6154 lines
		
	
	
		
			223 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6154 lines
		
	
	
		
			223 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements the targeting of the InstructionSelector class for
 | |
| /// AArch64.
 | |
| /// \todo This should be generated by TableGen.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64GlobalISelUtils.h"
 | |
| #include "AArch64InstrInfo.h"
 | |
| #include "AArch64MachineFunctionInfo.h"
 | |
| #include "AArch64RegisterBankInfo.h"
 | |
| #include "AArch64RegisterInfo.h"
 | |
| #include "AArch64Subtarget.h"
 | |
| #include "AArch64TargetMachine.h"
 | |
| #include "MCTargetDesc/AArch64AddressingModes.h"
 | |
| #include "MCTargetDesc/AArch64MCTargetDesc.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
 | |
| #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
 | |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
 | |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/IntrinsicsAArch64.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| #define DEBUG_TYPE "aarch64-isel"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace MIPatternMatch;
 | |
| using namespace AArch64GISelUtils;
 | |
| 
 | |
| namespace llvm {
 | |
| class BlockFrequencyInfo;
 | |
| class ProfileSummaryInfo;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| #define GET_GLOBALISEL_PREDICATE_BITSET
 | |
| #include "AArch64GenGlobalISel.inc"
 | |
| #undef GET_GLOBALISEL_PREDICATE_BITSET
 | |
| 
 | |
| class AArch64InstructionSelector : public InstructionSelector {
 | |
| public:
 | |
|   AArch64InstructionSelector(const AArch64TargetMachine &TM,
 | |
|                              const AArch64Subtarget &STI,
 | |
|                              const AArch64RegisterBankInfo &RBI);
 | |
| 
 | |
|   bool select(MachineInstr &I) override;
 | |
|   static const char *getName() { return DEBUG_TYPE; }
 | |
| 
 | |
|   void setupMF(MachineFunction &MF, GISelKnownBits *KB,
 | |
|                CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI,
 | |
|                BlockFrequencyInfo *BFI) override {
 | |
|     InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI);
 | |
| 
 | |
|     // hasFnAttribute() is expensive to call on every BRCOND selection, so
 | |
|     // cache it here for each run of the selector.
 | |
|     ProduceNonFlagSettingCondBr =
 | |
|         !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
 | |
|     MFReturnAddr = Register();
 | |
| 
 | |
|     processPHIs(MF);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// tblgen-erated 'select' implementation, used as the initial selector for
 | |
|   /// the patterns that don't require complex C++.
 | |
|   bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
 | |
| 
 | |
|   // A lowering phase that runs before any selection attempts.
 | |
|   // Returns true if the instruction was modified.
 | |
|   bool preISelLower(MachineInstr &I);
 | |
| 
 | |
|   // An early selection function that runs before the selectImpl() call.
 | |
|   bool earlySelect(MachineInstr &I) const;
 | |
| 
 | |
|   // Do some preprocessing of G_PHIs before we begin selection.
 | |
|   void processPHIs(MachineFunction &MF);
 | |
| 
 | |
|   bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   /// Eliminate same-sized cross-bank copies into stores before selectImpl().
 | |
|   bool contractCrossBankCopyIntoStore(MachineInstr &I,
 | |
|                                       MachineRegisterInfo &MRI);
 | |
| 
 | |
|   bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
 | |
| 
 | |
|   bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
 | |
|                           MachineRegisterInfo &MRI) const;
 | |
|   bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
 | |
|                            MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   ///@{
 | |
|   /// Helper functions for selectCompareBranch.
 | |
|   bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp,
 | |
|                                     MachineIRBuilder &MIB) const;
 | |
|   bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
 | |
|                                     MachineIRBuilder &MIB) const;
 | |
|   bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
 | |
|                                     MachineIRBuilder &MIB) const;
 | |
|   bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert,
 | |
|                                   MachineBasicBlock *DstMBB,
 | |
|                                   MachineIRBuilder &MIB) const;
 | |
|   ///@}
 | |
| 
 | |
|   bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
 | |
|                            MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   // Helper to generate an equivalent of scalar_to_vector into a new register,
 | |
|   // returned via 'Dst'.
 | |
|   MachineInstr *emitScalarToVector(unsigned EltSize,
 | |
|                                    const TargetRegisterClass *DstRC,
 | |
|                                    Register Scalar,
 | |
|                                    MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Emit a lane insert into \p DstReg, or a new vector register if None is
 | |
|   /// provided.
 | |
|   ///
 | |
|   /// The lane inserted into is defined by \p LaneIdx. The vector source
 | |
|   /// register is given by \p SrcReg. The register containing the element is
 | |
|   /// given by \p EltReg.
 | |
|   MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
 | |
|                                Register EltReg, unsigned LaneIdx,
 | |
|                                const RegisterBank &RB,
 | |
|                                MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Emit a sequence of instructions representing a constant \p CV for a
 | |
|   /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.)
 | |
|   ///
 | |
|   /// \returns the last instruction in the sequence on success, and nullptr
 | |
|   /// otherwise.
 | |
|   MachineInstr *emitConstantVector(Register Dst, Constant *CV,
 | |
|                                    MachineIRBuilder &MIRBuilder,
 | |
|                                    MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
 | |
|                               MachineRegisterInfo &MRI) const;
 | |
|   bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectSplitVectorUnmerge(MachineInstr &I,
 | |
|                                 MachineRegisterInfo &MRI) const;
 | |
|   bool selectIntrinsicWithSideEffects(MachineInstr &I,
 | |
|                                       MachineRegisterInfo &MRI) const;
 | |
|   bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
 | |
|   bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
|   bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   unsigned emitConstantPoolEntry(const Constant *CPVal,
 | |
|                                  MachineFunction &MF) const;
 | |
|   MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
 | |
|                                          MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   // Emit a vector concat operation.
 | |
|   MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
 | |
|                                  Register Op2,
 | |
|                                  MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   // Emit an integer compare between LHS and RHS, which checks for Predicate.
 | |
|   MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
 | |
|                                    MachineOperand &Predicate,
 | |
|                                    MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Emit a floating point comparison between \p LHS and \p RHS.
 | |
|   /// \p Pred if given is the intended predicate to use.
 | |
|   MachineInstr *emitFPCompare(Register LHS, Register RHS,
 | |
|                               MachineIRBuilder &MIRBuilder,
 | |
|                               Optional<CmpInst::Predicate> = None) const;
 | |
| 
 | |
|   MachineInstr *emitInstr(unsigned Opcode,
 | |
|                           std::initializer_list<llvm::DstOp> DstOps,
 | |
|                           std::initializer_list<llvm::SrcOp> SrcOps,
 | |
|                           MachineIRBuilder &MIRBuilder,
 | |
|                           const ComplexRendererFns &RenderFns = None) const;
 | |
|   /// Helper function to emit an add or sub instruction.
 | |
|   ///
 | |
|   /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above
 | |
|   /// in a specific order.
 | |
|   ///
 | |
|   /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode.
 | |
|   ///
 | |
|   /// \code
 | |
|   ///   const std::array<std::array<unsigned, 2>, 4> Table {
 | |
|   ///    {{AArch64::ADDXri, AArch64::ADDWri},
 | |
|   ///     {AArch64::ADDXrs, AArch64::ADDWrs},
 | |
|   ///     {AArch64::ADDXrr, AArch64::ADDWrr},
 | |
|   ///     {AArch64::SUBXri, AArch64::SUBWri},
 | |
|   ///     {AArch64::ADDXrx, AArch64::ADDWrx}}};
 | |
|   /// \endcode
 | |
|   ///
 | |
|   /// Each row in the table corresponds to a different addressing mode. Each
 | |
|   /// column corresponds to a different register size.
 | |
|   ///
 | |
|   /// \attention Rows must be structured as follows:
 | |
|   ///   - Row 0: The ri opcode variants
 | |
|   ///   - Row 1: The rs opcode variants
 | |
|   ///   - Row 2: The rr opcode variants
 | |
|   ///   - Row 3: The ri opcode variants for negative immediates
 | |
|   ///   - Row 4: The rx opcode variants
 | |
|   ///
 | |
|   /// \attention Columns must be structured as follows:
 | |
|   ///   - Column 0: The 64-bit opcode variants
 | |
|   ///   - Column 1: The 32-bit opcode variants
 | |
|   ///
 | |
|   /// \p Dst is the destination register of the binop to emit.
 | |
|   /// \p LHS is the left-hand operand of the binop to emit.
 | |
|   /// \p RHS is the right-hand operand of the binop to emit.
 | |
|   MachineInstr *emitAddSub(
 | |
|       const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
 | |
|       Register Dst, MachineOperand &LHS, MachineOperand &RHS,
 | |
|       MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitADD(Register DefReg, MachineOperand &LHS,
 | |
|                         MachineOperand &RHS,
 | |
|                         MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
 | |
|                          MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
 | |
|                          MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
 | |
|                         MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS,
 | |
|                         MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS,
 | |
|                            AArch64CC::CondCode CC,
 | |
|                            MachineIRBuilder &MIRBuilder) const;
 | |
|   MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
 | |
|                                      const RegisterBank &DstRB, LLT ScalarTy,
 | |
|                                      Register VecReg, unsigned LaneIdx,
 | |
|                                      MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Emit a CSet for an integer compare.
 | |
|   ///
 | |
|   /// \p DefReg and \p SrcReg are expected to be 32-bit scalar registers.
 | |
|   MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
 | |
|                                 MachineIRBuilder &MIRBuilder,
 | |
|                                 Register SrcReg = AArch64::WZR) const;
 | |
|   /// Emit a CSet for a FP compare.
 | |
|   ///
 | |
|   /// \p Dst is expected to be a 32-bit scalar register.
 | |
|   MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred,
 | |
|                                 MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Emit the overflow op for \p Opcode.
 | |
|   ///
 | |
|   /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO,
 | |
|   /// G_USUBO, etc.
 | |
|   std::pair<MachineInstr *, AArch64CC::CondCode>
 | |
|   emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS,
 | |
|                  MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
 | |
|   /// \p IsNegative is true if the test should be "not zero".
 | |
|   /// This will also optimize the test bit instruction when possible.
 | |
|   MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
 | |
|                             MachineBasicBlock *DstMBB,
 | |
|                             MachineIRBuilder &MIB) const;
 | |
| 
 | |
|   /// Emit a CB(N)Z instruction which branches to \p DestMBB.
 | |
|   MachineInstr *emitCBZ(Register CompareReg, bool IsNegative,
 | |
|                         MachineBasicBlock *DestMBB,
 | |
|                         MachineIRBuilder &MIB) const;
 | |
| 
 | |
|   // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
 | |
|   // We use these manually instead of using the importer since it doesn't
 | |
|   // support SDNodeXForm.
 | |
|   ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
 | |
|   ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
 | |
|   ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
 | |
|   ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
 | |
| 
 | |
|   ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
 | |
|   ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
 | |
|   ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
 | |
| 
 | |
|   ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
 | |
|                                             unsigned Size) const;
 | |
| 
 | |
|   ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
 | |
|     return selectAddrModeUnscaled(Root, 1);
 | |
|   }
 | |
|   ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
 | |
|     return selectAddrModeUnscaled(Root, 2);
 | |
|   }
 | |
|   ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
 | |
|     return selectAddrModeUnscaled(Root, 4);
 | |
|   }
 | |
|   ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
 | |
|     return selectAddrModeUnscaled(Root, 8);
 | |
|   }
 | |
|   ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
 | |
|     return selectAddrModeUnscaled(Root, 16);
 | |
|   }
 | |
| 
 | |
|   /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
 | |
|   /// from complex pattern matchers like selectAddrModeIndexed().
 | |
|   ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
 | |
|                                           MachineRegisterInfo &MRI) const;
 | |
| 
 | |
|   ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
 | |
|                                            unsigned Size) const;
 | |
|   template <int Width>
 | |
|   ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
 | |
|     return selectAddrModeIndexed(Root, Width / 8);
 | |
|   }
 | |
| 
 | |
|   bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
 | |
|                                      const MachineRegisterInfo &MRI) const;
 | |
|   ComplexRendererFns
 | |
|   selectAddrModeShiftedExtendXReg(MachineOperand &Root,
 | |
|                                   unsigned SizeInBytes) const;
 | |
| 
 | |
|   /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
 | |
|   /// or not a shift + extend should be folded into an addressing mode. Returns
 | |
|   /// None when this is not profitable or possible.
 | |
|   ComplexRendererFns
 | |
|   selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
 | |
|                     MachineOperand &Offset, unsigned SizeInBytes,
 | |
|                     bool WantsExt) const;
 | |
|   ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
 | |
|   ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
 | |
|                                        unsigned SizeInBytes) const;
 | |
|   template <int Width>
 | |
|   ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
 | |
|     return selectAddrModeXRO(Root, Width / 8);
 | |
|   }
 | |
| 
 | |
|   ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
 | |
|                                        unsigned SizeInBytes) const;
 | |
|   template <int Width>
 | |
|   ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
 | |
|     return selectAddrModeWRO(Root, Width / 8);
 | |
|   }
 | |
| 
 | |
|   ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
 | |
| 
 | |
|   ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
 | |
|     return selectShiftedRegister(Root);
 | |
|   }
 | |
| 
 | |
|   ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
 | |
|     // TODO: selectShiftedRegister should allow for rotates on logical shifts.
 | |
|     // For now, make them the same. The only difference between the two is that
 | |
|     // logical shifts are allowed to fold in rotates. Otherwise, these are
 | |
|     // functionally the same.
 | |
|     return selectShiftedRegister(Root);
 | |
|   }
 | |
| 
 | |
|   /// Given an extend instruction, determine the correct shift-extend type for
 | |
|   /// that instruction.
 | |
|   ///
 | |
|   /// If the instruction is going to be used in a load or store, pass
 | |
|   /// \p IsLoadStore = true.
 | |
|   AArch64_AM::ShiftExtendType
 | |
|   getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
 | |
|                        bool IsLoadStore = false) const;
 | |
| 
 | |
|   /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
 | |
|   ///
 | |
|   /// \returns Either \p Reg if no change was necessary, or the new register
 | |
|   /// created by moving \p Reg.
 | |
|   ///
 | |
|   /// Note: This uses emitCopy right now.
 | |
|   Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
 | |
|                               MachineIRBuilder &MIB) const;
 | |
| 
 | |
|   ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
 | |
| 
 | |
|   void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
 | |
|                       int OpIdx = -1) const;
 | |
|   void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
 | |
|                           int OpIdx = -1) const;
 | |
|   void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
 | |
|                           int OpIdx = -1) const;
 | |
|   void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI,
 | |
|                      int OpIdx = -1) const;
 | |
|   void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI,
 | |
|                      int OpIdx = -1) const;
 | |
|   void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI,
 | |
|                      int OpIdx = -1) const;
 | |
| 
 | |
|   // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
 | |
|   void materializeLargeCMVal(MachineInstr &I, const Value *V,
 | |
|                              unsigned OpFlags) const;
 | |
| 
 | |
|   // Optimization methods.
 | |
|   bool tryOptSelect(MachineInstr &MI) const;
 | |
|   MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
 | |
|                                       MachineOperand &Predicate,
 | |
|                                       MachineIRBuilder &MIRBuilder) const;
 | |
| 
 | |
|   /// Return true if \p MI is a load or store of \p NumBytes bytes.
 | |
|   bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
 | |
| 
 | |
|   /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
 | |
|   /// register zeroed out. In other words, the result of MI has been explicitly
 | |
|   /// zero extended.
 | |
|   bool isDef32(const MachineInstr &MI) const;
 | |
| 
 | |
|   const AArch64TargetMachine &TM;
 | |
|   const AArch64Subtarget &STI;
 | |
|   const AArch64InstrInfo &TII;
 | |
|   const AArch64RegisterInfo &TRI;
 | |
|   const AArch64RegisterBankInfo &RBI;
 | |
| 
 | |
|   bool ProduceNonFlagSettingCondBr = false;
 | |
| 
 | |
|   // Some cached values used during selection.
 | |
|   // We use LR as a live-in register, and we keep track of it here as it can be
 | |
|   // clobbered by calls.
 | |
|   Register MFReturnAddr;
 | |
| 
 | |
| #define GET_GLOBALISEL_PREDICATES_DECL
 | |
| #include "AArch64GenGlobalISel.inc"
 | |
| #undef GET_GLOBALISEL_PREDICATES_DECL
 | |
| 
 | |
| // We declare the temporaries used by selectImpl() in the class to minimize the
 | |
| // cost of constructing placeholder values.
 | |
| #define GET_GLOBALISEL_TEMPORARIES_DECL
 | |
| #include "AArch64GenGlobalISel.inc"
 | |
| #undef GET_GLOBALISEL_TEMPORARIES_DECL
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| #define GET_GLOBALISEL_IMPL
 | |
| #include "AArch64GenGlobalISel.inc"
 | |
| #undef GET_GLOBALISEL_IMPL
 | |
| 
 | |
| AArch64InstructionSelector::AArch64InstructionSelector(
 | |
|     const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
 | |
|     const AArch64RegisterBankInfo &RBI)
 | |
|     : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
 | |
|       TRI(*STI.getRegisterInfo()), RBI(RBI),
 | |
| #define GET_GLOBALISEL_PREDICATES_INIT
 | |
| #include "AArch64GenGlobalISel.inc"
 | |
| #undef GET_GLOBALISEL_PREDICATES_INIT
 | |
| #define GET_GLOBALISEL_TEMPORARIES_INIT
 | |
| #include "AArch64GenGlobalISel.inc"
 | |
| #undef GET_GLOBALISEL_TEMPORARIES_INIT
 | |
| {
 | |
| }
 | |
| 
 | |
| // FIXME: This should be target-independent, inferred from the types declared
 | |
| // for each class in the bank.
 | |
| static const TargetRegisterClass *
 | |
| getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
 | |
|                          const RegisterBankInfo &RBI,
 | |
|                          bool GetAllRegSet = false) {
 | |
|   if (RB.getID() == AArch64::GPRRegBankID) {
 | |
|     if (Ty.getSizeInBits() <= 32)
 | |
|       return GetAllRegSet ? &AArch64::GPR32allRegClass
 | |
|                           : &AArch64::GPR32RegClass;
 | |
|     if (Ty.getSizeInBits() == 64)
 | |
|       return GetAllRegSet ? &AArch64::GPR64allRegClass
 | |
|                           : &AArch64::GPR64RegClass;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (RB.getID() == AArch64::FPRRegBankID) {
 | |
|     if (Ty.getSizeInBits() <= 16)
 | |
|       return &AArch64::FPR16RegClass;
 | |
|     if (Ty.getSizeInBits() == 32)
 | |
|       return &AArch64::FPR32RegClass;
 | |
|     if (Ty.getSizeInBits() == 64)
 | |
|       return &AArch64::FPR64RegClass;
 | |
|     if (Ty.getSizeInBits() == 128)
 | |
|       return &AArch64::FPR128RegClass;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given a register bank, and size in bits, return the smallest register class
 | |
| /// that can represent that combination.
 | |
| static const TargetRegisterClass *
 | |
| getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
 | |
|                       bool GetAllRegSet = false) {
 | |
|   unsigned RegBankID = RB.getID();
 | |
| 
 | |
|   if (RegBankID == AArch64::GPRRegBankID) {
 | |
|     if (SizeInBits <= 32)
 | |
|       return GetAllRegSet ? &AArch64::GPR32allRegClass
 | |
|                           : &AArch64::GPR32RegClass;
 | |
|     if (SizeInBits == 64)
 | |
|       return GetAllRegSet ? &AArch64::GPR64allRegClass
 | |
|                           : &AArch64::GPR64RegClass;
 | |
|   }
 | |
| 
 | |
|   if (RegBankID == AArch64::FPRRegBankID) {
 | |
|     switch (SizeInBits) {
 | |
|     default:
 | |
|       return nullptr;
 | |
|     case 8:
 | |
|       return &AArch64::FPR8RegClass;
 | |
|     case 16:
 | |
|       return &AArch64::FPR16RegClass;
 | |
|     case 32:
 | |
|       return &AArch64::FPR32RegClass;
 | |
|     case 64:
 | |
|       return &AArch64::FPR64RegClass;
 | |
|     case 128:
 | |
|       return &AArch64::FPR128RegClass;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Returns the correct subregister to use for a given register class.
 | |
| static bool getSubRegForClass(const TargetRegisterClass *RC,
 | |
|                               const TargetRegisterInfo &TRI, unsigned &SubReg) {
 | |
|   switch (TRI.getRegSizeInBits(*RC)) {
 | |
|   case 8:
 | |
|     SubReg = AArch64::bsub;
 | |
|     break;
 | |
|   case 16:
 | |
|     SubReg = AArch64::hsub;
 | |
|     break;
 | |
|   case 32:
 | |
|     if (RC != &AArch64::FPR32RegClass)
 | |
|       SubReg = AArch64::sub_32;
 | |
|     else
 | |
|       SubReg = AArch64::ssub;
 | |
|     break;
 | |
|   case 64:
 | |
|     SubReg = AArch64::dsub;
 | |
|     break;
 | |
|   default:
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Couldn't find appropriate subregister for register class.");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns the minimum size the given register bank can hold.
 | |
| static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
 | |
|   switch (RB.getID()) {
 | |
|   case AArch64::GPRRegBankID:
 | |
|     return 32;
 | |
|   case AArch64::FPRRegBankID:
 | |
|     return 8;
 | |
|   default:
 | |
|     llvm_unreachable("Tried to get minimum size for unknown register bank.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
 | |
|   auto &MI = *Root.getParent();
 | |
|   auto &MBB = *MI.getParent();
 | |
|   auto &MF = *MBB.getParent();
 | |
|   auto &MRI = MF.getRegInfo();
 | |
|   uint64_t Immed;
 | |
|   if (Root.isImm())
 | |
|     Immed = Root.getImm();
 | |
|   else if (Root.isCImm())
 | |
|     Immed = Root.getCImm()->getZExtValue();
 | |
|   else if (Root.isReg()) {
 | |
|     auto ValAndVReg =
 | |
|         getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
 | |
|     if (!ValAndVReg)
 | |
|       return None;
 | |
|     Immed = ValAndVReg->Value.getSExtValue();
 | |
|   } else
 | |
|     return None;
 | |
|   return Immed;
 | |
| }
 | |
| 
 | |
| /// Check whether \p I is a currently unsupported binary operation:
 | |
| /// - it has an unsized type
 | |
| /// - an operand is not a vreg
 | |
| /// - all operands are not in the same bank
 | |
| /// These are checks that should someday live in the verifier, but right now,
 | |
| /// these are mostly limitations of the aarch64 selector.
 | |
| static bool unsupportedBinOp(const MachineInstr &I,
 | |
|                              const AArch64RegisterBankInfo &RBI,
 | |
|                              const MachineRegisterInfo &MRI,
 | |
|                              const AArch64RegisterInfo &TRI) {
 | |
|   LLT Ty = MRI.getType(I.getOperand(0).getReg());
 | |
|   if (!Ty.isValid()) {
 | |
|     LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const RegisterBank *PrevOpBank = nullptr;
 | |
|   for (auto &MO : I.operands()) {
 | |
|     // FIXME: Support non-register operands.
 | |
|     if (!MO.isReg()) {
 | |
|       LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Can generic operations have physical registers operands? If
 | |
|     // so, this will need to be taught about that, and we'll need to get the
 | |
|     // bank out of the minimal class for the register.
 | |
|     // Either way, this needs to be documented (and possibly verified).
 | |
|     if (!Register::isVirtualRegister(MO.getReg())) {
 | |
|       LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
 | |
|     if (!OpBank) {
 | |
|       LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (PrevOpBank && OpBank != PrevOpBank) {
 | |
|       LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
 | |
|       return true;
 | |
|     }
 | |
|     PrevOpBank = OpBank;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
 | |
| /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
 | |
| /// and of size \p OpSize.
 | |
| /// \returns \p GenericOpc if the combination is unsupported.
 | |
| static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
 | |
|                                unsigned OpSize) {
 | |
|   switch (RegBankID) {
 | |
|   case AArch64::GPRRegBankID:
 | |
|     if (OpSize == 32) {
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_SHL:
 | |
|         return AArch64::LSLVWr;
 | |
|       case TargetOpcode::G_LSHR:
 | |
|         return AArch64::LSRVWr;
 | |
|       case TargetOpcode::G_ASHR:
 | |
|         return AArch64::ASRVWr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     } else if (OpSize == 64) {
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_PTR_ADD:
 | |
|         return AArch64::ADDXrr;
 | |
|       case TargetOpcode::G_SHL:
 | |
|         return AArch64::LSLVXr;
 | |
|       case TargetOpcode::G_LSHR:
 | |
|         return AArch64::LSRVXr;
 | |
|       case TargetOpcode::G_ASHR:
 | |
|         return AArch64::ASRVXr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case AArch64::FPRRegBankID:
 | |
|     switch (OpSize) {
 | |
|     case 32:
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_FADD:
 | |
|         return AArch64::FADDSrr;
 | |
|       case TargetOpcode::G_FSUB:
 | |
|         return AArch64::FSUBSrr;
 | |
|       case TargetOpcode::G_FMUL:
 | |
|         return AArch64::FMULSrr;
 | |
|       case TargetOpcode::G_FDIV:
 | |
|         return AArch64::FDIVSrr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     case 64:
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_FADD:
 | |
|         return AArch64::FADDDrr;
 | |
|       case TargetOpcode::G_FSUB:
 | |
|         return AArch64::FSUBDrr;
 | |
|       case TargetOpcode::G_FMUL:
 | |
|         return AArch64::FMULDrr;
 | |
|       case TargetOpcode::G_FDIV:
 | |
|         return AArch64::FDIVDrr;
 | |
|       case TargetOpcode::G_OR:
 | |
|         return AArch64::ORRv8i8;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return GenericOpc;
 | |
| }
 | |
| 
 | |
| /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
 | |
| /// appropriate for the (value) register bank \p RegBankID and of memory access
 | |
| /// size \p OpSize.  This returns the variant with the base+unsigned-immediate
 | |
| /// addressing mode (e.g., LDRXui).
 | |
| /// \returns \p GenericOpc if the combination is unsupported.
 | |
| static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
 | |
|                                     unsigned OpSize) {
 | |
|   const bool isStore = GenericOpc == TargetOpcode::G_STORE;
 | |
|   switch (RegBankID) {
 | |
|   case AArch64::GPRRegBankID:
 | |
|     switch (OpSize) {
 | |
|     case 8:
 | |
|       return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
 | |
|     case 16:
 | |
|       return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
 | |
|     case 32:
 | |
|       return isStore ? AArch64::STRWui : AArch64::LDRWui;
 | |
|     case 64:
 | |
|       return isStore ? AArch64::STRXui : AArch64::LDRXui;
 | |
|     }
 | |
|     break;
 | |
|   case AArch64::FPRRegBankID:
 | |
|     switch (OpSize) {
 | |
|     case 8:
 | |
|       return isStore ? AArch64::STRBui : AArch64::LDRBui;
 | |
|     case 16:
 | |
|       return isStore ? AArch64::STRHui : AArch64::LDRHui;
 | |
|     case 32:
 | |
|       return isStore ? AArch64::STRSui : AArch64::LDRSui;
 | |
|     case 64:
 | |
|       return isStore ? AArch64::STRDui : AArch64::LDRDui;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return GenericOpc;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Helper function that verifies that we have a valid copy at the end of
 | |
| /// selectCopy. Verifies that the source and dest have the expected sizes and
 | |
| /// then returns true.
