594 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			594 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the X86 specific subclass of TargetMachine.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "MCTargetDesc/X86MCTargetDesc.h"
 | 
						|
#include "TargetInfo/X86TargetInfo.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86CallLowering.h"
 | 
						|
#include "X86LegalizerInfo.h"
 | 
						|
#include "X86MacroFusion.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetObjectFile.h"
 | 
						|
#include "X86TargetTransformInfo.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/CodeGen/ExecutionDomainFix.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
 | 
						|
#include "llvm/CodeGen/MachineScheduler.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Target/TargetLoweringObjectFile.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Transforms/CFGuard.h"
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
 | 
						|
                               cl::desc("Enable the machine combiner pass"),
 | 
						|
                               cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
 | 
						|
  // Register the target.
 | 
						|
  RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
 | 
						|
  RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
 | 
						|
 | 
						|
  PassRegistry &PR = *PassRegistry::getPassRegistry();
 | 
						|
  initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
 | 
						|
  initializeX86LowerAMXTypeLegacyPassPass(PR);
 | 
						|
  initializeGlobalISel(PR);
 | 
						|
  initializeWinEHStatePassPass(PR);
 | 
						|
  initializeFixupBWInstPassPass(PR);
 | 
						|
  initializeEvexToVexInstPassPass(PR);
 | 
						|
  initializeFixupLEAPassPass(PR);
 | 
						|
  initializeFPSPass(PR);
 | 
						|
  initializeX86FixupSetCCPassPass(PR);
 | 
						|
  initializeX86CallFrameOptimizationPass(PR);
 | 
						|
  initializeX86CmovConverterPassPass(PR);
 | 
						|
  initializeX86TileConfigPass(PR);
 | 
						|
  initializeX86LowerTileCopyPass(PR);
 | 
						|
  initializeX86ExpandPseudoPass(PR);
 | 
						|
  initializeX86ExecutionDomainFixPass(PR);
 | 
						|
  initializeX86DomainReassignmentPass(PR);
 | 
						|
  initializeX86AvoidSFBPassPass(PR);
 | 
						|
  initializeX86AvoidTrailingCallPassPass(PR);
 | 
						|
  initializeX86SpeculativeLoadHardeningPassPass(PR);
 | 
						|
  initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
 | 
						|
  initializeX86FlagsCopyLoweringPassPass(PR);
 | 
						|
  initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
 | 
						|
  initializeX86LoadValueInjectionRetHardeningPassPass(PR);
 | 
						|
  initializeX86OptimizeLEAPassPass(PR);
 | 
						|
  initializeX86PartialReductionPass(PR);
 | 
						|
  initializePseudoProbeInserterPass(PR);
 | 
						|
}
 | 
						|
 | 
						|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
 | 
						|
  if (TT.isOSBinFormatMachO()) {
 | 
						|
    if (TT.getArch() == Triple::x86_64)
 | 
						|
      return std::make_unique<X86_64MachoTargetObjectFile>();
 | 
						|
    return std::make_unique<TargetLoweringObjectFileMachO>();
 | 
						|
  }
 | 
						|
 | 
						|
  if (TT.isOSBinFormatCOFF())
 | 
						|
    return std::make_unique<TargetLoweringObjectFileCOFF>();
 | 
						|
  return std::make_unique<X86ELFTargetObjectFile>();
 | 
						|
}
 | 
						|
 | 
						|
static std::string computeDataLayout(const Triple &TT) {
 | 
						|
  // X86 is little endian
 | 
						|
  std::string Ret = "e";
 | 
						|
 | 
						|
  Ret += DataLayout::getManglingComponent(TT);
 | 
						|
  // X86 and x32 have 32 bit pointers.
