1800 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1800 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions perform manipulations on basic blocks, and
 | 
						|
// instructions contained within basic blocks.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/PseudoProbe.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "basicblock-utils"
 | 
						|
 | 
						|
void llvm::DetatchDeadBlocks(
 | 
						|
    ArrayRef<BasicBlock *> BBs,
 | 
						|
    SmallVectorImpl<DominatorTree::UpdateType> *Updates,
 | 
						|
    bool KeepOneInputPHIs) {
 | 
						|
  for (auto *BB : BBs) {
 | 
						|
    // Loop through all of our successors and make sure they know that one
 | 
						|
    // of their predecessors is going away.
 | 
						|
    SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
 | 
						|
    for (BasicBlock *Succ : successors(BB)) {
 | 
						|
      Succ->removePredecessor(BB, KeepOneInputPHIs);
 | 
						|
      if (Updates && UniqueSuccessors.insert(Succ).second)
 | 
						|
        Updates->push_back({DominatorTree::Delete, BB, Succ});
 | 
						|
    }
 | 
						|
 | 
						|
    // Zap all the instructions in the block.
 | 
						|
    while (!BB->empty()) {
 | 
						|
      Instruction &I = BB->back();
 | 
						|
      // If this instruction is used, replace uses with an arbitrary value.
 | 
						|
      // Because control flow can't get here, we don't care what we replace the
 | 
						|
      // value with.  Note that since this block is unreachable, and all values
 | 
						|
      // contained within it must dominate their uses, that all uses will
 | 
						|
      // eventually be removed (they are themselves dead).
 | 
						|
      if (!I.use_empty())
 | 
						|
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | 
						|
      BB->getInstList().pop_back();
 | 
						|
    }
 | 
						|
    new UnreachableInst(BB->getContext(), BB);
 | 
						|
    assert(BB->getInstList().size() == 1 &&
 | 
						|
           isa<UnreachableInst>(BB->getTerminator()) &&
 | 
						|
           "The successor list of BB isn't empty before "
 | 
						|
           "applying corresponding DTU updates.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
 | 
						|
                           bool KeepOneInputPHIs) {
 | 
						|
  DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
 | 
						|
                            bool KeepOneInputPHIs) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Make sure that all predecessors of each dead block is also dead.
 | 
						|
  SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
 | 
						|
  assert(Dead.size() == BBs.size() && "Duplicating blocks?");
 | 
						|
  for (auto *BB : Dead)
 | 
						|
    for (BasicBlock *Pred : predecessors(BB))
 | 
						|
      assert(Dead.count(Pred) && "All predecessors must be dead!");
 | 
						|
#endif
 | 
						|
 | 
						|
  SmallVector<DominatorTree::UpdateType, 4> Updates;
 | 
						|
  DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
 | 
						|
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
 | 
						|
  for (BasicBlock *BB : BBs)
 | 
						|
    if (DTU)
 | 
						|
      DTU->deleteBB(BB);
 | 
						|
    else
 | 
						|
      BB->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
 | 
						|
                                      bool KeepOneInputPHIs) {
 | 
						|
  df_iterator_default_set<BasicBlock*> Reachable;
 | 
						|
 | 
						|
  // Mark all reachable blocks.
 | 
						|
  for (BasicBlock *BB : depth_first_ext(&F, Reachable))
 | 
						|
    (void)BB/* Mark all reachable blocks */;
 | 
						|
 | 
						|
  // Collect all dead blocks.
 | 
						|
  std::vector<BasicBlock*> DeadBlocks;
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    if (!Reachable.count(&BB))
 | 
						|
      DeadBlocks.push_back(&BB);
 | 
						|
 | 
						|
  // Delete the dead blocks.
 | 
						|
  DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
 | 
						|
 | 
						|
  return !DeadBlocks.empty();
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
 | 
						|
                                   MemoryDependenceResults *MemDep) {
 | 
						|
  if (!isa<PHINode>(BB->begin()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    if (PN->getIncomingValue(0) != PN)
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | 
						|
    else
 | 
						|
      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | 
						|
 | 
						|
    if (MemDep)
 | 
						|
      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
 | 
						|
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
 | 
						|
                          MemorySSAUpdater *MSSAU) {
 | 
						|
  // Recursively deleting a PHI may cause multiple PHIs to be deleted
 | 
						|
  // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
 | 
						|
  SmallVector<WeakTrackingVH, 8> PHIs;
 | 
						|
  for (PHINode &PN : BB->phis())
 | 
						|
    PHIs.push_back(&PN);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | 
						|
    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
 | 
						|
      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
 | 
						|
                                     LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | 
						|
                                     MemoryDependenceResults *MemDep,
 | 
						|
                                     bool PredecessorWithTwoSuccessors) {
 | 
						|
  if (BB->hasAddressTaken())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can't merge if there are multiple predecessors, or no predecessors.
 | 
						|
  BasicBlock *PredBB = BB->getUniquePredecessor();
 | 
						|
  if (!PredBB) return false;
 | 
						|
 | 
						|
  // Don't break self-loops.
 | 
						|
  if (PredBB == BB) return false;
 | 
						|
  // Don't break unwinding instructions.
 | 
						|
  if (PredBB->getTerminator()->isExceptionalTerminator())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can't merge if there are multiple distinct successors.
 | 
						|
  if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Currently only allow PredBB to have two predecessors, one being BB.
 | 
						|
  // Update BI to branch to BB's only successor instead of BB.
 | 
						|
  BranchInst *PredBB_BI;
 | 
						|
  BasicBlock *NewSucc = nullptr;
 | 
						|
  unsigned FallThruPath;
 | 
						|
  if (PredecessorWithTwoSuccessors) {
 | 
						|
    if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
 | 
						|
      return false;
 | 
						|
    BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (!BB_JmpI || !BB_JmpI->isUnconditional())
 | 
						|
      return false;
 | 
						|
    NewSucc = BB_JmpI->getSuccessor(0);
 | 
						|
    FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Can't merge if there is PHI loop.
 | 
						|
  for (PHINode &PN : BB->phis())
 | 
						|
    if (llvm::is_contained(PN.incoming_values(), &PN))
 | 
						|
      return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
 | 
						|
                    << PredBB->getName() << "\n");
 | 
						|
 | 
						|
  // Begin by getting rid of unneeded PHIs.
 | 
						|
  SmallVector<AssertingVH<Value>, 4> IncomingValues;
 | 
						|
  if (isa<PHINode>(BB->front())) {
 | 
						|
    for (PHINode &PN : BB->phis())
 | 
						|
      if (!isa<PHINode>(PN.getIncomingValue(0)) ||
 | 
						|
          cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
 | 
						|
        IncomingValues.push_back(PN.getIncomingValue(0));
 | 
						|
    FoldSingleEntryPHINodes(BB, MemDep);
 | 
						|
  }
 | 
						|
 | 
						|
  // DTU update: Collect all the edges that exit BB.
 | 
						|
  // These dominator edges will be redirected from Pred.
 | 
						|
  std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
  if (DTU) {
 | 
						|
    SmallPtrSet<BasicBlock *, 2> SuccsOfBB(succ_begin(BB), succ_end(BB));
 | 
						|
    SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
 | 
						|
                                               succ_begin(PredBB));
 | 
						|
    Updates.reserve(Updates.size() + 2 * SuccsOfBB.size() + 1);
 | 
						|
    // Add insert edges first. Experimentally, for the particular case of two
 | 
						|
    // blocks that can be merged, with a single successor and single predecessor
 | 
						|
    // respectively, it is beneficial to have all insert updates first. Deleting
 | 
						|
    // edges first may lead to unreachable blocks, followed by inserting edges
 | 
						|
    // making the blocks reachable again. Such DT updates lead to high compile
 | 
						|
    // times. We add inserts before deletes here to reduce compile time.
 | 
						|
    for (BasicBlock *SuccOfBB : SuccsOfBB)
 | 
						|
      // This successor of BB may already be a PredBB's successor.
 | 
						|
      if (!SuccsOfPredBB.contains(SuccOfBB))
 | 
						|
        Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
 | 
						|
    for (BasicBlock *SuccOfBB : SuccsOfBB)
 | 
						|
      Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
 | 
						|
    Updates.push_back({DominatorTree::Delete, PredBB, BB});
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *PTI = PredBB->getTerminator();
 | 
						|
  Instruction *STI = BB->getTerminator();
 | 
						|
  Instruction *Start = &*BB->begin();
 | 
						|
  // If there's nothing to move, mark the starting instruction as the last
 | 
						|
  // instruction in the block. Terminator instruction is handled separately.
 | 
						|
  if (Start == STI)
 | 
						|
    Start = PTI;
 | 
						|
 | 
						|
  // Move all definitions in the successor to the predecessor...
 | 
						|
  PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
 | 
						|
                               BB->begin(), STI->getIterator());
 | 
						|
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
 | 
						|
 | 
						|
  // Make all PHI nodes that referred to BB now refer to Pred as their
 | 
						|
  // source...
 | 
						|
  BB->replaceAllUsesWith(PredBB);
 | 
						|
 | 
						|
  if (PredecessorWithTwoSuccessors) {
 | 
						|
    // Delete the unconditional branch from BB.
 | 
						|
    BB->getInstList().pop_back();
 | 
						|
 | 
						|
    // Update branch in the predecessor.
