2645 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2645 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements inlining of a function into a call site, resolving
 | 
						|
// parameters and the return value as appropriate.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/ObjCARCAnalysisUtils.h"
 | 
						|
#include "llvm/Analysis/ObjCARCUtil.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using ProfileCount = Function::ProfileCount;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
 | 
						|
  cl::Hidden,
 | 
						|
  cl::desc("Convert noalias attributes to metadata during inlining."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
 | 
						|
                        cl::ZeroOrMore, cl::init(true),
 | 
						|
                        cl::desc("Use the llvm.experimental.noalias.scope.decl "
 | 
						|
                                 "intrinsic during inlining."));
 | 
						|
 | 
						|
// Disabled by default, because the added alignment assumptions may increase
 | 
						|
// compile-time and block optimizations. This option is not suitable for use
 | 
						|
// with frontends that emit comprehensive parameter alignment annotations.
 | 
						|
static cl::opt<bool>
 | 
						|
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Convert align attributes to assumptions during inlining."));
 | 
						|
 | 
						|
static cl::opt<bool> UpdateReturnAttributes(
 | 
						|
        "update-return-attrs", cl::init(true), cl::Hidden,
 | 
						|
            cl::desc("Update return attributes on calls within inlined body"));
 | 
						|
 | 
						|
static cl::opt<unsigned> InlinerAttributeWindow(
 | 
						|
    "max-inst-checked-for-throw-during-inlining", cl::Hidden,
 | 
						|
    cl::desc("the maximum number of instructions analyzed for may throw during "
 | 
						|
             "attribute inference in inlined body"),
 | 
						|
    cl::init(4));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  /// A class for recording information about inlining a landing pad.
 | 
						|
  class LandingPadInliningInfo {
 | 
						|
    /// Destination of the invoke's unwind.
 | 
						|
    BasicBlock *OuterResumeDest;
 | 
						|
 | 
						|
    /// Destination for the callee's resume.
 | 
						|
    BasicBlock *InnerResumeDest = nullptr;
 | 
						|
 | 
						|
    /// LandingPadInst associated with the invoke.
 | 
						|
    LandingPadInst *CallerLPad = nullptr;
 | 
						|
 | 
						|
    /// PHI for EH values from landingpad insts.
 | 
						|
    PHINode *InnerEHValuesPHI = nullptr;
 | 
						|
 | 
						|
    SmallVector<Value*, 8> UnwindDestPHIValues;
 | 
						|
 | 
						|
  public:
 | 
						|
    LandingPadInliningInfo(InvokeInst *II)
 | 
						|
        : OuterResumeDest(II->getUnwindDest()) {
 | 
						|
      // If there are PHI nodes in the unwind destination block, we need to keep
 | 
						|
      // track of which values came into them from the invoke before removing
 | 
						|
      // the edge from this block.
 | 
						|
      BasicBlock *InvokeBB = II->getParent();
 | 
						|
      BasicBlock::iterator I = OuterResumeDest->begin();
 | 
						|
      for (; isa<PHINode>(I); ++I) {
 | 
						|
        // Save the value to use for this edge.
 | 
						|
        PHINode *PHI = cast<PHINode>(I);
 | 
						|
        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
 | 
						|
      }
 | 
						|
 | 
						|
      CallerLPad = cast<LandingPadInst>(I);
 | 
						|
    }
 | 
						|
 | 
						|
    /// The outer unwind destination is the target of
 | 
						|
    /// unwind edges introduced for calls within the inlined function.
 | 
						|
    BasicBlock *getOuterResumeDest() const {
 | 
						|
      return OuterResumeDest;
 | 
						|
    }
 | 
						|
 | 
						|
    BasicBlock *getInnerResumeDest();
 | 
						|
 | 
						|
    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
 | 
						|
 | 
						|
    /// Forward the 'resume' instruction to the caller's landing pad block.
 | 
						|
    /// When the landing pad block has only one predecessor, this is
 | 
						|
    /// a simple branch. When there is more than one predecessor, we need to
 | 
						|
    /// split the landing pad block after the landingpad instruction and jump
 | 
						|
    /// to there.
 | 
						|
    void forwardResume(ResumeInst *RI,
 | 
						|
                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
 | 
						|
 | 
						|
    /// Add incoming-PHI values to the unwind destination block for the given
 | 
						|
    /// basic block, using the values for the original invoke's source block.
 | 
						|
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
 | 
						|
      addIncomingPHIValuesForInto(BB, OuterResumeDest);
 | 
						|
    }
 | 
						|
 | 
						|
    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
 | 
						|
      BasicBlock::iterator I = dest->begin();
 | 
						|
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | 
						|
        PHINode *phi = cast<PHINode>(I);
 | 
						|
        phi->addIncoming(UnwindDestPHIValues[i], src);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Get or create a target for the branch from ResumeInsts.
 | 
						|
BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
 | 
						|
  if (InnerResumeDest) return InnerResumeDest;
 | 
						|
 | 
						|
  // Split the landing pad.
 | 
						|
  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
 | 
						|
  InnerResumeDest =
 | 
						|
    OuterResumeDest->splitBasicBlock(SplitPoint,
 | 
						|
                                     OuterResumeDest->getName() + ".body");
 | 
						|
 | 
						|
  // The number of incoming edges we expect to the inner landing pad.
 | 
						|
  const unsigned PHICapacity = 2;
 | 
						|
 | 
						|
  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
 | 
						|
  Instruction *InsertPoint = &InnerResumeDest->front();
 | 
						|
  BasicBlock::iterator I = OuterResumeDest->begin();
 | 
						|
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | 
						|
    PHINode *OuterPHI = cast<PHINode>(I);
 | 
						|
    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
 | 
						|
                                        OuterPHI->getName() + ".lpad-body",
 | 
						|
                                        InsertPoint);
 | 
						|
    OuterPHI->replaceAllUsesWith(InnerPHI);
 | 
						|
    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a PHI for the exception values.
 | 
						|
  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
 | 
						|
                                     "eh.lpad-body", InsertPoint);
 | 
						|
  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
 | 
						|
  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
 | 
						|
 | 
						|
  // All done.
 | 
						|
  return InnerResumeDest;
 | 
						|
}
 | 
						|
 | 
						|
/// Forward the 'resume' instruction to the caller's landing pad block.
 | 
						|
/// When the landing pad block has only one predecessor, this is a simple
 | 
						|
/// branch. When there is more than one predecessor, we need to split the
 | 
						|
/// landing pad block after the landingpad instruction and jump to there.
 | 
						|
void LandingPadInliningInfo::forwardResume(
 | 
						|
    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
 | 
						|
  BasicBlock *Dest = getInnerResumeDest();
 | 
						|
  BasicBlock *Src = RI->getParent();
 | 
						|
 | 
						|
  BranchInst::Create(Dest, Src);
 | 
						|
 | 
						|
  // Update the PHIs in the destination. They were inserted in an order which
 | 
						|
  // makes this work.
 | 
						|
  addIncomingPHIValuesForInto(Src, Dest);
 | 
						|
 | 
						|
  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
 | 
						|
  RI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
 | 
						|
static Value *getParentPad(Value *EHPad) {
 | 
						|
  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
 | 
						|
    return FPI->getParentPad();
 | 
						|
  return cast<CatchSwitchInst>(EHPad)->getParentPad();
 | 
						|
}
 | 
						|
 | 
						|
using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
 | 
						|
 | 
						|
/// Helper for getUnwindDestToken that does the descendant-ward part of
 | 
						|
/// the search.
 | 
						|
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
 | 
						|
                                       UnwindDestMemoTy &MemoMap) {
 | 
						|
  SmallVector<Instruction *, 8> Worklist(1, EHPad);
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *CurrentPad = Worklist.pop_back_val();
 | 
						|
    // We only put pads on the worklist that aren't in the MemoMap.  When
 | 
						|
    // we find an unwind dest for a pad we may update its ancestors, but
 | 
						|
    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
 | 
						|
    // so they should never get updated while queued on the worklist.