 | |
| static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
 | |
|                         const MachineRegisterInfo &MRI,
 | |
|                         const TargetRegisterInfo &TRI,
 | |
|                         const RegisterBankInfo &RBI) {
 | |
|   const Register DstReg = I.getOperand(0).getReg();
 | |
|   const Register SrcReg = I.getOperand(1).getReg();
 | |
|   const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
 | |
|   const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
 | |
| 
 | |
|   // Make sure the size of the source and dest line up.
 | |
|   assert(
 | |
|       (DstSize == SrcSize ||
 | |
|        // Copies are a mean to setup initial types, the number of
 | |
|        // bits may not exactly match.
 | |
|        (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
 | |
|        // Copies are a mean to copy bits around, as long as we are
 | |
|        // on the same register class, that's fine. Otherwise, that
 | |
|        // means we need some SUBREG_TO_REG or AND & co.
 | |
|        (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
 | |
|       "Copy with different width?!");
 | |
| 
 | |
|   // Check the size of the destination.
 | |
|   assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
 | |
|          "GPRs cannot get more than 64-bit width values");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
 | |
| /// to \p *To.
 | |
| ///
 | |
| /// E.g "To = COPY SrcReg:SubReg"
 | |
| static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
 | |
|                        const RegisterBankInfo &RBI, Register SrcReg,
 | |
|                        const TargetRegisterClass *To, unsigned SubReg) {
 | |
|   assert(SrcReg.isValid() && "Expected a valid source register?");
 | |
|   assert(To && "Destination register class cannot be null");
 | |
|   assert(SubReg && "Expected a valid subregister");
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
|   auto SubRegCopy =
 | |
|       MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
 | |
|   MachineOperand &RegOp = I.getOperand(1);
 | |
|   RegOp.setReg(SubRegCopy.getReg(0));
 | |
| 
 | |
|   // It's possible that the destination register won't be constrained. Make
 | |
|   // sure that happens.
 | |
|   if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
 | |
|     RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Helper function to get the source and destination register classes for a
 | |
| /// copy. Returns a std::pair containing the source register class for the
 | |
| /// copy, and the destination register class for the copy. If a register class
 | |
| /// cannot be determined, then it will be nullptr.
 | |
| static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
 | |
| getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
 | |
|                      MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
 | |
|                      const RegisterBankInfo &RBI) {
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   Register SrcReg = I.getOperand(1).getReg();
 | |
|   const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|   const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
 | |
|   unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
 | |
|   unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
 | |
| 
 | |
|   // Special casing for cross-bank copies of s1s. We can technically represent
 | |
|   // a 1-bit value with any size of register. The minimum size for a GPR is 32
 | |
|   // bits. So, we need to put the FPR on 32 bits as well.
 | |
|   //
 | |
|   // FIXME: I'm not sure if this case holds true outside of copies. If it does,
 | |
|   // then we can pull it into the helpers that get the appropriate class for a
 | |
|   // register bank. Or make a new helper that carries along some constraint
 | |
|   // information.
 | |
|   if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
 | |
|     SrcSize = DstSize = 32;
 | |
| 
 | |
|   return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
 | |
|           getMinClassForRegBank(DstRegBank, DstSize, true)};
 | |
| }
 | |
| 
 | |
| static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
 | |
|                        MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
 | |
|                        const RegisterBankInfo &RBI) {
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   Register SrcReg = I.getOperand(1).getReg();
 | |
|   const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|   const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
 | |
| 
 | |
|   // Find the correct register classes for the source and destination registers.
 | |
|   const TargetRegisterClass *SrcRC;
 | |
|   const TargetRegisterClass *DstRC;
 | |
|   std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
 | |
| 
 | |
|   if (!DstRC) {
 | |
|     LLVM_DEBUG(dbgs() << "Unexpected dest size "
 | |
|                       << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // A couple helpers below, for making sure that the copy we produce is valid.
 | |
| 
 | |
|   // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
 | |
|   // to verify that the src and dst are the same size, since that's handled by
 | |
|   // the SUBREG_TO_REG.
 | |
|   bool KnownValid = false;
 | |
| 
 | |
|   // Returns true, or asserts if something we don't expect happens. Instead of
 | |
|   // returning true, we return isValidCopy() to ensure that we verify the
 | |
|   // result.
 | |
|   auto CheckCopy = [&]() {
 | |
|     // If we have a bitcast or something, we can't have physical registers.
 | |
|     assert((I.isCopy() ||
 | |
|             (!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
 | |
|              !Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
 | |
|            "No phys reg on generic operator!");
 | |
|     bool ValidCopy = true;
 | |
| #ifndef NDEBUG
 | |
|     ValidCopy = KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI);
 | |
|     assert(ValidCopy && "Invalid copy.");
 | |
| #endif
 | |
|     (void)KnownValid;
 | |
|     return ValidCopy;
 | |
|   };
 | |
| 
 | |
|   // Is this a copy? If so, then we may need to insert a subregister copy.
 | |
|   if (I.isCopy()) {
 | |
|     // Yes. Check if there's anything to fix up.
 | |
|     if (!SrcRC) {
 | |
|       LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
 | |
|     unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
 | |
|     unsigned SubReg;
 | |
| 
 | |
|     // If the source bank doesn't support a subregister copy small enough,
 | |
|     // then we first need to copy to the destination bank.
 | |
|     if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
 | |
|       const TargetRegisterClass *DstTempRC =
 | |
|           getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
 | |
|       getSubRegForClass(DstRC, TRI, SubReg);
 | |
| 
 | |
|       MachineIRBuilder MIB(I);
 | |
|       auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
 | |
|       copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
 | |
|     } else if (SrcSize > DstSize) {
 | |
|       // If the source register is bigger than the destination we need to
 | |
|       // perform a subregister copy.
 | |
|       const TargetRegisterClass *SubRegRC =
 | |
|           getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
 | |
|       getSubRegForClass(SubRegRC, TRI, SubReg);
 | |
|       copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
 | |
|     } else if (DstSize > SrcSize) {
 | |
|       // If the destination register is bigger than the source we need to do
 | |
|       // a promotion using SUBREG_TO_REG.
 | |
|       const TargetRegisterClass *PromotionRC =
 | |
|           getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
 | |
|       getSubRegForClass(SrcRC, TRI, SubReg);
 | |
| 
 | |
|       Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
 | |
|       BuildMI(*I.getParent(), I, I.getDebugLoc(),
 | |
|               TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
 | |
|           .addImm(0)
 | |
|           .addUse(SrcReg)
 | |
|           .addImm(SubReg);
 | |
|       MachineOperand &RegOp = I.getOperand(1);
 | |
|       RegOp.setReg(PromoteReg);
 | |
| 
 | |
|       // Promise that the copy is implicitly validated by the SUBREG_TO_REG.
 | |
|       KnownValid = true;
 | |
|     }
 | |
| 
 | |
|     // If the destination is a physical register, then there's nothing to
 | |
|     // change, so we're done.
 | |
|     if (Register::isPhysicalRegister(DstReg))
 | |
|       return CheckCopy();
 | |
|   }
 | |
| 
 | |
|   // No need to constrain SrcReg. It will get constrained when we hit another
 | |
|   // of its use or its defs. Copies do not have constraints.
 | |
|   if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
 | |
|                       << " operand\n");
 | |
|     return false;
 | |
|   }
 | |
|   I.setDesc(TII.get(AArch64::COPY));
 | |
|   return CheckCopy();
 | |
| }
 | |
| 
 | |
| static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
 | |
|   if (!DstTy.isScalar() || !SrcTy.isScalar())
 | |
|     return GenericOpc;
 | |
| 
 | |
|   const unsigned DstSize = DstTy.getSizeInBits();
 | |
|   const unsigned SrcSize = SrcTy.getSizeInBits();
 | |
| 
 | |
|   switch (DstSize) {
 | |
|   case 32:
 | |
|     switch (SrcSize) {
 | |
|     case 32:
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_SITOFP:
 | |
|         return AArch64::SCVTFUWSri;
 | |
|       case TargetOpcode::G_UITOFP:
 | |
|         return AArch64::UCVTFUWSri;
 | |
|       case TargetOpcode::G_FPTOSI:
 | |
|         return AArch64::FCVTZSUWSr;
 | |
|       case TargetOpcode::G_FPTOUI:
 | |
|         return AArch64::FCVTZUUWSr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     case 64:
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_SITOFP:
 | |
|         return AArch64::SCVTFUXSri;
 | |
|       case TargetOpcode::G_UITOFP:
 | |
|         return AArch64::UCVTFUXSri;
 | |
|       case TargetOpcode::G_FPTOSI:
 | |
|         return AArch64::FCVTZSUWDr;
 | |
|       case TargetOpcode::G_FPTOUI:
 | |
|         return AArch64::FCVTZUUWDr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     default:
 | |
|       return GenericOpc;
 | |
|     }
 | |
|   case 64:
 | |
|     switch (SrcSize) {
 | |
|     case 32:
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_SITOFP:
 | |
|         return AArch64::SCVTFUWDri;
 | |
|       case TargetOpcode::G_UITOFP:
 | |
|         return AArch64::UCVTFUWDri;
 | |
|       case TargetOpcode::G_FPTOSI:
 | |
|         return AArch64::FCVTZSUXSr;
 | |
|       case TargetOpcode::G_FPTOUI:
 | |
|         return AArch64::FCVTZUUXSr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     case 64:
 | |
|       switch (GenericOpc) {
 | |
|       case TargetOpcode::G_SITOFP:
 | |
|         return AArch64::SCVTFUXDri;
 | |
|       case TargetOpcode::G_UITOFP:
 | |
|         return AArch64::UCVTFUXDri;
 | |
|       case TargetOpcode::G_FPTOSI:
 | |
|         return AArch64::FCVTZSUXDr;
 | |
|       case TargetOpcode::G_FPTOUI:
 | |
|         return AArch64::FCVTZUUXDr;
 | |
|       default:
 | |
|         return GenericOpc;
 | |
|       }
 | |
|     default:
 | |
|       return GenericOpc;
 | |
|     }
 | |
|   default:
 | |
|     return GenericOpc;
 | |
|   };
 | |
|   return GenericOpc;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitSelect(Register Dst, Register True,
 | |
|                                        Register False, AArch64CC::CondCode CC,
 | |
|                                        MachineIRBuilder &MIB) const {
 | |
|   MachineRegisterInfo &MRI = *MIB.getMRI();
 | |
|   assert(RBI.getRegBank(False, MRI, TRI)->getID() ==
 | |
|              RBI.getRegBank(True, MRI, TRI)->getID() &&
 | |
|          "Expected both select operands to have the same regbank?");
 | |
|   LLT Ty = MRI.getType(True);
 | |
|   if (Ty.isVector())
 | |
|     return nullptr;
 | |
|   const unsigned Size = Ty.getSizeInBits();
 | |
|   assert((Size == 32 || Size == 64) &&
 | |
|          "Expected 32 bit or 64 bit select only?");
 | |
|   const bool Is32Bit = Size == 32;
 | |
|   if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) {
 | |
|     unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr;
 | |
|     auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
 | |
|     constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI);
 | |
|     return &*FCSel;
 | |
|   }
 | |
| 
 | |
|   // By default, we'll try and emit a CSEL.
 | |
|   unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr;
 | |
|   bool Optimized = false;
 | |
|   auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI,
 | |
|                                  &Optimized](Register &Reg, Register &OtherReg,
 | |
|                                              bool Invert) {
 | |
|     if (Optimized)
 | |
|       return false;
 | |
| 
 | |
|     // Attempt to fold:
 | |
|     //
 | |
|     // %sub = G_SUB 0, %x
 | |
|     // %select = G_SELECT cc, %reg, %sub
 | |
|     //
 | |
|     // Into:
 | |
|     // %select = CSNEG %reg, %x, cc
 | |
|     Register MatchReg;
 | |
|     if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) {
 | |
|       Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr;
 | |
|       Reg = MatchReg;
 | |
|       if (Invert) {
 | |
|         CC = AArch64CC::getInvertedCondCode(CC);
 | |
|         std::swap(Reg, OtherReg);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Attempt to fold:
 | |
|     //
 | |
|     // %xor = G_XOR %x, -1
 | |
|     // %select = G_SELECT cc, %reg, %xor
 | |
|     //
 | |
|     // Into:
 | |
|     // %select = CSINV %reg, %x, cc
 | |
|     if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) {
 | |
|       Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
 | |
|       Reg = MatchReg;
 | |
|       if (Invert) {
 | |
|         CC = AArch64CC::getInvertedCondCode(CC);
 | |
|         std::swap(Reg, OtherReg);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Attempt to fold:
 | |
|     //
 | |
|     // %add = G_ADD %x, 1
 | |
|     // %select = G_SELECT cc, %reg, %add
 | |
|     //
 | |
|     // Into:
 | |
|     // %select = CSINC %reg, %x, cc
 | |
|     if (mi_match(Reg, MRI,
 | |
|                  m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)),
 | |
|                           m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) {
 | |
|       Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
 | |
|       Reg = MatchReg;
 | |
|       if (Invert) {
 | |
|         CC = AArch64CC::getInvertedCondCode(CC);
 | |
|         std::swap(Reg, OtherReg);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Helper lambda which tries to use CSINC/CSINV for the instruction when its
 | |
|   // true/false values are constants.
 | |
|   // FIXME: All of these patterns already exist in tablegen. We should be
 | |
|   // able to import these.
 | |
|   auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI,
 | |
|                           &Optimized]() {
 | |
|     if (Optimized)
 | |
|       return false;
 | |
|     auto TrueCst = getConstantVRegValWithLookThrough(True, MRI);
 | |
|     auto FalseCst = getConstantVRegValWithLookThrough(False, MRI);
 | |
|     if (!TrueCst && !FalseCst)
 | |
|       return false;
 | |
| 
 | |
|     Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
 | |
|     if (TrueCst && FalseCst) {
 | |
|       int64_t T = TrueCst->Value.getSExtValue();
 | |
|       int64_t F = FalseCst->Value.getSExtValue();
 | |
| 
 | |
|       if (T == 0 && F == 1) {
 | |
|         // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc
 | |
|         Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
 | |
|         True = ZReg;
 | |
|         False = ZReg;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (T == 0 && F == -1) {
 | |
|         // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc
 | |
|         Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
 | |
|         True = ZReg;
 | |
|         False = ZReg;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (TrueCst) {
 | |
|       int64_t T = TrueCst->Value.getSExtValue();
 | |
|       if (T == 1) {
 | |
|         // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc
 | |
|         Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
 | |
|         True = False;
 | |
|         False = ZReg;
 | |
|         CC = AArch64CC::getInvertedCondCode(CC);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (T == -1) {
 | |
|         // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc
 | |
|         Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
 | |
|         True = False;
 | |
|         False = ZReg;
 | |
|         CC = AArch64CC::getInvertedCondCode(CC);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (FalseCst) {
 | |
|       int64_t F = FalseCst->Value.getSExtValue();
 | |
|       if (F == 1) {
 | |
|         // G_SELECT cc, t, 1 -> CSINC t, zreg, cc
 | |
|         Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
 | |
|         False = ZReg;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (F == -1) {
 | |
|         // G_SELECT cc, t, -1 -> CSINC t, zreg, cc
 | |
|         Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
 | |
|         False = ZReg;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false);
 | |
|   Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true);
 | |
|   Optimized |= TryOptSelectCst();
 | |
|   auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
 | |
|   constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI);
 | |
|   return &*SelectInst;
 | |
| }
 | |
| 
 | |
| static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
 | |
|   switch (P) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown condition code!");
 | |
|   case CmpInst::ICMP_NE:
 | |
|     return AArch64CC::NE;
 | |
|   case CmpInst::ICMP_EQ:
 | |
|     return AArch64CC::EQ;
 | |
|   case CmpInst::ICMP_SGT:
 | |
|     return AArch64CC::GT;
 | |
|   case CmpInst::ICMP_SGE:
 | |
|     return AArch64CC::GE;
 | |
|   case CmpInst::ICMP_SLT:
 | |
|     return AArch64CC::LT;
 | |
|   case CmpInst::ICMP_SLE:
 | |
|     return AArch64CC::LE;
 | |
|   case CmpInst::ICMP_UGT:
 | |
|     return AArch64CC::HI;
 | |
|   case CmpInst::ICMP_UGE:
 | |
|     return AArch64CC::HS;
 | |
|   case CmpInst::ICMP_ULT:
 | |
|     return AArch64CC::LO;
 | |
|   case CmpInst::ICMP_ULE:
 | |
|     return AArch64CC::LS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
 | |
|                                       AArch64CC::CondCode &CondCode,
 | |
|                                       AArch64CC::CondCode &CondCode2) {
 | |
|   CondCode2 = AArch64CC::AL;
 | |
|   switch (P) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown FP condition!");
 | |
|   case CmpInst::FCMP_OEQ:
 | |
|     CondCode = AArch64CC::EQ;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OGT:
 | |
|     CondCode = AArch64CC::GT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OGE:
 | |
|     CondCode = AArch64CC::GE;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OLT:
 | |
|     CondCode = AArch64CC::MI;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OLE:
 | |
|     CondCode = AArch64CC::LS;
 | |
|     break;
 | |
|   case CmpInst::FCMP_ONE:
 | |
|     CondCode = AArch64CC::MI;
 | |
|     CondCode2 = AArch64CC::GT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_ORD:
 | |
|     CondCode = AArch64CC::VC;
 | |
|     break;
 | |
|   case CmpInst::FCMP_UNO:
 | |
|     CondCode = AArch64CC::VS;
 | |
|     break;
 | |
|   case CmpInst::FCMP_UEQ:
 | |
|     CondCode = AArch64CC::EQ;
 | |
|     CondCode2 = AArch64CC::VS;
 | |
|     break;
 | |
|   case CmpInst::FCMP_UGT:
 | |
|     CondCode = AArch64CC::HI;
 | |
|     break;
 | |
|   case CmpInst::FCMP_UGE:
 | |
|     CondCode = AArch64CC::PL;
 | |
|     break;
 | |
|   case CmpInst::FCMP_ULT:
 | |
|     CondCode = AArch64CC::LT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_ULE:
 | |
|     CondCode = AArch64CC::LE;
 | |
|     break;
 | |
|   case CmpInst::FCMP_UNE:
 | |
|     CondCode = AArch64CC::NE;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return a register which can be used as a bit to test in a TB(N)Z.
 | |
| static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
 | |
|                               MachineRegisterInfo &MRI) {
 | |
|   assert(Reg.isValid() && "Expected valid register!");
 | |
|   while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
 | |
|     unsigned Opc = MI->getOpcode();
 | |
| 
 | |
|     if (!MI->getOperand(0).isReg() ||
 | |
|         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
 | |
|       break;
 | |
| 
 | |
|     // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
 | |
|     //
 | |
|     // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
 | |
|     // on the truncated x is the same as the bit number on x.
 | |
|     if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
 | |
|         Opc == TargetOpcode::G_TRUNC) {
 | |
|       Register NextReg = MI->getOperand(1).getReg();
 | |
|       // Did we find something worth folding?
 | |
|       if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
 | |
|         break;
 | |
| 
 | |
|       // NextReg is worth folding. Keep looking.
 | |
|       Reg = NextReg;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Attempt to find a suitable operation with a constant on one side.
 | |
|     Optional<uint64_t> C;
 | |
|     Register TestReg;
 | |
|     switch (Opc) {
 | |
|     default:
 | |
|       break;
 | |
|     case TargetOpcode::G_AND:
 | |
|     case TargetOpcode::G_XOR: {
 | |
|       TestReg = MI->getOperand(1).getReg();
 | |
|       Register ConstantReg = MI->getOperand(2).getReg();
 | |
|       auto VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
 | |
|       if (!VRegAndVal) {
 | |
|         // AND commutes, check the other side for a constant.
 | |
|         // FIXME: Can we canonicalize the constant so that it's always on the
 | |
|         // same side at some point earlier?
 | |
|         std::swap(ConstantReg, TestReg);
 | |
|         VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
 | |
|       }
 | |
|       if (VRegAndVal)
 | |
|         C = VRegAndVal->Value.getSExtValue();
 | |
|       break;
 | |
|     }
 | |
|     case TargetOpcode::G_ASHR:
 | |
|     case TargetOpcode::G_LSHR:
 | |
|     case TargetOpcode::G_SHL: {
 | |
|       TestReg = MI->getOperand(1).getReg();
 | |
|       auto VRegAndVal =
 | |
|           getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
 | |
|       if (VRegAndVal)
 | |
|         C = VRegAndVal->Value.getSExtValue();
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // Didn't find a constant or viable register. Bail out of the loop.
 | |
|     if (!C || !TestReg.isValid())
 | |
|       break;
 | |
| 
 | |
|     // We found a suitable instruction with a constant. Check to see if we can
 | |
|     // walk through the instruction.
 | |
|     Register NextReg;
 | |
|     unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
 | |
|     switch (Opc) {
 | |
|     default:
 | |
|       break;
 | |
|     case TargetOpcode::G_AND:
 | |
|       // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
 | |
|       if ((*C >> Bit) & 1)
 | |
|         NextReg = TestReg;
 | |
|       break;
 | |
|     case TargetOpcode::G_SHL:
 | |
|       // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
 | |
|       // the type of the register.
 | |
|       if (*C <= Bit && (Bit - *C) < TestRegSize) {
 | |
|         NextReg = TestReg;
 | |
|         Bit = Bit - *C;
 | |
|       }
 | |
|       break;
 | |
|     case TargetOpcode::G_ASHR:
 | |
|       // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
 | |
|       // in x
 | |
|       NextReg = TestReg;
 | |
|       Bit = Bit + *C;
 | |
|       if (Bit >= TestRegSize)
 | |
|         Bit = TestRegSize - 1;
 | |
|       break;
 | |
|     case TargetOpcode::G_LSHR:
 | |
|       // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
 | |
|       if ((Bit + *C) < TestRegSize) {
 | |
|         NextReg = TestReg;
 | |
|         Bit = Bit + *C;
 | |
|       }
 | |
|       break;
 | |
|     case TargetOpcode::G_XOR:
 | |
|       // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
 | |
|       // appropriate.
 | |
|       //
 | |
|       // e.g. If x' = xor x, c, and the b-th bit is set in c then
 | |
|       //
 | |
|       // tbz x', b -> tbnz x, b
 | |
|       //
 | |
|       // Because x' only has the b-th bit set if x does not.
 | |
|       if ((*C >> Bit) & 1)
 | |
|         Invert = !Invert;
 | |
|       NextReg = TestReg;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Check if we found anything worth folding.
 | |
|     if (!NextReg.isValid())
 | |
|       return Reg;
 | |
|     Reg = NextReg;
 | |
|   }
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitTestBit(
 | |
|     Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
 | |
|     MachineIRBuilder &MIB) const {
 | |
|   assert(TestReg.isValid());
 | |
|   assert(ProduceNonFlagSettingCondBr &&
 | |
|          "Cannot emit TB(N)Z with speculation tracking!");
 | |
|   MachineRegisterInfo &MRI = *MIB.getMRI();
 | |
| 
 | |
|   // Attempt to optimize the test bit by walking over instructions.
 | |
|   TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
 | |
|   LLT Ty = MRI.getType(TestReg);
 | |
|   unsigned Size = Ty.getSizeInBits();
 | |
|   assert(!Ty.isVector() && "Expected a scalar!");
 | |
|   assert(Bit < 64 && "Bit is too large!");
 | |
| 
 | |
|   // When the test register is a 64-bit register, we have to narrow to make
 | |
|   // TBNZW work.
 | |
|   bool UseWReg = Bit < 32;
 | |
|   unsigned NecessarySize = UseWReg ? 32 : 64;
 | |
|   if (Size != NecessarySize)
 | |
|     TestReg = moveScalarRegClass(
 | |
|         TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
 | |
|         MIB);
 | |
| 
 | |
|   static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
 | |
|                                           {AArch64::TBZW, AArch64::TBNZW}};
 | |
|   unsigned Opc = OpcTable[UseWReg][IsNegative];
 | |
|   auto TestBitMI =
 | |
|       MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
 | |
|   constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
 | |
|   return &*TestBitMI;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
 | |
|     MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB,
 | |
|     MachineIRBuilder &MIB) const {
 | |
|   assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?");
 | |
|   // Given something like this:
 | |
|   //
 | |
|   //  %x = ...Something...
 | |
|   //  %one = G_CONSTANT i64 1
 | |
|   //  %zero = G_CONSTANT i64 0
 | |
|   //  %and = G_AND %x, %one
 | |
|   //  %cmp = G_ICMP intpred(ne), %and, %zero
 | |
|   //  %cmp_trunc = G_TRUNC %cmp
 | |
|   //  G_BRCOND %cmp_trunc, %bb.3
 | |
|   //
 | |
|   // We want to try and fold the AND into the G_BRCOND and produce either a
 | |
|   // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
 | |
|   //
 | |
|   // In this case, we'd get
 | |
|   //
 | |
|   // TBNZ %x %bb.3
 | |
|   //
 | |
| 
 | |
|   // Check if the AND has a constant on its RHS which we can use as a mask.
 | |
|   // If it's a power of 2, then it's the same as checking a specific bit.
 | |
|   // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
 | |
|   auto MaybeBit = getConstantVRegValWithLookThrough(
 | |
|       AndInst.getOperand(2).getReg(), *MIB.getMRI());
 | |
|   if (!MaybeBit)
 | |
|     return false;
 | |
| 
 | |
|   int32_t Bit = MaybeBit->Value.exactLogBase2();
 | |
|   if (Bit < 0)
 | |
|     return false;
 | |
| 
 | |
|   Register TestReg = AndInst.getOperand(1).getReg();
 | |
| 
 | |
|   // Emit a TB(N)Z.
 | |
|   emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg,
 | |
|                                                   bool IsNegative,
 | |
|                                                   MachineBasicBlock *DestMBB,
 | |
|                                                   MachineIRBuilder &MIB) const {
 | |
|   assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!");
 | |
|   MachineRegisterInfo &MRI = *MIB.getMRI();
 | |
|   assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() ==
 | |
|              AArch64::GPRRegBankID &&
 | |
|          "Expected GPRs only?");
 | |
|   auto Ty = MRI.getType(CompareReg);
 | |
|   unsigned Width = Ty.getSizeInBits();
 | |
|   assert(!Ty.isVector() && "Expected scalar only?");
 | |
|   assert(Width <= 64 && "Expected width to be at most 64?");
 | |
|   static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX},
 | |
|                                           {AArch64::CBNZW, AArch64::CBNZX}};
 | |
|   unsigned Opc = OpcTable[IsNegative][Width == 64];
 | |
|   auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB);
 | |
|   constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI);
 | |
|   return &*BranchMI;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectCompareBranchFedByFCmp(
 | |
|     MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const {
 | |
|   assert(FCmp.getOpcode() == TargetOpcode::G_FCMP);
 | |
|   assert(I.getOpcode() == TargetOpcode::G_BRCOND);
 | |
|   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
 | |
|   // totally clean.  Some of them require two branches to implement.
 | |
|   auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate();
 | |
|   emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB,
 | |
|                 Pred);
 | |
|   AArch64CC::CondCode CC1, CC2;
 | |
|   changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2);
 | |
|   MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
 | |
|   MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB);
 | |
|   if (CC2 != AArch64CC::AL)
 | |
|     MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp(
 | |
|     MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
 | |
|   assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
 | |
|   assert(I.getOpcode() == TargetOpcode::G_BRCOND);
 | |
|   // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z.