 | 
						|
    PredBB_BI->setSuccessor(FallThruPath, NewSucc);
 | 
						|
  } else {
 | 
						|
    // Delete the unconditional branch from the predecessor.
 | 
						|
    PredBB->getInstList().pop_back();
 | 
						|
 | 
						|
    // Move terminator instruction.
 | 
						|
    PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
 | 
						|
 | 
						|
    // Terminator may be a memory accessing instruction too.
 | 
						|
    if (MSSAU)
 | 
						|
      if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
 | 
						|
              MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
 | 
						|
        MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
 | 
						|
  }
 | 
						|
  // Add unreachable to now empty BB.
 | 
						|
  new UnreachableInst(BB->getContext(), BB);
 | 
						|
 | 
						|
  // Inherit predecessors name if it exists.
 | 
						|
  if (!PredBB->hasName())
 | 
						|
    PredBB->takeName(BB);
 | 
						|
 | 
						|
  if (LI)
 | 
						|
    LI->removeBlock(BB);
 | 
						|
 | 
						|
  if (MemDep)
 | 
						|
    MemDep->invalidateCachedPredecessors();
 | 
						|
 | 
						|
  // Finally, erase the old block and update dominator info.
 | 
						|
  if (DTU) {
 | 
						|
    assert(BB->getInstList().size() == 1 &&
 | 
						|
           isa<UnreachableInst>(BB->getTerminator()) &&
 | 
						|
           "The successor list of BB isn't empty before "
 | 
						|
           "applying corresponding DTU updates.");
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
    DTU->deleteBB(BB);
 | 
						|
  } else {
 | 
						|
    BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
 | 
						|
    SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
 | 
						|
    LoopInfo *LI) {
 | 
						|
  assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
 | 
						|
 | 
						|
  bool BlocksHaveBeenMerged = false;
 | 
						|
  while (!MergeBlocks.empty()) {
 | 
						|
    BasicBlock *BB = *MergeBlocks.begin();
 | 
						|
    BasicBlock *Dest = BB->getSingleSuccessor();
 | 
						|
    if (Dest && (!L || L->contains(Dest))) {
 | 
						|
      BasicBlock *Fold = Dest->getUniquePredecessor();
 | 
						|
      (void)Fold;
 | 
						|
      if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
 | 
						|
        assert(Fold == BB &&
 | 
						|
               "Expecting BB to be unique predecessor of the Dest block");
 | 
						|
        MergeBlocks.erase(Dest);
 | 
						|
        BlocksHaveBeenMerged = true;
 | 
						|
      } else
 | 
						|
        MergeBlocks.erase(BB);
 | 
						|
    } else
 | 
						|
      MergeBlocks.erase(BB);
 | 
						|
  }
 | 
						|
  return BlocksHaveBeenMerged;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove redundant instructions within sequences of consecutive dbg.value
 | 
						|
/// instructions. This is done using a backward scan to keep the last dbg.value
 | 
						|
/// describing a specific variable/fragment.
 | 
						|
///
 | 
						|
/// BackwardScan strategy:
 | 
						|
/// ----------------------
 | 
						|
/// Given a sequence of consecutive DbgValueInst like this
 | 
						|
///
 | 
						|
///   dbg.value ..., "x", FragmentX1  (*)
 | 
						|
///   dbg.value ..., "y", FragmentY1
 | 
						|
///   dbg.value ..., "x", FragmentX2
 | 
						|
///   dbg.value ..., "x", FragmentX1  (**)
 | 
						|
///
 | 
						|
/// then the instruction marked with (*) can be removed (it is guaranteed to be
 | 
						|
/// obsoleted by the instruction marked with (**) as the latter instruction is
 | 
						|
/// describing the same variable using the same fragment info).
 | 
						|
///
 | 
						|
/// Possible improvements:
 | 
						|
/// - Check fully overlapping fragments and not only identical fragments.
 | 
						|
/// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
 | 
						|
///   instructions being part of the sequence of consecutive instructions.
 | 
						|
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
 | 
						|
  SmallVector<DbgValueInst *, 8> ToBeRemoved;
 | 
						|
  SmallDenseSet<DebugVariable> VariableSet;
 | 
						|
  for (auto &I : reverse(*BB)) {
 | 
						|
    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
 | 
						|
      DebugVariable Key(DVI->getVariable(),
 | 
						|
                        DVI->getExpression(),
 | 
						|
                        DVI->getDebugLoc()->getInlinedAt());
 | 
						|
      auto R = VariableSet.insert(Key);
 | 
						|
      // If the same variable fragment is described more than once it is enough
 | 
						|
      // to keep the last one (i.e. the first found since we for reverse
 | 
						|
      // iteration).
 | 
						|
      if (!R.second)
 | 
						|
        ToBeRemoved.push_back(DVI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Sequence with consecutive dbg.value instrs ended. Clear the map to
 | 
						|
    // restart identifying redundant instructions if case we find another
 | 
						|
    // dbg.value sequence.
 | 
						|
    VariableSet.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &Instr : ToBeRemoved)
 | 
						|
    Instr->eraseFromParent();
 | 
						|
 | 
						|
  return !ToBeRemoved.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// Remove redundant dbg.value instructions using a forward scan. This can
 | 
						|
/// remove a dbg.value instruction that is redundant due to indicating that a
 | 
						|
/// variable has the same value as already being indicated by an earlier
 | 
						|
/// dbg.value.
 | 
						|
///
 | 
						|
/// ForwardScan strategy:
 | 
						|
/// ---------------------
 | 
						|
/// Given two identical dbg.value instructions, separated by a block of
 | 
						|
/// instructions that isn't describing the same variable, like this
 | 
						|
///
 | 
						|
///   dbg.value X1, "x", FragmentX1  (**)
 | 
						|
///   <block of instructions, none being "dbg.value ..., "x", ...">
 | 
						|
///   dbg.value X1, "x", FragmentX1  (*)
 | 
						|
///
 | 
						|
/// then the instruction marked with (*) can be removed. Variable "x" is already
 | 
						|
/// described as being mapped to the SSA value X1.
 | 
						|
///
 | 
						|
/// Possible improvements:
 | 
						|
/// - Keep track of non-overlapping fragments.
 | 
						|
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
 | 
						|
  SmallVector<DbgValueInst *, 8> ToBeRemoved;
 | 
						|
  DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
 | 
						|
      VariableMap;
 | 
						|
  for (auto &I : *BB) {
 | 
						|
    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
 | 
						|
      DebugVariable Key(DVI->getVariable(),
 | 
						|
                        NoneType(),
 | 
						|
                        DVI->getDebugLoc()->getInlinedAt());
 | 
						|
      auto VMI = VariableMap.find(Key);
 | 
						|
      // Update the map if we found a new value/expression describing the
 | 
						|
      // variable, or if the variable wasn't mapped already.
 | 
						|
      SmallVector<Value *, 4> Values(DVI->getValues());
 | 
						|
      if (VMI == VariableMap.end() || VMI->second.first != Values ||
 | 
						|
          VMI->second.second != DVI->getExpression()) {
 | 
						|
        VariableMap[Key] = {Values, DVI->getExpression()};
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Found an identical mapping. Remember the instruction for later removal.
 | 
						|
      ToBeRemoved.push_back(DVI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &Instr : ToBeRemoved)
 | 
						|
    Instr->eraseFromParent();
 | 
						|
 | 
						|
  return !ToBeRemoved.empty();
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) {
 | 
						|
  bool MadeChanges = false;
 | 
						|
  // By using the "backward scan" strategy before the "forward scan" strategy we
 | 
						|
  // can remove both dbg.value (2) and (3) in a situation like this:
 | 
						|
  //
 | 
						|
  //   (1) dbg.value V1, "x", DIExpression()
 | 
						|
  //       ...
 | 
						|
  //   (2) dbg.value V2, "x", DIExpression()
 | 
						|
  //   (3) dbg.value V1, "x", DIExpression()
 | 
						|
  //
 | 
						|
  // The backward scan will remove (2), it is made obsolete by (3). After
 | 
						|
  // getting (2) out of the way, the foward scan will remove (3) since "x"
 | 
						|
  // already is described as having the value V1 at (1).
 | 
						|
  MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
 | 
						|
  MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
 | 
						|
  if (RemovePseudoOp)
 | 
						|
    MadeChanges |= removeRedundantPseudoProbes(BB);
 | 
						|
 | 
						|
  if (MadeChanges)
 | 
						|
    LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
 | 
						|
                      << BB->getName() << "\n");
 | 
						|
  return MadeChanges;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
 | 
						|
                                BasicBlock::iterator &BI, Value *V) {
 | 
						|
  Instruction &I = *BI;
 | 
						|
  // Replaces all of the uses of the instruction with uses of the value
 | 
						|
  I.replaceAllUsesWith(V);
 | 
						|
 | 
						|
  // Make sure to propagate a name if there is one already.
 | 
						|
  if (I.hasName() && !V->hasName())
 | 
						|
    V->takeName(&I);
 | 
						|
 | 
						|
  // Delete the unnecessary instruction now...
 | 
						|
  BI = BIL.erase(BI);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
 | 
						|
                               BasicBlock::iterator &BI, Instruction *I) {
 | 
						|
  assert(I->getParent() == nullptr &&
 | 
						|
         "ReplaceInstWithInst: Instruction already inserted into basic block!");
 | 
						|
 | 
						|
  // Copy debug location to newly added instruction, if it wasn't already set
 | 
						|
  // by the caller.