 | 
						|
  if ((TT.isArch64Bit() &&
 | 
						|
       (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
 | 
						|
      !TT.isArch64Bit())
 | 
						|
    Ret += "-p:32:32";
 | 
						|
 | 
						|
  // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
 | 
						|
  Ret += "-p270:32:32-p271:32:32-p272:64:64";
 | 
						|
 | 
						|
  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
 | 
						|
  if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
 | 
						|
    Ret += "-i64:64";
 | 
						|
  else if (TT.isOSIAMCU())
 | 
						|
    Ret += "-i64:32-f64:32";
 | 
						|
  else
 | 
						|
    Ret += "-f64:32:64";
 | 
						|
 | 
						|
  // Some ABIs align long double to 128 bits, others to 32.
 | 
						|
  if (TT.isOSNaCl() || TT.isOSIAMCU())
 | 
						|
    ; // No f80
 | 
						|
  else if (TT.isArch64Bit() || TT.isOSDarwin())
 | 
						|
    Ret += "-f80:128";
 | 
						|
  else
 | 
						|
    Ret += "-f80:32";
 | 
						|
 | 
						|
  if (TT.isOSIAMCU())
 | 
						|
    Ret += "-f128:32";
 | 
						|
 | 
						|
  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
 | 
						|
  if (TT.isArch64Bit())
 | 
						|
    Ret += "-n8:16:32:64";
 | 
						|
  else
 | 
						|
    Ret += "-n8:16:32";
 | 
						|
 | 
						|
  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
 | 
						|
  if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
 | 
						|
    Ret += "-a:0:32-S32";
 | 
						|
  else
 | 
						|
    Ret += "-S128";
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
 | 
						|
                                           bool JIT,
 | 
						|
                                           Optional<Reloc::Model> RM) {
 | 
						|
  bool is64Bit = TT.getArch() == Triple::x86_64;
 | 
						|
  if (!RM.hasValue()) {
 | 
						|
    // JIT codegen should use static relocations by default, since it's
 | 
						|
    // typically executed in process and not relocatable.
 | 
						|
    if (JIT)
 | 
						|
      return Reloc::Static;
 | 
						|
 | 
						|
    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
 | 
						|
    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
 | 
						|
    // use static relocation model by default.
 | 
						|
    if (TT.isOSDarwin()) {
 | 
						|
      if (is64Bit)
 | 
						|
        return Reloc::PIC_;
 | 
						|
      return Reloc::DynamicNoPIC;
 | 
						|
    }
 | 
						|
    if (TT.isOSWindows() && is64Bit)
 | 
						|
      return Reloc::PIC_;
 | 
						|
    return Reloc::Static;
 | 
						|
  }
 | 
						|
 | 
						|
  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
 | 
						|
  // is defined as a model for code which may be used in static or dynamic
 | 
						|
  // executables but not necessarily a shared library. On X86-32 we just
 | 
						|
  // compile in -static mode, in x86-64 we use PIC.
 | 
						|
  if (*RM == Reloc::DynamicNoPIC) {
 | 
						|
    if (is64Bit)
 | 
						|
      return Reloc::PIC_;
 | 
						|
    if (!TT.isOSDarwin())
 | 
						|
      return Reloc::Static;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
 | 
						|
  // the Mach-O file format doesn't support it.
 | 
						|
  if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
 | 
						|
    return Reloc::PIC_;
 | 
						|
 | 
						|
  return *RM;
 | 
						|
}
 | 
						|
 | 
						|
static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
 | 
						|
                                                 bool JIT, bool Is64Bit) {
 | 
						|
  if (CM) {
 | 
						|
    if (*CM == CodeModel::Tiny)
 | 
						|
      report_fatal_error("Target does not support the tiny CodeModel", false);
 | 
						|
    return *CM;
 | 
						|
  }
 | 
						|
  if (JIT)
 | 
						|
    return Is64Bit ? CodeModel::Large : CodeModel::Small;
 | 
						|
  return CodeModel::Small;
 | 
						|
}
 | 
						|
 | 
						|
/// Create an X86 target.