 | |
|   //
 | |
|   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
 | |
|   // instructions will not be produced, as they are conditional branch
 | |
|   // instructions that do not set flags.
 | |
|   if (!ProduceNonFlagSettingCondBr)
 | |
|     return false;
 | |
| 
 | |
|   MachineRegisterInfo &MRI = *MIB.getMRI();
 | |
|   MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
 | |
|   auto Pred =
 | |
|       static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate());
 | |
|   Register LHS = ICmp.getOperand(2).getReg();
 | |
|   Register RHS = ICmp.getOperand(3).getReg();
 | |
| 
 | |
|   // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that.
 | |
|   auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
 | |
|   MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
 | |
| 
 | |
|   // When we can emit a TB(N)Z, prefer that.
 | |
|   //
 | |
|   // Handle non-commutative condition codes first.
 | |
|   // Note that we don't want to do this when we have a G_AND because it can
 | |
|   // become a tst. The tst will make the test bit in the TB(N)Z redundant.
 | |
|   if (VRegAndVal && !AndInst) {
 | |
|     int64_t C = VRegAndVal->Value.getSExtValue();
 | |
| 
 | |
|     // When we have a greater-than comparison, we can just test if the msb is
 | |
|     // zero.
 | |
|     if (C == -1 && Pred == CmpInst::ICMP_SGT) {
 | |
|       uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
 | |
|       emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
 | |
|       I.eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // When we have a less than comparison, we can just test if the msb is not
 | |
|     // zero.
 | |
|     if (C == 0 && Pred == CmpInst::ICMP_SLT) {
 | |
|       uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
 | |
|       emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
 | |
|       I.eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attempt to handle commutative condition codes. Right now, that's only
 | |
|   // eq/ne.
 | |
|   if (ICmpInst::isEquality(Pred)) {
 | |
|     if (!VRegAndVal) {
 | |
|       std::swap(RHS, LHS);
 | |
|       VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
 | |
|       AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
 | |
|     }
 | |
| 
 | |
|     if (VRegAndVal && VRegAndVal->Value == 0) {
 | |
|       // If there's a G_AND feeding into this branch, try to fold it away by
 | |
|       // emitting a TB(N)Z instead.
 | |
|       //
 | |
|       // Note: If we have LT, then it *is* possible to fold, but it wouldn't be
 | |
|       // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding
 | |
|       // would be redundant.
 | |
|       if (AndInst &&
 | |
|           tryOptAndIntoCompareBranch(
 | |
|               *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) {
 | |
|         I.eraseFromParent();
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, try to emit a CB(N)Z instead.
 | |
|       auto LHSTy = MRI.getType(LHS);
 | |
|       if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) {
 | |
|         emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB);
 | |
|         I.eraseFromParent();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectCompareBranchFedByICmp(
 | |
|     MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
 | |
|   assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
 | |
|   assert(I.getOpcode() == TargetOpcode::G_BRCOND);
 | |
|   if (tryOptCompareBranchFedByICmp(I, ICmp, MIB))
 | |
|     return true;
 | |
| 
 | |
|   // Couldn't optimize. Emit a compare + a Bcc.
 | |
|   MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
 | |
|   auto PredOp = ICmp.getOperand(1);
 | |
|   emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB);
 | |
|   const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
 | |
|       static_cast<CmpInst::Predicate>(PredOp.getPredicate()));
 | |
|   MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectCompareBranch(
 | |
|     MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
 | |
|   Register CondReg = I.getOperand(0).getReg();
 | |
|   MachineInstr *CCMI = MRI.getVRegDef(CondReg);
 | |
|   if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) {
 | |
|     CondReg = CCMI->getOperand(1).getReg();
 | |
|     CCMI = MRI.getVRegDef(CondReg);
 | |
|   }
 | |
| 
 | |
|   // Try to select the G_BRCOND using whatever is feeding the condition if
 | |
|   // possible.
 | |
|   MachineIRBuilder MIB(I);
 | |
|   unsigned CCMIOpc = CCMI->getOpcode();
 | |
|   if (CCMIOpc == TargetOpcode::G_FCMP)
 | |
|     return selectCompareBranchFedByFCmp(I, *CCMI, MIB);
 | |
|   if (CCMIOpc == TargetOpcode::G_ICMP)
 | |
|     return selectCompareBranchFedByICmp(I, *CCMI, MIB);
 | |
| 
 | |
|   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
 | |
|   // instructions will not be produced, as they are conditional branch
 | |
|   // instructions that do not set flags.
 | |
|   if (ProduceNonFlagSettingCondBr) {
 | |
|     emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true,
 | |
|                 I.getOperand(1).getMBB(), MIB);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead.
 | |
|   auto TstMI =
 | |
|       MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1);
 | |
|   constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
 | |
|   auto Bcc = MIB.buildInstr(AArch64::Bcc)
 | |
|                  .addImm(AArch64CC::EQ)
 | |
|                  .addMBB(I.getOperand(1).getMBB());
 | |
|   I.eraseFromParent();
 | |
|   return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI);
 | |
| }
 | |
| 
 | |
| /// Returns the element immediate value of a vector shift operand if found.
 | |
| /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
 | |
| static Optional<int64_t> getVectorShiftImm(Register Reg,
 | |
|                                            MachineRegisterInfo &MRI) {
 | |
|   assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
 | |
|   MachineInstr *OpMI = MRI.getVRegDef(Reg);
 | |
|   assert(OpMI && "Expected to find a vreg def for vector shift operand");
 | |
|   return getAArch64VectorSplatScalar(*OpMI, MRI);
 | |
| }
 | |
| 
 | |
| /// Matches and returns the shift immediate value for a SHL instruction given
 | |
| /// a shift operand.
 | |
| static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) {
 | |
|   Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
 | |
|   if (!ShiftImm)
 | |
|     return None;
 | |
|   // Check the immediate is in range for a SHL.
 | |
|   int64_t Imm = *ShiftImm;
 | |
|   if (Imm < 0)
 | |
|     return None;
 | |
|   switch (SrcTy.getElementType().getSizeInBits()) {
 | |
|   default:
 | |
|     LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
 | |
|     return None;
 | |
|   case 8:
 | |
|     if (Imm > 7)
 | |
|       return None;
 | |
|     break;
 | |
|   case 16:
 | |
|     if (Imm > 15)
 | |
|       return None;
 | |
|     break;
 | |
|   case 32:
 | |
|     if (Imm > 31)
 | |
|       return None;
 | |
|     break;
 | |
|   case 64:
 | |
|     if (Imm > 63)
 | |
|       return None;
 | |
|     break;
 | |
|   }
 | |
|   return Imm;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectVectorSHL(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_SHL);
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   const LLT Ty = MRI.getType(DstReg);
 | |
|   Register Src1Reg = I.getOperand(1).getReg();
 | |
|   Register Src2Reg = I.getOperand(2).getReg();
 | |
| 
 | |
|   if (!Ty.isVector())
 | |
|     return false;
 | |
| 
 | |
|   // Check if we have a vector of constants on RHS that we can select as the
 | |
|   // immediate form.
 | |
|   Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
 | |
| 
 | |
|   unsigned Opc = 0;
 | |
|   if (Ty == LLT::vector(2, 64)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
 | |
|   } else if (Ty == LLT::vector(4, 32)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
 | |
|   } else if (Ty == LLT::vector(2, 32)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
 | |
|   } else if (Ty == LLT::vector(4, 16)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16;
 | |
|   } else if (Ty == LLT::vector(8, 16)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16;
 | |
|   } else if (Ty == LLT::vector(16, 8)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8;
 | |
|   } else if (Ty == LLT::vector(8, 8)) {
 | |
|     Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8;
 | |
|   } else {
 | |
|     LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
|   auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
 | |
|   if (ImmVal)
 | |
|     Shl.addImm(*ImmVal);
 | |
|   else
 | |
|     Shl.addUse(Src2Reg);
 | |
|   constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectVectorAshrLshr(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_ASHR ||
 | |
|          I.getOpcode() == TargetOpcode::G_LSHR);
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   const LLT Ty = MRI.getType(DstReg);
 | |
|   Register Src1Reg = I.getOperand(1).getReg();
 | |
|   Register Src2Reg = I.getOperand(2).getReg();
 | |
| 
 | |
|   if (!Ty.isVector())
 | |
|     return false;
 | |
| 
 | |
|   bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR;
 | |
| 
 | |
|   // We expect the immediate case to be lowered in the PostLegalCombiner to
 | |
|   // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents.
 | |
| 
 | |
|   // There is not a shift right register instruction, but the shift left
 | |
|   // register instruction takes a signed value, where negative numbers specify a
 | |
|   // right shift.
 | |
| 
 | |
|   unsigned Opc = 0;
 | |
|   unsigned NegOpc = 0;
 | |
|   const TargetRegisterClass *RC =
 | |
|       getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID), RBI);
 | |
|   if (Ty == LLT::vector(2, 64)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64;
 | |
|     NegOpc = AArch64::NEGv2i64;
 | |
|   } else if (Ty == LLT::vector(4, 32)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32;
 | |
|     NegOpc = AArch64::NEGv4i32;
 | |
|   } else if (Ty == LLT::vector(2, 32)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32;
 | |
|     NegOpc = AArch64::NEGv2i32;
 | |
|   } else if (Ty == LLT::vector(4, 16)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16;
 | |
|     NegOpc = AArch64::NEGv4i16;
 | |
|   } else if (Ty == LLT::vector(8, 16)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16;
 | |
|     NegOpc = AArch64::NEGv8i16;
 | |
|   } else if (Ty == LLT::vector(16, 8)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8;
 | |
|     NegOpc = AArch64::NEGv8i16;
 | |
|   } else if (Ty == LLT::vector(8, 8)) {
 | |
|     Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8;
 | |
|     NegOpc = AArch64::NEGv8i8;
 | |
|   } else {
 | |
|     LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
|   auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
 | |
|   constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
 | |
|   auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
 | |
|   constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectVaStartAAPCS(
 | |
|     MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectVaStartDarwin(
 | |
|     MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
 | |
|   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
 | |
|   Register ListReg = I.getOperand(0).getReg();
 | |
| 
 | |
|   Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
 | |
| 
 | |
|   auto MIB =
 | |
|       BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
 | |
|           .addDef(ArgsAddrReg)
 | |
|           .addFrameIndex(FuncInfo->getVarArgsStackIndex())
 | |
|           .addImm(0)
 | |
|           .addImm(0);
 | |
| 
 | |
|   constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
 | |
| 
 | |
|   MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
 | |
|             .addUse(ArgsAddrReg)
 | |
|             .addUse(ListReg)
 | |
|             .addImm(0)
 | |
|             .addMemOperand(*I.memoperands_begin());
 | |
| 
 | |
|   constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::materializeLargeCMVal(
 | |
|     MachineInstr &I, const Value *V, unsigned OpFlags) const {
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
 | |
|   MovZ->addOperand(MF, I.getOperand(1));
 | |
|   MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
 | |
|                                      AArch64II::MO_NC);
 | |
|   MovZ->addOperand(MF, MachineOperand::CreateImm(0));
 | |
|   constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
 | |
| 
 | |
|   auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
 | |
|                        Register ForceDstReg) {
 | |
|     Register DstReg = ForceDstReg
 | |
|                           ? ForceDstReg
 | |
|                           : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
 | |
|     auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
 | |
|     if (auto *GV = dyn_cast<GlobalValue>(V)) {
 | |
|       MovI->addOperand(MF, MachineOperand::CreateGA(
 | |
|                                GV, MovZ->getOperand(1).getOffset(), Flags));
 | |
|     } else {
 | |
|       MovI->addOperand(
 | |
|           MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
 | |
|                                        MovZ->getOperand(1).getOffset(), Flags));
 | |
|     }
 | |
|     MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
 | |
|     constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
 | |
|     return DstReg;
 | |
|   };
 | |
|   Register DstReg = BuildMovK(MovZ.getReg(0),
 | |
|                               AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
 | |
|   DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
 | |
|   BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   switch (I.getOpcode()) {
 | |
|   case TargetOpcode::G_SHL:
 | |
|   case TargetOpcode::G_ASHR:
 | |
|   case TargetOpcode::G_LSHR: {
 | |
|     // These shifts are legalized to have 64 bit shift amounts because we want
 | |
|     // to take advantage of the existing imported selection patterns that assume
 | |
|     // the immediates are s64s. However, if the shifted type is 32 bits and for
 | |
|     // some reason we receive input GMIR that has an s64 shift amount that's not
 | |
|     // a G_CONSTANT, insert a truncate so that we can still select the s32
 | |
|     // register-register variant.
 | |
|     Register SrcReg = I.getOperand(1).getReg();
 | |
|     Register ShiftReg = I.getOperand(2).getReg();
 | |
|     const LLT ShiftTy = MRI.getType(ShiftReg);
 | |
|     const LLT SrcTy = MRI.getType(SrcReg);
 | |
|     if (SrcTy.isVector())
 | |
|       return false;
 | |
|     assert(!ShiftTy.isVector() && "unexpected vector shift ty");
 | |
|     if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
 | |
|       return false;
 | |
|     auto *AmtMI = MRI.getVRegDef(ShiftReg);
 | |
|     assert(AmtMI && "could not find a vreg definition for shift amount");
 | |
|     if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
 | |
|       // Insert a subregister copy to implement a 64->32 trunc
 | |
|       MachineIRBuilder MIB(I);
 | |
|       auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
 | |
|                        .addReg(ShiftReg, 0, AArch64::sub_32);
 | |
|       MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
 | |
|       I.getOperand(2).setReg(Trunc.getReg(0));
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_STORE: {
 | |
|     bool Changed = contractCrossBankCopyIntoStore(I, MRI);
 | |
|     MachineOperand &SrcOp = I.getOperand(0);
 | |
|     if (MRI.getType(SrcOp.getReg()).isPointer()) {
 | |
|       // Allow matching with imported patterns for stores of pointers. Unlike
 | |
|       // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy
 | |
|       // and constrain.
 | |
|       MachineIRBuilder MIB(I);
 | |
|       auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp);
 | |
|       Register NewSrc = Copy.getReg(0);
 | |
|       SrcOp.setReg(NewSrc);
 | |
|       RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI);
 | |
|       Changed = true;
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
|   case TargetOpcode::G_PTR_ADD:
 | |
|     return convertPtrAddToAdd(I, MRI);
 | |
|   case TargetOpcode::G_LOAD: {
 | |
|     // For scalar loads of pointers, we try to convert the dest type from p0
 | |
|     // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
 | |
|     // conversion, this should be ok because all users should have been
 | |
|     // selected already, so the type doesn't matter for them.
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
|     const LLT DstTy = MRI.getType(DstReg);
 | |
|     if (!DstTy.isPointer())
 | |
|       return false;
 | |
|     MRI.setType(DstReg, LLT::scalar(64));
 | |
|     return true;
 | |
|   }
 | |
|   case AArch64::G_DUP: {
 | |
|     // Convert the type from p0 to s64 to help selection.
 | |
|     LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|     if (!DstTy.getElementType().isPointer())
 | |
|       return false;
 | |
|     MachineIRBuilder MIB(I);
 | |
|     auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg());
 | |
|     MRI.setType(I.getOperand(0).getReg(),
 | |
|                 DstTy.changeElementType(LLT::scalar(64)));
 | |
|     MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass);
 | |
|     I.getOperand(1).setReg(NewSrc.getReg(0));
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_UITOFP:
 | |
|   case TargetOpcode::G_SITOFP: {
 | |
|     // If both source and destination regbanks are FPR, then convert the opcode
 | |
|     // to G_SITOF so that the importer can select it to an fpr variant.
 | |
|     // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank
 | |
|     // copy.
 | |
|     Register SrcReg = I.getOperand(1).getReg();
 | |
|     LLT SrcTy = MRI.getType(SrcReg);
 | |
|     LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|     if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits())
 | |
|       return false;
 | |
| 
 | |
|     if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) {
 | |
|       if (I.getOpcode() == TargetOpcode::G_SITOFP)
 | |
|         I.setDesc(TII.get(AArch64::G_SITOF));
 | |
|       else
 | |
|         I.setDesc(TII.get(AArch64::G_UITOF));
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This lowering tries to look for G_PTR_ADD instructions and then converts
 | |
| /// them to a standard G_ADD with a COPY on the source.
 | |
| ///
 | |
| /// The motivation behind this is to expose the add semantics to the imported
 | |
| /// tablegen patterns. We shouldn't need to check for uses being loads/stores,
 | |
| /// because the selector works bottom up, uses before defs. By the time we
 | |
| /// end up trying to select a G_PTR_ADD, we should have already attempted to
 | |
| /// fold this into addressing modes and were therefore unsuccessful.
 | |
| bool AArch64InstructionSelector::convertPtrAddToAdd(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   Register AddOp1Reg = I.getOperand(1).getReg();
 | |
|   const LLT PtrTy = MRI.getType(DstReg);
 | |
|   if (PtrTy.getAddressSpace() != 0)
 | |
|     return false;
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
|   const LLT CastPtrTy = PtrTy.isVector() ? LLT::vector(2, 64) : LLT::scalar(64);
 | |
|   auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
 | |
|   // Set regbanks on the registers.
 | |
|   if (PtrTy.isVector())
 | |
|     MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
 | |
|   else
 | |
|     MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
 | |
| 
 | |
|   // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
 | |
|   // %dst(intty) = G_ADD %intbase, off
 | |
|   I.setDesc(TII.get(TargetOpcode::G_ADD));
 | |
|   MRI.setType(DstReg, CastPtrTy);
 | |
|   I.getOperand(1).setReg(PtrToInt.getReg(0));
 | |
|   if (!select(*PtrToInt)) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Also take the opportunity here to try to do some optimization.
 | |
|   // Try to convert this into a G_SUB if the offset is a 0-x negate idiom.
 | |
|   Register NegatedReg;
 | |
|   if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg))))
 | |
|     return true;
 | |
|   I.getOperand(2).setReg(NegatedReg);
 | |
|   I.setDesc(TII.get(TargetOpcode::G_SUB));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::earlySelectSHL(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   // We try to match the immediate variant of LSL, which is actually an alias
 | |
|   // for a special case of UBFM. Otherwise, we fall back to the imported
 | |
|   // selector which will match the register variant.
 | |
|   assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
 | |
|   const auto &MO = I.getOperand(2);
 | |
|   auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
 | |
|   if (!VRegAndVal)
 | |
|     return false;
 | |
| 
 | |
|   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|   if (DstTy.isVector())
 | |
|     return false;
 | |
|   bool Is64Bit = DstTy.getSizeInBits() == 64;
 | |
|   auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
 | |
|   auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   if (!Imm1Fn || !Imm2Fn)
 | |
|     return false;
 | |
| 
 | |
|   auto NewI =
 | |
|       MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
 | |
|                      {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
 | |
| 
 | |
|   for (auto &RenderFn : *Imm1Fn)
 | |
|     RenderFn(NewI);
 | |
|   for (auto &RenderFn : *Imm2Fn)
 | |
|     RenderFn(NewI);
 | |
| 
 | |
|   I.eraseFromParent();
 | |
|   return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
 | |
|   // If we're storing a scalar, it doesn't matter what register bank that
 | |
|   // scalar is on. All that matters is the size.
 | |
|   //
 | |
|   // So, if we see something like this (with a 32-bit scalar as an example):
 | |
|   //
 | |
|   // %x:gpr(s32) = ... something ...
 | |
|   // %y:fpr(s32) = COPY %x:gpr(s32)
 | |
|   // G_STORE %y:fpr(s32)
 | |
|   //
 | |
|   // We can fix this up into something like this:
 | |
|   //
 | |
|   // G_STORE %x:gpr(s32)
 | |
|   //
 | |
|   // And then continue the selection process normally.
 | |
|   Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
 | |
|   if (!DefDstReg.isValid())
 | |
|     return false;
 | |
|   LLT DefDstTy = MRI.getType(DefDstReg);
 | |
|   Register StoreSrcReg = I.getOperand(0).getReg();
 | |
|   LLT StoreSrcTy = MRI.getType(StoreSrcReg);
 | |
| 
 | |
|   // If we get something strange like a physical register, then we shouldn't
 | |
|   // go any further.
 | |
|   if (!DefDstTy.isValid())
 | |
|     return false;
 | |
| 
 | |
|   // Are the source and dst types the same size?
 | |
|   if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
 | |
|     return false;
 | |
| 
 | |
|   if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
 | |
|       RBI.getRegBank(DefDstReg, MRI, TRI))
 | |
|     return false;
 | |
| 
 | |
|   // We have a cross-bank copy, which is entering a store. Let's fold it.
 | |
|   I.getOperand(0).setReg(DefDstReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
 | |
|   assert(I.getParent() && "Instruction should be in a basic block!");
 | |
|   assert(I.getParent()->getParent() && "Instruction should be in a function!");
 | |
| 
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   switch (I.getOpcode()) {
 | |
|   case AArch64::G_DUP: {
 | |
|     // Before selecting a DUP instruction, check if it is better selected as a
 | |
|     // MOV or load from a constant pool.
 | |
|     Register Src = I.getOperand(1).getReg();
 | |
|     auto ValAndVReg = getConstantVRegValWithLookThrough(Src, MRI);
 | |
|     if (!ValAndVReg)
 | |
|       return false;
 | |
|     LLVMContext &Ctx = MF.getFunction().getContext();
 | |
|     Register Dst = I.getOperand(0).getReg();
 | |
|     auto *CV = ConstantDataVector::getSplat(
 | |
|         MRI.getType(Dst).getNumElements(),
 | |
|         ConstantInt::get(Type::getIntNTy(Ctx, MRI.getType(Src).getSizeInBits()),
 | |
|                          ValAndVReg->Value));
 | |
|     MachineIRBuilder MIRBuilder(I);
 | |
|     if (!emitConstantVector(Dst, CV, MIRBuilder, MRI))
 | |
|       return false;
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_BR: {
 | |
|     // If the branch jumps to the fallthrough block, don't bother emitting it.
 | |
|     // Only do this for -O0 for a good code size improvement, because when
 | |
|     // optimizations are enabled we want to leave this choice to
 | |
|     // MachineBlockPlacement.
 | |
|     bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None;
 | |
|     if (EnableOpt || !MBB.isLayoutSuccessor(I.getOperand(0).getMBB()))
 | |
|       return false;
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_SHL:
 | |
|     return earlySelectSHL(I, MRI);
 | |
|   case TargetOpcode::G_CONSTANT: {
 | |
|     bool IsZero = false;
 | |
|     if (I.getOperand(1).isCImm())
 | |
|       IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
 | |
|     else if (I.getOperand(1).isImm())
 | |
|       IsZero = I.getOperand(1).getImm() == 0;
 | |
| 
 | |
|     if (!IsZero)
 | |
|       return false;
 | |
| 
 | |
|     Register DefReg = I.getOperand(0).getReg();
 | |
|     LLT Ty = MRI.getType(DefReg);
 | |
|     if (Ty.getSizeInBits() == 64) {
 | |
|       I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
 | |
|       RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
 | |
|     } else if (Ty.getSizeInBits() == 32) {
 | |
|       I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
 | |
|       RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     I.setDesc(TII.get(TargetOpcode::COPY));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_ADD: {
 | |
|     // Check if this is being fed by a G_ICMP on either side.
 | |
|     //
 | |
|     // (cmp pred, x, y) + z
 | |
|     //
 | |
|     // In the above case, when the cmp is true, we increment z by 1. So, we can
 | |
|     // fold the add into the cset for the cmp by using cinc.
 | |
|     //
 | |
|     // FIXME: This would probably be a lot nicer in PostLegalizerLowering.
 | |
|     Register X = I.getOperand(1).getReg();
 | |
| 
 | |
|     // Only handle scalars. Scalar G_ICMP is only legal for s32, so bail out
 | |
|     // early if we see it.
 | |
|     LLT Ty = MRI.getType(X);
 | |
|     if (Ty.isVector() || Ty.getSizeInBits() != 32)
 | |
|       return false;
 | |
| 
 | |
|     Register CmpReg = I.getOperand(2).getReg();
 | |
|     MachineInstr *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, CmpReg, MRI);
 | |
|     if (!Cmp) {
 | |
|       std::swap(X, CmpReg);
 | |
|       Cmp = getOpcodeDef(TargetOpcode::G_ICMP, CmpReg, MRI);
 | |
|       if (!Cmp)
 | |
|         return false;
 | |
|     }
 | |
|     MachineIRBuilder MIRBuilder(I);
 | |
|     auto Pred =
 | |
|         static_cast<CmpInst::Predicate>(Cmp->getOperand(1).getPredicate());
 | |
|     emitIntegerCompare(Cmp->getOperand(2), Cmp->getOperand(3),
 | |
|                        Cmp->getOperand(1), MIRBuilder);
 | |
|     emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIRBuilder, X);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::select(MachineInstr &I) {
 | |
|   assert(I.getParent() && "Instruction should be in a basic block!");
 | |
|   assert(I.getParent()->getParent() && "Instruction should be in a function!");
 | |
| 
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   const AArch64Subtarget *Subtarget =
 | |
|       &static_cast<const AArch64Subtarget &>(MF.getSubtarget());
 | |
|   if (Subtarget->requiresStrictAlign()) {
 | |
|     // We don't support this feature yet.
 | |
|     LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Opcode = I.getOpcode();
 | |
|   // G_PHI requires same handling as PHI
 | |
|   if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
 | |
|     // Certain non-generic instructions also need some special handling.
 | |
| 
 | |
|     if (Opcode ==  TargetOpcode::LOAD_STACK_GUARD)
 | |
|       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
| 
 | |
|     if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
 | |
|       const Register DefReg = I.getOperand(0).getReg();
 | |
|       const LLT DefTy = MRI.getType(DefReg);
 | |
| 
 | |
|       const RegClassOrRegBank &RegClassOrBank =
 | |
|         MRI.getRegClassOrRegBank(DefReg);
 | |
| 
 | |
|       const TargetRegisterClass *DefRC
 | |
|         = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
 | |
|       if (!DefRC) {
 | |
|         if (!DefTy.isValid()) {
 | |
|           LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
 | |
|           return false;
 | |
|         }
 | |
|         const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
 | |
|         DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
 | |
|         if (!DefRC) {
 | |
|           LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       I.setDesc(TII.get(TargetOpcode::PHI));
 | |
| 
 | |
|       return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
 | |
|     }
 | |
| 
 | |
|     if (I.isCopy())
 | |
|       return selectCopy(I, TII, MRI, TRI, RBI);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (I.getNumOperands() != I.getNumExplicitOperands()) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Generic instruction has unexpected implicit operands\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Try to do some lowering before we start instruction selecting. These
 | |
|   // lowerings are purely transformations on the input G_MIR and so selection
 | |
|   // must continue after any modification of the instruction.
 | |
|   if (preISelLower(I)) {
 | |
|     Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
 | |
|   }
 | |
| 
 | |
|   // There may be patterns where the importer can't deal with them optimally,
 | |
|   // but does select it to a suboptimal sequence so our custom C++ selection
 | |
|   // code later never has a chance to work on it. Therefore, we have an early
 | |
|   // selection attempt here to give priority to certain selection routines
 | |
|   // over the imported ones.
 | |
|   if (earlySelect(I))
 | |
|     return true;
 | |
| 
 | |
|   if (selectImpl(I, *CoverageInfo))
 | |
|     return true;
 | |
| 
 | |
|   LLT Ty =
 | |
|       I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case TargetOpcode::G_SBFX:
 | |
|   case TargetOpcode::G_UBFX: {
 | |
|     static const unsigned OpcTable[2][2] = {
 | |
|         {AArch64::UBFMWri, AArch64::UBFMXri},
 | |
|         {AArch64::SBFMWri, AArch64::SBFMXri}};
 | |
|     bool IsSigned = Opcode == TargetOpcode::G_SBFX;
 | |
|     unsigned Size = Ty.getSizeInBits();
 | |
|     unsigned Opc = OpcTable[IsSigned][Size == 64];
 | |
|     auto Cst1 =
 | |
|         getConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI);
 | |
|     assert(Cst1 && "Should have gotten a constant for src 1?");
 | |
|     auto Cst2 =
 | |
|         getConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI);
 | |
|     assert(Cst2 && "Should have gotten a constant for src 2?");
 | |
|     auto LSB = Cst1->Value.getZExtValue();
 | |
|     auto Width = Cst2->Value.getZExtValue();
 | |
|     MachineIRBuilder MIB(I);
 | |
|     auto BitfieldInst =
 | |
|         MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)})
 | |
|             .addImm(LSB)
 | |
|             .addImm(Width);
 | |
|     I.eraseFromParent();
 | |
|     return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI);
 | |
|   }
 | |
|   case TargetOpcode::G_BRCOND:
 | |
|     return selectCompareBranch(I, MF, MRI);
 | |
| 
 | |
|   case TargetOpcode::G_BRINDIRECT: {
 | |
|     I.setDesc(TII.get(AArch64::BR));
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_BRJT:
 | |
|     return selectBrJT(I, MRI);
 | |
| 
 | |
|   case AArch64::G_ADD_LOW: {
 | |
|     // This op may have been separated from it's ADRP companion by the localizer
 | |
|     // or some other code motion pass. Given that many CPUs will try to
 | |
|     // macro fuse these operations anyway, select this into a MOVaddr pseudo
 | |
|     // which will later be expanded into an ADRP+ADD pair after scheduling.
 | |
|     MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
 | |
|     if (BaseMI->getOpcode() != AArch64::ADRP) {
 | |
|       I.setDesc(TII.get(AArch64::ADDXri));
 | |
|       I.addOperand(MachineOperand::CreateImm(0));
 | |
|       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|     }
 | |
|     assert(TM.getCodeModel() == CodeModel::Small &&
 | |
|            "Expected small code model");
 | |
|     MachineIRBuilder MIB(I);
 | |
|     auto Op1 = BaseMI->getOperand(1);
 | |
|     auto Op2 = I.getOperand(2);
 | |
|     auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
 | |
|                        .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
 | |
|                                          Op1.getTargetFlags())
 | |
|                        .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
 | |
|                                          Op2.getTargetFlags());
 | |
|     I.eraseFromParent();
 | |
|     return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_BSWAP: {
 | |
|     // Handle vector types for G_BSWAP directly.