 | 
						|
  if (!I->getDebugLoc())
 | 
						|
    I->setDebugLoc(BI->getDebugLoc());
 | 
						|
 | 
						|
  // Insert the new instruction into the basic block...
 | 
						|
  BasicBlock::iterator New = BIL.insert(BI, I);
 | 
						|
 | 
						|
  // Replace all uses of the old instruction, and delete it.
 | 
						|
  ReplaceInstWithValue(BIL, BI, I);
 | 
						|
 | 
						|
  // Move BI back to point to the newly inserted instruction
 | 
						|
  BI = New;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
 | 
						|
  BasicBlock::iterator BI(From);
 | 
						|
  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
 | 
						|
                            LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | 
						|
                            const Twine &BBName) {
 | 
						|
  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
 | 
						|
 | 
						|
  Instruction *LatchTerm = BB->getTerminator();
 | 
						|
 | 
						|
  CriticalEdgeSplittingOptions Options =
 | 
						|
      CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
 | 
						|
 | 
						|
  if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
 | 
						|
    // If it is a critical edge, and the succesor is an exception block, handle
 | 
						|
    // the split edge logic in this specific function
 | 
						|
    if (Succ->isEHPad())
 | 
						|
      return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
 | 
						|
 | 
						|
    // If this is a critical edge, let SplitKnownCriticalEdge do it.
 | 
						|
    return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the edge isn't critical, then BB has a single successor or Succ has a
 | 
						|
  // single pred.  Split the block.
 | 
						|
  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | 
						|
    // If the successor only has a single pred, split the top of the successor
 | 
						|
    // block.
 | 
						|
    assert(SP == BB && "CFG broken");
 | 
						|
    SP = nullptr;
 | 
						|
    return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
 | 
						|
                      /*Before=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if BB has a single successor, split it at the bottom of the
 | 
						|
  // block.
 | 
						|
  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
         "Should have a single succ!");
 | 
						|
  return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
 | 
						|
  if (auto *II = dyn_cast<InvokeInst>(TI))
 | 
						|
    II->setUnwindDest(Succ);
 | 
						|
  else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
 | 
						|
    CS->setUnwindDest(Succ);
 | 
						|
  else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
 | 
						|
    CR->setUnwindDest(Succ);
 | 
						|
  else
 | 
						|
    llvm_unreachable("unexpected terminator instruction");
 | 
						|
}
 | 
						|
 | 
						|
void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
 | 
						|
                          BasicBlock *NewPred, PHINode *Until) {
 | 
						|
  int BBIdx = 0;
 | 
						|
  for (PHINode &PN : DestBB->phis()) {
 | 
						|
    // We manually update the LandingPadReplacement PHINode and it is the last
 | 
						|
    // PHI Node. So, if we find it, we are done.
 | 
						|
    if (Until == &PN)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Reuse the previous value of BBIdx if it lines up.  In cases where we
 | 
						|
    // have multiple phi nodes with *lots* of predecessors, this is a speed
 | 
						|
    // win because we don't have to scan the PHI looking for TIBB.  This
 | 
						|
    // happens because the BB list of PHI nodes are usually in the same
 | 
						|
    // order.
 | 
						|
    if (PN.getIncomingBlock(BBIdx) != OldPred)
 | 
						|
      BBIdx = PN.getBasicBlockIndex(OldPred);
 | 
						|
 | 
						|
    assert(BBIdx != -1 && "Invalid PHI Index!");
 | 
						|
    PN.setIncomingBlock(BBIdx, NewPred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
 | 
						|
                                   LandingPadInst *OriginalPad,
 | 
						|
                                   PHINode *LandingPadReplacement,
 | 
						|
                                   const CriticalEdgeSplittingOptions &Options,
 | 
						|
                                   const Twine &BBName) {
 | 
						|
 | 
						|
  auto *PadInst = Succ->getFirstNonPHI();
 | 
						|
  if (!LandingPadReplacement && !PadInst->isEHPad())
 | 
						|
    return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
 | 
						|
 | 
						|
  auto *LI = Options.LI;
 | 
						|
  SmallVector<BasicBlock *, 4> LoopPreds;
 | 
						|
  // Check if extra modifications will be required to preserve loop-simplify
 | 
						|
  // form after splitting. If it would require splitting blocks with IndirectBr
 | 
						|
  // terminators, bail out if preserving loop-simplify form is requested.
 | 
						|
  if (Options.PreserveLoopSimplify && LI) {
 | 
						|
    if (Loop *BBLoop = LI->getLoopFor(BB)) {
 | 
						|
 | 
						|
      // The only way that we can break LoopSimplify form by splitting a
 | 
						|
      // critical edge is when there exists some edge from BBLoop to Succ *and*
 | 
						|
      // the only edge into Succ from outside of BBLoop is that of NewBB after
 | 
						|
      // the split. If the first isn't true, then LoopSimplify still holds,
 | 
						|
      // NewBB is the new exit block and it has no non-loop predecessors. If the
 | 
						|
      // second isn't true, then Succ was not in LoopSimplify form prior to
 | 
						|
      // the split as it had a non-loop predecessor. In both of these cases,
 | 
						|
      // the predecessor must be directly in BBLoop, not in a subloop, or again
 | 
						|
      // LoopSimplify doesn't hold.
 | 
						|
      for (BasicBlock *P : predecessors(Succ)) {
 | 
						|
        if (P == BB)
 | 
						|
          continue; // The new block is known.
 | 
						|
        if (LI->getLoopFor(P) != BBLoop) {
 | 
						|
          // Loop is not in LoopSimplify form, no need to re simplify after
 | 
						|
          // splitting edge.
 | 
						|
          LoopPreds.clear();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        LoopPreds.push_back(P);
 | 
						|
      }
 | 
						|
      // Loop-simplify form can be preserved, if we can split all in-loop
 | 
						|
      // predecessors.
 | 
						|
      if (any_of(LoopPreds, [](BasicBlock *Pred) {
 | 
						|
            return isa<IndirectBrInst>(Pred->getTerminator());
 | 
						|
          })) {
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto *NewBB =
 | 
						|
      BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
 | 
						|
  setUnwindEdgeTo(BB->getTerminator(), NewBB);
 | 
						|
  updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
 | 
						|
 | 
						|
  if (LandingPadReplacement) {
 | 
						|
    auto *NewLP = OriginalPad->clone();
 | 
						|
    auto *Terminator = BranchInst::Create(Succ, NewBB);
 | 
						|
    NewLP->insertBefore(Terminator);
 | 
						|
    LandingPadReplacement->addIncoming(NewLP, NewBB);
 | 
						|
  } else {
 | 
						|
    Value *ParentPad = nullptr;
 | 
						|
    if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
 | 
						|
      ParentPad = FuncletPad->getParentPad();
 | 
						|
    else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
 | 
						|
      ParentPad = CatchSwitch->getParentPad();
 | 
						|
    else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
 | 
						|
      ParentPad = CleanupPad->getParentPad();
 | 
						|
    else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
 | 
						|
      ParentPad = LandingPad->getParent();
 | 
						|
    else
 | 
						|
      llvm_unreachable("handling for other EHPads not implemented yet");
 | 
						|
 | 
						|
    auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
 | 
						|
    CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  auto *DT = Options.DT;
 | 
						|
  auto *MSSAU = Options.MSSAU;
 | 
						|
  if (!DT && !LI)
 | 
						|
    return NewBB;
 | 
						|
 | 
						|
  if (DT) {
 | 
						|
    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
    SmallVector<DominatorTree::UpdateType, 3> Updates;
 | 
						|
 | 
						|
    Updates.push_back({DominatorTree::Insert, BB, NewBB});
 | 
						|
    Updates.push_back({DominatorTree::Insert, NewBB, Succ});
 | 
						|
    Updates.push_back({DominatorTree::Delete, BB, Succ});
 | 
						|
 | 
						|
    DTU.applyUpdates(Updates);
 | 
						|
    DTU.flush();
 | 
						|
 | 
						|
    if (MSSAU) {
 | 
						|
      MSSAU->applyUpdates(Updates, *DT);
 | 
						|
      if (VerifyMemorySSA)
 | 
						|
        MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LI) {
 | 
						|
    if (Loop *BBLoop = LI->getLoopFor(BB)) {
 | 
						|
      // If one or the other blocks were not in a loop, the new block is not
 | 
						|
      // either, and thus LI doesn't need to be updated.
 | 
						|
      if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
 | 
						|
        if (BBLoop == SuccLoop) {
 | 
						|
          // Both in the same loop, the NewBB joins loop.
 | 
						|
          SuccLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        } else if (BBLoop->contains(SuccLoop)) {
 | 
						|
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | 
						|
          BBLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        } else if (SuccLoop->contains(BBLoop)) {
 | 
						|
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | 
						|
          SuccLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        } else {
 | 
						|
          // Edge from two loops with no containment relation.  Because these
 | 
						|
          // are natural loops, we know that the destination block must be the
 | 
						|
          // header of its loop (adding a branch into a loop elsewhere would
 | 
						|
          // create an irreducible loop).