 | 
						|
///
 | 
						|
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
 | 
						|
                                   StringRef CPU, StringRef FS,
 | 
						|
                                   const TargetOptions &Options,
 | 
						|
                                   Optional<Reloc::Model> RM,
 | 
						|
                                   Optional<CodeModel::Model> CM,
 | 
						|
                                   CodeGenOpt::Level OL, bool JIT)
 | 
						|
    : LLVMTargetMachine(
 | 
						|
          T, computeDataLayout(TT), TT, CPU, FS, Options,
 | 
						|
          getEffectiveRelocModel(TT, JIT, RM),
 | 
						|
          getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
 | 
						|
          OL),
 | 
						|
      TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
 | 
						|
  // On PS4, the "return address" of a 'noreturn' call must still be within
 | 
						|
  // the calling function, and TrapUnreachable is an easy way to get that.
 | 
						|
  if (TT.isPS4() || TT.isOSBinFormatMachO()) {
 | 
						|
    this->Options.TrapUnreachable = true;
 | 
						|
    this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
 | 
						|
  }
 | 
						|
 | 
						|
  setMachineOutliner(true);
 | 
						|
 | 
						|
  // x86 supports the debug entry values.
 | 
						|
  setSupportsDebugEntryValues(true);
 | 
						|
 | 
						|
  initAsmInfo();
 | 
						|
}
 | 
						|
 | 
						|
X86TargetMachine::~X86TargetMachine() = default;
 | 
						|
 | 
						|
const X86Subtarget *
 | 
						|
X86TargetMachine::getSubtargetImpl(const Function &F) const {
 | 
						|
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
 | 
						|
  Attribute TuneAttr = F.getFnAttribute("tune-cpu");
 | 
						|
  Attribute FSAttr = F.getFnAttribute("target-features");
 | 
						|
 | 
						|
  StringRef CPU =
 | 
						|
      CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
 | 
						|
  StringRef TuneCPU =
 | 
						|
      TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU;
 | 
						|
  StringRef FS =
 | 
						|
      FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
 | 
						|
 | 
						|
  SmallString<512> Key;
 | 
						|
  // The additions here are ordered so that the definitely short strings are
 | 
						|
  // added first so we won't exceed the small size. We append the
 | 
						|
  // much longer FS string at the end so that we only heap allocate at most
 | 
						|
  // one time.
 | 
						|
 | 
						|
  // Extract prefer-vector-width attribute.
 | 
						|
  unsigned PreferVectorWidthOverride = 0;
 | 
						|
  Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
 | 
						|
  if (PreferVecWidthAttr.isValid()) {
 | 
						|
    StringRef Val = PreferVecWidthAttr.getValueAsString();
 | 
						|
    unsigned Width;
 | 
						|
    if (!Val.getAsInteger(0, Width)) {
 | 
						|
      Key += 'p';
 | 
						|
      Key += Val;
 | 
						|
      PreferVectorWidthOverride = Width;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract min-legal-vector-width attribute.
 | 
						|
  unsigned RequiredVectorWidth = UINT32_MAX;
 | 
						|
  Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
 | 
						|
  if (MinLegalVecWidthAttr.isValid()) {
 | 
						|
    StringRef Val = MinLegalVecWidthAttr.getValueAsString();
 | 
						|
    unsigned Width;
 | 
						|
    if (!Val.getAsInteger(0, Width)) {
 | 
						|
      Key += 'm';
 | 
						|
      Key += Val;
 | 
						|
      RequiredVectorWidth = Width;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add CPU to the Key.
 | 
						|
  Key += CPU;
 | 
						|
 | 
						|
  // Add tune CPU to the Key.
 | 
						|
  Key += TuneCPU;
 | 
						|
 | 
						|
  // Keep track of the start of the feature portion of the string.
 | 
						|
  unsigned FSStart = Key.size();
 | 
						|
 | 
						|
  // FIXME: This is related to the code below to reset the target options,
 | 
						|
  // we need to know whether or not the soft float flag is set on the
 | 
						|
  // function before we can generate a subtarget. We also need to use
 | 
						|
  // it as a key for the subtarget since that can be the only difference
 | 
						|
  // between two functions.