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
|     LLT DstTy = MRI.getType(DstReg);
 | |
| 
 | |
|     // We should only get vector types here; everything else is handled by the
 | |
|     // importer right now.
 | |
|     if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
 | |
|       LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Only handle 4 and 2 element vectors for now.
 | |
|     // TODO: 16-bit elements.
 | |
|     unsigned NumElts = DstTy.getNumElements();
 | |
|     if (NumElts != 4 && NumElts != 2) {
 | |
|       LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Choose the correct opcode for the supported types. Right now, that's
 | |
|     // v2s32, v4s32, and v2s64.
 | |
|     unsigned Opc = 0;
 | |
|     unsigned EltSize = DstTy.getElementType().getSizeInBits();
 | |
|     if (EltSize == 32)
 | |
|       Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
 | |
|                                           : AArch64::REV32v16i8;
 | |
|     else if (EltSize == 64)
 | |
|       Opc = AArch64::REV64v16i8;
 | |
| 
 | |
|     // We should always get something by the time we get here...
 | |
|     assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
 | |
| 
 | |
|     I.setDesc(TII.get(Opc));
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_FCONSTANT:
 | |
|   case TargetOpcode::G_CONSTANT: {
 | |
|     const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
 | |
| 
 | |
|     const LLT s8 = LLT::scalar(8);
 | |
|     const LLT s16 = LLT::scalar(16);
 | |
|     const LLT s32 = LLT::scalar(32);
 | |
|     const LLT s64 = LLT::scalar(64);
 | |
|     const LLT s128 = LLT::scalar(128);
 | |
|     const LLT p0 = LLT::pointer(0, 64);
 | |
| 
 | |
|     const Register DefReg = I.getOperand(0).getReg();
 | |
|     const LLT DefTy = MRI.getType(DefReg);
 | |
|     const unsigned DefSize = DefTy.getSizeInBits();
 | |
|     const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
 | |
| 
 | |
|     // FIXME: Redundant check, but even less readable when factored out.
 | |
|     if (isFP) {
 | |
|       if (Ty != s32 && Ty != s64 && Ty != s128) {
 | |
|         LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
 | |
|                           << " constant, expected: " << s32 << " or " << s64
 | |
|                           << " or " << s128 << '\n');
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (RB.getID() != AArch64::FPRRegBankID) {
 | |
|         LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
 | |
|                           << " constant on bank: " << RB
 | |
|                           << ", expected: FPR\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // The case when we have 0.0 is covered by tablegen. Reject it here so we
 | |
|       // can be sure tablegen works correctly and isn't rescued by this code.
 | |
|       // 0.0 is not covered by tablegen for FP128. So we will handle this 
 | |
|       // scenario in the code here.
 | |
|       if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0))
 | |
|         return false;
 | |
|     } else {
 | |
|       // s32 and s64 are covered by tablegen.
 | |
|       if (Ty != p0 && Ty != s8 && Ty != s16) {
 | |
|         LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
 | |
|                           << " constant, expected: " << s32 << ", " << s64
 | |
|                           << ", or " << p0 << '\n');
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (RB.getID() != AArch64::GPRRegBankID) {
 | |
|         LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
 | |
|                           << " constant on bank: " << RB
 | |
|                           << ", expected: GPR\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We allow G_CONSTANT of types < 32b.
 | |
|     const unsigned MovOpc =
 | |
|         DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
 | |
| 
 | |
|     if (isFP) {
 | |
|       // Either emit a FMOV, or emit a copy to emit a normal mov.
 | |
|       const TargetRegisterClass &GPRRC =
 | |
|           DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
 | |
|       const TargetRegisterClass &FPRRC = 
 | |
|           DefSize == 32 ? AArch64::FPR32RegClass 
 | |
|                         : (DefSize == 64 ? AArch64::FPR64RegClass 
 | |
|                                          : AArch64::FPR128RegClass);
 | |
| 
 | |
|       // For 64b values, emit a constant pool load instead.
 | |
|       // For s32, use a cp load if we have optsize/minsize.
 | |
|       if (DefSize == 64 || DefSize == 128 ||
 | |
|           (DefSize == 32 && shouldOptForSize(&MF))) {
 | |
|         auto *FPImm = I.getOperand(1).getFPImm();
 | |
|         MachineIRBuilder MIB(I);
 | |
|         auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
 | |
|         if (!LoadMI) {
 | |
|           LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
 | |
|           return false;
 | |
|         }
 | |
|         MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
 | |
|         I.eraseFromParent();
 | |
|         return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
 | |
|       }
 | |
| 
 | |
|       // Nope. Emit a copy and use a normal mov instead.
 | |
|       const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
 | |
|       MachineOperand &RegOp = I.getOperand(0);
 | |
|       RegOp.setReg(DefGPRReg);
 | |
|       MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
 | |
|       MIB.buildCopy({DefReg}, {DefGPRReg});
 | |
| 
 | |
|       if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
 | |
|         LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       MachineOperand &ImmOp = I.getOperand(1);
 | |
|       // FIXME: Is going through int64_t always correct?
 | |
|       ImmOp.ChangeToImmediate(
 | |
|           ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
 | |
|     } else if (I.getOperand(1).isCImm()) {
 | |
|       uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
 | |
|       I.getOperand(1).ChangeToImmediate(Val);
 | |
|     } else if (I.getOperand(1).isImm()) {
 | |
|       uint64_t Val = I.getOperand(1).getImm();
 | |
|       I.getOperand(1).ChangeToImmediate(Val);
 | |
|     }
 | |
| 
 | |
|     I.setDesc(TII.get(MovOpc));
 | |
|     constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_EXTRACT: {
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
|     Register SrcReg = I.getOperand(1).getReg();
 | |
|     LLT SrcTy = MRI.getType(SrcReg);
 | |
|     LLT DstTy = MRI.getType(DstReg);
 | |
|     (void)DstTy;
 | |
|     unsigned SrcSize = SrcTy.getSizeInBits();
 | |
| 
 | |
|     if (SrcTy.getSizeInBits() > 64) {
 | |
|       // This should be an extract of an s128, which is like a vector extract.
 | |
|       if (SrcTy.getSizeInBits() != 128)
 | |
|         return false;
 | |
|       // Only support extracting 64 bits from an s128 at the moment.
 | |
|       if (DstTy.getSizeInBits() != 64)
 | |
|         return false;
 | |
| 
 | |
|       const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
 | |
|       const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|       // Check we have the right regbank always.
 | |
|       assert(SrcRB.getID() == AArch64::FPRRegBankID &&
 | |
|              DstRB.getID() == AArch64::FPRRegBankID &&
 | |
|              "Wrong extract regbank!");
 | |
|       (void)SrcRB;
 | |
| 
 | |
|       // Emit the same code as a vector extract.
 | |
|       // Offset must be a multiple of 64.
 | |
|       unsigned Offset = I.getOperand(2).getImm();
 | |
|       if (Offset % 64 != 0)
 | |
|         return false;
 | |
|       unsigned LaneIdx = Offset / 64;
 | |
|       MachineIRBuilder MIB(I);
 | |
|       MachineInstr *Extract = emitExtractVectorElt(
 | |
|           DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
 | |
|       if (!Extract)
 | |
|         return false;
 | |
|       I.eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
 | |
|     MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
 | |
|                                       Ty.getSizeInBits() - 1);
 | |
| 
 | |
|     if (SrcSize < 64) {
 | |
|       assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
 | |
|              "unexpected G_EXTRACT types");
 | |
|       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|     }
 | |
| 
 | |
|     DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
 | |
|     MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
 | |
|     MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
 | |
|         .addReg(DstReg, 0, AArch64::sub_32);
 | |
|     RBI.constrainGenericRegister(I.getOperand(0).getReg(),
 | |
|                                  AArch64::GPR32RegClass, MRI);
 | |
|     I.getOperand(0).setReg(DstReg);
 | |
| 
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_INSERT: {
 | |
|     LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
 | |
|     LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|     unsigned DstSize = DstTy.getSizeInBits();
 | |
|     // Larger inserts are vectors, same-size ones should be something else by
 | |
|     // now (split up or turned into COPYs).
 | |
|     if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
 | |
|       return false;
 | |
| 
 | |
|     I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
 | |
|     unsigned LSB = I.getOperand(3).getImm();
 | |
|     unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
 | |
|     I.getOperand(3).setImm((DstSize - LSB) % DstSize);
 | |
|     MachineInstrBuilder(MF, I).addImm(Width - 1);
 | |
| 
 | |
|     if (DstSize < 64) {
 | |
|       assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
 | |
|              "unexpected G_INSERT types");
 | |
|       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|     }
 | |
| 
 | |
|     Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
 | |
|     BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
 | |
|             TII.get(AArch64::SUBREG_TO_REG))
 | |
|         .addDef(SrcReg)
 | |
|         .addImm(0)
 | |
|         .addUse(I.getOperand(2).getReg())
 | |
|         .addImm(AArch64::sub_32);
 | |
|     RBI.constrainGenericRegister(I.getOperand(2).getReg(),
 | |
|                                  AArch64::GPR32RegClass, MRI);
 | |
|     I.getOperand(2).setReg(SrcReg);
 | |
| 
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
|   case TargetOpcode::G_FRAME_INDEX: {
 | |
|     // allocas and G_FRAME_INDEX are only supported in addrspace(0).
 | |
|     if (Ty != LLT::pointer(0, 64)) {
 | |
|       LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
 | |
|                         << ", expected: " << LLT::pointer(0, 64) << '\n');
 | |
|       return false;
 | |
|     }
 | |
|     I.setDesc(TII.get(AArch64::ADDXri));
 | |
| 
 | |
|     // MOs for a #0 shifted immediate.
 | |
|     I.addOperand(MachineOperand::CreateImm(0));
 | |
|     I.addOperand(MachineOperand::CreateImm(0));
 | |
| 
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_GLOBAL_VALUE: {
 | |
|     auto GV = I.getOperand(1).getGlobal();
 | |
|     if (GV->isThreadLocal())
 | |
|       return selectTLSGlobalValue(I, MRI);
 | |
| 
 | |
|     unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
 | |
|     if (OpFlags & AArch64II::MO_GOT) {
 | |
|       I.setDesc(TII.get(AArch64::LOADgot));
 | |
|       I.getOperand(1).setTargetFlags(OpFlags);
 | |
|     } else if (TM.getCodeModel() == CodeModel::Large) {
 | |
|       // Materialize the global using movz/movk instructions.
 | |
|       materializeLargeCMVal(I, GV, OpFlags);
 | |
|       I.eraseFromParent();
 | |
|       return true;
 | |
|     } else if (TM.getCodeModel() == CodeModel::Tiny) {
 | |
|       I.setDesc(TII.get(AArch64::ADR));
 | |
|       I.getOperand(1).setTargetFlags(OpFlags);
 | |
|     } else {
 | |
|       I.setDesc(TII.get(AArch64::MOVaddr));
 | |
|       I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
 | |
|       MachineInstrBuilder MIB(MF, I);
 | |
|       MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
 | |
|                            OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
|     }
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_ZEXTLOAD:
 | |
|   case TargetOpcode::G_LOAD:
 | |
|   case TargetOpcode::G_STORE: {
 | |
|     bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
 | |
|     MachineIRBuilder MIB(I);
 | |
| 
 | |
|     LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
 | |
| 
 | |
|     if (PtrTy != LLT::pointer(0, 64)) {
 | |
|       LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
 | |
|                         << ", expected: " << LLT::pointer(0, 64) << '\n');
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     auto &MemOp = **I.memoperands_begin();
 | |
|     uint64_t MemSizeInBytes = MemOp.getSize();
 | |
|     if (MemOp.isAtomic()) {
 | |
|       // For now we just support s8 acquire loads to be able to compile stack
 | |
|       // protector code.
 | |
|       if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
 | |
|           MemSizeInBytes == 1) {
 | |
|         I.setDesc(TII.get(AArch64::LDARB));
 | |
|         return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
 | |
|       return false;
 | |
|     }
 | |
|     unsigned MemSizeInBits = MemSizeInBytes * 8;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     const Register PtrReg = I.getOperand(1).getReg();
 | |
|     const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
 | |
|     // Sanity-check the pointer register.
 | |
|     assert(PtrRB.getID() == AArch64::GPRRegBankID &&
 | |
|            "Load/Store pointer operand isn't a GPR");
 | |
|     assert(MRI.getType(PtrReg).isPointer() &&
 | |
|            "Load/Store pointer operand isn't a pointer");
 | |
| #endif
 | |
| 
 | |
|     const Register ValReg = I.getOperand(0).getReg();
 | |
|     const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
 | |
| 
 | |
|     // Helper lambda for partially selecting I. Either returns the original
 | |
|     // instruction with an updated opcode, or a new instruction.
 | |
|     auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
 | |
|       bool IsStore = I.getOpcode() == TargetOpcode::G_STORE;
 | |
|       const unsigned NewOpc =
 | |
|           selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
 | |
|       if (NewOpc == I.getOpcode())
 | |
|         return nullptr;
 | |
|       // Check if we can fold anything into the addressing mode.
 | |
|       auto AddrModeFns =
 | |
|           selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes);
 | |
|       if (!AddrModeFns) {
 | |
|         // Can't fold anything. Use the original instruction.
 | |
|         I.setDesc(TII.get(NewOpc));
 | |
|         I.addOperand(MachineOperand::CreateImm(0));
 | |
|         return &I;
 | |
|       }
 | |
| 
 | |
|       // Folded something. Create a new instruction and return it.
 | |
|       auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags());
 | |
|       IsStore ? NewInst.addUse(ValReg) : NewInst.addDef(ValReg);
 | |
|       NewInst.cloneMemRefs(I);
 | |
|       for (auto &Fn : *AddrModeFns)
 | |
|         Fn(NewInst);
 | |
|       I.eraseFromParent();
 | |
|       return &*NewInst;
 | |
|     };
 | |
| 
 | |
|     MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
 | |
|     if (!LoadStore)
 | |
|       return false;
 | |
| 
 | |
|     // If we're storing a 0, use WZR/XZR.
 | |
|     if (Opcode == TargetOpcode::G_STORE) {
 | |
|       auto CVal = getConstantVRegValWithLookThrough(
 | |
|           LoadStore->getOperand(0).getReg(), MRI, /*LookThroughInstrs = */ true,
 | |
|           /*HandleFConstants = */ false);
 | |
|       if (CVal && CVal->Value == 0) {
 | |
|         switch (LoadStore->getOpcode()) {
 | |
|         case AArch64::STRWui:
 | |
|         case AArch64::STRHHui:
 | |
|         case AArch64::STRBBui:
 | |
|           LoadStore->getOperand(0).setReg(AArch64::WZR);
 | |
|           break;
 | |
|         case AArch64::STRXui:
 | |
|           LoadStore->getOperand(0).setReg(AArch64::XZR);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (IsZExtLoad) {
 | |
|       // The zextload from a smaller type to i32 should be handled by the
 | |
|       // importer.
 | |
|       if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64)
 | |
|         return false;
 | |
|       // If we have a ZEXTLOAD then change the load's type to be a narrower reg
 | |
|       // and zero_extend with SUBREG_TO_REG.
 | |
|       Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
 | |
|       Register DstReg = LoadStore->getOperand(0).getReg();
 | |
|       LoadStore->getOperand(0).setReg(LdReg);
 | |
| 
 | |
|       MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator()));
 | |
|       MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
 | |
|           .addImm(0)
 | |
|           .addUse(LdReg)
 | |
|           .addImm(AArch64::sub_32);
 | |
|       constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
 | |
|       return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
 | |
|                                           MRI);
 | |
|     }
 | |
|     return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_SMULH:
 | |
|   case TargetOpcode::G_UMULH: {
 | |
|     // Reject the various things we don't support yet.
 | |
|     if (unsupportedBinOp(I, RBI, MRI, TRI))
 | |
|       return false;
 | |
| 
 | |
|     const Register DefReg = I.getOperand(0).getReg();
 | |
|     const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
 | |
| 
 | |
|     if (RB.getID() != AArch64::GPRRegBankID) {
 | |
|       LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (Ty != LLT::scalar(64)) {
 | |
|       LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
 | |
|                         << ", expected: " << LLT::scalar(64) << '\n');
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
 | |
|                                                              : AArch64::UMULHrr;
 | |
|     I.setDesc(TII.get(NewOpc));
 | |
| 
 | |
|     // Now that we selected an opcode, we need to constrain the register
 | |
|     // operands to use appropriate classes.
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
|   case TargetOpcode::G_LSHR:
 | |
|   case TargetOpcode::G_ASHR:
 | |
|     if (MRI.getType(I.getOperand(0).getReg()).isVector())
 | |
|       return selectVectorAshrLshr(I, MRI);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case TargetOpcode::G_SHL:
 | |
|     if (Opcode == TargetOpcode::G_SHL &&
 | |
|         MRI.getType(I.getOperand(0).getReg()).isVector())
 | |
|       return selectVectorSHL(I, MRI);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case TargetOpcode::G_FADD:
 | |
|   case TargetOpcode::G_FSUB:
 | |
|   case TargetOpcode::G_FMUL:
 | |
|   case TargetOpcode::G_FDIV:
 | |
|   case TargetOpcode::G_OR: {
 | |
|     // Reject the various things we don't support yet.
 | |
|     if (unsupportedBinOp(I, RBI, MRI, TRI))
 | |
|       return false;
 | |
| 
 | |
|     const unsigned OpSize = Ty.getSizeInBits();
 | |
| 
 | |
|     const Register DefReg = I.getOperand(0).getReg();
 | |
|     const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
 | |
| 
 | |
|     const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
 | |
|     if (NewOpc == I.getOpcode())
 | |
|       return false;
 | |
| 
 | |
|     I.setDesc(TII.get(NewOpc));
 | |
|     // FIXME: Should the type be always reset in setDesc?
 | |
| 
 | |
|     // Now that we selected an opcode, we need to constrain the register
 | |
|     // operands to use appropriate classes.
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_PTR_ADD: {
 | |
|     MachineIRBuilder MIRBuilder(I);
 | |
|     emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
 | |
|             MIRBuilder);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_SADDO:
 | |
|   case TargetOpcode::G_UADDO:
 | |
|   case TargetOpcode::G_SSUBO:
 | |
|   case TargetOpcode::G_USUBO: {
 | |
|     // Emit the operation and get the correct condition code.
 | |
|     MachineIRBuilder MIRBuilder(I);
 | |
|     auto OpAndCC = emitOverflowOp(Opcode, I.getOperand(0).getReg(),
 | |
|                                   I.getOperand(2), I.getOperand(3), MIRBuilder);
 | |
| 
 | |
|     // Now, put the overflow result in the register given by the first operand
 | |
|     // to the overflow op. CSINC increments the result when the predicate is
 | |
|     // false, so to get the increment when it's true, we need to use the
 | |
|     // inverse. In this case, we want to increment when carry is set.
 | |
|     Register ZReg = AArch64::WZR;
 | |
|     auto CsetMI = MIRBuilder
 | |
|                       .buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
 | |
|                                   {ZReg, ZReg})
 | |
|                       .addImm(getInvertedCondCode(OpAndCC.second));
 | |
|     constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_PTRMASK: {
 | |
|     Register MaskReg = I.getOperand(2).getReg();
 | |
|     Optional<int64_t> MaskVal = getConstantVRegSExtVal(MaskReg, MRI);
 | |
|     // TODO: Implement arbitrary cases
 | |
|     if (!MaskVal || !isShiftedMask_64(*MaskVal))
 | |
|       return false;
 | |
| 
 | |
|     uint64_t Mask = *MaskVal;
 | |
|     I.setDesc(TII.get(AArch64::ANDXri));
 | |
|     I.getOperand(2).ChangeToImmediate(
 | |
|         AArch64_AM::encodeLogicalImmediate(Mask, 64));
 | |
| 
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
|   case TargetOpcode::G_PTRTOINT:
 | |
|   case TargetOpcode::G_TRUNC: {
 | |
|     const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|     const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
 | |
| 
 | |
|     const Register DstReg = I.getOperand(0).getReg();
 | |
|     const Register SrcReg = I.getOperand(1).getReg();
 | |
| 
 | |
|     const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|     const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
 | |
| 
 | |
|     if (DstRB.getID() != SrcRB.getID()) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (DstRB.getID() == AArch64::GPRRegBankID) {
 | |
|       const TargetRegisterClass *DstRC =
 | |
|           getRegClassForTypeOnBank(DstTy, DstRB, RBI);
 | |
|       if (!DstRC)
 | |
|         return false;
 | |
| 
 | |
|       const TargetRegisterClass *SrcRC =
 | |
|           getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
 | |
|       if (!SrcRC)
 | |
|         return false;
 | |
| 
 | |
|       if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
 | |
|           !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
 | |
|         LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (DstRC == SrcRC) {
 | |
|         // Nothing to be done
 | |
|       } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
 | |
|                  SrcTy == LLT::scalar(64)) {
 | |
|         llvm_unreachable("TableGen can import this case");
 | |
|         return false;
 | |
|       } else if (DstRC == &AArch64::GPR32RegClass &&
 | |
|                  SrcRC == &AArch64::GPR64RegClass) {
 | |
|         I.getOperand(1).setSubReg(AArch64::sub_32);
 | |
|       } else {
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       I.setDesc(TII.get(TargetOpcode::COPY));
 | |
|       return true;
 | |
|     } else if (DstRB.getID() == AArch64::FPRRegBankID) {
 | |
|       if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
 | |
|         I.setDesc(TII.get(AArch64::XTNv4i16));
 | |
|         constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
 | |
|         MachineIRBuilder MIB(I);
 | |
|         MachineInstr *Extract = emitExtractVectorElt(
 | |
|             DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
 | |
|         if (!Extract)
 | |
|           return false;
 | |
|         I.eraseFromParent();
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // We might have a vector G_PTRTOINT, in which case just emit a COPY.
 | |
|       if (Opcode == TargetOpcode::G_PTRTOINT) {
 | |
|         assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
 | |
|         I.setDesc(TII.get(TargetOpcode::COPY));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_ANYEXT: {
 | |
|     const Register DstReg = I.getOperand(0).getReg();
 | |
|     const Register SrcReg = I.getOperand(1).getReg();
 | |
| 
 | |
|     const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|     if (RBDst.getID() != AArch64::GPRRegBankID) {
 | |
|       LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
 | |
|                         << ", expected: GPR\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
 | |
|     if (RBSrc.getID() != AArch64::GPRRegBankID) {
 | |
|       LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
 | |
|                         << ", expected: GPR\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
 | |
| 
 | |
|     if (DstSize == 0) {
 | |
|       LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (DstSize != 64 && DstSize > 32) {
 | |
|       LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
 | |
|                         << ", expected: 32 or 64\n");
 | |
|       return false;
 | |
|     }
 | |
|     // At this point G_ANYEXT is just like a plain COPY, but we need
 | |
|     // to explicitly form the 64-bit value if any.
 | |
|     if (DstSize > 32) {
 | |
|       Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
 | |
|       BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
 | |
|           .addDef(ExtSrc)
 | |
|           .addImm(0)
 | |
|           .addUse(SrcReg)
 | |
|           .addImm(AArch64::sub_32);
 | |
|       I.getOperand(1).setReg(ExtSrc);
 | |
|     }
 | |
|     return selectCopy(I, TII, MRI, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_ZEXT:
 | |
|   case TargetOpcode::G_SEXT_INREG:
 | |
|   case TargetOpcode::G_SEXT: {
 | |
|     unsigned Opcode = I.getOpcode();
 | |
|     const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
 | |
|     const Register DefReg = I.getOperand(0).getReg();
 | |
|     Register SrcReg = I.getOperand(1).getReg();
 | |
|     const LLT DstTy = MRI.getType(DefReg);
 | |
|     const LLT SrcTy = MRI.getType(SrcReg);
 | |
|     unsigned DstSize = DstTy.getSizeInBits();
 | |
|     unsigned SrcSize = SrcTy.getSizeInBits();
 | |
| 
 | |
|     // SEXT_INREG has the same src reg size as dst, the size of the value to be
 | |
|     // extended is encoded in the imm.