 | 
						|
          assert(SuccLoop->getHeader() == Succ &&
 | 
						|
                 "Should not create irreducible loops!");
 | 
						|
          if (Loop *P = SuccLoop->getParentLoop())
 | 
						|
            P->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If BB is in a loop and Succ is outside of that loop, we may need to
 | 
						|
      // update LoopSimplify form and LCSSA form.
 | 
						|
      if (!BBLoop->contains(Succ)) {
 | 
						|
        assert(!BBLoop->contains(NewBB) &&
 | 
						|
               "Split point for loop exit is contained in loop!");
 | 
						|
 | 
						|
        // Update LCSSA form in the newly created exit block.
 | 
						|
        if (Options.PreserveLCSSA) {
 | 
						|
          createPHIsForSplitLoopExit(BB, NewBB, Succ);
 | 
						|
        }
 | 
						|
 | 
						|
        if (!LoopPreds.empty()) {
 | 
						|
          BasicBlock *NewExitBB = SplitBlockPredecessors(
 | 
						|
              Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
 | 
						|
          if (Options.PreserveLCSSA)
 | 
						|
            createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
 | 
						|
                                      BasicBlock *SplitBB, BasicBlock *DestBB) {
 | 
						|
  // SplitBB shouldn't have anything non-trivial in it yet.
 | 
						|
  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
 | 
						|
          SplitBB->isLandingPad()) &&
 | 
						|
         "SplitBB has non-PHI nodes!");
 | 
						|
 | 
						|
  // For each PHI in the destination block.
 | 
						|
  for (PHINode &PN : DestBB->phis()) {
 | 
						|
    int Idx = PN.getBasicBlockIndex(SplitBB);
 | 
						|
    assert(Idx >= 0 && "Invalid Block Index");
 | 
						|
    Value *V = PN.getIncomingValue(Idx);
 | 
						|
 | 
						|
    // If the input is a PHI which already satisfies LCSSA, don't create
 | 
						|
    // a new one.
 | 
						|
    if (const PHINode *VP = dyn_cast<PHINode>(V))
 | 
						|
      if (VP->getParent() == SplitBB)
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Otherwise a new PHI is needed. Create one and populate it.
 | 
						|
    PHINode *NewPN = PHINode::Create(
 | 
						|
        PN.getType(), Preds.size(), "split",
 | 
						|
        SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
 | 
						|
    for (BasicBlock *BB : Preds)
 | 
						|
      NewPN->addIncoming(V, BB);
 | 
						|
 | 
						|
    // Update the original PHI.
 | 
						|
    PN.setIncomingValue(Idx, NewPN);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
llvm::SplitAllCriticalEdges(Function &F,
 | 
						|
                            const CriticalEdgeSplittingOptions &Options) {
 | 
						|
  unsigned NumBroken = 0;
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    Instruction *TI = BB.getTerminator();
 | 
						|
    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
 | 
						|
        !isa<CallBrInst>(TI))
 | 
						|
      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (SplitCriticalEdge(TI, i, Options))
 | 
						|
          ++NumBroken;
 | 
						|
  }
 | 
						|
  return NumBroken;
 | 
						|
}
 | 
						|
 | 
						|
static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
 | 
						|
                                  DomTreeUpdater *DTU, DominatorTree *DT,
 | 
						|
                                  LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | 
						|
                                  const Twine &BBName, bool Before) {
 | 
						|
  if (Before) {
 | 
						|
    DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
    return splitBlockBefore(Old, SplitPt,
 | 
						|
                            DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
 | 
						|
                            BBName);
 | 
						|
  }
 | 
						|
  BasicBlock::iterator SplitIt = SplitPt->getIterator();
 | 
						|
  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
 | 
						|
    ++SplitIt;
 | 
						|
  std::string Name = BBName.str();
 | 
						|
  BasicBlock *New = Old->splitBasicBlock(
 | 
						|
      SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
 | 
						|
 | 
						|
  // The new block lives in whichever loop the old one did. This preserves
 | 
						|
  // LCSSA as well, because we force the split point to be after any PHI nodes.
 | 
						|
  if (LI)
 | 
						|
    if (Loop *L = LI->getLoopFor(Old))
 | 
						|
      L->addBasicBlockToLoop(New, *LI);
 | 
						|
 | 
						|
  if (DTU) {
 | 
						|
    SmallVector<DominatorTree::UpdateType, 8> Updates;
 | 
						|
    // Old dominates New. New node dominates all other nodes dominated by Old.
 | 
						|
    SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
 | 
						|
                                                       succ_end(New));
 | 
						|
    Updates.push_back({DominatorTree::Insert, Old, New});
 | 
						|
    Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
 | 
						|
    for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
 | 
						|
      Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
 | 
						|
      Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
 | 
						|
    }
 | 
						|
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
  } else if (DT)
 | 
						|
    // Old dominates New. New node dominates all other nodes dominated by Old.
 | 
						|
    if (DomTreeNode *OldNode = DT->getNode(Old)) {
 | 
						|
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
 | 
						|
 | 
						|
      DomTreeNode *NewNode = DT->addNewBlock(New, Old);
 | 
						|
      for (DomTreeNode *I : Children)
 | 
						|
        DT->changeImmediateDominator(I, NewNode);
 | 
						|
    }
 | 
						|
 | 
						|
  // Move MemoryAccesses still tracked in Old, but part of New now.
 | 
						|
  // Update accesses in successor blocks accordingly.
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
 | 
						|
                             DominatorTree *DT, LoopInfo *LI,
 | 
						|
                             MemorySSAUpdater *MSSAU, const Twine &BBName,
 | 
						|
                             bool Before) {
 | 
						|
  return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
 | 
						|
                        Before);
 | 
						|
}
 | 
						|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
 | 
						|
                             DomTreeUpdater *DTU, LoopInfo *LI,
 | 
						|
                             MemorySSAUpdater *MSSAU, const Twine &BBName,
 | 
						|
                             bool Before) {
 | 
						|
  return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
 | 
						|
                        Before);
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
 | 
						|
                                   DomTreeUpdater *DTU, LoopInfo *LI,
 | 
						|
                                   MemorySSAUpdater *MSSAU,
 | 
						|
                                   const Twine &BBName) {
 | 
						|
 | 
						|
  BasicBlock::iterator SplitIt = SplitPt->getIterator();
 | 
						|
  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
 | 
						|
    ++SplitIt;
 | 
						|
  std::string Name = BBName.str();
 | 
						|
  BasicBlock *New = Old->splitBasicBlock(
 | 
						|
      SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
 | 
						|
      /* Before=*/true);
 | 
						|
 | 
						|
  // The new block lives in whichever loop the old one did. This preserves
 | 
						|
  // LCSSA as well, because we force the split point to be after any PHI nodes.
 | 
						|
  if (LI)
 | 
						|
    if (Loop *L = LI->getLoopFor(Old))
 | 
						|
      L->addBasicBlockToLoop(New, *LI);
 | 
						|
 | 
						|
  if (DTU) {
 | 
						|
    SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
 | 
						|
    // New dominates Old. The predecessor nodes of the Old node dominate
 | 
						|
    // New node.
 | 
						|
    SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
 | 
						|
                                                         pred_end(New));
 | 
						|
    DTUpdates.push_back({DominatorTree::Insert, New, Old});
 | 
						|
    DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
 | 
						|
    for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
 | 
						|
      DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
 | 
						|
      DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
 | 
						|
    }
 | 
						|
 | 
						|
    DTU->applyUpdates(DTUpdates);
 | 
						|
 | 
						|
    // Move MemoryAccesses still tracked in Old, but part of New now.
 | 
						|
    // Update accesses in successor blocks accordingly.
 | 
						|
    if (MSSAU) {
 | 
						|
      MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
 | 
						|
      if (VerifyMemorySSA)
 | 
						|
        MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | 
						|
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
 | 
						|
                                      ArrayRef<BasicBlock *> Preds,
 | 
						|
                                      DomTreeUpdater *DTU, DominatorTree *DT,
 | 
						|
                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | 
						|
                                      bool PreserveLCSSA, bool &HasLoopExit) {
 | 
						|
  // Update dominator tree if available.
 | 
						|
  if (DTU) {
 | 
						|
    // Recalculation of DomTree is needed when updating a forward DomTree and
 | 
						|
    // the Entry BB is replaced.
 | 
						|
    if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
 | 
						|
      // The entry block was removed and there is no external interface for
 | 
						|
      // the dominator tree to be notified of this change. In this corner-case
 | 
						|
      // we recalculate the entire tree.
 | 
						|
      DTU->recalculate(*NewBB->getParent());
 | 
						|
    } else {
 | 
						|
      // Split block expects NewBB to have a non-empty set of predecessors.
 | 
						|
      SmallVector<DominatorTree::UpdateType, 8> Updates;
 | 
						|
      SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
 | 
						|
      Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
 | 
						|
      Updates.reserve(Updates.size() + 2 * UniquePreds.size());
 | 
						|
      for (auto *UniquePred : UniquePreds) {
 | 
						|
        Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
 | 
						|
        Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
 | 
						|
      }
 | 
						|
      DTU->applyUpdates(Updates);
 | 
						|
    }
 | 
						|
  } else if (DT) {
 | 
						|
    if (OldBB == DT->getRootNode()->getBlock()) {
 | 
						|
      assert(NewBB == &NewBB->getParent()->getEntryBlock());
 | 
						|
      DT->setNewRoot(NewBB);
 | 
						|
    } else {
 | 
						|
      // Split block expects NewBB to have a non-empty set of predecessors.
