }
 | |
| 
 | |
| StackTrace AsanChunkView::GetAllocStack() const {
 | |
|   return GetStackTraceFromId(GetAllocStackId());
 | |
| }
 | |
| 
 | |
| StackTrace AsanChunkView::GetFreeStack() const {
 | |
|   return GetStackTraceFromId(GetFreeStackId());
 | |
| }
 | |
| 
 | |
| void InitializeAllocator(const AllocatorOptions &options) {
 | |
|   instance.InitLinkerInitialized(options);
 | |
| }
 | |
| 
 | |
| void ReInitializeAllocator(const AllocatorOptions &options) {
 | |
|   instance.ReInitialize(options);
 | |
| }
 | |
| 
 | |
| void GetAllocatorOptions(AllocatorOptions *options) {
 | |
|   instance.GetOptions(options);
 | |
| }
 | |
| 
 | |
| AsanChunkView FindHeapChunkByAddress(uptr addr) {
 | |
|   return instance.FindHeapChunkByAddress(addr);
 | |
| }
 | |
| AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
 | |
|   return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
 | |
| }
 | |
| 
 | |
| void AsanThreadLocalMallocStorage::CommitBack() {
 | |
|   GET_STACK_TRACE_MALLOC;
 | |
|   instance.CommitBack(this, &stack);
 | |
| }
 | |
| 
 | |
| void PrintInternalAllocatorStats() {
 | |
|   instance.PrintStats();
 | |
| }
 | |
| 
 | |
| void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
 | |
|   instance.Deallocate(ptr, 0, 0, stack, alloc_type);
 | |
| }
 | |
| 
 | |
| void asan_delete(void *ptr, uptr size, uptr alignment,
 | |
|                  BufferedStackTrace *stack, AllocType alloc_type) {
 | |
|   instance.Deallocate(ptr, size, alignment, stack, alloc_type);
 | |
| }
 | |
| 
 | |
| void *asan_malloc(uptr size, BufferedStackTrace *stack) {
 | |
|   return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
 | |
| }
 | |
| 
 | |
| void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
 | |
|   return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
 | |
| }
 | |
| 
 | |
| void *asan_reallocarray(void *p, uptr nmemb, uptr size,
 | |
|                         BufferedStackTrace *stack) {
 | |
|   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
 | |
|     errno = errno_ENOMEM;
 | |
|     if (AllocatorMayReturnNull())
 | |
|       return nullptr;
 | |
|     ReportReallocArrayOverflow(nmemb, size, stack);
 | |
|   }
 | |
|   return asan_realloc(p, nmemb * size, stack);
 | |
| }
 | |
| 
 | |
| void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
 | |
|   if (!p)
 | |
|     return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
 | |
|   if (size == 0) {
 | |
|     if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
 | |
|       instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
 | |
|       return nullptr;
 | |
|     }
 | |
|     // Allocate a size of 1 if we shouldn't free() on Realloc to 0
 | |
|     size = 1;
 | |
|   }
 | |
|   return SetErrnoOnNull(instance.Reallocate(p, size, stack));
 | |
| }
 | |
| 
 | |
| void *asan_valloc(uptr size, BufferedStackTrace *stack) {
 | |
|   return SetErrnoOnNull(
 | |
|       instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
 | |
| }
 | |
| 
 | |
| void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
 | |
|   uptr PageSize = GetPageSizeCached();
 | |
|   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
 | |
|     errno = errno_ENOMEM;
 | |
|     if (AllocatorMayReturnNull())
 | |
|       return nullptr;
 | |
|     ReportPvallocOverflow(size, stack);
 | |
|   }
 | |
|   // pvalloc(0) should allocate one page.