 | 
						|
    assert(!MemoMap.count(CurrentPad));
 | 
						|
    Value *UnwindDestToken = nullptr;
 | 
						|
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
 | 
						|
      if (CatchSwitch->hasUnwindDest()) {
 | 
						|
        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
 | 
						|
      } else {
 | 
						|
        // Catchswitch doesn't have a 'nounwind' variant, and one might be
 | 
						|
        // annotated as "unwinds to caller" when really it's nounwind (see
 | 
						|
        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
 | 
						|
        // parent's unwind dest from this.  We can check its catchpads'
 | 
						|
        // descendants, since they might include a cleanuppad with an
 | 
						|
        // "unwinds to caller" cleanupret, which can be trusted.
 | 
						|
        for (auto HI = CatchSwitch->handler_begin(),
 | 
						|
                  HE = CatchSwitch->handler_end();
 | 
						|
             HI != HE && !UnwindDestToken; ++HI) {
 | 
						|
          BasicBlock *HandlerBlock = *HI;
 | 
						|
          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
 | 
						|
          for (User *Child : CatchPad->users()) {
 | 
						|
            // Intentionally ignore invokes here -- since the catchswitch is
 | 
						|
            // marked "unwind to caller", it would be a verifier error if it
 | 
						|
            // contained an invoke which unwinds out of it, so any invoke we'd
 | 
						|
            // encounter must unwind to some child of the catch.
 | 
						|
            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
 | 
						|
              continue;
 | 
						|
 | 
						|
            Instruction *ChildPad = cast<Instruction>(Child);
 | 
						|
            auto Memo = MemoMap.find(ChildPad);
 | 
						|
            if (Memo == MemoMap.end()) {
 | 
						|
              // Haven't figured out this child pad yet; queue it.
 | 
						|
              Worklist.push_back(ChildPad);
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
            // We've already checked this child, but might have found that
 | 
						|
            // it offers no proof either way.
 | 
						|
            Value *ChildUnwindDestToken = Memo->second;
 | 
						|
            if (!ChildUnwindDestToken)
 | 
						|
              continue;
 | 
						|
            // We already know the child's unwind dest, which can either
 | 
						|
            // be ConstantTokenNone to indicate unwind to caller, or can
 | 
						|
            // be another child of the catchpad.  Only the former indicates
 | 
						|
            // the unwind dest of the catchswitch.
 | 
						|
            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
 | 
						|
              UnwindDestToken = ChildUnwindDestToken;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            assert(getParentPad(ChildUnwindDestToken) == CatchPad);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
 | 
						|
      for (User *U : CleanupPad->users()) {
 | 
						|
        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
 | 
						|
          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
 | 
						|
            UnwindDestToken = RetUnwindDest->getFirstNonPHI();
 | 
						|
          else
 | 
						|
            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        Value *ChildUnwindDestToken;
 | 
						|
        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
 | 
						|
          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
 | 
						|
        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
 | 
						|
          Instruction *ChildPad = cast<Instruction>(U);
 | 
						|
          auto Memo = MemoMap.find(ChildPad);
 | 
						|
          if (Memo == MemoMap.end()) {
 | 
						|
            // Haven't resolved this child yet; queue it and keep searching.
 | 
						|
            Worklist.push_back(ChildPad);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          // We've checked this child, but still need to ignore it if it
 | 
						|
          // had no proof either way.
 | 
						|
          ChildUnwindDestToken = Memo->second;
 | 
						|
          if (!ChildUnwindDestToken)
 | 
						|
            continue;
 | 
						|
        } else {
 | 
						|
          // Not a relevant user of the cleanuppad
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // In a well-formed program, the child/invoke must either unwind to
 | 
						|
        // an(other) child of the cleanup, or exit the cleanup.  In the
 | 
						|
        // first case, continue searching.
 | 
						|
        if (isa<Instruction>(ChildUnwindDestToken) &&
 | 
						|
            getParentPad(ChildUnwindDestToken) == CleanupPad)
 | 
						|
          continue;
 | 
						|
        UnwindDestToken = ChildUnwindDestToken;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we haven't found an unwind dest for CurrentPad, we may have queued its
 | 
						|
    // children, so move on to the next in the worklist.
 | 
						|
    if (!UnwindDestToken)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
 | 
						|
    // any ancestors of CurrentPad up to but not including UnwindDestToken's
 | 
						|
    // parent pad.  Record this in the memo map, and check to see if the
 | 
						|
    // original EHPad being queried is one of the ones exited.
 | 
						|
    Value *UnwindParent;
 | 
						|
    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
 | 
						|
      UnwindParent = getParentPad(UnwindPad);
 | 
						|
    else
 | 
						|
      UnwindParent = nullptr;
 | 
						|
    bool ExitedOriginalPad = false;
 | 
						|
    for (Instruction *ExitedPad = CurrentPad;
 | 
						|
         ExitedPad && ExitedPad != UnwindParent;
 | 
						|
         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
 | 
						|
      // Skip over catchpads since they just follow their catchswitches.
 | 
						|
      if (isa<CatchPadInst>(ExitedPad))
 | 
						|
        continue;
 | 
						|
      MemoMap[ExitedPad] = UnwindDestToken;
 | 
						|
      ExitedOriginalPad |= (ExitedPad == EHPad);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ExitedOriginalPad)
 | 
						|
      return UnwindDestToken;
 | 
						|
 | 
						|
    // Continue the search.
 | 
						|
  }
 | 
						|
 | 
						|
  // No definitive information is contained within this funclet.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
 | 
						|
/// return that pad instruction.  If it unwinds to caller, return
 | 
						|
/// ConstantTokenNone.  If it does not have a definitive unwind destination,
 | 
						|
/// return nullptr.
 | 
						|
///
 | 
						|
/// This routine gets invoked for calls in funclets in inlinees when inlining
 | 
						|
/// an invoke.  Since many funclets don't have calls inside them, it's queried
 | 
						|
/// on-demand rather than building a map of pads to unwind dests up front.
 | 
						|
/// Determining a funclet's unwind dest may require recursively searching its
 | 
						|
/// descendants, and also ancestors and cousins if the descendants don't provide
 | 
						|
/// an answer.  Since most funclets will have their unwind dest immediately
 | 
						|
/// available as the unwind dest of a catchswitch or cleanupret, this routine
 | 
						|
/// searches top-down from the given pad and then up. To avoid worst-case
 | 
						|
/// quadratic run-time given that approach, it uses a memo map to avoid
 | 
						|
/// re-processing funclet trees.  The callers that rewrite the IR as they go
 | 
						|
/// take advantage of this, for correctness, by checking/forcing rewritten
 | 
						|
/// pads' entries to match the original callee view.
 | 
						|
static Value *getUnwindDestToken(Instruction *EHPad,
 | 
						|
                                 UnwindDestMemoTy &MemoMap) {
 | 
						|
  // Catchpads unwind to the same place as their catchswitch;
 | 
						|
  // redirct any queries on catchpads so the code below can
 | 
						|
  // deal with just catchswitches and cleanuppads.
 | 
						|
  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
 | 
						|
    EHPad = CPI->getCatchSwitch();
 | 
						|
 | 
						|
  // Check if we've already determined the unwind dest for this pad.
 | 
						|
  auto Memo = MemoMap.find(EHPad);
 | 
						|
  if (Memo != MemoMap.end())
 | 
						|
    return Memo->second;
 | 
						|
 | 
						|
  // Search EHPad and, if necessary, its descendants.
 | 
						|
  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
 | 
						|
  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
 | 
						|
  if (UnwindDestToken)
 | 
						|
    return UnwindDestToken;
 | 
						|
 | 
						|
  // No information is available for this EHPad from itself or any of its
 | 
						|
  // descendants.  An unwind all the way out to a pad in the caller would
 | 
						|
  // need also to agree with the unwind dest of the parent funclet, so
 | 
						|
  // search up the chain to try to find a funclet with information.  Put
 | 
						|
  // null entries in the memo map to avoid re-processing as we go up.