 | 
						|
      DT->splitBlock(NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update MemoryPhis after split if MemorySSA is available
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
 | 
						|
 | 
						|
  // The rest of the logic is only relevant for updating the loop structures.
 | 
						|
  if (!LI)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (DTU && DTU->hasDomTree())
 | 
						|
    DT = &DTU->getDomTree();
 | 
						|
  assert(DT && "DT should be available to update LoopInfo!");
 | 
						|
  Loop *L = LI->getLoopFor(OldBB);
 | 
						|
 | 
						|
  // If we need to preserve loop analyses, collect some information about how
 | 
						|
  // this split will affect loops.
 | 
						|
  bool IsLoopEntry = !!L;
 | 
						|
  bool SplitMakesNewLoopHeader = false;
 | 
						|
  for (BasicBlock *Pred : Preds) {
 | 
						|
    // Preds that are not reachable from entry should not be used to identify if
 | 
						|
    // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
 | 
						|
    // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
 | 
						|
    // as true and make the NewBB the header of some loop. This breaks LI.
 | 
						|
    if (!DT->isReachableFromEntry(Pred))
 | 
						|
      continue;
 | 
						|
    // If we need to preserve LCSSA, determine if any of the preds is a loop
 | 
						|
    // exit.
 | 
						|
    if (PreserveLCSSA)
 | 
						|
      if (Loop *PL = LI->getLoopFor(Pred))
 | 
						|
        if (!PL->contains(OldBB))
 | 
						|
          HasLoopExit = true;
 | 
						|
 | 
						|
    // If we need to preserve LoopInfo, note whether any of the preds crosses
 | 
						|
    // an interesting loop boundary.
 | 
						|
    if (!L)
 | 
						|
      continue;
 | 
						|
    if (L->contains(Pred))
 | 
						|
      IsLoopEntry = false;
 | 
						|
    else
 | 
						|
      SplitMakesNewLoopHeader = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unless we have a loop for OldBB, nothing else to do here.
 | 
						|
  if (!L)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (IsLoopEntry) {
 | 
						|
    // Add the new block to the nearest enclosing loop (and not an adjacent
 | 
						|
    // loop). To find this, examine each of the predecessors and determine which
 | 
						|
    // loops enclose them, and select the most-nested loop which contains the
 | 
						|
    // loop containing the block being split.
 | 
						|
    Loop *InnermostPredLoop = nullptr;
 | 
						|
    for (BasicBlock *Pred : Preds) {
 | 
						|
      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
 | 
						|
        // Seek a loop which actually contains the block being split (to avoid
 | 
						|
        // adjacent loops).
 | 
						|
        while (PredLoop && !PredLoop->contains(OldBB))
 | 
						|
          PredLoop = PredLoop->getParentLoop();
 | 
						|
 | 
						|
        // Select the most-nested of these loops which contains the block.
 | 
						|
        if (PredLoop && PredLoop->contains(OldBB) &&
 | 
						|
            (!InnermostPredLoop ||
 | 
						|
             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
 | 
						|
          InnermostPredLoop = PredLoop;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InnermostPredLoop)
 | 
						|
      InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
  } else {
 | 
						|
    L->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
    if (SplitMakesNewLoopHeader)
 | 
						|
      L->moveToHeader(NewBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
 | 
						|
/// This also updates AliasAnalysis, if available.
 | 
						|
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
 | 
						|
                           ArrayRef<BasicBlock *> Preds, BranchInst *BI,
 | 
						|
                           bool HasLoopExit) {
 | 
						|
  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
 | 
						|
  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
 | 
						|
    PHINode *PN = cast<PHINode>(I++);
 | 
						|
 | 
						|
    // Check to see if all of the values coming in are the same.  If so, we
 | 
						|
    // don't need to create a new PHI node, unless it's needed for LCSSA.
 | 
						|
    Value *InVal = nullptr;
 | 
						|
    if (!HasLoopExit) {
 | 
						|
      InVal = PN->getIncomingValueForBlock(Preds[0]);
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        if (!PredSet.count(PN->getIncomingBlock(i)))
 | 
						|
          continue;
 | 
						|
        if (!InVal)
 | 
						|
          InVal = PN->getIncomingValue(i);
 | 
						|
        else if (InVal != PN->getIncomingValue(i)) {
 | 
						|
          InVal = nullptr;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InVal) {
 | 
						|
      // If all incoming values for the new PHI would be the same, just don't
 | 
						|
      // make a new PHI.  Instead, just remove the incoming values from the old
 | 
						|
      // PHI.
 | 
						|
 | 
						|
      // NOTE! This loop walks backwards for a reason! First off, this minimizes
 | 
						|
      // the cost of removal if we end up removing a large number of values, and
 | 
						|
      // second off, this ensures that the indices for the incoming values
 | 
						|
      // aren't invalidated when we remove one.
 | 
						|
      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
 | 
						|
        if (PredSet.count(PN->getIncomingBlock(i)))
 | 
						|
          PN->removeIncomingValue(i, false);
 | 
						|
 | 
						|
      // Add an incoming value to the PHI node in the loop for the preheader
 | 
						|
      // edge.
 | 
						|
      PN->addIncoming(InVal, NewBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the values coming into the block are not the same, we need a new
 | 
						|
    // PHI.
 | 
						|
    // Create the new PHI node, insert it into NewBB at the end of the block
 | 
						|
    PHINode *NewPHI =
 | 
						|
        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
 | 
						|
 | 
						|
    // NOTE! This loop walks backwards for a reason! First off, this minimizes
 | 
						|
    // the cost of removal if we end up removing a large number of values, and
 | 
						|
    // second off, this ensures that the indices for the incoming values aren't
 | 
						|
    // invalidated when we remove one.
 | 
						|
    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
 | 
						|
      BasicBlock *IncomingBB = PN->getIncomingBlock(i);
 | 
						|
      if (PredSet.count(IncomingBB)) {
 | 
						|
        Value *V = PN->removeIncomingValue(i, false);
 | 
						|
        NewPHI->addIncoming(V, IncomingBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    PN->addIncoming(NewPHI, NewBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void SplitLandingPadPredecessorsImpl(
 | 
						|
    BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
 | 
						|
    const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
 | 
						|
    DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
 | 
						|
    MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
 | 
						|
 | 
						|
static BasicBlock *
 | 
						|
SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
 | 
						|
                           const char *Suffix, DomTreeUpdater *DTU,
 | 
						|
                           DominatorTree *DT, LoopInfo *LI,
 | 
						|
                           MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
 | 
						|
  // Do not attempt to split that which cannot be split.
 | 
						|
  if (!BB->canSplitPredecessors())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // For the landingpads we need to act a bit differently.
 | 
						|
  // Delegate this work to the SplitLandingPadPredecessors.
 | 
						|
  if (BB->isLandingPad()) {
 | 
						|
    SmallVector<BasicBlock*, 2> NewBBs;
 | 
						|
    std::string NewName = std::string(Suffix) + ".split-lp";
 | 
						|
 | 
						|
    SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
 | 
						|
                                    DTU, DT, LI, MSSAU, PreserveLCSSA);
 | 
						|
    return NewBBs[0];
 | 
						|
  }
 | 
						|
 | 
						|
  // Create new basic block, insert right before the original block.
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(
 | 
						|
      BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
 | 
						|
 | 
						|
  // The new block unconditionally branches to the old block.
 | 
						|
  BranchInst *BI = BranchInst::Create(BB, NewBB);
 | 
						|
 | 
						|
  Loop *L = nullptr;
 | 
						|
  BasicBlock *OldLatch = nullptr;
 | 
						|
  // Splitting the predecessors of a loop header creates a preheader block.
 | 
						|
  if (LI && LI->isLoopHeader(BB)) {
 | 
						|
    L = LI->getLoopFor(BB);
 | 
						|
    // Using the loop start line number prevents debuggers stepping into the
 | 
						|
    // loop body for this instruction.
 | 
						|
    BI->setDebugLoc(L->getStartLoc());
 | 
						|
 | 
						|
    // If BB is the header of the Loop, it is possible that the loop is
 | 
						|
    // modified, such that the current latch does not remain the latch of the
 | 
						|
    // loop. If that is the case, the loop metadata from the current latch needs
 | 
						|
    // to be applied to the new latch.
 | 
						|
    OldLatch = L->getLoopLatch();
 | 
						|
  } else
 | 
						|
    BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
 | 
						|
 | 
						|
  // Move the edges from Preds to point to NewBB instead of BB.
 | 
						|
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
    // This is slightly more strict than necessary; the minimum requirement
 | 
						|
    // is that there be no more than one indirectbr branching to BB. And
 | 
						|
    // all BlockAddress uses would need to be updated.
 | 
						|
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | 
						|
           "Cannot split an edge from an IndirectBrInst");
 | 
						|
    assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
 | 
						|
           "Cannot split an edge from a CallBrInst");
 | 
						|
    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
 | 
						|
  // node becomes an incoming value for BB's phi node.  However, if the Preds
 | 
						|
  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
 | 
						|
  // account for the newly created predecessor.
 | 
						|
  if (Preds.empty()) {
 | 
						|
    // Insert dummy values as the incoming value.