 | 
						|
  bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
 | 
						|
  // If the soft float attribute is set on the function turn on the soft float
 | 
						|
  // subtarget feature.
 | 
						|
  if (SoftFloat)
 | 
						|
    Key += FS.empty() ? "+soft-float" : "+soft-float,";
 | 
						|
 | 
						|
  Key += FS;
 | 
						|
 | 
						|
  // We may have added +soft-float to the features so move the StringRef to
 | 
						|
  // point to the full string in the Key.
 | 
						|
  FS = Key.substr(FSStart);
 | 
						|
 | 
						|
  auto &I = SubtargetMap[Key];
 | 
						|
  if (!I) {
 | 
						|
    // This needs to be done before we create a new subtarget since any
 | 
						|
    // creation will depend on the TM and the code generation flags on the
 | 
						|
    // function that reside in TargetOptions.
 | 
						|
    resetTargetOptions(F);
 | 
						|
    I = std::make_unique<X86Subtarget>(
 | 
						|
        TargetTriple, CPU, TuneCPU, FS, *this,
 | 
						|
        MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
 | 
						|
        RequiredVectorWidth);
 | 
						|
  }
 | 
						|
  return I.get();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
 | 
						|
                                           unsigned DestAS) const {
 | 
						|
  assert(SrcAS != DestAS && "Expected different address spaces!");
 | 
						|
  if (getPointerSize(SrcAS) != getPointerSize(DestAS))
 | 
						|
    return false;
 | 
						|
  return SrcAS < 256 && DestAS < 256;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// X86 TTI query.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
TargetTransformInfo
 | 
						|
X86TargetMachine::getTargetTransformInfo(const Function &F) {
 | 
						|
  return TargetTransformInfo(X86TTIImpl(this, F));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Pass Pipeline Configuration
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// X86 Code Generator Pass Configuration Options.
 | 
						|
class X86PassConfig : public TargetPassConfig {
 | 
						|
public:
 | 
						|
  X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
 | 
						|
    : TargetPassConfig(TM, PM) {}
 | 
						|
 | 
						|
  X86TargetMachine &getX86TargetMachine() const {
 | 
						|
    return getTM<X86TargetMachine>();
 | 
						|
  }
 | 
						|
 | 
						|
  ScheduleDAGInstrs *
 | 
						|
  createMachineScheduler(MachineSchedContext *C) const override {
 | 
						|
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
 | 
						|
    DAG->addMutation(createX86MacroFusionDAGMutation());
 | 
						|
    return DAG;
 | 
						|
  }
 | 
						|
 | 
						|
  ScheduleDAGInstrs *
 | 
						|
  createPostMachineScheduler(MachineSchedContext *C) const override {
 | 
						|
    ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
 | 
						|
    DAG->addMutation(createX86MacroFusionDAGMutation());
 | 
						|
    return DAG;
 | 
						|
  }
 | 
						|
 | 
						|
  void addIRPasses() override;
 | 
						|
  bool addInstSelector() override;
 | 
						|
  bool addIRTranslator() override;
 | 
						|
  bool addLegalizeMachineIR() override;
 | 
						|
  bool addRegBankSelect() override;
 | 
						|
  bool addGlobalInstructionSelect() override;
 | 
						|
  bool addILPOpts() override;
 | 
						|
  bool addPreISel() override;
 | 
						|
  void addMachineSSAOptimization() override;
 | 
						|
  void addPreRegAlloc() override;
 | 
						|
  void addPostRegAlloc() override;
 | 
						|
  void addPreEmitPass() override;
 | 
						|
  void addPreEmitPass2() override;
 | 
						|
  void addPreSched2() override;
 | 
						|
  bool addPreRewrite() override;
 | 
						|
 | 
						|
  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
 | 
						|
};
 | 
						|
 | 
						|
class X86ExecutionDomainFix : public ExecutionDomainFix {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
  X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
 | 
						|
  StringRef getPassName() const override {
 | 
						|
    return "X86 Execution Dependency Fix";
 | 
						|
  }
 | 
						|
};
 | 
						|
char X86ExecutionDomainFix::ID;
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
 | 
						|
  "X86 Execution Domain Fix", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
 | 
						|
INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
 | 
						|
  "X86 Execution Domain Fix", false, false)
 | 
						|
 | 
						|
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
 | 
						|
  return new X86PassConfig(*this, PM);
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addIRPasses() {
 | 
						|
  addPass(createAtomicExpandPass());
 | 
						|
 | 
						|
  // We add both pass anyway and when these two passes run, we skip the pass
 | 
						|
  // based on the option level and option attribute.