 | 
						|
  MemoMap[EHPad] = nullptr;
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallPtrSet<Instruction *, 4> TempMemos;
 | 
						|
  TempMemos.insert(EHPad);
 | 
						|
#endif
 | 
						|
  Instruction *LastUselessPad = EHPad;
 | 
						|
  Value *AncestorToken;
 | 
						|
  for (AncestorToken = getParentPad(EHPad);
 | 
						|
       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
 | 
						|
       AncestorToken = getParentPad(AncestorToken)) {
 | 
						|
    // Skip over catchpads since they just follow their catchswitches.
 | 
						|
    if (isa<CatchPadInst>(AncestorPad))
 | 
						|
      continue;
 | 
						|
    // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
 | 
						|
    // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
 | 
						|
    // call to getUnwindDestToken, that would mean that AncestorPad had no
 | 
						|
    // information in itself, its descendants, or its ancestors.  If that
 | 
						|
    // were the case, then we should also have recorded the lack of information
 | 
						|
    // for the descendant that we're coming from.  So assert that we don't
 | 
						|
    // find a null entry in the MemoMap for AncestorPad.
 | 
						|
    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
 | 
						|
    auto AncestorMemo = MemoMap.find(AncestorPad);
 | 
						|
    if (AncestorMemo == MemoMap.end()) {
 | 
						|
      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
 | 
						|
    } else {
 | 
						|
      UnwindDestToken = AncestorMemo->second;
 | 
						|
    }
 | 
						|
    if (UnwindDestToken)
 | 
						|
      break;
 | 
						|
    LastUselessPad = AncestorPad;
 | 
						|
    MemoMap[LastUselessPad] = nullptr;
 | 
						|
#ifndef NDEBUG
 | 
						|
    TempMemos.insert(LastUselessPad);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // We know that getUnwindDestTokenHelper was called on LastUselessPad and
 | 
						|
  // returned nullptr (and likewise for EHPad and any of its ancestors up to
 | 
						|
  // LastUselessPad), so LastUselessPad has no information from below.  Since
 | 
						|
  // getUnwindDestTokenHelper must investigate all downward paths through
 | 
						|
  // no-information nodes to prove that a node has no information like this,
 | 
						|
  // and since any time it finds information it records it in the MemoMap for
 | 
						|
  // not just the immediately-containing funclet but also any ancestors also
 | 
						|
  // exited, it must be the case that, walking downward from LastUselessPad,
 | 
						|
  // visiting just those nodes which have not been mapped to an unwind dest
 | 
						|
  // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
 | 
						|
  // they are just used to keep getUnwindDestTokenHelper from repeating work),
 | 
						|
  // any node visited must have been exhaustively searched with no information
 | 
						|
  // for it found.
 | 
						|
  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *UselessPad = Worklist.pop_back_val();
 | 
						|
    auto Memo = MemoMap.find(UselessPad);
 | 
						|
    if (Memo != MemoMap.end() && Memo->second) {
 | 
						|
      // Here the name 'UselessPad' is a bit of a misnomer, because we've found
 | 
						|
      // that it is a funclet that does have information about unwinding to
 | 
						|
      // a particular destination; its parent was a useless pad.
 | 
						|
      // Since its parent has no information, the unwind edge must not escape
 | 
						|
      // the parent, and must target a sibling of this pad.  This local unwind
 | 
						|
      // gives us no information about EHPad.  Leave it and the subtree rooted
 | 
						|
      // at it alone.
 | 
						|
      assert(getParentPad(Memo->second) == getParentPad(UselessPad));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // We know we don't have information for UselesPad.  If it has an entry in
 | 
						|
    // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
 | 
						|
    // added on this invocation of getUnwindDestToken; if a previous invocation
 | 
						|
    // recorded nullptr, it would have had to prove that the ancestors of
 | 
						|
    // UselessPad, which include LastUselessPad, had no information, and that
 | 
						|
    // in turn would have required proving that the descendants of
 | 
						|
    // LastUselesPad, which include EHPad, have no information about
 | 
						|
    // LastUselessPad, which would imply that EHPad was mapped to nullptr in
 | 
						|
    // the MemoMap on that invocation, which isn't the case if we got here.
 | 
						|
    assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
 | 
						|
    // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
 | 
						|
    // information that we'd be contradicting by making a map entry for it
 | 
						|
    // (which is something that getUnwindDestTokenHelper must have proved for
 | 
						|
    // us to get here).  Just assert on is direct users here; the checks in
 | 
						|
    // this downward walk at its descendants will verify that they don't have
 | 
						|
    // any unwind edges that exit 'UselessPad' either (i.e. they either have no
 | 
						|
    // unwind edges or unwind to a sibling).
 | 
						|
    MemoMap[UselessPad] = UnwindDestToken;
 | 
						|
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
 | 
						|
      assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
 | 
						|
      for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
 | 
						|
        auto *CatchPad = HandlerBlock->getFirstNonPHI();
 | 
						|
        for (User *U : CatchPad->users()) {
 | 
						|
          assert(
 | 
						|
              (!isa<InvokeInst>(U) ||
 | 
						|
               (getParentPad(
 | 
						|
                    cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
 | 
						|
                CatchPad)) &&
 | 
						|
              "Expected useless pad");
 | 
						|
          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
 | 
						|
            Worklist.push_back(cast<Instruction>(U));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(isa<CleanupPadInst>(UselessPad));
 | 
						|
      for (User *U : UselessPad->users()) {
 | 
						|
        assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
 | 
						|
        assert((!isa<InvokeInst>(U) ||
 | 
						|
                (getParentPad(
 | 
						|
                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
 | 
						|
                 UselessPad)) &&
 | 
						|
               "Expected useless pad");
 | 
						|
        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
 | 
						|
          Worklist.push_back(cast<Instruction>(U));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return UnwindDestToken;
 | 
						|
}
 | 
						|
 | 
						|
/// When we inline a basic block into an invoke,
 | 
						|
/// we have to turn all of the calls that can throw into invokes.
 | 
						|
/// This function analyze BB to see if there are any calls, and if so,
 | 
						|
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
 | 
						|
/// nodes in that block with the values specified in InvokeDestPHIValues.
 | 
						|
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
 | 
						|
    BasicBlock *BB, BasicBlock *UnwindEdge,
 | 
						|
    UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
 | 
						|
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
    Instruction *I = &*BBI++;
 | 
						|
 | 
						|
    // We only need to check for function calls: inlined invoke
 | 
						|
    // instructions require no special handling.
 | 
						|
    CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
 | 
						|
    if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We do not need to (and in fact, cannot) convert possibly throwing calls
 | 
						|
    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
 | 
						|
    // invokes.  The caller's "segment" of the deoptimization continuation
 | 
						|
    // attached to the newly inlined @llvm.experimental_deoptimize
 | 
						|
    // (resp. @llvm.experimental.guard) call should contain the exception
 | 
						|
    // handling logic, if any.
 | 
						|
    if (auto *F = CI->getCalledFunction())
 | 
						|
      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
 | 
						|
          F->getIntrinsicID() == Intrinsic::experimental_guard)
 | 
						|
        continue;
 | 
						|
 | 
						|
    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
 | 
						|
      // This call is nested inside a funclet.  If that funclet has an unwind
 | 
						|
      // destination within the inlinee, then unwinding out of this call would
 | 
						|
      // be UB.  Rewriting this call to an invoke which targets the inlined
 | 
						|
      // invoke's unwind dest would give the call's parent funclet multiple
 | 
						|
      // unwind destinations, which is something that subsequent EH table
 | 
						|
      // generation can't handle and that the veirifer rejects.  So when we
 | 
						|
      // see such a call, leave it as a call.
 | 
						|
      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
 | 
						|
      Value *UnwindDestToken =
 | 
						|
          getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
 | 
						|
      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
 | 
						|
        continue;
 | 
						|
#ifndef NDEBUG
 | 
						|
      Instruction *MemoKey;
 | 
						|
      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
 | 
						|
        MemoKey = CatchPad->getCatchSwitch();
 | 
						|
      else
 | 
						|
        MemoKey = FuncletPad;
 | 
						|
      assert(FuncletUnwindMap->count(MemoKey) &&
 | 
						|
             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
 | 
						|
             "must get memoized to avoid confusing later searches");
 | 
						|
#endif // NDEBUG
 | 
						|
    }
 | 
						|
 | 
						|
    changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If we inlined an invoke site, we need to convert calls
 | 
						|
/// in the body of the inlined function into invokes.