 | |
|   size = size ? RoundUpTo(size, PageSize) : PageSize;
 | |
|   return SetErrnoOnNull(
 | |
|       instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
 | |
| }
 | |
| 
 | |
| void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
 | |
|                     AllocType alloc_type) {
 | |
|   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
 | |
|     errno = errno_EINVAL;
 | |
|     if (AllocatorMayReturnNull())
 | |
|       return nullptr;
 | |
|     ReportInvalidAllocationAlignment(alignment, stack);
 | |
|   }
 | |
|   return SetErrnoOnNull(
 | |
|       instance.Allocate(size, alignment, stack, alloc_type, true));
 | |
| }
 | |
| 
 | |
| void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
 | |
|   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
 | |
|     errno = errno_EINVAL;
 | |
|     if (AllocatorMayReturnNull())
 | |
|       return nullptr;
 | |
|     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
 | |
|   }
 | |
|   return SetErrnoOnNull(
 | |
|       instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
 | |
| }
 | |
| 
 | |
| int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
 | |
|                         BufferedStackTrace *stack) {
 | |
|   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
 | |
|     if (AllocatorMayReturnNull())
 | |
|       return errno_EINVAL;
 | |
|     ReportInvalidPosixMemalignAlignment(alignment, stack);
 | |
|   }
 | |
|   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
 | |
|   if (UNLIKELY(!ptr))
 | |
|     // OOM error is already taken care of by Allocate.
 | |
|     return errno_ENOMEM;
 | |
|   CHECK(IsAligned((uptr)ptr, alignment));
 | |
|   *memptr = ptr;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
 | |
|   if (!ptr) return 0;
 | |
|   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
 | |
|   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
 | |
|     GET_STACK_TRACE_FATAL(pc, bp);
 | |
|     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
 | |
|   }
 | |
|   return usable_size;
 | |
| }
 | |
| 
 | |
| uptr asan_mz_size(const void *ptr) {
 | |
|   return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
 | |
| }
 | |
| 
 | |
| void asan_mz_force_lock() {
 | |
|   instance.ForceLock();
 | |
| }
 | |
| 
 | |
| void asan_mz_force_unlock() {
 | |
|   instance.ForceUnlock();
 | |
| }
 | |
| 
 | |
| void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
 | |
|   instance.SetRssLimitExceeded(limit_exceeded);
 | |
| }
 | |
| 
 | |
| }  // namespace __asan
 | |
| 
 | |
| // --- Implementation of LSan-specific functions --- {{{1
 | |
| namespace __lsan {
 | |
| void LockAllocator() {
 | |
|   __asan::get_allocator().ForceLock();
 | |
| }
 | |
| 
 | |
| void UnlockAllocator() {
 | |
|   __asan::get_allocator().ForceUnlock();
 | |
| }
 | |
| 
 | |
| void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
 | |
|   *begin = (uptr)&__asan::get_allocator();
 | |
|   *end = *begin + sizeof(__asan::get_allocator());
 | |
| }
 | |
| 
 | |
| uptr PointsIntoChunk(void *p) {
 | |
|   uptr addr = reinterpret_cast<uptr>(p);
 | |
|   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
 | |
|   if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
 | |
|                 __asan::CHUNK_ALLOCATED)
 | |
|     return 0;
 | |
|   uptr chunk = m->Beg();
 | |
|   if (m->AddrIsInside(addr))
 | |
|     return chunk;
 | |
|   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
 | |
|     return chunk;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| uptr GetUserBegin(uptr chunk) {
 | |
|   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
 | |
|   return m ? m->Beg() : 0;
 | |
| }
 | |
| 
 | |
| LsanMetadata::LsanMetadata(uptr chunk) {
 | |
|   metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
 | |
|                     : nullptr;
 | |
| }
 | |
| 
 | |
| bool LsanMetadata::allocated() const {
 | |
|   if (!metadata_)
 | |
|     return false;
 | |
|   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
 | |
|   return atomic_load(&m->chunk_state, memory_order_relaxed) ==
 | |
|          __asan::CHUNK_ALLOCATED;
 | |
| }
 | |
| 
 | |
| ChunkTag LsanMetadata::tag() const {
 | |
|   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
 | |
|   return static_cast<ChunkTag>(m->lsan_tag);
 | |
| }
 | |
| 
 | |
| void LsanMetadata::set_tag(ChunkTag value) {
 | |
|   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
 | |
|   m->lsan_tag = value;
 | |
| }
 | |
| 
 | |
| uptr LsanMetadata::requested_size() const {
 | |
|   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
 | |
|   return m->UsedSize();
 | |
| }
 | |
| 
 | |
| u32 LsanMetadata::stack_trace_id() const {
 | |
|   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
 | |
|   u32 tid = 0;
 | |
|   u32 stack = 0;
 | |
|   m->GetAllocContext(tid, stack);
 | |
|   return stack;
 | |
| }
 | |
| 
 | |
| void ForEachChunk(ForEachChunkCallback callback, void *arg) {
 | |
|   __asan::get_allocator().ForEachChunk(callback, arg);
 | |
| }
 | |
| 
 | |
| IgnoreObjectResult IgnoreObjectLocked(const void *p) {
 | |
|   uptr addr = reinterpret_cast<uptr>(p);
 | |
|   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
 | |
|   if (!m ||
 | |
|       (atomic_load(&m->chunk_state, memory_order_acquire) !=
 | |
|        __asan::CHUNK_ALLOCATED) ||
 | |
|       !m->AddrIsInside(addr)) {
 | |
|     return kIgnoreObjectInvalid;
 | |
|   }
 | |
|   if (m->lsan_tag == kIgnored)
 | |
|     return kIgnoreObjectAlreadyIgnored;
 | |
|   m->lsan_tag = __lsan::kIgnored;
 | |
|   return kIgnoreObjectSuccess;
 | |
| }
 | |
| 
 | |
| void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
 | |
|   // Look for the arg pointer of threads that have been created or are running.