 | 
						|
    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
 | 
						|
      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | 
						|
  bool HasLoopExit = false;
 | 
						|
  UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
 | 
						|
                            HasLoopExit);
 | 
						|
 | 
						|
  if (!Preds.empty()) {
 | 
						|
    // Update the PHI nodes in BB with the values coming from NewBB.
 | 
						|
    UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldLatch) {
 | 
						|
    BasicBlock *NewLatch = L->getLoopLatch();
 | 
						|
    if (NewLatch != OldLatch) {
 | 
						|
      MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
 | 
						|
      NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
 | 
						|
      OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
 | 
						|
                                         ArrayRef<BasicBlock *> Preds,
 | 
						|
                                         const char *Suffix, DominatorTree *DT,
 | 
						|
                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
 | 
						|
                                         bool PreserveLCSSA) {
 | 
						|
  return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
 | 
						|
                                    MSSAU, PreserveLCSSA);
 | 
						|
}
 | 
						|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
 | 
						|
                                         ArrayRef<BasicBlock *> Preds,
 | 
						|
                                         const char *Suffix,
 | 
						|
                                         DomTreeUpdater *DTU, LoopInfo *LI,
 | 
						|
                                         MemorySSAUpdater *MSSAU,
 | 
						|
                                         bool PreserveLCSSA) {
 | 
						|
  return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
 | 
						|
                                    /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
 | 
						|
}
 | 
						|
 | 
						|
static void SplitLandingPadPredecessorsImpl(
 | 
						|
    BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
 | 
						|
    const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
 | 
						|
    DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
 | 
						|
    MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
 | 
						|
  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
 | 
						|
 | 
						|
  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
 | 
						|
  // it right before the original block.
 | 
						|
  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
 | 
						|
                                          OrigBB->getName() + Suffix1,
 | 
						|
                                          OrigBB->getParent(), OrigBB);
 | 
						|
  NewBBs.push_back(NewBB1);
 | 
						|
 | 
						|
  // The new block unconditionally branches to the old block.
 | 
						|
  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
 | 
						|
  BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
 | 
						|
 | 
						|
  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
 | 
						|
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
    // This is slightly more strict than necessary; the minimum requirement
 | 
						|
    // is that there be no more than one indirectbr branching to BB. And
 | 
						|
    // all BlockAddress uses would need to be updated.
 | 
						|
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | 
						|
           "Cannot split an edge from an IndirectBrInst");
 | 
						|
    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasLoopExit = false;
 | 
						|
  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
 | 
						|
                            PreserveLCSSA, HasLoopExit);
 | 
						|
 | 
						|
  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
 | 
						|
  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
 | 
						|
 | 
						|
  // Move the remaining edges from OrigBB to point to NewBB2.
 | 
						|
  SmallVector<BasicBlock*, 8> NewBB2Preds;
 | 
						|
  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
 | 
						|
       i != e; ) {
 | 
						|
    BasicBlock *Pred = *i++;
 | 
						|
    if (Pred == NewBB1) continue;
 | 
						|
    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
 | 
						|
           "Cannot split an edge from an IndirectBrInst");
 | 
						|
    NewBB2Preds.push_back(Pred);
 | 
						|
    e = pred_end(OrigBB);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *NewBB2 = nullptr;
 | 
						|
  if (!NewBB2Preds.empty()) {
 | 
						|
    // Create another basic block for the rest of OrigBB's predecessors.
 | 
						|
    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
 | 
						|
                                OrigBB->getName() + Suffix2,
 | 
						|
                                OrigBB->getParent(), OrigBB);
 | 
						|
    NewBBs.push_back(NewBB2);
 | 
						|
 | 
						|
    // The new block unconditionally branches to the old block.
 | 
						|
    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
 | 
						|
    BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
 | 
						|
 | 
						|
    // Move the remaining edges from OrigBB to point to NewBB2.
 | 
						|
    for (BasicBlock *NewBB2Pred : NewBB2Preds)
 | 
						|
      NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
 | 
						|
 | 
						|
    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | 
						|
    HasLoopExit = false;
 | 
						|
    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
 | 
						|
                              PreserveLCSSA, HasLoopExit);
 | 
						|
 | 
						|
    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
 | 
						|
    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
 | 
						|
  }
 | 
						|
 | 
						|
  LandingPadInst *LPad = OrigBB->getLandingPadInst();
 | 
						|
  Instruction *Clone1 = LPad->clone();
 | 
						|
  Clone1->setName(Twine("lpad") + Suffix1);
 | 
						|
  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
 | 
						|
 | 
						|
  if (NewBB2) {
 | 
						|
    Instruction *Clone2 = LPad->clone();
 | 
						|
    Clone2->setName(Twine("lpad") + Suffix2);
 | 
						|
    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
 | 
						|
 | 
						|
    // Create a PHI node for the two cloned landingpad instructions only
 | 
						|
    // if the original landingpad instruction has some uses.
 | 
						|
    if (!LPad->use_empty()) {
 | 
						|
      assert(!LPad->getType()->isTokenTy() &&
 | 
						|
             "Split cannot be applied if LPad is token type. Otherwise an "
 | 
						|
             "invalid PHINode of token type would be created.");
 | 
						|
      PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
 | 
						|
      PN->addIncoming(Clone1, NewBB1);
 | 
						|
      PN->addIncoming(Clone2, NewBB2);
 | 
						|
      LPad->replaceAllUsesWith(PN);
 | 
						|
    }
 | 
						|
    LPad->eraseFromParent();
 | 
						|
  } else {
 | 
						|
    // There is no second clone. Just replace the landing pad with the first
 | 
						|
    // clone.
 | 
						|
    LPad->replaceAllUsesWith(Clone1);
 | 
						|
    LPad->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
 | 
						|
                                       ArrayRef<BasicBlock *> Preds,
 | 
						|
                                       const char *Suffix1, const char *Suffix2,
 | 
						|
                                       SmallVectorImpl<BasicBlock *> &NewBBs,
 | 
						|
                                       DominatorTree *DT, LoopInfo *LI,
 | 
						|
                                       MemorySSAUpdater *MSSAU,
 | 
						|
                                       bool PreserveLCSSA) {
 | 
						|
  return SplitLandingPadPredecessorsImpl(
 | 
						|
      OrigBB, Preds, Suffix1, Suffix2, NewBBs,
 | 
						|
      /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
 | 
						|
}
 | 
						|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
 | 
						|
                                       ArrayRef<BasicBlock *> Preds,
 | 
						|
                                       const char *Suffix1, const char *Suffix2,
 | 
						|
                                       SmallVectorImpl<BasicBlock *> &NewBBs,
 | 
						|
                                       DomTreeUpdater *DTU, LoopInfo *LI,
 | 
						|
                                       MemorySSAUpdater *MSSAU,
 | 
						|
                                       bool PreserveLCSSA) {
 | 
						|
  return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
 | 
						|
                                         NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
 | 
						|
                                         PreserveLCSSA);
 | 
						|
}
 | 
						|
 | 
						|
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
 | 
						|
                                             BasicBlock *Pred,
 | 
						|
                                             DomTreeUpdater *DTU) {
 | 
						|
  Instruction *UncondBranch = Pred->getTerminator();
 | 
						|
  // Clone the return and add it to the end of the predecessor.
 | 
						|
  Instruction *NewRet = RI->clone();
 | 
						|
  Pred->getInstList().push_back(NewRet);
 | 
						|
 | 
						|
  // If the return instruction returns a value, and if the value was a
 | 
						|
  // PHI node in "BB", propagate the right value into the return.
 | 
						|
  for (Use &Op : NewRet->operands()) {
 | 
						|
    Value *V = Op;
 | 
						|
    Instruction *NewBC = nullptr;
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
 | 
						|
      // Return value might be bitcasted. Clone and insert it before the
 | 
						|
      // return instruction.
 | 
						|
      V = BCI->getOperand(0);
 | 
						|
      NewBC = BCI->clone();
 | 
						|
      Pred->getInstList().insert(NewRet->getIterator(), NewBC);
 | 
						|
      Op = NewBC;
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *NewEV = nullptr;
 | 
						|
    if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
 | 
						|
      V = EVI->getOperand(0);
 | 
						|
      NewEV = EVI->clone();
 | 
						|
      if (NewBC) {
 | 
						|
        NewBC->setOperand(0, NewEV);
 | 
						|
        Pred->getInstList().insert(NewBC->getIterator(), NewEV);
 | 
						|
      } else {
 | 
						|
        Pred->getInstList().insert(NewRet->getIterator(), NewEV);
 | 
						|
        Op = NewEV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
      if (PN->getParent() == BB) {
 | 
						|
        if (NewEV) {
 | 
						|
          NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | 
						|
        } else if (NewBC)
 | 
						|
          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | 
						|
        else
 | 
						|
          Op = PN->getIncomingValueForBlock(Pred);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update any PHI nodes in the returning block to realize that we no
 | 
						|
  // longer branch to them.