 | 
						|
///
 | 
						|
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | 
						|
/// block of the inlined code (the last block is the end of the function),
 | 
						|
/// and InlineCodeInfo is information about the code that got inlined.
 | 
						|
static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
 | 
						|
                                    ClonedCodeInfo &InlinedCodeInfo) {
 | 
						|
  BasicBlock *InvokeDest = II->getUnwindDest();
 | 
						|
 | 
						|
  Function *Caller = FirstNewBlock->getParent();
 | 
						|
 | 
						|
  // The inlined code is currently at the end of the function, scan from the
 | 
						|
  // start of the inlined code to its end, checking for stuff we need to
 | 
						|
  // rewrite.
 | 
						|
  LandingPadInliningInfo Invoke(II);
 | 
						|
 | 
						|
  // Get all of the inlined landing pad instructions.
 | 
						|
  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
 | 
						|
  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
 | 
						|
      InlinedLPads.insert(II->getLandingPadInst());
 | 
						|
 | 
						|
  // Append the clauses from the outer landing pad instruction into the inlined
 | 
						|
  // landing pad instructions.
 | 
						|
  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
 | 
						|
  for (LandingPadInst *InlinedLPad : InlinedLPads) {
 | 
						|
    unsigned OuterNum = OuterLPad->getNumClauses();
 | 
						|
    InlinedLPad->reserveClauses(OuterNum);
 | 
						|
    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
 | 
						|
      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
 | 
						|
    if (OuterLPad->isCleanup())
 | 
						|
      InlinedLPad->setCleanup(true);
 | 
						|
  }
 | 
						|
 | 
						|
  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
 | 
						|
       BB != E; ++BB) {
 | 
						|
    if (InlinedCodeInfo.ContainsCalls)
 | 
						|
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
 | 
						|
              &*BB, Invoke.getOuterResumeDest()))
 | 
						|
        // Update any PHI nodes in the exceptional block to indicate that there
 | 
						|
        // is now a new entry in them.
 | 
						|
        Invoke.addIncomingPHIValuesFor(NewBB);
 | 
						|
 | 
						|
    // Forward any resumes that are remaining here.
 | 
						|
    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
 | 
						|
      Invoke.forwardResume(RI, InlinedLPads);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that everything is happy, we have one final detail.  The PHI nodes in
 | 
						|
  // the exception destination block still have entries due to the original
 | 
						|
  // invoke instruction. Eliminate these entries (which might even delete the
 | 
						|
  // PHI node) now.
 | 
						|
  InvokeDest->removePredecessor(II->getParent());
 | 
						|
}
 | 
						|
 | 
						|
/// If we inlined an invoke site, we need to convert calls
 | 
						|
/// in the body of the inlined function into invokes.
 | 
						|
///
 | 
						|
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | 
						|
/// block of the inlined code (the last block is the end of the function),
 | 
						|
/// and InlineCodeInfo is information about the code that got inlined.
 | 
						|
static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
 | 
						|
                               ClonedCodeInfo &InlinedCodeInfo) {
 | 
						|
  BasicBlock *UnwindDest = II->getUnwindDest();
 | 
						|
  Function *Caller = FirstNewBlock->getParent();
 | 
						|
 | 
						|
  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
 | 
						|
 | 
						|
  // If there are PHI nodes in the unwind destination block, we need to keep
 | 
						|
  // track of which values came into them from the invoke before removing the
 | 
						|
  // edge from this block.
 | 
						|
  SmallVector<Value *, 8> UnwindDestPHIValues;
 | 
						|
  BasicBlock *InvokeBB = II->getParent();
 | 
						|
  for (Instruction &I : *UnwindDest) {
 | 
						|
    // Save the value to use for this edge.
 | 
						|
    PHINode *PHI = dyn_cast<PHINode>(&I);
 | 
						|
    if (!PHI)
 | 
						|
      break;
 | 
						|
    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add incoming-PHI values to the unwind destination block for the given basic
 | 
						|
  // block, using the values for the original invoke's source block.
 | 
						|
  auto UpdatePHINodes = [&](BasicBlock *Src) {
 | 
						|
    BasicBlock::iterator I = UnwindDest->begin();
 | 
						|
    for (Value *V : UnwindDestPHIValues) {
 | 
						|
      PHINode *PHI = cast<PHINode>(I);
 | 
						|
      PHI->addIncoming(V, Src);
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // This connects all the instructions which 'unwind to caller' to the invoke
 | 
						|
  // destination.
 | 
						|
  UnwindDestMemoTy FuncletUnwindMap;
 | 
						|
  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
 | 
						|
       BB != E; ++BB) {
 | 
						|
    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
 | 
						|
      if (CRI->unwindsToCaller()) {
 | 
						|
        auto *CleanupPad = CRI->getCleanupPad();
 | 
						|
        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
 | 
						|
        CRI->eraseFromParent();
 | 
						|
        UpdatePHINodes(&*BB);
 | 
						|
        // Finding a cleanupret with an unwind destination would confuse
 | 
						|
        // subsequent calls to getUnwindDestToken, so map the cleanuppad
 | 
						|
        // to short-circuit any such calls and recognize this as an "unwind
 | 
						|
        // to caller" cleanup.
 | 
						|
        assert(!FuncletUnwindMap.count(CleanupPad) ||
 | 
						|
               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
 | 
						|
        FuncletUnwindMap[CleanupPad] =
 | 
						|
            ConstantTokenNone::get(Caller->getContext());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *I = BB->getFirstNonPHI();
 | 
						|
    if (!I->isEHPad())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *Replacement = nullptr;
 | 
						|
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
 | 
						|
      if (CatchSwitch->unwindsToCaller()) {
 | 
						|
        Value *UnwindDestToken;
 | 
						|
        if (auto *ParentPad =
 | 
						|
                dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
 | 
						|
          // This catchswitch is nested inside another funclet.  If that
 | 
						|
          // funclet has an unwind destination within the inlinee, then
 | 
						|
          // unwinding out of this catchswitch would be UB.  Rewriting this
 | 
						|
          // catchswitch to unwind to the inlined invoke's unwind dest would
 | 
						|
          // give the parent funclet multiple unwind destinations, which is
 | 
						|
          // something that subsequent EH table generation can't handle and
 | 
						|
          // that the veirifer rejects.  So when we see such a call, leave it
 | 
						|
          // as "unwind to caller".
 | 
						|
          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
 | 
						|
          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
 | 
						|
            continue;
 | 
						|
        } else {
 | 
						|
          // This catchswitch has no parent to inherit constraints from, and
 | 
						|
          // none of its descendants can have an unwind edge that exits it and
 | 
						|
          // targets another funclet in the inlinee.  It may or may not have a
 | 
						|
          // descendant that definitively has an unwind to caller.  In either
 | 
						|
          // case, we'll have to assume that any unwinds out of it may need to
 | 
						|
          // be routed to the caller, so treat it as though it has a definitive
 | 
						|
          // unwind to caller.
 | 
						|
          UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
 | 
						|
        }
 | 
						|
        auto *NewCatchSwitch = CatchSwitchInst::Create(
 | 
						|
            CatchSwitch->getParentPad(), UnwindDest,
 | 
						|
            CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
 | 
						|
            CatchSwitch);
 | 
						|
        for (BasicBlock *PadBB : CatchSwitch->handlers())
 | 
						|
          NewCatchSwitch->addHandler(PadBB);
 | 
						|
        // Propagate info for the old catchswitch over to the new one in
 | 
						|
        // the unwind map.  This also serves to short-circuit any subsequent
 | 
						|
        // checks for the unwind dest of this catchswitch, which would get
 | 
						|
        // confused if they found the outer handler in the callee.