 | |
|   // This is necessary to prevent false positive leaks due to the AsanThread
 | |
|   // holding the only live reference to a heap object.  This can happen because
 | |
|   // the `pthread_create()` interceptor doesn't wait for the child thread to
 | |
|   // start before returning and thus loosing the the only live reference to the
 | |
|   // heap object on the stack.
 | |
| 
 | |
|   __asan::AsanThreadContext *atctx =
 | |
|       reinterpret_cast<__asan::AsanThreadContext *>(tctx);
 | |
|   __asan::AsanThread *asan_thread = atctx->thread;
 | |
| 
 | |
|   // Note ThreadStatusRunning is required because there is a small window where
 | |
|   // the thread status switches to `ThreadStatusRunning` but the `arg` pointer
 | |
|   // still isn't on the stack yet.
 | |
|   if (atctx->status != ThreadStatusCreated &&
 | |
|       atctx->status != ThreadStatusRunning)
 | |
|     return;
 | |
| 
 | |
|   uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg());
 | |
|   if (!thread_arg)
 | |
|     return;
 | |
| 
 | |
|   auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs);
 | |
|   ptrsVec->push_back(thread_arg);
 | |
| }
 | |
| 
 | |
| }  // namespace __lsan
 | |
| 
 | |
| // ---------------------- Interface ---------------- {{{1
 | |
| using namespace __asan;
 | |
| 
 | |
| // ASan allocator doesn't reserve extra bytes, so normally we would
 | |
| // just return "size". We don't want to expose our redzone sizes, etc here.
 | |
| uptr __sanitizer_get_estimated_allocated_size(uptr size) {
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| int __sanitizer_get_ownership(const void *p) {
 | |
|   uptr ptr = reinterpret_cast<uptr>(p);
 | |
|   return instance.AllocationSize(ptr) > 0;
 | |
| }
 | |
| 
 | |
| uptr __sanitizer_get_allocated_size(const void *p) {
 | |
|   if (!p) return 0;
 | |
|   uptr ptr = reinterpret_cast<uptr>(p);
 | |
|   uptr allocated_size = instance.AllocationSize(ptr);
 | |
|   // Die if p is not malloced or if it is already freed.
 | |
|   if (allocated_size == 0) {
 | |
|     GET_STACK_TRACE_FATAL_HERE;
 | |
|     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
 | |
|   }
 | |
|   return allocated_size;
 | |
| }
 | |
| 
 | |
| void __sanitizer_purge_allocator() {
 | |
|   GET_STACK_TRACE_MALLOC;
 | |
|   instance.Purge(&stack);
 | |
| }
 | |
| 
 | |
| int __asan_update_allocation_context(void* addr) {
 | |
|   GET_STACK_TRACE_MALLOC;
 | |
|   return instance.UpdateAllocationStack((uptr)addr, &stack);
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_SUPPORTS_WEAK_HOOKS
 | |
| // Provide default (no-op) implementation of malloc hooks.
 | |
| SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
 | |
|                              void *ptr, uptr size) {
 | |
|   (void)ptr;
 | |
|   (void)size;
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
 | |
|   (void)ptr;
 | |
| }
 | |
| #endif
 |