 | |
|     if (Opcode == TargetOpcode::G_SEXT_INREG)
 | |
|       SrcSize = I.getOperand(2).getImm();
 | |
| 
 | |
|     if (DstTy.isVector())
 | |
|       return false; // Should be handled by imported patterns.
 | |
| 
 | |
|     assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
 | |
|                AArch64::GPRRegBankID &&
 | |
|            "Unexpected ext regbank");
 | |
| 
 | |
|     MachineIRBuilder MIB(I);
 | |
|     MachineInstr *ExtI;
 | |
| 
 | |
|     // First check if we're extending the result of a load which has a dest type
 | |
|     // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
 | |
|     // GPR register on AArch64 and all loads which are smaller automatically
 | |
|     // zero-extend the upper bits. E.g.
 | |
|     // %v(s8) = G_LOAD %p, :: (load 1)
 | |
|     // %v2(s32) = G_ZEXT %v(s8)
 | |
|     if (!IsSigned) {
 | |
|       auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
 | |
|       bool IsGPR =
 | |
|           RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
 | |
|       if (LoadMI && IsGPR) {
 | |
|         const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
 | |
|         unsigned BytesLoaded = MemOp->getSize();
 | |
|         if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
 | |
|           return selectCopy(I, TII, MRI, TRI, RBI);
 | |
|       }
 | |
| 
 | |
|       // If we are zero extending from 32 bits to 64 bits, it's possible that
 | |
|       // the instruction implicitly does the zero extend for us. In that case,
 | |
|       // we can just emit a SUBREG_TO_REG.
 | |
|       if (IsGPR && SrcSize == 32 && DstSize == 64) {
 | |
|         // Unlike with the G_LOAD case, we don't want to look through copies
 | |
|         // here.
 | |
|         MachineInstr *Def = MRI.getVRegDef(SrcReg);
 | |
|         if (Def && isDef32(*Def)) {
 | |
|           MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
 | |
|               .addImm(0)
 | |
|               .addUse(SrcReg)
 | |
|               .addImm(AArch64::sub_32);
 | |
| 
 | |
|           if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
 | |
|                                             MRI)) {
 | |
|             LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
 | |
|             return false;
 | |
|           }
 | |
| 
 | |
|           if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
 | |
|                                             MRI)) {
 | |
|             LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
 | |
|             return false;
 | |
|           }
 | |
| 
 | |
|           I.eraseFromParent();
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (DstSize == 64) {
 | |
|       if (Opcode != TargetOpcode::G_SEXT_INREG) {
 | |
|         // FIXME: Can we avoid manually doing this?
 | |
|         if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
 | |
|                                           MRI)) {
 | |
|           LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
 | |
|                             << " operand\n");
 | |
|           return false;
 | |
|         }
 | |
|         SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
 | |
|                                 {&AArch64::GPR64RegClass}, {})
 | |
|                      .addImm(0)
 | |
|                      .addUse(SrcReg)
 | |
|                      .addImm(AArch64::sub_32)
 | |
|                      .getReg(0);
 | |
|       }
 | |
| 
 | |
|       ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
 | |
|                              {DefReg}, {SrcReg})
 | |
|                   .addImm(0)
 | |
|                   .addImm(SrcSize - 1);
 | |
|     } else if (DstSize <= 32) {
 | |
|       ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
 | |
|                              {DefReg}, {SrcReg})
 | |
|                   .addImm(0)
 | |
|                   .addImm(SrcSize - 1);
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_SITOFP:
 | |
|   case TargetOpcode::G_UITOFP:
 | |
|   case TargetOpcode::G_FPTOSI:
 | |
|   case TargetOpcode::G_FPTOUI: {
 | |
|     const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
 | |
|               SrcTy = MRI.getType(I.getOperand(1).getReg());
 | |
|     const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
 | |
|     if (NewOpc == Opcode)
 | |
|       return false;
 | |
| 
 | |
|     I.setDesc(TII.get(NewOpc));
 | |
|     constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_FREEZE:
 | |
|     return selectCopy(I, TII, MRI, TRI, RBI);
 | |
| 
 | |
|   case TargetOpcode::G_INTTOPTR:
 | |
|     // The importer is currently unable to import pointer types since they
 | |
|     // didn't exist in SelectionDAG.
 | |
|     return selectCopy(I, TII, MRI, TRI, RBI);
 | |
| 
 | |
|   case TargetOpcode::G_BITCAST:
 | |
|     // Imported SelectionDAG rules can handle every bitcast except those that
 | |
|     // bitcast from a type to the same type. Ideally, these shouldn't occur
 | |
|     // but we might not run an optimizer that deletes them. The other exception
 | |
|     // is bitcasts involving pointer types, as SelectionDAG has no knowledge
 | |
|     // of them.
 | |
|     return selectCopy(I, TII, MRI, TRI, RBI);
 | |
| 
 | |
|   case TargetOpcode::G_SELECT: {
 | |
|     if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
 | |
|       LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
 | |
|                         << ", expected: " << LLT::scalar(1) << '\n');
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const Register CondReg = I.getOperand(1).getReg();
 | |
|     const Register TReg = I.getOperand(2).getReg();
 | |
|     const Register FReg = I.getOperand(3).getReg();
 | |
| 
 | |
|     if (tryOptSelect(I))
 | |
|       return true;
 | |
| 
 | |
|     // Make sure to use an unused vreg instead of wzr, so that the peephole
 | |
|     // optimizations will be able to optimize these.
 | |
|     MachineIRBuilder MIB(I);
 | |
|     Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
 | |
|     auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg})
 | |
|                      .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
 | |
|     constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
 | |
|     if (!emitSelect(I.getOperand(0).getReg(), TReg, FReg, AArch64CC::NE, MIB))
 | |
|       return false;
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_ICMP: {
 | |
|     if (Ty.isVector())
 | |
|       return selectVectorICmp(I, MRI);
 | |
| 
 | |
|     if (Ty != LLT::scalar(32)) {
 | |
|       LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
 | |
|                         << ", expected: " << LLT::scalar(32) << '\n');
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     MachineIRBuilder MIRBuilder(I);
 | |
|     auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
 | |
|     emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
 | |
|                        MIRBuilder);
 | |
|     emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIRBuilder);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case TargetOpcode::G_FCMP: {
 | |
|     MachineIRBuilder MIRBuilder(I);
 | |
|     CmpInst::Predicate Pred =
 | |
|         static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
 | |
|     if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(),
 | |
|                        MIRBuilder, Pred) ||
 | |
|         !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIRBuilder))
 | |
|       return false;
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_VASTART:
 | |
|     return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
 | |
|                                 : selectVaStartAAPCS(I, MF, MRI);
 | |
|   case TargetOpcode::G_INTRINSIC:
 | |
|     return selectIntrinsic(I, MRI);
 | |
|   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
 | |
|     return selectIntrinsicWithSideEffects(I, MRI);
 | |
|   case TargetOpcode::G_IMPLICIT_DEF: {
 | |
|     I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
 | |
|     const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|     const Register DstReg = I.getOperand(0).getReg();
 | |
|     const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|     const TargetRegisterClass *DstRC =
 | |
|         getRegClassForTypeOnBank(DstTy, DstRB, RBI);
 | |
|     RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
 | |
|     return true;
 | |
|   }
 | |
|   case TargetOpcode::G_BLOCK_ADDR: {
 | |
|     if (TM.getCodeModel() == CodeModel::Large) {
 | |
|       materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
 | |
|       I.eraseFromParent();
 | |
|       return true;
 | |
|     } else {
 | |
|       I.setDesc(TII.get(AArch64::MOVaddrBA));
 | |
|       auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
 | |
|                            I.getOperand(0).getReg())
 | |
|                        .addBlockAddress(I.getOperand(1).getBlockAddress(),
 | |
|                                         /* Offset */ 0, AArch64II::MO_PAGE)
 | |
|                        .addBlockAddress(
 | |
|                            I.getOperand(1).getBlockAddress(), /* Offset */ 0,
 | |
|                            AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
 | |
|       I.eraseFromParent();
 | |
|       return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
 | |
|     }
 | |
|   }
 | |
|   case AArch64::G_DUP: {
 | |
|     // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by
 | |
|     // imported patterns. Do it manually here. Avoiding generating s16 gpr is
 | |
|     // difficult because at RBS we may end up pessimizing the fpr case if we
 | |
|     // decided to add an anyextend to fix this. Manual selection is the most
 | |
|     // robust solution for now.
 | |
|     if (RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
 | |
|         AArch64::GPRRegBankID)
 | |
|       return false; // We expect the fpr regbank case to be imported.
 | |
|     LLT VecTy = MRI.getType(I.getOperand(0).getReg());
 | |
|     if (VecTy == LLT::vector(8, 8))
 | |
|       I.setDesc(TII.get(AArch64::DUPv8i8gpr));
 | |
|     else if (VecTy == LLT::vector(16, 8))
 | |
|       I.setDesc(TII.get(AArch64::DUPv16i8gpr));
 | |
|     else if (VecTy == LLT::vector(4, 16))
 | |
|       I.setDesc(TII.get(AArch64::DUPv4i16gpr));
 | |
|     else if (VecTy == LLT::vector(8, 16))
 | |
|       I.setDesc(TII.get(AArch64::DUPv8i16gpr));
 | |
|     else
 | |
|       return false;
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
|   case TargetOpcode::G_INTRINSIC_TRUNC:
 | |
|     return selectIntrinsicTrunc(I, MRI);
 | |
|   case TargetOpcode::G_INTRINSIC_ROUND:
 | |
|     return selectIntrinsicRound(I, MRI);
 | |
|   case TargetOpcode::G_BUILD_VECTOR:
 | |
|     return selectBuildVector(I, MRI);
 | |
|   case TargetOpcode::G_MERGE_VALUES:
 | |
|     return selectMergeValues(I, MRI);
 | |
|   case TargetOpcode::G_UNMERGE_VALUES:
 | |
|     return selectUnmergeValues(I, MRI);
 | |
|   case TargetOpcode::G_SHUFFLE_VECTOR:
 | |
|     return selectShuffleVector(I, MRI);
 | |
|   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
 | |
|     return selectExtractElt(I, MRI);
 | |
|   case TargetOpcode::G_INSERT_VECTOR_ELT:
 | |
|     return selectInsertElt(I, MRI);
 | |
|   case TargetOpcode::G_CONCAT_VECTORS:
 | |
|     return selectConcatVectors(I, MRI);
 | |
|   case TargetOpcode::G_JUMP_TABLE:
 | |
|     return selectJumpTable(I, MRI);
 | |
|   case TargetOpcode::G_VECREDUCE_FADD:
 | |
|   case TargetOpcode::G_VECREDUCE_ADD:
 | |
|     return selectReduction(I, MRI);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectReduction(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   Register VecReg = I.getOperand(1).getReg();
 | |
|   LLT VecTy = MRI.getType(VecReg);
 | |
|   if (I.getOpcode() == TargetOpcode::G_VECREDUCE_ADD) {
 | |
|     // For <2 x i32> ADDPv2i32 generates an FPR64 value, so we need to emit
 | |
|     // a subregister copy afterwards.
 | |
|     if (VecTy == LLT::vector(2, 32)) {
 | |
|       MachineIRBuilder MIB(I);
 | |
|       Register DstReg = I.getOperand(0).getReg();
 | |
|       auto AddP = MIB.buildInstr(AArch64::ADDPv2i32, {&AArch64::FPR64RegClass},
 | |
|                                  {VecReg, VecReg});
 | |
|       auto Copy = MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
 | |
|                       .addReg(AddP.getReg(0), 0, AArch64::ssub)
 | |
|                       .getReg(0);
 | |
|       RBI.constrainGenericRegister(Copy, AArch64::FPR32RegClass, MRI);
 | |
|       I.eraseFromParent();
 | |
|       return constrainSelectedInstRegOperands(*AddP, TII, TRI, RBI);
 | |
|     }
 | |
| 
 | |
|     unsigned Opc = 0;
 | |
|     if (VecTy == LLT::vector(16, 8))
 | |
|       Opc = AArch64::ADDVv16i8v;
 | |
|     else if (VecTy == LLT::vector(8, 16))
 | |
|       Opc = AArch64::ADDVv8i16v;
 | |
|     else if (VecTy == LLT::vector(4, 32))
 | |
|       Opc = AArch64::ADDVv4i32v;
 | |
|     else if (VecTy == LLT::vector(2, 64))
 | |
|       Opc = AArch64::ADDPv2i64p;
 | |
|     else {
 | |
|       LLVM_DEBUG(dbgs() << "Unhandled type for add reduction");
 | |
|       return false;
 | |
|     }
 | |
|     I.setDesc(TII.get(Opc));
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   if (I.getOpcode() == TargetOpcode::G_VECREDUCE_FADD) {
 | |
|     unsigned Opc = 0;
 | |
|     if (VecTy == LLT::vector(2, 32))
 | |
|       Opc = AArch64::FADDPv2i32p;
 | |
|     else if (VecTy == LLT::vector(2, 64))
 | |
|       Opc = AArch64::FADDPv2i64p;
 | |
|     else {
 | |
|       LLVM_DEBUG(dbgs() << "Unhandled type for fadd reduction");
 | |
|       return false;
 | |
|     }
 | |
|     I.setDesc(TII.get(Opc));
 | |
|     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
 | |
|                                             MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
 | |
|   Register JTAddr = I.getOperand(0).getReg();
 | |
|   unsigned JTI = I.getOperand(1).getIndex();
 | |
|   Register Index = I.getOperand(2).getReg();
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
 | |
|   Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
 | |
| 
 | |
|   MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr);
 | |
|   auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
 | |
|                                       {TargetReg, ScratchReg}, {JTAddr, Index})
 | |
|                            .addJumpTableIndex(JTI);
 | |
|   // Build the indirect branch.
 | |
|   MIB.buildInstr(AArch64::BR, {}, {TargetReg});
 | |
|   I.eraseFromParent();
 | |
|   return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectJumpTable(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
 | |
|   assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
 | |
| 
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   unsigned JTI = I.getOperand(1).getIndex();
 | |
|   // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
 | |
|   MachineIRBuilder MIB(I);
 | |
|   auto MovMI =
 | |
|     MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
 | |
|           .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
 | |
|           .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
 | |
|   I.eraseFromParent();
 | |
|   return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectTLSGlobalValue(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   if (!STI.isTargetMachO())
 | |
|     return false;
 | |
|   MachineFunction &MF = *I.getParent()->getParent();
 | |
|   MF.getFrameInfo().setAdjustsStack(true);
 | |
| 
 | |
|   const GlobalValue &GV = *I.getOperand(1).getGlobal();
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   auto LoadGOT =
 | |
|       MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {})
 | |
|           .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
 | |
| 
 | |
|   auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
 | |
|                              {LoadGOT.getReg(0)})
 | |
|                   .addImm(0);
 | |
| 
 | |
|   MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0));
 | |
|   // TLS calls preserve all registers except those that absolutely must be
 | |
|   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
 | |
|   // silly).
 | |
|   MIB.buildInstr(getBLRCallOpcode(MF), {}, {Load})
 | |
|       .addUse(AArch64::X0, RegState::Implicit)
 | |
|       .addDef(AArch64::X0, RegState::Implicit)
 | |
|       .addRegMask(TRI.getTLSCallPreservedMask());
 | |
| 
 | |
|   MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
 | |
|   RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
 | |
|                                MRI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectIntrinsicTrunc(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
 | |
| 
 | |
|   // Select the correct opcode.
 | |
|   unsigned Opc = 0;
 | |
|   if (!SrcTy.isVector()) {
 | |
|     switch (SrcTy.getSizeInBits()) {
 | |
|     default:
 | |
|     case 16:
 | |
|       Opc = AArch64::FRINTZHr;
 | |
|       break;
 | |
|     case 32:
 | |
|       Opc = AArch64::FRINTZSr;
 | |
|       break;
 | |
|     case 64:
 | |
|       Opc = AArch64::FRINTZDr;
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     unsigned NumElts = SrcTy.getNumElements();
 | |
|     switch (SrcTy.getElementType().getSizeInBits()) {
 | |
|     default:
 | |
|       break;
 | |
|     case 16:
 | |
|       if (NumElts == 4)
 | |
|         Opc = AArch64::FRINTZv4f16;
 | |
|       else if (NumElts == 8)
 | |
|         Opc = AArch64::FRINTZv8f16;
 | |
|       break;
 | |
|     case 32:
 | |
|       if (NumElts == 2)
 | |
|         Opc = AArch64::FRINTZv2f32;
 | |
|       else if (NumElts == 4)
 | |
|         Opc = AArch64::FRINTZv4f32;
 | |
|       break;
 | |
|     case 64:
 | |
|       if (NumElts == 2)
 | |
|         Opc = AArch64::FRINTZv2f64;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Opc) {
 | |
|     // Didn't get an opcode above, bail.
 | |
|     LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Legalization would have set us up perfectly for this; we just need to
 | |
|   // set the opcode and move on.
 | |
|   I.setDesc(TII.get(Opc));
 | |
|   return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectIntrinsicRound(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
 | |
| 
 | |
|   // Select the correct opcode.
 | |
|   unsigned Opc = 0;
 | |
|   if (!SrcTy.isVector()) {
 | |
|     switch (SrcTy.getSizeInBits()) {
 | |
|     default:
 | |
|     case 16:
 | |
|       Opc = AArch64::FRINTAHr;
 | |
|       break;
 | |
|     case 32:
 | |
|       Opc = AArch64::FRINTASr;
 | |
|       break;
 | |
|     case 64:
 | |
|       Opc = AArch64::FRINTADr;
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     unsigned NumElts = SrcTy.getNumElements();
 | |
|     switch (SrcTy.getElementType().getSizeInBits()) {
 | |
|     default:
 | |
|       break;
 | |
|     case 16:
 | |
|       if (NumElts == 4)
 | |
|         Opc = AArch64::FRINTAv4f16;
 | |
|       else if (NumElts == 8)
 | |
|         Opc = AArch64::FRINTAv8f16;
 | |
|       break;
 | |
|     case 32:
 | |
|       if (NumElts == 2)
 | |
|         Opc = AArch64::FRINTAv2f32;
 | |
|       else if (NumElts == 4)
 | |
|         Opc = AArch64::FRINTAv4f32;
 | |
|       break;
 | |
|     case 64:
 | |
|       if (NumElts == 2)
 | |
|         Opc = AArch64::FRINTAv2f64;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Opc) {
 | |
|     // Didn't get an opcode above, bail.
 | |
|     LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Legalization would have set us up perfectly for this; we just need to
 | |
|   // set the opcode and move on.
 | |
|   I.setDesc(TII.get(Opc));
 | |
|   return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectVectorICmp(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   LLT DstTy = MRI.getType(DstReg);
 | |
|   Register SrcReg = I.getOperand(2).getReg();
 | |
|   Register Src2Reg = I.getOperand(3).getReg();
 | |
|   LLT SrcTy = MRI.getType(SrcReg);
 | |
| 
 | |
|   unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
 | |
|   unsigned NumElts = DstTy.getNumElements();
 | |
| 
 | |
|   // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
 | |
|   // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
 | |
|   // Third index is cc opcode:
 | |
|   // 0 == eq
 | |
|   // 1 == ugt
 | |
|   // 2 == uge
 | |
|   // 3 == ult
 | |
|   // 4 == ule
 | |
|   // 5 == sgt
 | |
|   // 6 == sge
 | |
|   // 7 == slt
 | |
|   // 8 == sle
 | |
|   // ne is done by negating 'eq' result.
 | |
| 
 | |
|   // This table below assumes that for some comparisons the operands will be
 | |
|   // commuted.
 | |
|   // ult op == commute + ugt op
 | |
|   // ule op == commute + uge op
 | |
|   // slt op == commute + sgt op
 | |
|   // sle op == commute + sge op
 | |
|   unsigned PredIdx = 0;
 | |
|   bool SwapOperands = false;
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
 | |
|   switch (Pred) {
 | |
|   case CmpInst::ICMP_NE:
 | |
|   case CmpInst::ICMP_EQ:
 | |
|     PredIdx = 0;
 | |
|     break;
 | |
|   case CmpInst::ICMP_UGT:
 | |
|     PredIdx = 1;
 | |
|     break;
 | |
|   case CmpInst::ICMP_UGE:
 | |
|     PredIdx = 2;
 | |
|     break;
 | |
|   case CmpInst::ICMP_ULT:
 | |
|     PredIdx = 3;
 | |
|     SwapOperands = true;
 | |
|     break;
 | |
|   case CmpInst::ICMP_ULE:
 | |
|     PredIdx = 4;
 | |
|     SwapOperands = true;
 | |
|     break;
 | |
|   case CmpInst::ICMP_SGT:
 | |
|     PredIdx = 5;
 | |
|     break;
 | |
|   case CmpInst::ICMP_SGE:
 | |
|     PredIdx = 6;
 | |
|     break;
 | |
|   case CmpInst::ICMP_SLT:
 | |
|     PredIdx = 7;
 | |
|     SwapOperands = true;
 | |
|     break;
 | |
|   case CmpInst::ICMP_SLE:
 | |
|     PredIdx = 8;
 | |
|     SwapOperands = true;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled icmp predicate");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // This table obviously should be tablegen'd when we have our GISel native
 | |
|   // tablegen selector.
 | |
| 
 | |
|   static const unsigned OpcTable[4][4][9] = {
 | |
|       {
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */},
 | |
|           {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
 | |
|            AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
 | |
|            AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
 | |
|           {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
 | |
|            AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
 | |
|            AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
 | |
|       },
 | |
|       {
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */},
 | |
|           {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
 | |
|            AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
 | |
|            AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
 | |
|           {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
 | |
|            AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
 | |
|            AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */}
 | |
|       },
 | |
|       {
 | |
|           {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
 | |
|            AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
 | |
|            AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
 | |
|           {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
 | |
|            AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
 | |
|            AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */}
 | |
|       },
 | |
|       {
 | |
|           {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
 | |
|            AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
 | |
|            AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */},
 | |
|           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
 | |
|            0 /* invalid */}
 | |
|       },
 | |
|   };
 | |
|   unsigned EltIdx = Log2_32(SrcEltSize / 8);
 | |
|   unsigned NumEltsIdx = Log2_32(NumElts / 2);
 | |
|   unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
 | |
|   if (!Opc) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
 | |
|   const TargetRegisterClass *SrcRC =
 | |
|       getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
 | |
|   if (!SrcRC) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
 | |
|   if (SrcTy.getSizeInBits() == 128)
 | |
|     NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
 | |
| 
 | |
|   if (SwapOperands)
 | |
|     std::swap(SrcReg, Src2Reg);
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
|   auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
 | |
|   constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
 | |
| 
 | |
|   // Invert if we had a 'ne' cc.
 | |
|   if (NotOpc) {
 | |
|     Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
 | |
|     constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
 | |
|   } else {
 | |
|     MIB.buildCopy(DstReg, Cmp.getReg(0));
 | |
|   }
 | |
|   RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitScalarToVector(
 | |
|     unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
 | |
|     MachineIRBuilder &MIRBuilder) const {
 | |
|   auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
 | |
| 
 | |
|   auto BuildFn = [&](unsigned SubregIndex) {
 | |
|     auto Ins =
 | |
|         MIRBuilder
 | |
|             .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
 | |
|             .addImm(SubregIndex);
 | |
|     constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
 | |
|     constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
 | |
|     return &*Ins;
 | |
|   };
 | |
| 
 | |
|   switch (EltSize) {
 | |
|   case 16:
 | |
|     return BuildFn(AArch64::hsub);
 | |
|   case 32:
 | |
|     return BuildFn(AArch64::ssub);
 | |
|   case 64:
 | |
|     return BuildFn(AArch64::dsub);
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectMergeValues(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
 | |
|   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|   const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
 | |
|   assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
 | |
|   const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
 | |
| 
 | |
|   if (I.getNumOperands() != 3)
 | |
|     return false;
 | |
| 
 | |
|   // Merging 2 s64s into an s128.
 | |
|   if (DstTy == LLT::scalar(128)) {
 | |
|     if (SrcTy.getSizeInBits() != 64)
 | |
|       return false;
 | |
|     MachineIRBuilder MIB(I);
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
|     Register Src1Reg = I.getOperand(1).getReg();
 | |
|     Register Src2Reg = I.getOperand(2).getReg();
 | |
|     auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
 | |
|     MachineInstr *InsMI =
 | |
|         emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
 | |
|     if (!InsMI)
 | |
|       return false;
 | |
|     MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
 | |
|                                           Src2Reg, /* LaneIdx */ 1, RB, MIB);
 | |
|     if (!Ins2MI)
 | |
|       return false;
 | |
|     constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
 | |
|     constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (RB.getID() != AArch64::GPRRegBankID)
 | |
|     return false;
 | |
| 
 | |
|   if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
 | |
|     return false;
 | |
| 
 | |
|   auto *DstRC = &AArch64::GPR64RegClass;
 | |
|   Register SubToRegDef = MRI.createVirtualRegister(DstRC);
 | |
|   MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
 | |
|                                     TII.get(TargetOpcode::SUBREG_TO_REG))
 | |
|                                 .addDef(SubToRegDef)
 | |
|                                 .addImm(0)
 | |
|                                 .addUse(I.getOperand(1).getReg())
 | |
|                                 .addImm(AArch64::sub_32);
 | |
|   Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
 | |
|   // Need to anyext the second scalar before we can use bfm
 | |
|   MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
 | |
|                                     TII.get(TargetOpcode::SUBREG_TO_REG))
 | |
|                                 .addDef(SubToRegDef2)
 | |
|                                 .addImm(0)
 | |
|                                 .addUse(I.getOperand(2).getReg())
 | |
|                                 .addImm(AArch64::sub_32);
 | |
|   MachineInstr &BFM =
 | |
|       *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
 | |
|            .addDef(I.getOperand(0).getReg())
 | |
|            .addUse(SubToRegDef)
 | |
|            .addUse(SubToRegDef2)
 | |
|            .addImm(32)
 | |
|            .addImm(31);
 | |
|   constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
 | |
|   constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
 | |
|   constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
 | |
|                               const unsigned EltSize) {
 | |
|   // Choose a lane copy opcode and subregister based off of the size of the
 | |
|   // vector's elements.
 | |
|   switch (EltSize) {
 | |
|   case 16:
 | |
|     CopyOpc = AArch64::CPYi16;
 | |
|     ExtractSubReg = AArch64::hsub;
 | |
|     break;
 | |
|   case 32:
 | |
|     CopyOpc = AArch64::CPYi32;
 | |
|     ExtractSubReg = AArch64::ssub;
 | |
|     break;
 | |
|   case 64:
 | |
|     CopyOpc = AArch64::CPYi64;
 | |
|     ExtractSubReg = AArch64::dsub;
 | |
|     break;
 | |
|   default:
 | |
|     // Unknown size, bail out.
 | |
|     LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
 | |
|     Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
 | |
|     Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
 | |
|   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
 | |
|   unsigned CopyOpc = 0;
 | |
|   unsigned ExtractSubReg = 0;
 | |
|   if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   const TargetRegisterClass *DstRC =
 | |
|       getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
 | |
|   if (!DstRC) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
 | |
|   const LLT &VecTy = MRI.getType(VecReg);
 | |
|   const TargetRegisterClass *VecRC =
 | |
|       getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
 | |
|   if (!VecRC) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // The register that we're going to copy into.