 | 
						|
        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
 | 
						|
        Replacement = NewCatchSwitch;
 | 
						|
      }
 | 
						|
    } else if (!isa<FuncletPadInst>(I)) {
 | 
						|
      llvm_unreachable("unexpected EHPad!");
 | 
						|
    }
 | 
						|
 | 
						|
    if (Replacement) {
 | 
						|
      Replacement->takeName(I);
 | 
						|
      I->replaceAllUsesWith(Replacement);
 | 
						|
      I->eraseFromParent();
 | 
						|
      UpdatePHINodes(&*BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (InlinedCodeInfo.ContainsCalls)
 | 
						|
    for (Function::iterator BB = FirstNewBlock->getIterator(),
 | 
						|
                            E = Caller->end();
 | 
						|
         BB != E; ++BB)
 | 
						|
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
 | 
						|
              &*BB, UnwindDest, &FuncletUnwindMap))
 | 
						|
        // Update any PHI nodes in the exceptional block to indicate that there
 | 
						|
        // is now a new entry in them.
 | 
						|
        UpdatePHINodes(NewBB);
 | 
						|
 | 
						|
  // Now that everything is happy, we have one final detail.  The PHI nodes in
 | 
						|
  // the exception destination block still have entries due to the original
 | 
						|
  // invoke instruction. Eliminate these entries (which might even delete the
 | 
						|
  // PHI node) now.
 | 
						|
  UnwindDest->removePredecessor(InvokeBB);
 | 
						|
}
 | 
						|
 | 
						|
/// When inlining a call site that has !llvm.mem.parallel_loop_access,
 | 
						|
/// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
 | 
						|
/// be propagated to all memory-accessing cloned instructions.
 | 
						|
static void PropagateCallSiteMetadata(CallBase &CB, ValueToValueMapTy &VMap) {
 | 
						|
  MDNode *MemParallelLoopAccess =
 | 
						|
      CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
 | 
						|
  MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
 | 
						|
  MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
 | 
						|
  MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
 | 
						|
  if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
 | 
						|
       VMI != VMIE; ++VMI) {
 | 
						|
    // Check that key is an instruction, to skip the Argument mapping, which
 | 
						|
    // points to an instruction in the original function, not the inlined one.
 | 
						|
    if (!VMI->second || !isa<Instruction>(VMI->first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *NI = dyn_cast<Instruction>(VMI->second);
 | 
						|
    if (!NI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This metadata is only relevant for instructions that access memory.
 | 
						|
    if (!NI->mayReadOrWriteMemory())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MemParallelLoopAccess) {
 | 
						|
      // TODO: This probably should not overwrite MemParalleLoopAccess.
 | 
						|
      MemParallelLoopAccess = MDNode::concatenate(
 | 
						|
          NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access),
 | 
						|
          MemParallelLoopAccess);
 | 
						|
      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access,
 | 
						|
                      MemParallelLoopAccess);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AccessGroup)
 | 
						|
      NI->setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
 | 
						|
          NI->getMetadata(LLVMContext::MD_access_group), AccessGroup));
 | 
						|
 | 
						|
    if (AliasScope)
 | 
						|
      NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
 | 
						|
          NI->getMetadata(LLVMContext::MD_alias_scope), AliasScope));
 | 
						|
 | 
						|
    if (NoAlias)
 | 
						|
      NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
 | 
						|
          NI->getMetadata(LLVMContext::MD_noalias), NoAlias));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Utility for cloning !noalias and !alias.scope metadata. When a code region
 | 
						|
/// using scoped alias metadata is inlined, the aliasing relationships may not
 | 
						|
/// hold between the two version. It is necessary to create a deep clone of the
 | 
						|
/// metadata, putting the two versions in separate scope domains.
 | 
						|
class ScopedAliasMetadataDeepCloner {
 | 
						|
  using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
 | 
						|
  SetVector<const MDNode *> MD;
 | 
						|
  MetadataMap MDMap;
 | 
						|
  void addRecursiveMetadataUses();
 | 
						|
 | 
						|
public:
 | 
						|
  ScopedAliasMetadataDeepCloner(const Function *F);
 | 
						|
 | 
						|
  /// Create a new clone of the scoped alias metadata, which will be used by
 | 
						|
  /// subsequent remap() calls.
 | 
						|
  void clone();
 | 
						|
 | 
						|
  /// Remap instructions in the given VMap from the original to the cloned
 | 
						|
  /// metadata.
 | 
						|
  void remap(ValueToValueMapTy &VMap);
 | 
						|
};
 | 
						|
 | 
						|
ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
 | 
						|
    const Function *F) {
 | 
						|
  for (const BasicBlock &BB : *F) {
 | 
						|
    for (const Instruction &I : BB) {
 | 
						|
      if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
 | 
						|
        MD.insert(M);
 | 
						|
      if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
 | 
						|
        MD.insert(M);
 | 
						|
 | 
						|
      // We also need to clone the metadata in noalias intrinsics.
 | 
						|
      if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
 | 
						|
        MD.insert(Decl->getScopeList());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  addRecursiveMetadataUses();
 | 
						|
}
 | 
						|
 | 
						|
void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
 | 
						|
  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
 | 
						|
    for (const Metadata *Op : M->operands())
 | 
						|
      if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
 | 
						|
        if (MD.insert(OpMD))
 | 
						|
          Queue.push_back(OpMD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScopedAliasMetadataDeepCloner::clone() {
 | 
						|
  assert(MDMap.empty() && "clone() already called ?");
 | 
						|
 | 
						|
  SmallVector<TempMDTuple, 16> DummyNodes;
 | 
						|
  for (const MDNode *I : MD) {
 | 
						|
    DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
 | 
						|
    MDMap[I].reset(DummyNodes.back().get());
 | 
						|
  }
 | 
						|
 | 
						|
  // Create new metadata nodes to replace the dummy nodes, replacing old
 | 
						|
  // metadata references with either a dummy node or an already-created new
 | 
						|
  // node.
 | 
						|
  SmallVector<Metadata *, 4> NewOps;
 | 
						|
  for (const MDNode *I : MD) {
 | 
						|
    for (const Metadata *Op : I->operands()) {
 | 
						|
      if (const MDNode *M = dyn_cast<MDNode>(Op))
 | 
						|
        NewOps.push_back(MDMap[M]);
 | 
						|
      else
 | 
						|
        NewOps.push_back(const_cast<Metadata *>(Op));
 | 
						|
    }
 | 
						|
 | 
						|
    MDNode *NewM = MDNode::get(I->getContext(), NewOps);
 | 
						|
    MDTuple *TempM = cast<MDTuple>(MDMap[I]);
 | 
						|
    assert(TempM->isTemporary() && "Expected temporary node");
 | 
						|
 | 
						|
    TempM->replaceAllUsesWith(NewM);
 | 
						|
    NewOps.clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScopedAliasMetadataDeepCloner::remap(ValueToValueMapTy &VMap) {
 | 
						|
  if (MDMap.empty())
 | 
						|
    return; // Nothing to do.
 | 
						|
 | 
						|
  for (auto Entry : VMap) {
 | 
						|
    // Check that key is an instruction, to skip the Argument mapping, which
 | 
						|
    // points to an instruction in the original function, not the inlined one.
 | 
						|
    if (!Entry->second || !isa<Instruction>(Entry->first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *I = dyn_cast<Instruction>(Entry->second);
 | 
						|
    if (!I)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Only update scopes when we find them in the map. If they are not, it is
 | 
						|
    // because we already handled that instruction before. This is faster than
 | 
						|
    // tracking which instructions we already updated.