 | 
						|
  addPass(createX86LowerAMXIntrinsicsPass());
 | 
						|
  addPass(createX86LowerAMXTypePass());
 | 
						|
 | 
						|
  TargetPassConfig::addIRPasses();
 | 
						|
 | 
						|
  if (TM->getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(createInterleavedAccessPass());
 | 
						|
    addPass(createX86PartialReductionPass());
 | 
						|
  }
 | 
						|
 | 
						|
  // Add passes that handle indirect branch removal and insertion of a retpoline
 | 
						|
  // thunk. These will be a no-op unless a function subtarget has the retpoline
 | 
						|
  // feature enabled.
 | 
						|
  addPass(createIndirectBrExpandPass());
 | 
						|
 | 
						|
  // Add Control Flow Guard checks.
 | 
						|
  const Triple &TT = TM->getTargetTriple();
 | 
						|
  if (TT.isOSWindows()) {
 | 
						|
    if (TT.getArch() == Triple::x86_64) {
 | 
						|
      addPass(createCFGuardDispatchPass());
 | 
						|
    } else {
 | 
						|
      addPass(createCFGuardCheckPass());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addInstSelector() {
 | 
						|
  // Install an instruction selector.
 | 
						|
  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
 | 
						|
 | 
						|
  // For ELF, cleanup any local-dynamic TLS accesses.
 | 
						|
  if (TM->getTargetTriple().isOSBinFormatELF() &&
 | 
						|
      getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(createCleanupLocalDynamicTLSPass());
 | 
						|
 | 
						|
  addPass(createX86GlobalBaseRegPass());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addIRTranslator() {
 | 
						|
  addPass(new IRTranslator(getOptLevel()));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addLegalizeMachineIR() {
 | 
						|
  addPass(new Legalizer());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addRegBankSelect() {
 | 
						|
  addPass(new RegBankSelect());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addGlobalInstructionSelect() {
 | 
						|
  addPass(new InstructionSelect(getOptLevel()));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addILPOpts() {
 | 
						|
  addPass(&EarlyIfConverterID);
 | 
						|
  if (EnableMachineCombinerPass)
 | 
						|
    addPass(&MachineCombinerID);
 | 
						|
  addPass(createX86CmovConverterPass());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addPreISel() {
 | 
						|
  // Only add this pass for 32-bit x86 Windows.
 | 
						|
  const Triple &TT = TM->getTargetTriple();
 | 
						|
  if (TT.isOSWindows() && TT.getArch() == Triple::x86)
 | 
						|
    addPass(createX86WinEHStatePass());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addPreRegAlloc() {
 | 
						|
  if (getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(&LiveRangeShrinkID);
 | 
						|
    addPass(createX86FixupSetCC());
 | 
						|
    addPass(createX86OptimizeLEAs());
 | 
						|
    addPass(createX86CallFrameOptimization());
 | 
						|
    addPass(createX86AvoidStoreForwardingBlocks());
 | 
						|
  }
 | 
						|
 | 
						|
  addPass(createX86SpeculativeLoadHardeningPass());
 | 
						|
  addPass(createX86FlagsCopyLoweringPass());
 | 
						|
  addPass(createX86WinAllocaExpander());
 | 
						|
 | 
						|
  if (getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(createX86PreTileConfigPass());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addMachineSSAOptimization() {
 | 
						|
  addPass(createX86DomainReassignmentPass());
 | 
						|
  TargetPassConfig::addMachineSSAOptimization();
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addPostRegAlloc() {
 | 
						|
  addPass(createX86LowerTileCopyPass());
 | 
						|
  addPass(createX86FloatingPointStackifierPass());
 | 
						|
  // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
 | 
						|
  // to using the Speculative Execution Side Effect Suppression pass for
 | 
						|
  // mitigation. This is to prevent slow downs due to
 | 
						|
  // analyses needed by the LVIHardening pass when compiling at -O0.