 | 
						|
  BB->removePredecessor(Pred);
 | 
						|
  UncondBranch->eraseFromParent();
 | 
						|
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
 | 
						|
 | 
						|
  return cast<ReturnInst>(NewRet);
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *
 | 
						|
SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
 | 
						|
                              bool Unreachable, MDNode *BranchWeights,
 | 
						|
                              DomTreeUpdater *DTU, DominatorTree *DT,
 | 
						|
                              LoopInfo *LI, BasicBlock *ThenBlock) {
 | 
						|
  SmallVector<DominatorTree::UpdateType, 8> Updates;
 | 
						|
  BasicBlock *Head = SplitBefore->getParent();
 | 
						|
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
 | 
						|
  if (DTU) {
 | 
						|
    SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
 | 
						|
                                                        succ_end(Tail));
 | 
						|
    Updates.push_back({DominatorTree::Insert, Head, Tail});
 | 
						|
    Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
 | 
						|
    for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
 | 
						|
      Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
 | 
						|
      Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Instruction *HeadOldTerm = Head->getTerminator();
 | 
						|
  LLVMContext &C = Head->getContext();
 | 
						|
  Instruction *CheckTerm;
 | 
						|
  bool CreateThenBlock = (ThenBlock == nullptr);
 | 
						|
  if (CreateThenBlock) {
 | 
						|
    ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | 
						|
    if (Unreachable)
 | 
						|
      CheckTerm = new UnreachableInst(C, ThenBlock);
 | 
						|
    else {
 | 
						|
      CheckTerm = BranchInst::Create(Tail, ThenBlock);
 | 
						|
      if (DTU)
 | 
						|
        Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
 | 
						|
    }
 | 
						|
    CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  } else
 | 
						|
    CheckTerm = ThenBlock->getTerminator();
 | 
						|
  BranchInst *HeadNewTerm =
 | 
						|
      BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
 | 
						|
  if (DTU)
 | 
						|
    Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
 | 
						|
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | 
						|
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | 
						|
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
  else if (DT) {
 | 
						|
    if (DomTreeNode *OldNode = DT->getNode(Head)) {
 | 
						|
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
 | 
						|
 | 
						|
      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
 | 
						|
      for (DomTreeNode *Child : Children)
 | 
						|
        DT->changeImmediateDominator(Child, NewNode);
 | 
						|
 | 
						|
      // Head dominates ThenBlock.
 | 
						|
      if (CreateThenBlock)
 | 
						|
        DT->addNewBlock(ThenBlock, Head);
 | 
						|
      else
 | 
						|
        DT->changeImmediateDominator(ThenBlock, Head);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LI) {
 | 
						|
    if (Loop *L = LI->getLoopFor(Head)) {
 | 
						|
      L->addBasicBlockToLoop(ThenBlock, *LI);
 | 
						|
      L->addBasicBlockToLoop(Tail, *LI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return CheckTerm;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
 | 
						|
                                             Instruction *SplitBefore,
 | 
						|
                                             bool Unreachable,
 | 
						|
                                             MDNode *BranchWeights,
 | 
						|
                                             DominatorTree *DT, LoopInfo *LI,
 | 
						|
                                             BasicBlock *ThenBlock) {
 | 
						|
  return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
 | 
						|
                                       BranchWeights,
 | 
						|
                                       /*DTU=*/nullptr, DT, LI, ThenBlock);
 | 
						|
}
 | 
						|
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
 | 
						|
                                             Instruction *SplitBefore,
 | 
						|
                                             bool Unreachable,
 | 
						|
                                             MDNode *BranchWeights,
 | 
						|
                                             DomTreeUpdater *DTU, LoopInfo *LI,
 | 
						|
                                             BasicBlock *ThenBlock) {
 | 
						|
  return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
 | 
						|
                                       BranchWeights, DTU, /*DT=*/nullptr, LI,
 | 
						|
                                       ThenBlock);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
 | 
						|
                                         Instruction **ThenTerm,
 | 
						|
                                         Instruction **ElseTerm,
 | 
						|
                                         MDNode *BranchWeights) {
 | 
						|
  BasicBlock *Head = SplitBefore->getParent();
 | 
						|
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
 | 
						|
  Instruction *HeadOldTerm = Head->getTerminator();
 | 
						|
  LLVMContext &C = Head->getContext();
 | 
						|
  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | 
						|
  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | 
						|
  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
 | 
						|
  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
 | 
						|
  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  BranchInst *HeadNewTerm =
 | 
						|
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
 | 
						|
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | 
						|
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
 | 
						|
                             BasicBlock *&IfFalse) {
 | 
						|
  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
 | 
						|
  BasicBlock *Pred1 = nullptr;
 | 
						|
  BasicBlock *Pred2 = nullptr;
 | 
						|
 | 
						|
  if (SomePHI) {
 | 
						|
    if (SomePHI->getNumIncomingValues() != 2)
 | 
						|
      return nullptr;
 | 
						|
    Pred1 = SomePHI->getIncomingBlock(0);
 | 
						|
    Pred2 = SomePHI->getIncomingBlock(1);
 | 
						|
  } else {
 | 
						|
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
    if (PI == PE) // No predecessor
 | 
						|
      return nullptr;
 | 
						|
    Pred1 = *PI++;
 | 
						|
    if (PI == PE) // Only one predecessor
 | 
						|
      return nullptr;
 | 
						|
    Pred2 = *PI++;
 | 
						|
    if (PI != PE) // More than two predecessors
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can only handle branches.  Other control flow will be lowered to
 | 
						|
  // branches if possible anyway.
 | 
						|
  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
 | 
						|
  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
 | 
						|
  if (!Pred1Br || !Pred2Br)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | 
						|
  // either are.
 | 
						|
  if (Pred2Br->isConditional()) {
 | 
						|
    // If both branches are conditional, we don't have an "if statement".  In
 | 
						|
    // reality, we could transform this case, but since the condition will be
 | 
						|
    // required anyway, we stand no chance of eliminating it, so the xform is
 | 
						|
    // probably not profitable.
 | 
						|
    if (Pred1Br->isConditional())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    std::swap(Pred1, Pred2);
 | 
						|
    std::swap(Pred1Br, Pred2Br);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pred1Br->isConditional()) {
 | 
						|
    // The only thing we have to watch out for here is to make sure that Pred2
 | 
						|
    // doesn't have incoming edges from other blocks.  If it does, the condition
 | 
						|
    // doesn't dominate BB.
 | 
						|
    if (!Pred2->getSinglePredecessor())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If we found a conditional branch predecessor, make sure that it branches
 | 
						|
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | 
						|
    if (Pred1Br->getSuccessor(0) == BB &&
 | 
						|
        Pred1Br->getSuccessor(1) == Pred2) {
 | 
						|
      IfTrue = Pred1;
 | 
						|
      IfFalse = Pred2;
 | 
						|
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | 
						|
               Pred1Br->getSuccessor(1) == BB) {
 | 
						|
      IfTrue = Pred2;
 | 
						|
      IfFalse = Pred1;
 | 
						|
    } else {
 | 
						|
      // We know that one arm of the conditional goes to BB, so the other must
 | 
						|
      // go somewhere unrelated, and this must not be an "if statement".
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return Pred1Br->getCondition();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, if we got here, both predecessors end with an unconditional branch to
 | 
						|
  // BB.  Don't panic!  If both blocks only have a single (identical)
 | 
						|
  // predecessor, and THAT is a conditional branch, then we're all ok!
 | 
						|
  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
 | 
						|
  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Otherwise, if this is a conditional branch, then we can use it!
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
 | 
						|
  if (!BI) return nullptr;
 | 
						|
 | 
						|
  assert(BI->isConditional() && "Two successors but not conditional?");
 | 
						|
  if (BI->getSuccessor(0) == Pred1) {
 | 
						|
    IfTrue = Pred1;
 | 
						|
    IfFalse = Pred2;
 | 
						|
  } else {
 | 
						|
    IfTrue = Pred2;
 | 
						|
    IfFalse = Pred1;
 | 
						|
  }
 | 
						|
  return BI->getCondition();
 | 
						|
}
 | 
						|
 | 
						|
// After creating a control flow hub, the operands of PHINodes in an outgoing
 | 
						|
// block Out no longer match the predecessors of that block. Predecessors of Out
 | 
						|
// that are incoming blocks to the hub are now replaced by just one edge from
 | 
						|
// the hub. To match this new control flow, the corresponding values from each
 | 
						|
// PHINode must now be moved a new PHINode in the first guard block of the hub.
 | 
						|
//
 | 
						|
// This operation cannot be performed with SSAUpdater, because it involves one
 | 
						|
// new use: If the block Out is in the list of Incoming blocks, then the newly
 | 
						|
// created PHI in the Hub will use itself along that edge from Out to Hub.
 | 
						|
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
 | 
						|
                          const SetVector<BasicBlock *> &Incoming,
 | 
						|
                          BasicBlock *FirstGuardBlock) {
 | 
						|
  auto I = Out->begin();
 | 
						|
  while (I != Out->end() && isa<PHINode>(I)) {
 | 
						|
    auto Phi = cast<PHINode>(I);
 | 
						|
    auto NewPhi =
 | 
						|
        PHINode::Create(Phi->getType(), Incoming.size(),
 | 
						|
                        Phi->getName() + ".moved", &FirstGuardBlock->back());
 | 
						|
    for (auto In : Incoming) {
 | 
						|
      Value *V = UndefValue::get(Phi->getType());
 | 
						|
      if (In == Out) {
 | 
						|
        V = NewPhi;
 | 
						|
      } else if (Phi->getBasicBlockIndex(In) != -1) {
 | 
						|
        V = Phi->removeIncomingValue(In, false);
 | 
						|
      }
 | 
						|
      NewPhi->addIncoming(V, In);
 | 
						|
    }
 | 
						|
    assert(NewPhi->getNumIncomingValues() == Incoming.size());
 | 
						|
    if (Phi->getNumOperands() == 0) {
 | 
						|
      Phi->replaceAllUsesWith(NewPhi);
 | 
						|
      I = Phi->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    Phi->addIncoming(NewPhi, GuardBlock);
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
 | 
						|
using BBSetVector = SetVector<BasicBlock *>;
 | 
						|
 | 
						|
// Redirects the terminator of the incoming block to the first guard
 | 
						|
// block in the hub. The condition of the original terminator (if it
 | 
						|
// was conditional) and its original successors are returned as a
 | 
						|
// tuple <condition, succ0, succ1>. The function additionally filters
 | 
						|
// out successors that are not in the set of outgoing blocks.