 | 
						|
    if (MDNode *M = I->getMetadata(LLVMContext::MD_alias_scope))
 | 
						|
      if (MDNode *MNew = MDMap.lookup(M))
 | 
						|
        I->setMetadata(LLVMContext::MD_alias_scope, MNew);
 | 
						|
 | 
						|
    if (MDNode *M = I->getMetadata(LLVMContext::MD_noalias))
 | 
						|
      if (MDNode *MNew = MDMap.lookup(M))
 | 
						|
        I->setMetadata(LLVMContext::MD_noalias, MNew);
 | 
						|
 | 
						|
    if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
 | 
						|
      if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
 | 
						|
        Decl->setScopeList(MNew);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If the inlined function has noalias arguments,
 | 
						|
/// then add new alias scopes for each noalias argument, tag the mapped noalias
 | 
						|
/// parameters with noalias metadata specifying the new scope, and tag all
 | 
						|
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
 | 
						|
static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
 | 
						|
                                  const DataLayout &DL, AAResults *CalleeAAR) {
 | 
						|
  if (!EnableNoAliasConversion)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Function *CalledFunc = CB.getCalledFunction();
 | 
						|
  SmallVector<const Argument *, 4> NoAliasArgs;
 | 
						|
 | 
						|
  for (const Argument &Arg : CalledFunc->args())
 | 
						|
    if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
 | 
						|
      NoAliasArgs.push_back(&Arg);
 | 
						|
 | 
						|
  if (NoAliasArgs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // To do a good job, if a noalias variable is captured, we need to know if
 | 
						|
  // the capture point dominates the particular use we're considering.
 | 
						|
  DominatorTree DT;
 | 
						|
  DT.recalculate(const_cast<Function&>(*CalledFunc));
 | 
						|
 | 
						|
  // noalias indicates that pointer values based on the argument do not alias
 | 
						|
  // pointer values which are not based on it. So we add a new "scope" for each
 | 
						|
  // noalias function argument. Accesses using pointers based on that argument
 | 
						|
  // become part of that alias scope, accesses using pointers not based on that
 | 
						|
  // argument are tagged as noalias with that scope.
 | 
						|
 | 
						|
  DenseMap<const Argument *, MDNode *> NewScopes;
 | 
						|
  MDBuilder MDB(CalledFunc->getContext());
 | 
						|
 | 
						|
  // Create a new scope domain for this function.
 | 
						|
  MDNode *NewDomain =
 | 
						|
    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
 | 
						|
  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
 | 
						|
    const Argument *A = NoAliasArgs[i];
 | 
						|
 | 
						|
    std::string Name = std::string(CalledFunc->getName());
 | 
						|
    if (A->hasName()) {
 | 
						|
      Name += ": %";
 | 
						|
      Name += A->getName();
 | 
						|
    } else {
 | 
						|
      Name += ": argument ";
 | 
						|
      Name += utostr(i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: We always create a new anonymous root here. This is true regardless
 | 
						|
    // of the linkage of the callee because the aliasing "scope" is not just a
 | 
						|
    // property of the callee, but also all control dependencies in the caller.
 | 
						|
    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
 | 
						|
    NewScopes.insert(std::make_pair(A, NewScope));
 | 
						|
 | 
						|
    if (UseNoAliasIntrinsic) {
 | 
						|
      // Introduce a llvm.experimental.noalias.scope.decl for the noalias
 | 
						|
      // argument.
 | 
						|
      MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
 | 
						|
      auto *NoAliasDecl =
 | 
						|
          IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
 | 
						|
      // Ignore the result for now. The result will be used when the
 | 
						|
      // llvm.noalias intrinsic is introduced.
 | 
						|
      (void)NoAliasDecl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iterate over all new instructions in the map; for all memory-access
 | 
						|
  // instructions, add the alias scope metadata.
 | 
						|
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
 | 
						|
       VMI != VMIE; ++VMI) {
 | 
						|
    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
 | 
						|
      if (!VMI->second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Instruction *NI = dyn_cast<Instruction>(VMI->second);
 | 
						|
      if (!NI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool IsArgMemOnlyCall = false, IsFuncCall = false;
 | 
						|
      SmallVector<const Value *, 2> PtrArgs;
 | 
						|
 | 
						|
      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
        PtrArgs.push_back(LI->getPointerOperand());
 | 
						|
      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        PtrArgs.push_back(SI->getPointerOperand());
 | 
						|
      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
 | 
						|
        PtrArgs.push_back(VAAI->getPointerOperand());
 | 
						|
      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
 | 
						|
        PtrArgs.push_back(CXI->getPointerOperand());
 | 
						|
      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
 | 
						|
        PtrArgs.push_back(RMWI->getPointerOperand());
 | 
						|
      else if (const auto *Call = dyn_cast<CallBase>(I)) {
 | 
						|
        // If we know that the call does not access memory, then we'll still
 | 
						|
        // know that about the inlined clone of this call site, and we don't
 | 
						|
        // need to add metadata.
 | 
						|
        if (Call->doesNotAccessMemory())
 | 
						|
          continue;
 | 
						|
 | 
						|
        IsFuncCall = true;
 | 
						|
        if (CalleeAAR) {
 | 
						|
          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
 | 
						|
          if (AAResults::onlyAccessesArgPointees(MRB))
 | 
						|
            IsArgMemOnlyCall = true;
 | 
						|
        }
 | 
						|
 | 
						|
        for (Value *Arg : Call->args()) {
 | 
						|
          // We need to check the underlying objects of all arguments, not just
 | 
						|
          // the pointer arguments, because we might be passing pointers as
 | 
						|
          // integers, etc.
 | 
						|
          // However, if we know that the call only accesses pointer arguments,
 | 
						|
          // then we only need to check the pointer arguments.
 | 
						|
          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
 | 
						|
            continue;
 | 
						|
 | 
						|
          PtrArgs.push_back(Arg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we found no pointers, then this instruction is not suitable for
 | 
						|
      // pairing with an instruction to receive aliasing metadata.
 | 
						|
      // However, if this is a call, this we might just alias with none of the
 | 
						|
      // noalias arguments.
 | 
						|
      if (PtrArgs.empty() && !IsFuncCall)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // It is possible that there is only one underlying object, but you
 | 
						|
      // need to go through several PHIs to see it, and thus could be
 | 
						|
      // repeated in the Objects list.
 | 
						|
      SmallPtrSet<const Value *, 4> ObjSet;
 | 
						|
      SmallVector<Metadata *, 4> Scopes, NoAliases;
 | 
						|
 | 
						|
      SmallSetVector<const Argument *, 4> NAPtrArgs;
 | 
						|
      for (const Value *V : PtrArgs) {
 | 
						|
        SmallVector<const Value *, 4> Objects;
 | 
						|
        getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
 | 
						|
 | 
						|
        for (const Value *O : Objects)
 | 
						|
          ObjSet.insert(O);
 | 
						|
      }
 | 
						|
 | 
						|
      // Figure out if we're derived from anything that is not a noalias
 | 
						|
      // argument.
 | 
						|
      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
 | 
						|
      for (const Value *V : ObjSet) {
 | 
						|
        // Is this value a constant that cannot be derived from any pointer
 | 
						|
        // value (we need to exclude constant expressions, for example, that
 | 
						|
        // are formed from arithmetic on global symbols).
 | 
						|
        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
 | 
						|
                             isa<ConstantPointerNull>(V) ||
 | 
						|
                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
 | 
						|
        if (IsNonPtrConst)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this is anything other than a noalias argument, then we cannot
 | 
						|
        // completely describe the aliasing properties using alias.scope
 | 
						|
        // metadata (and, thus, won't add any).
 | 
						|
        if (const Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
          if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
 | 
						|
            UsesAliasingPtr = true;
 | 
						|
        } else {
 | 
						|
          UsesAliasingPtr = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is not some identified function-local object (which cannot
 | 
						|
        // directly alias a noalias argument), or some other argument (which,
 | 
						|
        // by definition, also cannot alias a noalias argument), then we could
 | 
						|
        // alias a noalias argument that has been captured).
 | 
						|
        if (!isa<Argument>(V) &&
 | 
						|
            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
 | 
						|
          CanDeriveViaCapture = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // A function call can always get captured noalias pointers (via other
 | 
						|
      // parameters, globals, etc.).
 | 
						|
      if (IsFuncCall && !IsArgMemOnlyCall)
 | 
						|
        CanDeriveViaCapture = true;
 | 
						|
 | 
						|
      // First, we want to figure out all of the sets with which we definitely
 | 
						|
      // don't alias. Iterate over all noalias set, and add those for which:
 | 
						|
      //   1. The noalias argument is not in the set of objects from which we
 | 
						|
      //      definitely derive.