 | 
						|
  if (getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(createX86LoadValueInjectionLoadHardeningPass());
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
 | 
						|
 | 
						|
void X86PassConfig::addPreEmitPass() {
 | 
						|
  if (getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(new X86ExecutionDomainFix());
 | 
						|
    addPass(createBreakFalseDeps());
 | 
						|
  }
 | 
						|
 | 
						|
  addPass(createX86IndirectBranchTrackingPass());
 | 
						|
 | 
						|
  addPass(createX86IssueVZeroUpperPass());
 | 
						|
 | 
						|
  if (getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(createX86FixupBWInsts());
 | 
						|
    addPass(createX86PadShortFunctions());
 | 
						|
    addPass(createX86FixupLEAs());
 | 
						|
  }
 | 
						|
  addPass(createX86EvexToVexInsts());
 | 
						|
  addPass(createX86DiscriminateMemOpsPass());
 | 
						|
  addPass(createX86InsertPrefetchPass());
 | 
						|
  addPass(createX86InsertX87waitPass());
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addPreEmitPass2() {
 | 
						|
  const Triple &TT = TM->getTargetTriple();
 | 
						|
  const MCAsmInfo *MAI = TM->getMCAsmInfo();
 | 
						|
 | 
						|
  // The X86 Speculative Execution Pass must run after all control
 | 
						|
  // flow graph modifying passes. As a result it was listed to run right before
 | 
						|
  // the X86 Retpoline Thunks pass. The reason it must run after control flow
 | 
						|
  // graph modifications is that the model of LFENCE in LLVM has to be updated
 | 
						|
  // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
 | 
						|
  // placement of this pass was hand checked to ensure that the subsequent
 | 
						|
  // passes don't move the code around the LFENCEs in a way that will hurt the
 | 
						|
  // correctness of this pass. This placement has been shown to work based on
 | 
						|
  // hand inspection of the codegen output.
 | 
						|
  addPass(createX86SpeculativeExecutionSideEffectSuppression());
 | 
						|
  addPass(createX86IndirectThunksPass());
 | 
						|
 | 
						|
  // Insert extra int3 instructions after trailing call instructions to avoid
 | 
						|
  // issues in the unwinder.
 | 
						|
  if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
 | 
						|
    addPass(createX86AvoidTrailingCallPass());
 | 
						|
 | 
						|
  // Verify basic block incoming and outgoing cfa offset and register values and
 | 
						|
  // correct CFA calculation rule where needed by inserting appropriate CFI
 | 
						|
  // instructions.
 | 
						|
  if (!TT.isOSDarwin() &&
 | 
						|
      (!TT.isOSWindows() ||
 | 
						|
       MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
 | 
						|
    addPass(createCFIInstrInserter());
 | 
						|
 | 
						|
  if (TT.isOSWindows()) {
 | 
						|
    // Identify valid longjmp targets for Windows Control Flow Guard.
 | 
						|
    addPass(createCFGuardLongjmpPass());
 | 
						|
    // Identify valid eh continuation targets for Windows EHCont Guard.
 | 
						|
    addPass(createEHContGuardCatchretPass());
 | 
						|
  }
 | 
						|
  addPass(createX86LoadValueInjectionRetHardeningPass());
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addPreRewrite() {
 | 
						|
  addPass(createX86TileConfigPass());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
 | 
						|
  return getStandardCSEConfigForOpt(TM->getOptLevel());
 | 
						|
}
 |