 | 
						|
//
 | 
						|
// - condition is non-null iff the branch is conditional.
 | 
						|
// - Succ1 is non-null iff the sole/taken target is an outgoing block.
 | 
						|
// - Succ2 is non-null iff condition is non-null and the fallthrough
 | 
						|
//         target is an outgoing block.
 | 
						|
static std::tuple<Value *, BasicBlock *, BasicBlock *>
 | 
						|
redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
 | 
						|
              const BBSetVector &Outgoing) {
 | 
						|
  auto Branch = cast<BranchInst>(BB->getTerminator());
 | 
						|
  auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
 | 
						|
 | 
						|
  BasicBlock *Succ0 = Branch->getSuccessor(0);
 | 
						|
  BasicBlock *Succ1 = nullptr;
 | 
						|
  Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
 | 
						|
 | 
						|
  if (Branch->isUnconditional()) {
 | 
						|
    Branch->setSuccessor(0, FirstGuardBlock);
 | 
						|
    assert(Succ0);
 | 
						|
  } else {
 | 
						|
    Succ1 = Branch->getSuccessor(1);
 | 
						|
    Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
 | 
						|
    assert(Succ0 || Succ1);
 | 
						|
    if (Succ0 && !Succ1) {
 | 
						|
      Branch->setSuccessor(0, FirstGuardBlock);
 | 
						|
    } else if (Succ1 && !Succ0) {
 | 
						|
      Branch->setSuccessor(1, FirstGuardBlock);
 | 
						|
    } else {
 | 
						|
      Branch->eraseFromParent();
 | 
						|
      BranchInst::Create(FirstGuardBlock, BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Succ0 || Succ1);
 | 
						|
  return std::make_tuple(Condition, Succ0, Succ1);
 | 
						|
}
 | 
						|
 | 
						|
// Capture the existing control flow as guard predicates, and redirect
 | 
						|
// control flow from every incoming block to the first guard block in
 | 
						|
// the hub.
 | 
						|
//
 | 
						|
// There is one guard predicate for each outgoing block OutBB. The
 | 
						|
// predicate is a PHINode with one input for each InBB which
 | 
						|
// represents whether the hub should transfer control flow to OutBB if
 | 
						|
// it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
 | 
						|
// evaluates them in the same order as the Outgoing set-vector, and
 | 
						|
// control branches to the first outgoing block whose predicate
 | 
						|
// evaluates to true.
 | 
						|
static void convertToGuardPredicates(
 | 
						|
    BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
 | 
						|
    SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
 | 
						|
    const BBSetVector &Outgoing) {
 | 
						|
  auto &Context = Incoming.front()->getContext();
 | 
						|
  auto BoolTrue = ConstantInt::getTrue(Context);
 | 
						|
  auto BoolFalse = ConstantInt::getFalse(Context);
 | 
						|
 | 
						|
  // The predicate for the last outgoing is trivially true, and so we
 | 
						|
  // process only the first N-1 successors.
 | 
						|
  for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
 | 
						|
    auto Out = Outgoing[i];
 | 
						|
    LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
 | 
						|
    auto Phi =
 | 
						|
        PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
 | 
						|
                        StringRef("Guard.") + Out->getName(), FirstGuardBlock);
 | 
						|
    GuardPredicates[Out] = Phi;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto In : Incoming) {
 | 
						|
    Value *Condition;
 | 
						|
    BasicBlock *Succ0;
 | 
						|
    BasicBlock *Succ1;
 | 
						|
    std::tie(Condition, Succ0, Succ1) =
 | 
						|
        redirectToHub(In, FirstGuardBlock, Outgoing);
 | 
						|
 | 
						|
    // Optimization: Consider an incoming block A with both successors
 | 
						|
    // Succ0 and Succ1 in the set of outgoing blocks. The predicates
 | 
						|
    // for Succ0 and Succ1 complement each other. If Succ0 is visited
 | 
						|
    // first in the loop below, control will branch to Succ0 using the
 | 
						|
    // corresponding predicate. But if that branch is not taken, then
 | 
						|
    // control must reach Succ1, which means that the predicate for
 | 
						|
    // Succ1 is always true.
 | 
						|
    bool OneSuccessorDone = false;
 | 
						|
    for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
 | 
						|
      auto Out = Outgoing[i];
 | 
						|
      auto Phi = GuardPredicates[Out];
 | 
						|
      if (Out != Succ0 && Out != Succ1) {
 | 
						|
        Phi->addIncoming(BoolFalse, In);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Optimization: When only one successor is an outgoing block,
 | 
						|
      // the predicate is always true.
 | 
						|
      if (!Succ0 || !Succ1 || OneSuccessorDone) {
 | 
						|
        Phi->addIncoming(BoolTrue, In);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      assert(Succ0 && Succ1);
 | 
						|
      OneSuccessorDone = true;
 | 
						|
      if (Out == Succ0) {
 | 
						|
        Phi->addIncoming(Condition, In);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      auto Inverted = invertCondition(Condition);
 | 
						|
      DeletionCandidates.push_back(Condition);
 | 
						|
      Phi->addIncoming(Inverted, In);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For each outgoing block OutBB, create a guard block in the Hub. The
 | 
						|
// first guard block was already created outside, and available as the
 | 
						|
// first element in the vector of guard blocks.
 | 
						|
//
 | 
						|
// Each guard block terminates in a conditional branch that transfers
 | 
						|
// control to the corresponding outgoing block or the next guard
 | 
						|
// block. The last guard block has two outgoing blocks as successors
 | 
						|
// since the condition for the final outgoing block is trivially
 | 
						|
// true. So we create one less block (including the first guard block)
 | 
						|
// than the number of outgoing blocks.
 | 
						|
static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
 | 
						|
                              Function *F, const BBSetVector &Outgoing,
 | 
						|
                              BBPredicates &GuardPredicates, StringRef Prefix) {
 | 
						|
  for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
 | 
						|
    GuardBlocks.push_back(
 | 
						|
        BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
 | 
						|
  }
 | 
						|
  assert(GuardBlocks.size() == GuardPredicates.size());
 | 
						|
 | 
						|
  // To help keep the loop simple, temporarily append the last
 | 
						|
  // outgoing block to the list of guard blocks.
 | 
						|
  GuardBlocks.push_back(Outgoing.back());
 | 
						|
 | 
						|
  for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
 | 
						|
    auto Out = Outgoing[i];
 | 
						|
    assert(GuardPredicates.count(Out));
 | 
						|
    BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
 | 
						|
                       GuardBlocks[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the last block from the guard list.
 | 
						|
  GuardBlocks.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::CreateControlFlowHub(
 | 
						|
    DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
 | 
						|
    const BBSetVector &Incoming, const BBSetVector &Outgoing,
 | 
						|
    const StringRef Prefix) {
 | 
						|
  auto F = Incoming.front()->getParent();
 | 
						|
  auto FirstGuardBlock =
 | 
						|
      BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
 | 
						|
 | 
						|
  SmallVector<DominatorTree::UpdateType, 16> Updates;
 | 
						|
  if (DTU) {
 | 
						|
    for (auto In : Incoming) {
 | 
						|
      Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
 | 
						|
      for (auto Succ : successors(In)) {
 | 
						|
        if (Outgoing.count(Succ))
 | 
						|
          Updates.push_back({DominatorTree::Delete, In, Succ});
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BBPredicates GuardPredicates;
 | 
						|
  SmallVector<WeakVH, 8> DeletionCandidates;
 | 
						|
  convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
 | 
						|
                           Incoming, Outgoing);
 | 
						|
 | 
						|
  GuardBlocks.push_back(FirstGuardBlock);
 | 
						|
  createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
 | 
						|
 | 
						|
  // Update the PHINodes in each outgoing block to match the new control flow.
 | 
						|
  for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
 | 
						|
    reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
 | 
						|
  }
 | 
						|
  reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
 | 
						|
 | 
						|
  if (DTU) {
 | 
						|
    int NumGuards = GuardBlocks.size();
 | 
						|
    assert((int)Outgoing.size() == NumGuards + 1);
 | 
						|
    for (int i = 0; i != NumGuards - 1; ++i) {
 | 
						|
      Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
 | 
						|
      Updates.push_back(
 | 
						|
          {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
 | 
						|
    }
 | 
						|
    Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
 | 
						|
                       Outgoing[NumGuards - 1]});
 | 
						|
    Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
 | 
						|
                       Outgoing[NumGuards]});
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto I : DeletionCandidates) {
 | 
						|
    if (I->use_empty())
 | 
						|
      if (auto Inst = dyn_cast_or_null<Instruction>(I))
 | 
						|
        Inst->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return FirstGuardBlock;
 | 
						|
}
 |