 | 
						|
      //   2. The noalias argument has not yet been captured.
 | 
						|
      // An arbitrary function that might load pointers could see captured
 | 
						|
      // noalias arguments via other noalias arguments or globals, and so we
 | 
						|
      // must always check for prior capture.
 | 
						|
      for (const Argument *A : NoAliasArgs) {
 | 
						|
        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
 | 
						|
                                 // It might be tempting to skip the
 | 
						|
                                 // PointerMayBeCapturedBefore check if
 | 
						|
                                 // A->hasNoCaptureAttr() is true, but this is
 | 
						|
                                 // incorrect because nocapture only guarantees
 | 
						|
                                 // that no copies outlive the function, not
 | 
						|
                                 // that the value cannot be locally captured.
 | 
						|
                                 !PointerMayBeCapturedBefore(A,
 | 
						|
                                   /* ReturnCaptures */ false,
 | 
						|
                                   /* StoreCaptures */ false, I, &DT)))
 | 
						|
          NoAliases.push_back(NewScopes[A]);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!NoAliases.empty())
 | 
						|
        NI->setMetadata(LLVMContext::MD_noalias,
 | 
						|
                        MDNode::concatenate(
 | 
						|
                            NI->getMetadata(LLVMContext::MD_noalias),
 | 
						|
                            MDNode::get(CalledFunc->getContext(), NoAliases)));
 | 
						|
 | 
						|
      // Next, we want to figure out all of the sets to which we might belong.
 | 
						|
      // We might belong to a set if the noalias argument is in the set of
 | 
						|
      // underlying objects. If there is some non-noalias argument in our list
 | 
						|
      // of underlying objects, then we cannot add a scope because the fact
 | 
						|
      // that some access does not alias with any set of our noalias arguments
 | 
						|
      // cannot itself guarantee that it does not alias with this access
 | 
						|
      // (because there is some pointer of unknown origin involved and the
 | 
						|
      // other access might also depend on this pointer). We also cannot add
 | 
						|
      // scopes to arbitrary functions unless we know they don't access any
 | 
						|
      // non-parameter pointer-values.
 | 
						|
      bool CanAddScopes = !UsesAliasingPtr;
 | 
						|
      if (CanAddScopes && IsFuncCall)
 | 
						|
        CanAddScopes = IsArgMemOnlyCall;
 | 
						|
 | 
						|
      if (CanAddScopes)
 | 
						|
        for (const Argument *A : NoAliasArgs) {
 | 
						|
          if (ObjSet.count(A))
 | 
						|
            Scopes.push_back(NewScopes[A]);
 | 
						|
        }
 | 
						|
 | 
						|
      if (!Scopes.empty())
 | 
						|
        NI->setMetadata(
 | 
						|
            LLVMContext::MD_alias_scope,
 | 
						|
            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
 | 
						|
                                MDNode::get(CalledFunc->getContext(), Scopes)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool MayContainThrowingOrExitingCall(Instruction *Begin,
 | 
						|
                                            Instruction *End) {
 | 
						|
 | 
						|
  assert(Begin->getParent() == End->getParent() &&
 | 
						|
         "Expected to be in same basic block!");
 | 
						|
  unsigned NumInstChecked = 0;
 | 
						|
  // Check that all instructions in the range [Begin, End) are guaranteed to
 | 
						|
  // transfer execution to successor.
 | 
						|
  for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
 | 
						|
    if (NumInstChecked++ > InlinerAttributeWindow ||
 | 
						|
        !isGuaranteedToTransferExecutionToSuccessor(&I))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
 | 
						|
 | 
						|
  AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
 | 
						|
  if (AB.empty())
 | 
						|
    return AB;
 | 
						|
  AttrBuilder Valid;
 | 
						|
  // Only allow these white listed attributes to be propagated back to the
 | 
						|
  // callee. This is because other attributes may only be valid on the call
 | 
						|
  // itself, i.e. attributes such as signext and zeroext.
 | 
						|
  if (auto DerefBytes = AB.getDereferenceableBytes())
 | 
						|
    Valid.addDereferenceableAttr(DerefBytes);
 | 
						|
  if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
 | 
						|
    Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
 | 
						|
  if (AB.contains(Attribute::NoAlias))
 | 
						|
    Valid.addAttribute(Attribute::NoAlias);
 | 
						|
  if (AB.contains(Attribute::NonNull))
 | 
						|
    Valid.addAttribute(Attribute::NonNull);
 | 
						|
  return Valid;
 | 
						|
}
 | 
						|
 | 
						|
static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
 | 
						|
  if (!UpdateReturnAttributes)
 | 
						|
    return;
 | 
						|
 | 
						|
  AttrBuilder Valid = IdentifyValidAttributes(CB);
 | 
						|
  if (Valid.empty())
 | 
						|
    return;
 | 
						|
  auto *CalledFunction = CB.getCalledFunction();
 | 
						|
  auto &Context = CalledFunction->getContext();
 | 
						|
 | 
						|
  for (auto &BB : *CalledFunction) {
 | 
						|
    auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
 | 
						|
    if (!RI || !isa<CallBase>(RI->getOperand(0)))
 | 
						|
      continue;
 | 
						|
    auto *RetVal = cast<CallBase>(RI->getOperand(0));
 | 
						|
    // Sanity check that the cloned RetVal exists and is a call, otherwise we
 | 
						|
    // cannot add the attributes on the cloned RetVal.
 | 
						|
    // Simplification during inlining could have transformed the cloned
 | 
						|
    // instruction.
 | 
						|
    auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
 | 
						|
    if (!NewRetVal)
 | 
						|
      continue;
 | 
						|
    // Backward propagation of attributes to the returned value may be incorrect
 | 
						|
    // if it is control flow dependent.
 | 
						|
    // Consider:
 | 
						|
    // @callee {
 | 
						|
    //  %rv = call @foo()
 | 
						|
    //  %rv2 = call @bar()
 | 
						|
    //  if (%rv2 != null)
 | 
						|
    //    return %rv2
 | 
						|
    //  if (%rv == null)
 | 
						|
    //    exit()
 | 
						|
    //  return %rv
 | 
						|
    // }
 | 
						|
    // caller() {
 | 
						|
    //   %val = call nonnull @callee()
 | 
						|
    // }
 | 
						|
    // Here we cannot add the nonnull attribute on either foo or bar. So, we
 | 
						|
    // limit the check to both RetVal and RI are in the same basic block and
 | 
						|
    // there are no throwing/exiting instructions between these instructions.
 | 
						|
    if (RI->getParent() != RetVal->getParent() ||
 | 
						|
        MayContainThrowingOrExitingCall(RetVal, RI))
 | 
						|
      continue;
 | 
						|
    // Add to the existing attributes of NewRetVal, i.e. the cloned call
 | 
						|
    // instruction.
 | 
						|
    // NB! When we have the same attribute already existing on NewRetVal, but
 | 
						|
    // with a differing value, the AttributeList's merge API honours the already
 | 
						|
    // existing attribute value (i.e. attributes such as dereferenceable,
 | 
						|
    // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
 | 
						|
    AttributeList AL = NewRetVal->getAttributes();
 | 
						|
    AttributeList NewAL =
 | 
						|
        AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
 | 
						|
    NewRetVal->setAttributes(NewAL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If the inlined function has non-byval align arguments, then
 | 
						|
/// add @llvm.assume-based alignment assumptions to preserve this information.
 | 
						|
static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
 | 
						|
  if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
 | 
						|
    return;
 | 
						|
 | 
						|
  AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
 | 
						|
  auto &DL = CB.getCaller()->getParent()->getDataLayout();
 | 
						|
 | 
						|
  // To avoid inserting redundant assumptions, we should check for assumptions
 | 
						|
  // already in the caller. To do this, we might need a DT of the caller.