 | |
|   Register InsertReg = VecReg;
 | |
|   if (!DstReg)
 | |
|     DstReg = MRI.createVirtualRegister(DstRC);
 | |
|   // If the lane index is 0, we just use a subregister COPY.
 | |
|   if (LaneIdx == 0) {
 | |
|     auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
 | |
|                     .addReg(VecReg, 0, ExtractSubReg);
 | |
|     RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
 | |
|     return &*Copy;
 | |
|   }
 | |
| 
 | |
|   // Lane copies require 128-bit wide registers. If we're dealing with an
 | |
|   // unpacked vector, then we need to move up to that width. Insert an implicit
 | |
|   // def and a subregister insert to get us there.
 | |
|   if (VecTy.getSizeInBits() != 128) {
 | |
|     MachineInstr *ScalarToVector = emitScalarToVector(
 | |
|         VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
 | |
|     if (!ScalarToVector)
 | |
|       return nullptr;
 | |
|     InsertReg = ScalarToVector->getOperand(0).getReg();
 | |
|   }
 | |
| 
 | |
|   MachineInstr *LaneCopyMI =
 | |
|       MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
 | |
|   constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
 | |
| 
 | |
|   // Make sure that we actually constrain the initial copy.
 | |
|   RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
 | |
|   return LaneCopyMI;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectExtractElt(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
 | |
|          "unexpected opcode!");
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   const LLT NarrowTy = MRI.getType(DstReg);
 | |
|   const Register SrcReg = I.getOperand(1).getReg();
 | |
|   const LLT WideTy = MRI.getType(SrcReg);
 | |
|   (void)WideTy;
 | |
|   assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
 | |
|          "source register size too small!");
 | |
|   assert(!NarrowTy.isVector() && "cannot extract vector into vector!");
 | |
| 
 | |
|   // Need the lane index to determine the correct copy opcode.
 | |
|   MachineOperand &LaneIdxOp = I.getOperand(2);
 | |
|   assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
 | |
| 
 | |
|   if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
 | |
|     LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Find the index to extract from.
 | |
|   auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
 | |
|   if (!VRegAndVal)
 | |
|     return false;
 | |
|   unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
 | |
| 
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
| 
 | |
|   const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
 | |
|   MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
 | |
|                                                LaneIdx, MIRBuilder);
 | |
|   if (!Extract)
 | |
|     return false;
 | |
| 
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectSplitVectorUnmerge(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   unsigned NumElts = I.getNumOperands() - 1;
 | |
|   Register SrcReg = I.getOperand(NumElts).getReg();
 | |
|   const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
 | |
|   const LLT SrcTy = MRI.getType(SrcReg);
 | |
| 
 | |
|   assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
 | |
|   if (SrcTy.getSizeInBits() > 128) {
 | |
|     LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   // We implement a split vector operation by treating the sub-vectors as
 | |
|   // scalars and extracting them.
 | |
|   const RegisterBank &DstRB =
 | |
|       *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
 | |
|   for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
 | |
|     Register Dst = I.getOperand(OpIdx).getReg();
 | |
|     MachineInstr *Extract =
 | |
|         emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
 | |
|     if (!Extract)
 | |
|       return false;
 | |
|   }
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectUnmergeValues(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
 | |
|          "unexpected opcode");
 | |
| 
 | |
|   // TODO: Handle unmerging into GPRs and from scalars to scalars.
 | |
|   if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
 | |
|           AArch64::FPRRegBankID ||
 | |
|       RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
 | |
|           AArch64::FPRRegBankID) {
 | |
|     LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
 | |
|                          "currently unsupported.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The last operand is the vector source register, and every other operand is
 | |
|   // a register to unpack into.
 | |
|   unsigned NumElts = I.getNumOperands() - 1;
 | |
|   Register SrcReg = I.getOperand(NumElts).getReg();
 | |
|   const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
 | |
|   const LLT WideTy = MRI.getType(SrcReg);
 | |
|   (void)WideTy;
 | |
|   assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
 | |
|          "can only unmerge from vector or s128 types!");
 | |
|   assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
 | |
|          "source register size too small!");
 | |
| 
 | |
|   if (!NarrowTy.isScalar())
 | |
|     return selectSplitVectorUnmerge(I, MRI);
 | |
| 
 | |
|   MachineIRBuilder MIB(I);
 | |
| 
 | |
|   // Choose a lane copy opcode and subregister based off of the size of the
 | |
|   // vector's elements.
 | |
|   unsigned CopyOpc = 0;
 | |
|   unsigned ExtractSubReg = 0;
 | |
|   if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
 | |
|     return false;
 | |
| 
 | |
|   // Set up for the lane copies.
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
| 
 | |
|   // Stores the registers we'll be copying from.
 | |
|   SmallVector<Register, 4> InsertRegs;
 | |
| 
 | |
|   // We'll use the first register twice, so we only need NumElts-1 registers.
 | |
|   unsigned NumInsertRegs = NumElts - 1;
 | |
| 
 | |
|   // If our elements fit into exactly 128 bits, then we can copy from the source
 | |
|   // directly. Otherwise, we need to do a bit of setup with some subregister
 | |
|   // inserts.
 | |
|   if (NarrowTy.getSizeInBits() * NumElts == 128) {
 | |
|     InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
 | |
|   } else {
 | |
|     // No. We have to perform subregister inserts. For each insert, create an
 | |
|     // implicit def and a subregister insert, and save the register we create.
 | |
|     for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
 | |
|       Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
 | |
|       MachineInstr &ImpDefMI =
 | |
|           *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
 | |
|                    ImpDefReg);
 | |
| 
 | |
|       // Now, create the subregister insert from SrcReg.
 | |
|       Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
 | |
|       MachineInstr &InsMI =
 | |
|           *BuildMI(MBB, I, I.getDebugLoc(),
 | |
|                    TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
 | |
|                .addUse(ImpDefReg)
 | |
|                .addUse(SrcReg)
 | |
|                .addImm(AArch64::dsub);
 | |
| 
 | |
|       constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
 | |
|       constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
 | |
| 
 | |
|       // Save the register so that we can copy from it after.
 | |
|       InsertRegs.push_back(InsertReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we've created any necessary subregister inserts, we can
 | |
|   // create the copies.
 | |
|   //
 | |
|   // Perform the first copy separately as a subregister copy.
 | |
|   Register CopyTo = I.getOperand(0).getReg();
 | |
|   auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
 | |
|                        .addReg(InsertRegs[0], 0, ExtractSubReg);
 | |
|   constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
 | |
| 
 | |
|   // Now, perform the remaining copies as vector lane copies.
 | |
|   unsigned LaneIdx = 1;
 | |
|   for (Register InsReg : InsertRegs) {
 | |
|     Register CopyTo = I.getOperand(LaneIdx).getReg();
 | |
|     MachineInstr &CopyInst =
 | |
|         *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
 | |
|              .addUse(InsReg)
 | |
|              .addImm(LaneIdx);
 | |
|     constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
 | |
|     ++LaneIdx;
 | |
|   }
 | |
| 
 | |
|   // Separately constrain the first copy's destination. Because of the
 | |
|   // limitation in constrainOperandRegClass, we can't guarantee that this will
 | |
|   // actually be constrained. So, do it ourselves using the second operand.
 | |
|   const TargetRegisterClass *RC =
 | |
|       MRI.getRegClassOrNull(I.getOperand(1).getReg());
 | |
|   if (!RC) {
 | |
|     LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   RBI.constrainGenericRegister(CopyTo, *RC, MRI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectConcatVectors(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
 | |
|          "Unexpected opcode");
 | |
|   Register Dst = I.getOperand(0).getReg();
 | |
|   Register Op1 = I.getOperand(1).getReg();
 | |
|   Register Op2 = I.getOperand(2).getReg();
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
|   MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
 | |
|   if (!ConcatMI)
 | |
|     return false;
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
 | |
|                                                   MachineFunction &MF) const {
 | |
|   Type *CPTy = CPVal->getType();
 | |
|   Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);
 | |
| 
 | |
|   MachineConstantPool *MCP = MF.getConstantPool();
 | |
|   return MCP->getConstantPoolIndex(CPVal, Alignment);
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
 | |
|     const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
 | |
|   unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());
 | |
| 
 | |
|   auto Adrp =
 | |
|       MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
 | |
|           .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
 | |
| 
 | |
|   MachineInstr *LoadMI = nullptr;
 | |
|   switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
 | |
|   case 16:
 | |
|     LoadMI =
 | |
|         &*MIRBuilder
 | |
|               .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
 | |
|               .addConstantPoolIndex(CPIdx, 0,
 | |
|                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
|     break;
 | |
|   case 8:
 | |
|     LoadMI =
 | |
|         &*MIRBuilder
 | |
|               .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
 | |
|               .addConstantPoolIndex(CPIdx, 0,
 | |
|                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
|     break;
 | |
|   case 4:
 | |
|     LoadMI =
 | |
|         &*MIRBuilder
 | |
|               .buildInstr(AArch64::LDRSui, {&AArch64::FPR32RegClass}, {Adrp})
 | |
|               .addConstantPoolIndex(CPIdx, 0,
 | |
|                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
 | |
|     break;
 | |
|   default:
 | |
|     LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
 | |
|                       << *CPVal->getType());
 | |
|     return nullptr;
 | |
|   }
 | |
|   constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
 | |
|   constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
 | |
|   return LoadMI;
 | |
| }
 | |
| 
 | |
| /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
 | |
| /// size and RB.
 | |
| static std::pair<unsigned, unsigned>
 | |
| getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
 | |
|   unsigned Opc, SubregIdx;
 | |
|   if (RB.getID() == AArch64::GPRRegBankID) {
 | |
|     if (EltSize == 16) {
 | |
|       Opc = AArch64::INSvi16gpr;
 | |
|       SubregIdx = AArch64::ssub;
 | |
|     } else if (EltSize == 32) {
 | |
|       Opc = AArch64::INSvi32gpr;
 | |
|       SubregIdx = AArch64::ssub;
 | |
|     } else if (EltSize == 64) {
 | |
|       Opc = AArch64::INSvi64gpr;
 | |
|       SubregIdx = AArch64::dsub;
 | |
|     } else {
 | |
|       llvm_unreachable("invalid elt size!");
 | |
|     }
 | |
|   } else {
 | |
|     if (EltSize == 8) {
 | |
|       Opc = AArch64::INSvi8lane;
 | |
|       SubregIdx = AArch64::bsub;
 | |
|     } else if (EltSize == 16) {
 | |
|       Opc = AArch64::INSvi16lane;
 | |
|       SubregIdx = AArch64::hsub;
 | |
|     } else if (EltSize == 32) {
 | |
|       Opc = AArch64::INSvi32lane;
 | |
|       SubregIdx = AArch64::ssub;
 | |
|     } else if (EltSize == 64) {
 | |
|       Opc = AArch64::INSvi64lane;
 | |
|       SubregIdx = AArch64::dsub;
 | |
|     } else {
 | |
|       llvm_unreachable("invalid elt size!");
 | |
|     }
 | |
|   }
 | |
|   return std::make_pair(Opc, SubregIdx);
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitInstr(
 | |
|     unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
 | |
|     std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder,
 | |
|     const ComplexRendererFns &RenderFns) const {
 | |
|   assert(Opcode && "Expected an opcode?");
 | |
|   assert(!isPreISelGenericOpcode(Opcode) &&
 | |
|          "Function should only be used to produce selected instructions!");
 | |
|   auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps);
 | |
|   if (RenderFns)
 | |
|     for (auto &Fn : *RenderFns)
 | |
|       Fn(MI);
 | |
|   constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
 | |
|   return &*MI;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitAddSub(
 | |
|     const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
 | |
|     Register Dst, MachineOperand &LHS, MachineOperand &RHS,
 | |
|     MachineIRBuilder &MIRBuilder) const {
 | |
|   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
 | |
|   assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
 | |
|   auto Ty = MRI.getType(LHS.getReg());
 | |
|   assert(!Ty.isVector() && "Expected a scalar or pointer?");
 | |
|   unsigned Size = Ty.getSizeInBits();
 | |
|   assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only");
 | |
|   bool Is32Bit = Size == 32;
 | |
| 
 | |
|   // INSTRri form with positive arithmetic immediate.
 | |
|   if (auto Fns = selectArithImmed(RHS))
 | |
|     return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS},
 | |
|                      MIRBuilder, Fns);
 | |
| 
 | |
|   // INSTRri form with negative arithmetic immediate.
 | |
|   if (auto Fns = selectNegArithImmed(RHS))
 | |
|     return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS},
 | |
|                      MIRBuilder, Fns);
 | |
| 
 | |
|   // INSTRrx form.
 | |
|   if (auto Fns = selectArithExtendedRegister(RHS))
 | |
|     return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS},
 | |
|                      MIRBuilder, Fns);
 | |
| 
 | |
|   // INSTRrs form.
 | |
|   if (auto Fns = selectShiftedRegister(RHS))
 | |
|     return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS},
 | |
|                      MIRBuilder, Fns);
 | |
|   return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS},
 | |
|                    MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
 | |
|                                     MachineOperand &RHS,
 | |
|                                     MachineIRBuilder &MIRBuilder) const {
 | |
|   const std::array<std::array<unsigned, 2>, 5> OpcTable{
 | |
|       {{AArch64::ADDXri, AArch64::ADDWri},
 | |
|        {AArch64::ADDXrs, AArch64::ADDWrs},
 | |
|        {AArch64::ADDXrr, AArch64::ADDWrr},
 | |
|        {AArch64::SUBXri, AArch64::SUBWri},
 | |
|        {AArch64::ADDXrx, AArch64::ADDWrx}}};
 | |
|   return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS,
 | |
|                                      MachineOperand &RHS,
 | |
|                                      MachineIRBuilder &MIRBuilder) const {
 | |
|   const std::array<std::array<unsigned, 2>, 5> OpcTable{
 | |
|       {{AArch64::ADDSXri, AArch64::ADDSWri},
 | |
|        {AArch64::ADDSXrs, AArch64::ADDSWrs},
 | |
|        {AArch64::ADDSXrr, AArch64::ADDSWrr},
 | |
|        {AArch64::SUBSXri, AArch64::SUBSWri},
 | |
|        {AArch64::ADDSXrx, AArch64::ADDSWrx}}};
 | |
|   return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS,
 | |
|                                      MachineOperand &RHS,
 | |
|                                      MachineIRBuilder &MIRBuilder) const {
 | |
|   const std::array<std::array<unsigned, 2>, 5> OpcTable{
 | |
|       {{AArch64::SUBSXri, AArch64::SUBSWri},
 | |
|        {AArch64::SUBSXrs, AArch64::SUBSWrs},
 | |
|        {AArch64::SUBSXrr, AArch64::SUBSWrr},
 | |
|        {AArch64::ADDSXri, AArch64::ADDSWri},
 | |
|        {AArch64::SUBSXrx, AArch64::SUBSWrx}}};
 | |
|   return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
 | |
|                                     MachineIRBuilder &MIRBuilder) const {
 | |
|   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
 | |
|   bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
 | |
|   auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
 | |
|   return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS,
 | |
|                                     MachineIRBuilder &MIRBuilder) const {
 | |
|   assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
 | |
|   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
 | |
|   LLT Ty = MRI.getType(LHS.getReg());
 | |
|   unsigned RegSize = Ty.getSizeInBits();
 | |
|   bool Is32Bit = (RegSize == 32);
 | |
|   const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri},
 | |
|                                    {AArch64::ANDSXrs, AArch64::ANDSWrs},
 | |
|                                    {AArch64::ANDSXrr, AArch64::ANDSWrr}};
 | |
|   // ANDS needs a logical immediate for its immediate form. Check if we can
 | |
|   // fold one in.
 | |
|   if (auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI)) {
 | |
|     int64_t Imm = ValAndVReg->Value.getSExtValue();
 | |
| 
 | |
|     if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) {
 | |
|       auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS});
 | |
|       TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
 | |
|       constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
 | |
|       return &*TstMI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto Fns = selectLogicalShiftedRegister(RHS))
 | |
|     return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns);
 | |
|   return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
 | |
|     MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
 | |
|     MachineIRBuilder &MIRBuilder) const {
 | |
|   assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
 | |
|   assert(Predicate.isPredicate() && "Expected predicate?");
 | |
|   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
 | |
|   LLT CmpTy = MRI.getType(LHS.getReg());
 | |
|   assert(!CmpTy.isVector() && "Expected scalar or pointer");
 | |
|   unsigned Size = CmpTy.getSizeInBits();
 | |
|   (void)Size;
 | |
|   assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?");
 | |
|   // Fold the compare into a cmn or tst if possible.
 | |
|   if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder))
 | |
|     return FoldCmp;
 | |
|   auto Dst = MRI.cloneVirtualRegister(LHS.getReg());
 | |
|   return emitSUBS(Dst, LHS, RHS, MIRBuilder);
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitCSetForFCmp(
 | |
|     Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const {
 | |
|   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
 | |
| #ifndef NDEBUG
 | |
|   LLT Ty = MRI.getType(Dst);
 | |
|   assert(!Ty.isVector() && Ty.getSizeInBits() == 32 &&
 | |
|          "Expected a 32-bit scalar register?");
 | |
| #endif
 | |
|   const Register ZeroReg = AArch64::WZR;
 | |
|   auto EmitCSet = [&](Register CsetDst, AArch64CC::CondCode CC) {
 | |
|     auto CSet =
 | |
|         MIRBuilder.buildInstr(AArch64::CSINCWr, {CsetDst}, {ZeroReg, ZeroReg})
 | |
|             .addImm(getInvertedCondCode(CC));
 | |
|     constrainSelectedInstRegOperands(*CSet, TII, TRI, RBI);
 | |
|     return &*CSet;
 | |
|   };
 | |
| 
 | |
|   AArch64CC::CondCode CC1, CC2;
 | |
|   changeFCMPPredToAArch64CC(Pred, CC1, CC2);
 | |
|   if (CC2 == AArch64CC::AL)
 | |
|     return EmitCSet(Dst, CC1);
 | |
| 
 | |
|   const TargetRegisterClass *RC = &AArch64::GPR32RegClass;
 | |
|   Register Def1Reg = MRI.createVirtualRegister(RC);
 | |
|   Register Def2Reg = MRI.createVirtualRegister(RC);
 | |
|   EmitCSet(Def1Reg, CC1);
 | |
|   EmitCSet(Def2Reg, CC2);
 | |
|   auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg});
 | |
|   constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI);
 | |
|   return &*OrMI;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitFPCompare(Register LHS, Register RHS,
 | |
|                                           MachineIRBuilder &MIRBuilder,
 | |
|                                           Optional<CmpInst::Predicate> Pred) const {
 | |
|   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
 | |
|   LLT Ty = MRI.getType(LHS);
 | |
|   if (Ty.isVector())
 | |
|     return nullptr;
 | |
|   unsigned OpSize = Ty.getSizeInBits();
 | |
|   if (OpSize != 32 && OpSize != 64)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a compare against +0.0, then we don't have
 | |
|   // to explicitly materialize a constant.
 | |
|   const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI);
 | |
|   bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
 | |
| 
 | |
|   auto IsEqualityPred = [](CmpInst::Predicate P) {
 | |
|     return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE ||
 | |
|            P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE;
 | |
|   };
 | |
|   if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) {
 | |
|     // Try commutating the operands.
 | |
|     const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI);
 | |
|     if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) {
 | |
|       ShouldUseImm = true;
 | |
|       std::swap(LHS, RHS);
 | |
|     }
 | |
|   }
 | |
|   unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
 | |
|                               {AArch64::FCMPSri, AArch64::FCMPDri}};
 | |
|   unsigned CmpOpc = CmpOpcTbl[ShouldUseImm][OpSize == 64];
 | |
| 
 | |
|   // Partially build the compare. Decide if we need to add a use for the
 | |
|   // third operand based off whether or not we're comparing against 0.0.
 | |
|   auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS);
 | |
|   if (!ShouldUseImm)
 | |
|     CmpMI.addUse(RHS);
 | |
|   constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
 | |
|   return &*CmpMI;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitVectorConcat(
 | |
|     Optional<Register> Dst, Register Op1, Register Op2,
 | |
|     MachineIRBuilder &MIRBuilder) const {
 | |
|   // We implement a vector concat by:
 | |
|   // 1. Use scalar_to_vector to insert the lower vector into the larger dest
 | |
|   // 2. Insert the upper vector into the destination's upper element
 | |
|   // TODO: some of this code is common with G_BUILD_VECTOR handling.
 | |
|   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
 | |
| 
 | |
|   const LLT Op1Ty = MRI.getType(Op1);
 | |
|   const LLT Op2Ty = MRI.getType(Op2);
 | |
| 
 | |
|   if (Op1Ty != Op2Ty) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
 | |
|     return nullptr;
 | |
|   }
 | |
|   assert(Op1Ty.isVector() && "Expected a vector for vector concat");
 | |
| 
 | |
|   if (Op1Ty.getSizeInBits() >= 128) {
 | |
|     LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // At the moment we just support 64 bit vector concats.
 | |
|   if (Op1Ty.getSizeInBits() != 64) {
 | |
|     LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
 | |
|   const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
 | |
|   const TargetRegisterClass *DstRC =
 | |
|       getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
 | |
| 
 | |
|   MachineInstr *WidenedOp1 =
 | |
|       emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
 | |
|   MachineInstr *WidenedOp2 =
 | |
|       emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
 | |
|   if (!WidenedOp1 || !WidenedOp2) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Now do the insert of the upper element.
 | |
|   unsigned InsertOpc, InsSubRegIdx;
 | |
|   std::tie(InsertOpc, InsSubRegIdx) =
 | |
|       getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
 | |
| 
 | |
|   if (!Dst)
 | |
|     Dst = MRI.createVirtualRegister(DstRC);
 | |
|   auto InsElt =
 | |
|       MIRBuilder
 | |
|           .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
 | |
|           .addImm(1) /* Lane index */
 | |
|           .addUse(WidenedOp2->getOperand(0).getReg())
 | |
|           .addImm(0);
 | |
|   constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
 | |
|   return &*InsElt;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
 | |
|                                             MachineIRBuilder &MIRBuilder,
 | |
|                                             Register SrcReg) const {
 | |
|   // CSINC increments the result when the predicate is false. Invert it.
 | |
|   const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
 | |
|       CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
 | |
|   auto I = MIRBuilder.buildInstr(AArch64::CSINCWr, {DefReg}, {SrcReg, SrcReg})
 | |
|                .addImm(InvCC);
 | |
|   constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
 | |
|   return &*I;
 | |
| }
 | |
| 
 | |
| std::pair<MachineInstr *, AArch64CC::CondCode>
 | |
| AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst,
 | |
|                                            MachineOperand &LHS,
 | |
|                                            MachineOperand &RHS,
 | |
|                                            MachineIRBuilder &MIRBuilder) const {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode!");
 | |
|   case TargetOpcode::G_SADDO:
 | |
|     return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
 | |
|   case TargetOpcode::G_UADDO:
 | |
|     return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
 | |
|   case TargetOpcode::G_SSUBO:
 | |
|     return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
 | |
|   case TargetOpcode::G_USUBO:
 | |
|     return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
 | |
|   MachineIRBuilder MIB(I);
 | |
|   MachineRegisterInfo &MRI = *MIB.getMRI();
 | |
|   // We want to recognize this pattern:
 | |
|   //
 | |
|   // $z = G_FCMP pred, $x, $y
 | |
|   // ...
 | |
|   // $w = G_SELECT $z, $a, $b
 | |
|   //
 | |
|   // Where the value of $z is *only* ever used by the G_SELECT (possibly with
 | |
|   // some copies/truncs in between.)
 | |
|   //
 | |
|   // If we see this, then we can emit something like this:
 | |
|   //
 | |
|   // fcmp $x, $y
 | |
|   // fcsel $w, $a, $b, pred
 | |
|   //
 | |
|   // Rather than emitting both of the rather long sequences in the standard
 | |
|   // G_FCMP/G_SELECT select methods.
 | |
| 
 | |
|   // First, check if the condition is defined by a compare.
 | |
|   MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
 | |
|   while (CondDef) {
 | |
|     // We can only fold if all of the defs have one use.
 | |
|     Register CondDefReg = CondDef->getOperand(0).getReg();
 | |
|     if (!MRI.hasOneNonDBGUse(CondDefReg)) {
 | |
|       // Unless it's another select.
 | |
|       for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
 | |
|         if (CondDef == &UI)
 | |
|           continue;
 | |
|         if (UI.getOpcode() != TargetOpcode::G_SELECT)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We can skip over G_TRUNC since the condition is 1-bit.
 | |
|     // Truncating/extending can have no impact on the value.
 | |
|     unsigned Opc = CondDef->getOpcode();
 | |
|     if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
 | |
|       break;
 | |
| 
 | |
|     // Can't see past copies from physregs.
 | |
|     if (Opc == TargetOpcode::COPY &&
 | |
|         Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
 | |
|       return false;
 | |
| 
 | |
|     CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
 | |
|   }
 | |
| 
 | |
|   // Is the condition defined by a compare?
 | |
|   if (!CondDef)
 | |
|     return false;
 | |
| 
 | |
|   unsigned CondOpc = CondDef->getOpcode();
 | |
|   if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
 | |
|     return false;
 | |
| 
 | |
|   AArch64CC::CondCode CondCode;
 | |
|   if (CondOpc == TargetOpcode::G_ICMP) {
 | |
|     auto Pred =
 | |
|         static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
 | |
|     CondCode = changeICMPPredToAArch64CC(Pred);
 | |
|     emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
 | |
|                        CondDef->getOperand(1), MIB);
 | |
|   } else {
 | |
|     // Get the condition code for the select.
 | |
|     auto Pred =
 | |
|         static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
 | |
|     AArch64CC::CondCode CondCode2;
 | |
|     changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2);
 | |
| 
 | |
|     // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
 | |
|     // instructions to emit the comparison.
 | |
|     // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
 | |
|     // unnecessary.
 | |
|     if (CondCode2 != AArch64CC::AL)
 | |
|       return false;
 | |
| 
 | |
|     if (!emitFPCompare(CondDef->getOperand(2).getReg(),
 | |
|                        CondDef->getOperand(3).getReg(), MIB)) {
 | |
|       LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit the select.
 | |
|   emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(),
 | |
|              I.getOperand(3).getReg(), CondCode, MIB);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
 | |
|     MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
 | |
|     MachineIRBuilder &MIRBuilder) const {
 | |
|   assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
 | |
|          "Unexpected MachineOperand");
 | |
|   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
 | |
|   // We want to find this sort of thing:
 | |
|   // x = G_SUB 0, y
 | |
|   // G_ICMP z, x
 | |
|   //
 | |
|   // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
 | |
|   // e.g:
 | |
|   //
 | |
|   // cmn z, y
 | |
| 
 | |
|   // Helper lambda to detect the subtract followed by the compare.
 | |
|   // Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
 | |
|   auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
 | |
|     if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
 | |
|       return false;
 | |
| 
 | |
|     // Need to make sure NZCV is the same at the end of the transformation.
 | |
|     if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
 | |
|       return false;
 | |
| 
 | |
|     // We want to match against SUBs.
 | |
|     if (DefMI->getOpcode() != TargetOpcode::G_SUB)
 | |
|       return false;
 | |
| 
 | |
|     // Make sure that we're getting
 | |
|     // x = G_SUB 0, y
 | |
|     auto ValAndVReg =
 | |
|         getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
 | |
|     if (!ValAndVReg || ValAndVReg->Value != 0)
 | |
|       return false;
 | |
| 
 | |
|     // This can safely be represented as a CMN.
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // Check if the RHS or LHS of the G_ICMP is defined by a SUB
 | |
|   MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
 | |
|   MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
 | |
|   CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
 | |
|   const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);
 | |
| 
 | |
|   // Given this:
 | |
|   //
 | |
|   // x = G_SUB 0, y
 | |
|   // G_ICMP x, z
 | |
|   //
 | |
|   // Produce this:
 | |
|   //
 | |
|   // cmn y, z
 | |
|   if (IsCMN(LHSDef, CC))
 | |
|     return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
 | |
| 
 | |
|   // Same idea here, but with the RHS of the compare instead:
 | |
|   //
 | |
|   // Given this:
 | |
|   //
 | |
|   // x = G_SUB 0, y
 | |
|   // G_ICMP z, x
 | |
|   //
 | |
|   // Produce this:
 | |
|   //
 | |
|   // cmn z, y
 | |
|   if (IsCMN(RHSDef, CC))
 | |
|     return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
 | |
| 
 | |
|   // Given this:
 | |
|   //
 | |
|   // z = G_AND x, y
 | |
|   // G_ICMP z, 0
 | |
|   //
 | |
|   // Produce this if the compare is signed:
 | |
|   //
 | |
|   // tst x, y
 | |
|   if (!CmpInst::isUnsigned(P) && LHSDef &&
 | |
|       LHSDef->getOpcode() == TargetOpcode::G_AND) {
 | |
|     // Make sure that the RHS is 0.
 | |
|     auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
 | |
|     if (!ValAndVReg || ValAndVReg->Value != 0)
 | |
|       return nullptr;
 | |
| 
 | |
|     return emitTST(LHSDef->getOperand(1),
 | |
|                    LHSDef->getOperand(2), MIRBuilder);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectShuffleVector(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|   Register Src1Reg = I.getOperand(1).getReg();
 | |
|   const LLT Src1Ty = MRI.getType(Src1Reg);
 | |
|   Register Src2Reg = I.getOperand(2).getReg();
 | |
|   const LLT Src2Ty = MRI.getType(Src2Reg);
 | |
|   ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
 | |
| 
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   LLVMContext &Ctx = MF.getFunction().getContext();
 | |
| 
 | |
|   // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
 | |
|   // it's originated from a <1 x T> type. Those should have been lowered into
 | |
|   // G_BUILD_VECTOR earlier.
 | |
|   if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
 | |
| 
 | |
|   SmallVector<Constant *, 64> CstIdxs;
 | |
|   for (int Val : Mask) {
 | |
|     // For now, any undef indexes we'll just assume to be 0. This should be
 | |
|     // optimized in future, e.g. to select DUP etc.
 | |
|     Val = Val < 0 ? 0 : Val;
 | |
|     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
 | |
|       unsigned Offset = Byte + Val * BytesPerElt;
 | |
|       CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
| 
 | |
|   // Use a constant pool to load the index vector for TBL.
 | |
|   Constant *CPVal = ConstantVector::get(CstIdxs);
 | |
|   MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
 | |
|   if (!IndexLoad) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (DstTy.getSizeInBits() != 128) {
 | |
|     assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
 | |
|     // This case can be done with TBL1.
 | |
|     MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
 | |
|     if (!Concat) {
 | |
|       LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
 | |
|     IndexLoad =
 | |
|         emitScalarToVector(64, &AArch64::FPR128RegClass,
 | |
|                            IndexLoad->getOperand(0).getReg(), MIRBuilder);
 | |
| 
 | |
|     auto TBL1 = MIRBuilder.buildInstr(
 | |
|         AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
 | |
|         {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
 | |
|     constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
 | |
| 
 | |
|     auto Copy =
 | |
|         MIRBuilder
 | |
|             .buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
 | |
|             .addReg(TBL1.getReg(0), 0, AArch64::dsub);
 | |
|     RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
 | |
|   // Q registers for regalloc.
 | |
|   auto RegSeq = MIRBuilder
 | |
|                     .buildInstr(TargetOpcode::REG_SEQUENCE,
 | |
|                                 {&AArch64::QQRegClass}, {Src1Reg})
 | |
|                     .addImm(AArch64::qsub0)
 | |
|                     .addUse(Src2Reg)
 | |
|                     .addImm(AArch64::qsub1);
 | |
| 
 | |
|   auto TBL2 = MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
 | |
|                                     {RegSeq, IndexLoad->getOperand(0)});
 | |
|   constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
 | |
|   constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *AArch64InstructionSelector::emitLaneInsert(
 | |
|     Optional<Register> DstReg, Register SrcReg, Register EltReg,
 | |
|     unsigned LaneIdx, const RegisterBank &RB,
 | |
|     MachineIRBuilder &MIRBuilder) const {
 | |
|   MachineInstr *InsElt = nullptr;
 | |
|   const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
 | |
|   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
 | |
| 
 | |
|   // Create a register to define with the insert if one wasn't passed in.
 | |
|   if (!DstReg)
 | |
|     DstReg = MRI.createVirtualRegister(DstRC);
 | |
| 
 | |
|   unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
 | |
|   unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
 | |
| 
 | |
|   if (RB.getID() == AArch64::FPRRegBankID) {
 | |
|     auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
 | |
|     InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
 | |
|                  .addImm(LaneIdx)
 | |
|                  .addUse(InsSub->getOperand(0).getReg())
 | |
|                  .addImm(0);
 | |
|   } else {
 | |
|     InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
 | |
|                  .addImm(LaneIdx)
 | |
|                  .addUse(EltReg);
 | |
|   }
 | |
| 
 | |
|   constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
 | |
|   return InsElt;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectInsertElt(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
 | |
| 
 | |
|   // Get information on the destination.
 | |
|   Register DstReg = I.getOperand(0).getReg();
 | |
|   const LLT DstTy = MRI.getType(DstReg);
 | |
|   unsigned VecSize = DstTy.getSizeInBits();
 | |
| 
 | |
|   // Get information on the element we want to insert into the destination.
 | |
|   Register EltReg = I.getOperand(2).getReg();
 | |
|   const LLT EltTy = MRI.getType(EltReg);
 | |
|   unsigned EltSize = EltTy.getSizeInBits();
 | |
|   if (EltSize < 16 || EltSize > 64)
 | |
|     return false; // Don't support all element types yet.
 | |
| 
 | |
|   // Find the definition of the index. Bail out if it's not defined by a
 | |
|   // G_CONSTANT.
 | |
|   Register IdxReg = I.getOperand(3).getReg();
 | |
|   auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
 | |
|   if (!VRegAndVal)
 | |
|     return false;
 | |
|   unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
 | |
| 
 | |
|   // Perform the lane insert.
 | |
|   Register SrcReg = I.getOperand(1).getReg();
 | |
|   const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
| 
 | |
|   if (VecSize < 128) {
 | |
|     // If the vector we're inserting into is smaller than 128 bits, widen it
 | |
|     // to 128 to do the insert.
 | |
|     MachineInstr *ScalarToVec = emitScalarToVector(
 | |
|         VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
 | |
|     if (!ScalarToVec)
 | |
|       return false;
 | |
|     SrcReg = ScalarToVec->getOperand(0).getReg();
 | |
|   }
 | |
| 
 | |
|   // Create an insert into a new FPR128 register.
 | |
|   // Note that if our vector is already 128 bits, we end up emitting an extra
 | |
|   // register.
 | |
|   MachineInstr *InsMI =
 | |
|       emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);
 | |
| 
 | |
|   if (VecSize < 128) {
 | |
|     // If we had to widen to perform the insert, then we have to demote back to
 | |
|     // the original size to get the result we want.
 | |
|     Register DemoteVec = InsMI->getOperand(0).getReg();
 | |
|     const TargetRegisterClass *RC =
 | |
|         getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
 | |
|     if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
 | |
|       LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
 | |
|       return false;
 | |
|     }
 | |
|     unsigned SubReg = 0;
 | |
|     if (!getSubRegForClass(RC, TRI, SubReg))
 | |
|       return false;
 | |
|     if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
 | |
|       LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
 | |
|                         << "\n");
 | |
|       return false;
 | |
|     }
 | |
|     MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
 | |
|         .addReg(DemoteVec, 0, SubReg);
 | |
|     RBI.constrainGenericRegister(DstReg, *RC, MRI);
 | |
|   } else {
 | |
|     // No widening needed.
 | |
|     InsMI->getOperand(0).setReg(DstReg);
 | |
|     constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV,
 | |
|                                                MachineIRBuilder &MIRBuilder,
 | |
|                                                MachineRegisterInfo &MRI) const {
 | |
|   LLT DstTy = MRI.getType(Dst);
 | |
|   unsigned DstSize = DstTy.getSizeInBits();
 | |
|   if (CV->isNullValue()) {
 | |
|     if (DstSize == 128) {
 | |
|       auto Mov =
 | |
|           MIRBuilder.buildInstr(AArch64::MOVIv2d_ns, {Dst}, {}).addImm(0);
 | |
|       constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
 | |
|       return &*Mov;
 | |
|     }
 | |
| 
 | |
|     if (DstSize == 64) {
 | |
|       auto Mov =
 | |
|           MIRBuilder
 | |
|               .buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {})
 | |
|               .addImm(0);
 | |
|       auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {Dst}, {})
 | |
|                       .addReg(Mov.getReg(0), 0, AArch64::dsub);
 | |
|       RBI.constrainGenericRegister(Dst, AArch64::FPR64RegClass, MRI);
 | |
|       return &*Copy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto *CPLoad = emitLoadFromConstantPool(CV, MIRBuilder);
 | |
|   if (!CPLoad) {
 | |
|     LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   auto Copy = MIRBuilder.buildCopy(Dst, CPLoad->getOperand(0));
 | |
|   RBI.constrainGenericRegister(
 | |
|       Dst, *MRI.getRegClass(CPLoad->getOperand(0).getReg()), MRI);
 | |
|   return &*Copy;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::tryOptConstantBuildVec(
 | |
|     MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
 | |
|   unsigned DstSize = DstTy.getSizeInBits();
 | |
|   assert(DstSize <= 128 && "Unexpected build_vec type!");
 | |
|   if (DstSize < 32)
 | |
|     return false;
 | |
|   // Check if we're building a constant vector, in which case we want to
 | |
|   // generate a constant pool load instead of a vector insert sequence.
 | |
|   SmallVector<Constant *, 16> Csts;
 | |
|   for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
 | |
|     // Try to find G_CONSTANT or G_FCONSTANT
 | |
|     auto *OpMI =
 | |
|         getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
 | |
|     if (OpMI)
 | |
|       Csts.emplace_back(
 | |
|           const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
 | |
|     else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
 | |
|                                   I.getOperand(Idx).getReg(), MRI)))
 | |
|       Csts.emplace_back(
 | |
|           const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
|   Constant *CV = ConstantVector::get(Csts);
 | |
|   MachineIRBuilder MIB(I);
 | |
|   if (!emitConstantVector(I.getOperand(0).getReg(), CV, MIB, MRI))
 | |
|     return false;
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectBuildVector(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
 | |
|   // Until we port more of the optimized selections, for now just use a vector
 | |
|   // insert sequence.
 | |
|   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
 | |
|   const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
 | |
|   unsigned EltSize = EltTy.getSizeInBits();
 | |
| 
 | |
|   if (tryOptConstantBuildVec(I, DstTy, MRI))
 | |
|     return true;
 | |
|   if (EltSize < 16 || EltSize > 64)
 | |
|     return false; // Don't support all element types yet.
 | |
|   const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
| 
 | |
|   const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
 | |
|   MachineInstr *ScalarToVec =
 | |
|       emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
 | |
|                          I.getOperand(1).getReg(), MIRBuilder);
 | |
|   if (!ScalarToVec)
 | |
|     return false;
 | |
| 
 | |
|   Register DstVec = ScalarToVec->getOperand(0).getReg();
 | |
|   unsigned DstSize = DstTy.getSizeInBits();
 | |
| 
 | |
|   // Keep track of the last MI we inserted. Later on, we might be able to save
 | |
|   // a copy using it.
 | |
|   MachineInstr *PrevMI = nullptr;
 | |
|   for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
 | |
|     // Note that if we don't do a subregister copy, we can end up making an
 | |
|     // extra register.
 | |
|     PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
 | |
|                               MIRBuilder);
 | |
|     DstVec = PrevMI->getOperand(0).getReg();
 | |
|   }
 | |
| 
 | |
|   // If DstTy's size in bits is less than 128, then emit a subregister copy
 | |
|   // from DstVec to the last register we've defined.
 | |
|   if (DstSize < 128) {
 | |
|     // Force this to be FPR using the destination vector.
 | |
|     const TargetRegisterClass *RC =
 | |
|         getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
 | |
|     if (!RC)
 | |
|       return false;
 | |
|     if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
 | |
|       LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     unsigned SubReg = 0;
 | |
|     if (!getSubRegForClass(RC, TRI, SubReg))
 | |
|       return false;
 | |
|     if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
 | |
|       LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
 | |
|                         << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Register Reg = MRI.createVirtualRegister(RC);
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
| 
 | |
|     MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
 | |
|         .addReg(DstVec, 0, SubReg);
 | |
|     MachineOperand &RegOp = I.getOperand(1);
 | |
|     RegOp.setReg(Reg);
 | |
|     RBI.constrainGenericRegister(DstReg, *RC, MRI);
 | |
|   } else {
 | |
|     // We don't need a subregister copy. Save a copy by re-using the
 | |
|     // destination register on the final insert.
 | |
|     assert(PrevMI && "PrevMI was null?");
 | |
|     PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
 | |
|     constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
 | |
|   }
 | |
| 
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
 | |
| /// ID if it exists, and 0 otherwise.
 | |
| static unsigned findIntrinsicID(MachineInstr &I) {
 | |
|   auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
 | |
|     return Op.isIntrinsicID();
 | |
|   });
 | |
|   if (IntrinOp == I.operands_end())
 | |
|     return 0;
 | |
|   return IntrinOp->getIntrinsicID();
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
 | |
|     MachineInstr &I, MachineRegisterInfo &MRI) const {
 | |
|   // Find the intrinsic ID.
 | |
|   unsigned IntrinID = findIntrinsicID(I);
 | |
|   if (!IntrinID)
 | |
|     return false;
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
| 
 | |
|   // Select the instruction.
 | |
|   switch (IntrinID) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Intrinsic::trap:
 | |
|     MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
 | |
|     break;
 | |
|   case Intrinsic::debugtrap:
 | |
|     MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
 | |
|     break;
 | |
|   case Intrinsic::ubsantrap:
 | |
|     MIRBuilder.buildInstr(AArch64::BRK, {}, {})
 | |
|         .addImm(I.getOperand(1).getImm() | ('U' << 8));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   I.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
 | |
|                                                  MachineRegisterInfo &MRI) {
 | |
|   unsigned IntrinID = findIntrinsicID(I);
 | |
|   if (!IntrinID)
 | |
|     return false;
 | |
|   MachineIRBuilder MIRBuilder(I);
 | |
| 
 | |
|   switch (IntrinID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::aarch64_crypto_sha1h: {
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
|     Register SrcReg = I.getOperand(2).getReg();
 | |
| 
 | |
|     // FIXME: Should this be an assert?
 | |
|     if (MRI.getType(DstReg).getSizeInBits() != 32 ||
 | |
|         MRI.getType(SrcReg).getSizeInBits() != 32)
 | |
|       return false;
 | |
| 
 | |
|     // The operation has to happen on FPRs. Set up some new FPR registers for
 | |
|     // the source and destination if they are on GPRs.
 | |
|     if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
 | |
|       SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
 | |
|       MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});
 | |
| 
 | |
|       // Make sure the copy ends up getting constrained properly.
 | |
|       RBI.constrainGenericRegister(I.getOperand(2).getReg(),
 | |
|                                    AArch64::GPR32RegClass, MRI);
 | |
|     }
 | |
| 
 | |
|     if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
 | |
|       DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
 | |
| 
 | |
|     // Actually insert the instruction.
 | |
|     auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
 | |
|     constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
 | |
| 
 | |
|     // Did we create a new register for the destination?
 | |
|     if (DstReg != I.getOperand(0).getReg()) {
 | |
|       // Yep. Copy the result of the instruction back into the original
 | |
|       // destination.
 | |
|       MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
 | |
|       RBI.constrainGenericRegister(I.getOperand(0).getReg(),
 | |
|                                    AArch64::GPR32RegClass, MRI);
 | |
|     }
 | |
| 
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::frameaddress:
 | |
|   case Intrinsic::returnaddress: {
 | |
|     MachineFunction &MF = *I.getParent()->getParent();
 | |
|     MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|     unsigned Depth = I.getOperand(2).getImm();
 | |
|     Register DstReg = I.getOperand(0).getReg();
 | |
|     RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
 | |
| 
 | |
|     if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
 | |
|       if (!MFReturnAddr) {
 | |
|         // Insert the copy from LR/X30 into the entry block, before it can be
 | |
|         // clobbered by anything.
 | |
|         MFI.setReturnAddressIsTaken(true);
 | |
|         MFReturnAddr = getFunctionLiveInPhysReg(MF, TII, AArch64::LR,
 | |
|                                                 AArch64::GPR64RegClass);
 | |
|       }
 | |
| 
 | |
|       if (STI.hasPAuth()) {
 | |
|         MIRBuilder.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr});
 | |
|       } else {
 | |
|         MIRBuilder.buildCopy({Register(AArch64::LR)}, {MFReturnAddr});
 | |
|         MIRBuilder.buildInstr(AArch64::XPACLRI);
 | |
|         MIRBuilder.buildCopy({DstReg}, {Register(AArch64::LR)});
 | |
|       }
 | |
| 
 | |
|       I.eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     MFI.setFrameAddressIsTaken(true);
 | |
|     Register FrameAddr(AArch64::FP);
 | |
|     while (Depth--) {
 | |
|       Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
 | |
|       auto Ldr =
 | |
|           MIRBuilder.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr})
 | |
|               .addImm(0);
 | |
|       constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
 | |
|       FrameAddr = NextFrame;
 | |
|     }
 | |
| 
 | |
|     if (IntrinID == Intrinsic::frameaddress)
 | |
|       MIRBuilder.buildCopy({DstReg}, {FrameAddr});
 | |
|     else {
 | |
|       MFI.setReturnAddressIsTaken(true);
 | |
| 
 | |
|       if (STI.hasPAuth()) {
 | |
|         Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
 | |
|         MIRBuilder.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1);
 | |
|         MIRBuilder.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg});
 | |
|       } else {
 | |
|         MIRBuilder.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr}).addImm(1);
 | |
|         MIRBuilder.buildInstr(AArch64::XPACLRI);
 | |
|         MIRBuilder.buildCopy({DstReg}, {Register(AArch64::LR)});
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
 | |
|   auto MaybeImmed = getImmedFromMO(Root);
 | |
|   if (MaybeImmed == None || *MaybeImmed > 31)
 | |
|     return None;
 | |
|   uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
 | |
| }
 | |
| 
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
 | |
|   auto MaybeImmed = getImmedFromMO(Root);
 | |
|   if (MaybeImmed == None || *MaybeImmed > 31)
 | |
|     return None;
 | |
|   uint64_t Enc = 31 - *MaybeImmed;
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
 | |
| }
 | |
| 
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
 | |
|   auto MaybeImmed = getImmedFromMO(Root);
 | |
|   if (MaybeImmed == None || *MaybeImmed > 63)
 | |
|     return None;
 | |
|   uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
 | |
| }
 | |
| 
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
 | |
|   auto MaybeImmed = getImmedFromMO(Root);
 | |
|   if (MaybeImmed == None || *MaybeImmed > 63)
 | |
|     return None;
 | |
|   uint64_t Enc = 63 - *MaybeImmed;
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
 | |
| }
 | |
| 
 | |
| /// Helper to select an immediate value that can be represented as a 12-bit
 | |
| /// value shifted left by either 0 or 12. If it is possible to do so, return
 | |
| /// the immediate and shift value. If not, return None.
 | |
| ///
 | |
| /// Used by selectArithImmed and selectNegArithImmed.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::select12BitValueWithLeftShift(
 | |
|     uint64_t Immed) const {
 | |
|   unsigned ShiftAmt;
 | |
|   if (Immed >> 12 == 0) {
 | |
|     ShiftAmt = 0;
 | |
|   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
 | |
|     ShiftAmt = 12;
 | |
|     Immed = Immed >> 12;
 | |
|   } else
 | |
|     return None;
 | |
| 
 | |
|   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
 | |
|   return {{
 | |
|       [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
 | |
|       [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
 | |
|   }};
 | |
| }
 | |
| 
 | |
| /// SelectArithImmed - Select an immediate value that can be represented as
 | |
| /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
 | |
| /// Val set to the 12-bit value and Shift set to the shifter operand.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
 | |
|   // This function is called from the addsub_shifted_imm ComplexPattern,
 | |
|   // which lists [imm] as the list of opcode it's interested in, however
 | |
|   // we still need to check whether the operand is actually an immediate
 | |
|   // here because the ComplexPattern opcode list is only used in
 | |
|   // root-level opcode matching.
 | |
|   auto MaybeImmed = getImmedFromMO(Root);
 | |
|   if (MaybeImmed == None)
 | |
|     return None;
 | |
|   return select12BitValueWithLeftShift(*MaybeImmed);
 | |
| }
 | |
| 
 | |
| /// SelectNegArithImmed - As above, but negates the value before trying to
 | |
| /// select it.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
 | |
|   // We need a register here, because we need to know if we have a 64 or 32
 | |
|   // bit immediate.
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
|   auto MaybeImmed = getImmedFromMO(Root);
 | |
|   if (MaybeImmed == None)
 | |
|     return None;
 | |
|   uint64_t Immed = *MaybeImmed;
 | |
| 
 | |
|   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
 | |
|   // have the opposite effect on the C flag, so this pattern mustn't match under
 | |
|   // those circumstances.
 | |
|   if (Immed == 0)
 | |
|     return None;
 | |
| 
 | |
|   // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
 | |
|   // the root.
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
 | |
|   if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
 | |
|     Immed = ~((uint32_t)Immed) + 1;
 | |
|   else
 | |
|     Immed = ~Immed + 1ULL;
 | |
| 
 | |
|   if (Immed & 0xFFFFFFFFFF000000ULL)
 | |
|     return None;
 | |
| 
 | |
|   Immed &= 0xFFFFFFULL;
 | |
|   return select12BitValueWithLeftShift(Immed);
 | |
| }
 | |
| 
 | |
| /// Return true if it is worth folding MI into an extended register. That is,
 | |
| /// if it's safe to pull it into the addressing mode of a load or store as a
 | |
| /// shift.
 | |
| bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
 | |
|     MachineInstr &MI, const MachineRegisterInfo &MRI) const {
 | |
|   // Always fold if there is one use, or if we're optimizing for size.
 | |
|   Register DefReg = MI.getOperand(0).getReg();
 | |
|   if (MRI.hasOneNonDBGUse(DefReg) ||
 | |
|       MI.getParent()->getParent()->getFunction().hasOptSize())
 | |
|     return true;
 | |
| 
 | |
|   // It's better to avoid folding and recomputing shifts when we don't have a
 | |
|   // fastpath.
 | |
|   if (!STI.hasLSLFast())
 | |
|     return false;
 | |
| 
 | |
|   // We have a fastpath, so folding a shift in and potentially computing it
 | |
|   // many times may be beneficial. Check if this is only used in memory ops.
 | |
|   // If it is, then we should fold.
 | |
|   return all_of(MRI.use_nodbg_instructions(DefReg),
 | |
|                 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
 | |
| }
 | |
| 
 | |
| static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
 | |
|   switch (Type) {
 | |
|   case AArch64_AM::SXTB:
 | |
|   case AArch64_AM::SXTH:
 | |
|   case AArch64_AM::SXTW:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectExtendedSHL(
 | |
|     MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
 | |
|     unsigned SizeInBytes, bool WantsExt) const {
 | |
|   assert(Base.isReg() && "Expected base to be a register operand");
 | |
|   assert(Offset.isReg() && "Expected offset to be a register operand");
 | |
| 
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
 | |
|   MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
 | |
|   if (!OffsetInst)
 | |
|     return None;
 | |
| 
 | |
|   unsigned OffsetOpc = OffsetInst->getOpcode();
 | |
|   bool LookedThroughZExt = false;
 | |
|   if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
 | |
|     // Try to look through a ZEXT.
 | |
|     if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
 | |
|       return None;
 | |
| 
 | |
|     OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
 | |
|     OffsetOpc = OffsetInst->getOpcode();
 | |
|     LookedThroughZExt = true;
 | |
| 
 | |
|     if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
 | |
|       return None;
 | |
|   }
 | |
|   // Make sure that the memory op is a valid size.
 | |
|   int64_t LegalShiftVal = Log2_32(SizeInBytes);
 | |
|   if (LegalShiftVal == 0)
 | |
|     return None;
 | |
|   if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
 | |
|     return None;
 | |
| 
 | |
|   // Now, try to find the specific G_CONSTANT. Start by assuming that the
 | |
|   // register we will offset is the LHS, and the register containing the
 | |
|   // constant is the RHS.
 | |
|   Register OffsetReg = OffsetInst->getOperand(1).getReg();
 | |
|   Register ConstantReg = OffsetInst->getOperand(2).getReg();
 | |
|   auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
 | |
|   if (!ValAndVReg) {
 | |
|     // We didn't get a constant on the RHS. If the opcode is a shift, then
 | |
|     // we're done.
 | |
|     if (OffsetOpc == TargetOpcode::G_SHL)
 | |
|       return None;
 | |
| 
 | |
|     // If we have a G_MUL, we can use either register. Try looking at the RHS.
 | |
|     std::swap(OffsetReg, ConstantReg);
 | |
|     ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
 | |
|     if (!ValAndVReg)
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   // The value must fit into 3 bits, and must be positive. Make sure that is
 | |
|   // true.
 | |
|   int64_t ImmVal = ValAndVReg->Value.getSExtValue();
 | |
| 
 | |
|   // Since we're going to pull this into a shift, the constant value must be
 | |
|   // a power of 2. If we got a multiply, then we need to check this.
 | |
|   if (OffsetOpc == TargetOpcode::G_MUL) {
 | |
|     if (!isPowerOf2_32(ImmVal))
 | |
|       return None;
 | |
| 
 | |
|     // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
 | |
|     ImmVal = Log2_32(ImmVal);
 | |
|   }
 | |
| 
 | |
|   if ((ImmVal & 0x7) != ImmVal)
 | |
|     return None;
 | |
| 
 | |
|   // We are only allowed to shift by LegalShiftVal. This shift value is built
 | |
|   // into the instruction, so we can't just use whatever we want.
 | |
|   if (ImmVal != LegalShiftVal)
 | |
|     return None;
 | |
| 
 | |
|   unsigned SignExtend = 0;
 | |
|   if (WantsExt) {
 | |
|     // Check if the offset is defined by an extend, unless we looked through a
 | |
|     // G_ZEXT earlier.
 | |
|     if (!LookedThroughZExt) {
 | |
|       MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
 | |
|       auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
 | |
|       if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|         return None;
 | |
| 
 | |
|       SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
 | |
|       // We only support SXTW for signed extension here.
 | |
|       if (SignExtend && Ext != AArch64_AM::SXTW)
 | |
|         return None;
 | |
|       OffsetReg = ExtInst->getOperand(1).getReg();
 | |
|     }
 | |
| 
 | |
|     // Need a 32-bit wide register here.
 | |
|     MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
 | |
|     OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
 | |
|   }
 | |
| 
 | |
|   // We can use the LHS of the GEP as the base, and the LHS of the shift as an
 | |
|   // offset. Signify that we are shifting by setting the shift flag to 1.
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
 | |
|            [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
 | |
|            [=](MachineInstrBuilder &MIB) {
 | |
|              // Need to add both immediates here to make sure that they are both
 | |
|              // added to the instruction.
 | |
|              MIB.addImm(SignExtend);
 | |
|              MIB.addImm(1);
 | |
|            }}};
 | |
| }
 | |
| 
 | |
| /// This is used for computing addresses like this:
 | |
| ///
 | |
| /// ldr x1, [x2, x3, lsl #3]
 | |
| ///
 | |
| /// Where x2 is the base register, and x3 is an offset register. The shift-left
 | |
| /// is a constant value specific to this load instruction. That is, we'll never
 | |
| /// see anything other than a 3 here (which corresponds to the size of the
 | |
| /// element being loaded.)
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
 | |
|     MachineOperand &Root, unsigned SizeInBytes) const {
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
 | |
| 
 | |
|   // We want to find something like this:
 | |
|   //
 | |
|   // val = G_CONSTANT LegalShiftVal
 | |
|   // shift = G_SHL off_reg val
 | |
|   // ptr = G_PTR_ADD base_reg shift
 | |
|   // x = G_LOAD ptr
 | |
|   //
 | |
|   // And fold it into this addressing mode:
 | |
|   //
 | |
|   // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
 | |
| 
 | |
|   // Check if we can find the G_PTR_ADD.
 | |
|   MachineInstr *PtrAdd =
 | |
|       getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
 | |
|   if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
 | |
|     return None;
 | |
| 
 | |
|   // Now, try to match an opcode which will match our specific offset.
 | |
|   // We want a G_SHL or a G_MUL.
 | |
|   MachineInstr *OffsetInst =
 | |
|       getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
 | |
|   return selectExtendedSHL(Root, PtrAdd->getOperand(1),
 | |
|                            OffsetInst->getOperand(0), SizeInBytes,
 | |
|                            /*WantsExt=*/false);
 | |
| }
 | |
| 
 | |
| /// This is used for computing addresses like this:
 | |
| ///
 | |
| /// ldr x1, [x2, x3]
 | |
| ///
 | |
| /// Where x2 is the base register, and x3 is an offset register.
 | |
| ///
 | |
| /// When possible (or profitable) to fold a G_PTR_ADD into the address calculation,
 | |
| /// this will do so. Otherwise, it will return None.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectAddrModeRegisterOffset(
 | |
|     MachineOperand &Root) const {
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
 | |
| 
 | |
|   // We need a GEP.
 | |
|   MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
 | |
|   if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
 | |
|     return None;
 | |
| 
 | |
|   // If this is used more than once, let's not bother folding.
 | |
|   // TODO: Check if they are memory ops. If they are, then we can still fold
 | |
|   // without having to recompute anything.
 | |
|   if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
 | |
|     return None;
 | |
| 
 | |
|   // Base is the GEP's LHS, offset is its RHS.
 | |
|   return {{[=](MachineInstrBuilder &MIB) {
 | |
|              MIB.addUse(Gep->getOperand(1).getReg());
 | |
|            },
 | |
|            [=](MachineInstrBuilder &MIB) {
 | |
|              MIB.addUse(Gep->getOperand(2).getReg());
 | |
|            },
 | |
|            [=](MachineInstrBuilder &MIB) {
 | |
|              // Need to add both immediates here to make sure that they are both
 | |
|              // added to the instruction.
 | |
|              MIB.addImm(0);
 | |
|              MIB.addImm(0);
 | |
|            }}};
 | |
| }
 | |
| 
 | |
| /// This is intended to be equivalent to selectAddrModeXRO in
 | |
| /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
 | |
|                                               unsigned SizeInBytes) const {
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
|   MachineInstr *PtrAdd =
 | |
|       getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
 | |
|   if (!PtrAdd)
 | |
|     return None;
 | |
| 
 | |
|   // Check for an immediates which cannot be encoded in the [base + imm]
 | |
|   // addressing mode, and can't be encoded in an add/sub. If this happens, we'll
 | |
|   // end up with code like:
 | |
|   //
 | |
|   // mov x0, wide
 | |
|   // add x1 base, x0
 | |
|   // ldr x2, [x1, x0]
 | |
|   //
 | |
|   // In this situation, we can use the [base, xreg] addressing mode to save an
 | |
|   // add/sub:
 | |
|   //
 | |
|   // mov x0, wide
 | |
|   // ldr x2, [base, x0]
 | |
|   auto ValAndVReg =
 | |
|       getConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI);
 | |
|   if (ValAndVReg) {
 | |
|     unsigned Scale = Log2_32(SizeInBytes);
 | |
|     int64_t ImmOff = ValAndVReg->Value.getSExtValue();
 | |
| 
 | |
|     // Skip immediates that can be selected in the load/store addresing
 | |
|     // mode.
 | |
|     if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 &&
 | |
|         ImmOff < (0x1000 << Scale))
 | |
|       return None;
 | |
| 
 | |
|     // Helper lambda to decide whether or not it is preferable to emit an add.
 | |
|     auto isPreferredADD = [](int64_t ImmOff) {
 | |
|       // Constants in [0x0, 0xfff] can be encoded in an add.
 | |
|       if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
 | |
|         return true;
 | |
| 
 | |
|       // Can it be encoded in an add lsl #12?
 | |
|       if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL)
 | |
|         return false;
 | |
| 
 | |
|       // It can be encoded in an add lsl #12, but we may not want to. If it is
 | |
|       // possible to select this as a single movz, then prefer that. A single
 | |
|       // movz is faster than an add with a shift.
 | |
|       return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
 | |
|              (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
 | |
|     };
 | |
| 
 | |
|     // If the immediate can be encoded in a single add/sub, then bail out.
 | |
|     if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   // Try to fold shifts into the addressing mode.
 | |
|   auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
 | |
|   if (AddrModeFns)
 | |
|     return AddrModeFns;
 | |
| 
 | |
|   // If that doesn't work, see if it's possible to fold in registers from
 | |
|   // a GEP.
 | |
|   return selectAddrModeRegisterOffset(Root);
 | |
| }
 | |
| 
 | |
| /// This is used for computing addresses like this:
 | |
| ///
 | |
| /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
 | |
| ///
 | |
| /// Where we have a 64-bit base register, a 32-bit offset register, and an
 | |
| /// extend (which may or may not be signed).
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
 | |
|                                               unsigned SizeInBytes) const {
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
 | |
| 
 | |
|   MachineInstr *PtrAdd =
 | |
|       getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
 | |
|   if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
 | |
|     return None;
 | |
| 
 | |
|   MachineOperand &LHS = PtrAdd->getOperand(1);
 | |
|   MachineOperand &RHS = PtrAdd->getOperand(2);
 | |
|   MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
 | |
| 
 | |
|   // The first case is the same as selectAddrModeXRO, except we need an extend.
 | |
|   // In this case, we try to find a shift and extend, and fold them into the
 | |
|   // addressing mode.
 | |
|   //
 | |
|   // E.g.
 | |
|   //
 | |
|   // off_reg = G_Z/S/ANYEXT ext_reg
 | |
|   // val = G_CONSTANT LegalShiftVal
 | |
|   // shift = G_SHL off_reg val
 | |
|   // ptr = G_PTR_ADD base_reg shift
 | |
|   // x = G_LOAD ptr
 | |
|   //
 | |
|   // In this case we can get a load like this:
 | |
|   //
 | |
|   // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
 | |
|   auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
 | |
|                                        SizeInBytes, /*WantsExt=*/true);
 | |
|   if (ExtendedShl)
 | |
|     return ExtendedShl;
 | |
| 
 | |
|   // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
 | |
|   //
 | |
|   // e.g.
 | |
|   // ldr something, [base_reg, ext_reg, sxtw]
 | |
|   if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
 | |
|     return None;
 | |
| 
 | |
|   // Check if this is an extend. We'll get an extend type if it is.
 | |
|   AArch64_AM::ShiftExtendType Ext =
 | |
|       getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
 | |
|   if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|     return None;
 | |
| 
 | |
|   // Need a 32-bit wide register.
 | |
|   MachineIRBuilder MIB(*PtrAdd);
 | |
|   Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
 | |
|                                        AArch64::GPR32RegClass, MIB);
 | |
|   unsigned SignExtend = Ext == AArch64_AM::SXTW;
 | |
| 
 | |
|   // Base is LHS, offset is ExtReg.
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
 | |
|            [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
 | |
|            [=](MachineInstrBuilder &MIB) {
 | |
|              MIB.addImm(SignExtend);
 | |
|              MIB.addImm(0);
 | |
|            }}};
 | |
| }
 | |
| 
 | |
| /// Select a "register plus unscaled signed 9-bit immediate" address.  This
 | |
| /// should only match when there is an offset that is not valid for a scaled
 | |
| /// immediate addressing mode.  The "Size" argument is the size in bytes of the
 | |
| /// memory reference, which is needed here to know what is valid for a scaled
 | |
| /// immediate.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
 | |
|                                                    unsigned Size) const {
 | |
|   MachineRegisterInfo &MRI =
 | |
|       Root.getParent()->getParent()->getParent()->getRegInfo();
 | |
| 
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
| 
 | |
|   if (!isBaseWithConstantOffset(Root, MRI))
 | |
|     return None;
 | |
| 
 | |
|   MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
 | |
|   if (!RootDef)
 | |
|     return None;
 | |
| 
 | |
|   MachineOperand &OffImm = RootDef->getOperand(2);
 | |
|   if (!OffImm.isReg())
 | |
|     return None;
 | |
|   MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
 | |
|   if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
 | |
|     return None;
 | |
|   int64_t RHSC;
 | |
|   MachineOperand &RHSOp1 = RHS->getOperand(1);
 | |
|   if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
 | |
|     return None;
 | |
|   RHSC = RHSOp1.getCImm()->getSExtValue();
 | |
| 
 | |
|   // If the offset is valid as a scaled immediate, don't match here.
 | |
|   if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
 | |
|     return None;
 | |
|   if (RHSC >= -256 && RHSC < 256) {
 | |
|     MachineOperand &Base = RootDef->getOperand(1);
 | |
|     return {{
 | |
|         [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
 | |
|         [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
 | |
|     }};
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
 | |
|                                                  unsigned Size,
 | |
|                                                  MachineRegisterInfo &MRI) const {
 | |
|   if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
 | |
|     return None;
 | |
|   MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
 | |
|   if (Adrp.getOpcode() != AArch64::ADRP)
 | |
|     return None;
 | |
| 
 | |
|   // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
 | |
|   auto Offset = Adrp.getOperand(1).getOffset();
 | |
|   if (Offset % Size != 0)
 | |
|     return None;
 | |
| 
 | |
|   auto GV = Adrp.getOperand(1).getGlobal();
 | |
|   if (GV->isThreadLocal())
 | |
|     return None;
 | |
| 
 | |
|   auto &MF = *RootDef.getParent()->getParent();
 | |
|   if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
 | |
|     return None;
 | |
| 
 | |
|   unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
 | |
|   MachineIRBuilder MIRBuilder(RootDef);
 | |
|   Register AdrpReg = Adrp.getOperand(0).getReg();
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
 | |
|            [=](MachineInstrBuilder &MIB) {
 | |
|              MIB.addGlobalAddress(GV, Offset,
 | |
|                                   OpFlags | AArch64II::MO_PAGEOFF |
 | |
|                                       AArch64II::MO_NC);
 | |
|            }}};
 | |
| }
 | |
| 
 | |
| /// Select a "register plus scaled unsigned 12-bit immediate" address.  The
 | |
| /// "Size" argument is the size in bytes of the memory reference, which
 | |
| /// determines the scale.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
 | |
|                                                   unsigned Size) const {
 | |
|   MachineFunction &MF = *Root.getParent()->getParent()->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
| 
 | |
|   MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
 | |
|   if (!RootDef)
 | |
|     return None;
 | |
| 
 | |
|   if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
 | |
|     return {{
 | |
|         [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
 | |
|         [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
 | |
|     }};
 | |
|   }
 | |
| 
 | |
|   CodeModel::Model CM = MF.getTarget().getCodeModel();
 | |
|   // Check if we can fold in the ADD of small code model ADRP + ADD address.
 | |
|   if (CM == CodeModel::Small) {
 | |
|     auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
 | |
|     if (OpFns)
 | |
|       return OpFns;
 | |
|   }
 | |
| 
 | |
|   if (isBaseWithConstantOffset(Root, MRI)) {
 | |
|     MachineOperand &LHS = RootDef->getOperand(1);
 | |
|     MachineOperand &RHS = RootDef->getOperand(2);
 | |
|     MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
 | |
|     MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
 | |
|     if (LHSDef && RHSDef) {
 | |
|       int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
 | |
|       unsigned Scale = Log2_32(Size);
 | |
|       if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
 | |
|         if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
 | |
|           return {{
 | |
|               [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
 | |
|               [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
 | |
|           }};
 | |
| 
 | |
|         return {{
 | |
|             [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
 | |
|             [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
 | |
|         }};
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Before falling back to our general case, check if the unscaled
 | |
|   // instructions can handle this. If so, that's preferable.
 | |
|   if (selectAddrModeUnscaled(Root, Size).hasValue())
 | |
|     return None;
 | |
| 
 | |
|   return {{
 | |
|       [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
 | |
|       [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
 | |
|   }};
 | |
| }
 | |
| 
 | |
| /// Given a shift instruction, return the correct shift type for that
 | |
| /// instruction.
 | |
| static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
 | |
|   // TODO: Handle AArch64_AM::ROR
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
|   case TargetOpcode::G_SHL:
 | |
|     return AArch64_AM::LSL;
 | |
|   case TargetOpcode::G_LSHR:
 | |
|     return AArch64_AM::LSR;
 | |
|   case TargetOpcode::G_ASHR:
 | |
|     return AArch64_AM::ASR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Select a "shifted register" operand. If the value is not shifted, set the
 | |
| /// shift operand to a default value of "lsl 0".
 | |
| ///
 | |
| /// TODO: Allow shifted register to be rotated in logical instructions.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
|   MachineRegisterInfo &MRI =
 | |
|       Root.getParent()->getParent()->getParent()->getRegInfo();
 | |
| 
 | |
|   // Check if the operand is defined by an instruction which corresponds to
 | |
|   // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
 | |
|   //
 | |
|   // TODO: Handle AArch64_AM::ROR for logical instructions.
 | |
|   MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
 | |
|   if (!ShiftInst)
 | |
|     return None;
 | |
|   AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
 | |
|   if (ShType == AArch64_AM::InvalidShiftExtend)
 | |
|     return None;
 | |
|   if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
 | |
|     return None;
 | |
| 
 | |
|   // Need an immediate on the RHS.
 | |
|   MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
 | |
|   auto Immed = getImmedFromMO(ShiftRHS);
 | |
|   if (!Immed)
 | |
|     return None;
 | |
| 
 | |
|   // We have something that we can fold. Fold in the shift's LHS and RHS into
 | |
|   // the instruction.
 | |
|   MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
 | |
|   Register ShiftReg = ShiftLHS.getReg();
 | |
| 
 | |
|   unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
 | |
|   unsigned Val = *Immed & (NumBits - 1);
 | |
|   unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
 | |
| 
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
 | |
|            [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
 | |
| }
 | |
| 
 | |
| AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
 | |
|     MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
| 
 | |
|   // Handle explicit extend instructions first.
 | |
|   if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
 | |
|     unsigned Size;
 | |
|     if (Opc == TargetOpcode::G_SEXT)
 | |
|       Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
 | |
|     else
 | |
|       Size = MI.getOperand(2).getImm();
 | |
|     assert(Size != 64 && "Extend from 64 bits?");
 | |
|     switch (Size) {
 | |
|     case 8:
 | |
|       return AArch64_AM::SXTB;
 | |
|     case 16:
 | |
|       return AArch64_AM::SXTH;
 | |
|     case 32:
 | |
|       return AArch64_AM::SXTW;
 | |
|     default:
 | |
|       return AArch64_AM::InvalidShiftExtend;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
 | |
|     unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
 | |
|     assert(Size != 64 && "Extend from 64 bits?");
 | |
|     switch (Size) {
 | |
|     case 8:
 | |
|       return AArch64_AM::UXTB;
 | |
|     case 16:
 | |
|       return AArch64_AM::UXTH;
 | |
|     case 32:
 | |
|       return AArch64_AM::UXTW;
 | |
|     default:
 | |
|       return AArch64_AM::InvalidShiftExtend;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't have an explicit extend. Try to handle a G_AND with a constant mask
 | |
|   // on the RHS.
 | |
|   if (Opc != TargetOpcode::G_AND)
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
| 
 | |
|   Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
 | |
|   if (!MaybeAndMask)
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
|   uint64_t AndMask = *MaybeAndMask;
 | |
|   switch (AndMask) {
 | |
|   default:
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
|   case 0xFF:
 | |
|     return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
 | |
|   case 0xFFFF:
 | |
|     return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
 | |
|   case 0xFFFFFFFF:
 | |
|     return AArch64_AM::UXTW;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Register AArch64InstructionSelector::moveScalarRegClass(
 | |
|     Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
 | |
|   MachineRegisterInfo &MRI = *MIB.getMRI();
 | |
|   auto Ty = MRI.getType(Reg);
 | |
|   assert(!Ty.isVector() && "Expected scalars only!");
 | |
|   if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
 | |
|     return Reg;
 | |
| 
 | |
|   // Create a copy and immediately select it.
 | |
|   // FIXME: We should have an emitCopy function?
 | |
|   auto Copy = MIB.buildCopy({&RC}, {Reg});
 | |
|   selectCopy(*Copy, TII, MRI, TRI, RBI);
 | |
|   return Copy.getReg(0);
 | |
| }
 | |
| 
 | |
| /// Select an "extended register" operand. This operand folds in an extend
 | |
| /// followed by an optional left shift.
 | |
| InstructionSelector::ComplexRendererFns
 | |
| AArch64InstructionSelector::selectArithExtendedRegister(
 | |
|     MachineOperand &Root) const {
 | |
|   if (!Root.isReg())
 | |
|     return None;
 | |
|   MachineRegisterInfo &MRI =
 | |
|       Root.getParent()->getParent()->getParent()->getRegInfo();
 | |
| 
 | |
|   uint64_t ShiftVal = 0;
 | |
|   Register ExtReg;
 | |
|   AArch64_AM::ShiftExtendType Ext;
 | |
|   MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
 | |
|   if (!RootDef)
 | |
|     return None;
 | |
| 
 | |
|   if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
 | |
|     return None;
 | |
| 
 | |
|   // Check if we can fold a shift and an extend.
 | |
|   if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
 | |
|     // Look for a constant on the RHS of the shift.
 | |
|     MachineOperand &RHS = RootDef->getOperand(2);
 | |
|     Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
 | |
|     if (!MaybeShiftVal)
 | |
|       return None;
 | |
|     ShiftVal = *MaybeShiftVal;
 | |
|     if (ShiftVal > 4)
 | |
|       return None;
 | |
|     // Look for a valid extend instruction on the LHS of the shift.
 | |
|     MachineOperand &LHS = RootDef->getOperand(1);
 | |
|     MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
 | |
|     if (!ExtDef)
 | |
|       return None;
 | |
|     Ext = getExtendTypeForInst(*ExtDef, MRI);
 | |
|     if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|       return None;
 | |
|     ExtReg = ExtDef->getOperand(1).getReg();
 | |
|   } else {
 | |
|     // Didn't get a shift. Try just folding an extend.
 | |
|     Ext = getExtendTypeForInst(*RootDef, MRI);
 | |
|     if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|       return None;
 | |
|     ExtReg = RootDef->getOperand(1).getReg();
 | |
| 
 | |
|     // If we have a 32 bit instruction which zeroes out the high half of a
 | |
|     // register, we get an implicit zero extend for free. Check if we have one.
 | |
|     // FIXME: We actually emit the extend right now even though we don't have
 | |
|     // to.
 | |
|     if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
 | |
|       MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
 | |
|       if (ExtInst && isDef32(*ExtInst))
 | |
|         return None;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
 | |
|   // copy.
 | |
|   MachineIRBuilder MIB(*RootDef);
 | |
|   ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);
 | |
| 
 | |
|   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
 | |
|            [=](MachineInstrBuilder &MIB) {
 | |
|              MIB.addImm(getArithExtendImm(Ext, ShiftVal));
 | |
|            }}};
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
 | |
|                                                 const MachineInstr &MI,
 | |
|                                                 int OpIdx) const {
 | |
|   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | |
|   assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
 | |
|          "Expected G_CONSTANT");
 | |
|   Optional<int64_t> CstVal =
 | |
|       getConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI);
 | |
|   assert(CstVal && "Expected constant value");
 | |
|   MIB.addImm(CstVal.getValue());
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::renderLogicalImm32(
 | |
|   MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
 | |
|          "Expected G_CONSTANT");
 | |
|   uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
 | |
|   uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
 | |
|   MIB.addImm(Enc);
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::renderLogicalImm64(
 | |
|   MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
 | |
|   assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
 | |
|          "Expected G_CONSTANT");
 | |
|   uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
 | |
|   uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
 | |
|   MIB.addImm(Enc);
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB,
 | |
|                                                const MachineInstr &MI,
 | |
|                                                int OpIdx) const {
 | |
|   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
 | |
|          "Expected G_FCONSTANT");
 | |
|   MIB.addImm(
 | |
|       AArch64_AM::getFP16Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB,
 | |
|                                                const MachineInstr &MI,
 | |
|                                                int OpIdx) const {
 | |
|   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
 | |
|          "Expected G_FCONSTANT");
 | |
|   MIB.addImm(
 | |
|       AArch64_AM::getFP32Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB,
 | |
|                                                const MachineInstr &MI,
 | |
|                                                int OpIdx) const {
 | |
|   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
 | |
|          "Expected G_FCONSTANT");
 | |
|   MIB.addImm(
 | |
|       AArch64_AM::getFP64Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
 | |
|     const MachineInstr &MI, unsigned NumBytes) const {
 | |
|   if (!MI.mayLoadOrStore())
 | |
|     return false;
 | |
|   assert(MI.hasOneMemOperand() &&
 | |
|          "Expected load/store to have only one mem op!");
 | |
|   return (*MI.memoperands_begin())->getSize() == NumBytes;
 | |
| }
 | |
| 
 | |
| bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
 | |
|   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | |
|   if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
 | |
|     return false;
 | |
| 
 | |
|   // Only return true if we know the operation will zero-out the high half of
 | |
|   // the 64-bit register. Truncates can be subregister copies, which don't
 | |
|   // zero out the high bits. Copies and other copy-like instructions can be
 | |
|   // fed by truncates, or could be lowered as subregister copies.
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     return true;
 | |
|   case TargetOpcode::COPY:
 | |
|   case TargetOpcode::G_BITCAST:
 | |
|   case TargetOpcode::G_TRUNC:
 | |
|   case TargetOpcode::G_PHI:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Perform fixups on the given PHI instruction's operands to force them all
 | |
| // to be the same as the destination regbank.
 | |
| static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
 | |
|                             const AArch64RegisterBankInfo &RBI) {
 | |
|   assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
 | |
|   Register DstReg = MI.getOperand(0).getReg();
 | |
|   const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
 | |
|   assert(DstRB && "Expected PHI dst to have regbank assigned");
 | |
|   MachineIRBuilder MIB(MI);
 | |
| 
 | |
|   // Go through each operand and ensure it has the same regbank.
 | |
|   for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
 | |
|     MachineOperand &MO = MI.getOperand(OpIdx);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     Register OpReg = MO.getReg();
 | |
|     const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
 | |
|     if (RB != DstRB) {
 | |
|       // Insert a cross-bank copy.
 | |
|       auto *OpDef = MRI.getVRegDef(OpReg);
 | |
|       const LLT &Ty = MRI.getType(OpReg);
 | |
|       MIB.setInsertPt(*OpDef->getParent(), std::next(OpDef->getIterator()));
 | |
|       auto Copy = MIB.buildCopy(Ty, OpReg);
 | |
|       MRI.setRegBank(Copy.getReg(0), *DstRB);
 | |
|       MO.setReg(Copy.getReg(0));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
 | |
|   // We're looking for PHIs, build a list so we don't invalidate iterators.
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   SmallVector<MachineInstr *, 32> Phis;
 | |
|   for (auto &BB : MF) {
 | |
|     for (auto &MI : BB) {
 | |
|       if (MI.getOpcode() == TargetOpcode::G_PHI)
 | |
|         Phis.emplace_back(&MI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto *MI : Phis) {
 | |
|     // We need to do some work here if the operand types are < 16 bit and they
 | |
|     // are split across fpr/gpr banks. Since all types <32b on gpr
 | |
|     // end up being assigned gpr32 regclasses, we can end up with PHIs here
 | |
|     // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
 | |
|     // be selecting heterogenous regbanks for operands if possible, but we
 | |
|     // still need to be able to deal with it here.
 | |
|     //
 | |
|     // To fix this, if we have a gpr-bank operand < 32b in size and at least
 | |
|     // one other operand is on the fpr bank, then we add cross-bank copies
 | |
|     // to homogenize the operand banks. For simplicity the bank that we choose
 | |
|     // to settle on is whatever bank the def operand has. For example:
 | |
|     //
 | |
|     // %endbb:
 | |
|     //   %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
 | |
|     //  =>
 | |
|     // %bb2:
 | |
|     //   ...
 | |
|     //   %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
 | |
|     //   ...
 | |
|     // %endbb:
 | |
|     //   %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
 | |
|     bool HasGPROp = false, HasFPROp = false;
 | |
|     for (unsigned OpIdx = 1; OpIdx < MI->getNumOperands(); ++OpIdx) {
 | |
|       const auto &MO = MI->getOperand(OpIdx);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       const LLT &Ty = MRI.getType(MO.getReg());
 | |
|       if (!Ty.isValid() || !Ty.isScalar())
 | |
|         break;
 | |
|       if (Ty.getSizeInBits() >= 32)
 | |
|         break;
 | |
|       const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
 | |
|       // If for some reason we don't have a regbank yet. Don't try anything.
 | |
|       if (!RB)
 | |
|         break;
 | |
| 
 | |
|       if (RB->getID() == AArch64::GPRRegBankID)
 | |
|         HasGPROp = true;
 | |
|       else
 | |
|         HasFPROp = true;
 | |
|     }
 | |
|     // We have heterogenous regbanks, need to fixup.
 | |
|     if (HasGPROp && HasFPROp)
 | |
|       fixupPHIOpBanks(*MI, MRI, RBI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| InstructionSelector *
 | |
| createAArch64InstructionSelector(const AArch64TargetMachine &TM,
 | |
|                                  AArch64Subtarget &Subtarget,
 | |
|                                  AArch64RegisterBankInfo &RBI) {
 | |
|   return new AArch64InstructionSelector(TM, Subtarget, RBI);
 | |
| }
 | |
| }
 |