 | 
						|
  DominatorTree DT;
 | 
						|
  bool DTCalculated = false;
 | 
						|
 | 
						|
  Function *CalledFunc = CB.getCalledFunction();
 | 
						|
  for (Argument &Arg : CalledFunc->args()) {
 | 
						|
    unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
 | 
						|
    if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
 | 
						|
      if (!DTCalculated) {
 | 
						|
        DT.recalculate(*CB.getCaller());
 | 
						|
        DTCalculated = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we can already prove the asserted alignment in the context of the
 | 
						|
      // caller, then don't bother inserting the assumption.
 | 
						|
      Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
 | 
						|
      if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
 | 
						|
        continue;
 | 
						|
 | 
						|
      CallInst *NewAsmp =
 | 
						|
          IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
 | 
						|
      AC->registerAssumption(cast<AssumeInst>(NewAsmp));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Once we have cloned code over from a callee into the caller,
 | 
						|
/// update the specified callgraph to reflect the changes we made.
 | 
						|
/// Note that it's possible that not all code was copied over, so only
 | 
						|
/// some edges of the callgraph may remain.
 | 
						|
static void UpdateCallGraphAfterInlining(CallBase &CB,
 | 
						|
                                         Function::iterator FirstNewBlock,
 | 
						|
                                         ValueToValueMapTy &VMap,
 | 
						|
                                         InlineFunctionInfo &IFI) {
 | 
						|
  CallGraph &CG = *IFI.CG;
 | 
						|
  const Function *Caller = CB.getCaller();
 | 
						|
  const Function *Callee = CB.getCalledFunction();
 | 
						|
  CallGraphNode *CalleeNode = CG[Callee];
 | 
						|
  CallGraphNode *CallerNode = CG[Caller];
 | 
						|
 | 
						|
  // Since we inlined some uninlined call sites in the callee into the caller,
 | 
						|
  // add edges from the caller to all of the callees of the callee.
 | 
						|
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
 | 
						|
 | 
						|
  // Consider the case where CalleeNode == CallerNode.
 | 
						|
  CallGraphNode::CalledFunctionsVector CallCache;
 | 
						|
  if (CalleeNode == CallerNode) {
 | 
						|
    CallCache.assign(I, E);
 | 
						|
    I = CallCache.begin();
 | 
						|
    E = CallCache.end();
 | 
						|
  }
 | 
						|
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    // Skip 'refererence' call records.
 | 
						|
    if (!I->first)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const Value *OrigCall = *I->first;
 | 
						|
 | 
						|
    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
 | 
						|
    // Only copy the edge if the call was inlined!
 | 
						|
    if (VMI == VMap.end() || VMI->second == nullptr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the call was inlined, but then constant folded, there is no edge to
 | 
						|
    // add.  Check for this case.
 | 
						|
    auto *NewCall = dyn_cast<CallBase>(VMI->second);
 | 
						|
    if (!NewCall)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We do not treat intrinsic calls like real function calls because we
 | 
						|
    // expect them to become inline code; do not add an edge for an intrinsic.
 | 
						|
    if (NewCall->getCalledFunction() &&
 | 
						|
        NewCall->getCalledFunction()->isIntrinsic())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Remember that this call site got inlined for the client of
 | 
						|
    // InlineFunction.
 | 
						|
    IFI.InlinedCalls.push_back(NewCall);
 | 
						|
 | 
						|
    // It's possible that inlining the callsite will cause it to go from an
 | 
						|
    // indirect to a direct call by resolving a function pointer.  If this
 | 
						|
    // happens, set the callee of the new call site to a more precise
 | 
						|
    // destination.  This can also happen if the call graph node of the caller
 | 
						|
    // was just unnecessarily imprecise.
 | 
						|
    if (!I->second->getFunction())
 | 
						|
      if (Function *F = NewCall->getCalledFunction()) {
 | 
						|
        // Indirect call site resolved to direct call.
 | 
						|
        CallerNode->addCalledFunction(NewCall, CG[F]);
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    CallerNode->addCalledFunction(NewCall, I->second);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the call graph by deleting the edge from Callee to Caller.  We must
 | 
						|
  // do this after the loop above in case Caller and Callee are the same.
 | 
						|
  CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
 | 
						|
}
 | 
						|
 | 
						|
static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
 | 
						|
                                    BasicBlock *InsertBlock,
 | 
						|
                                    InlineFunctionInfo &IFI) {
 | 
						|
  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
 | 
						|
  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
 | 
						|
 | 
						|
  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
 | 
						|
 | 
						|
  // Always generate a memcpy of alignment 1 here because we don't know
 | 
						|
  // the alignment of the src pointer.  Other optimizations can infer
 | 
						|
  // better alignment.
 | 
						|
  Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
 | 
						|
                       /*SrcAlign*/ Align(1), Size);
 | 
						|
}
 | 
						|
 | 
						|
/// When inlining a call site that has a byval argument,
 | 
						|
/// we have to make the implicit memcpy explicit by adding it.
 | 
						|
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
 | 
						|
                                  const Function *CalledFunc,
 | 
						|
                                  InlineFunctionInfo &IFI,
 | 
						|
                                  unsigned ByValAlignment) {
 | 
						|
  PointerType *ArgTy = cast<PointerType>(Arg->getType());
 | 
						|
  Type *AggTy = ArgTy->getElementType();
 | 
						|
 | 
						|
  Function *Caller = TheCall->getFunction();
 | 
						|
  const DataLayout &DL = Caller->getParent()->getDataLayout();
 | 
						|
 | 
						|
  // If the called function is readonly, then it could not mutate the caller's
 | 
						|
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
 | 
						|
  // temporary.
 | 
						|
  if (CalledFunc->onlyReadsMemory()) {
 | 
						|
    // If the byval argument has a specified alignment that is greater than the
 | 
						|
    // passed in pointer, then we either have to round up the input pointer or
 | 
						|
    // give up on this transformation.
 | 
						|
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
 | 
						|
      return Arg;
 | 
						|
 | 
						|
    AssumptionCache *AC =
 | 
						|
        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
 | 
						|
 | 
						|
    // If the pointer is already known to be sufficiently aligned, or if we can
 | 
						|
    // round it up to a larger alignment, then we don't need a temporary.
 | 
						|
    if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
 | 
						|
                                   AC) >= ByValAlignment)
 | 
						|
      return Arg;
 | 
						|
 | 
						|
    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
 | 
						|
    // for code quality, but rarely happens and is required for correctness.
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the alloca.  If we have DataLayout, use nice alignment.
 | 
						|
  Align Alignment(DL.getPrefTypeAlignment(AggTy));
 | 
						|
 | 
						|
  // If the byval had an alignment specified, we *must* use at least that
 | 
						|
  // alignment, as it is required by the byval argument (and uses of the
 | 
						|
  // pointer inside the callee).
 | 
						|
  Alignment = max(Alignment, MaybeAlign(ByValAlignment));
 | 
						|
 | 
						|
  Value *NewAlloca =
 | 
						|
      new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
 | 
						|
                     Arg->getName(), &*Caller->begin()->begin());
 | 
						|
  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
 | 
						|
 | 
						|
  // Uses of the argument in the function should use our new alloca
 | 
						|
  // instead.
 | 
						|
  return NewAlloca;
 | 
						|
}
 | 
						|
 | 
						|
// Check whether this Value is used by a lifetime intrinsic.
 | 
						|
static bool isUsedByLifetimeMarker(Value *V) {
 | 
						|
  for (User *U : V->users())
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
 | 
						|
      if (II->isLifetimeStartOrEnd())
 | 
						|
        return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Check whether the given alloca already has
 | 
						|
// lifetime.start or lifetime.end intrinsics.
 | 
						|
static bool hasLifetimeMarkers(AllocaInst *AI) {
 | 
						|
  Type *Ty = AI->getType();
 | 
						|
  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
 | 
						|
                                       Ty->getPointerAddressSpace());
 | 
						|
  if (Ty == Int8PtrTy)
 | 
						|
    return isUsedByLifetimeMarker(AI);
 | 
						|
 | 
						|
  // Do a scan to find all the casts to i8*.
 | 
						|
  for (User *U : AI->users()) {
 | 
						|
    if (U->getType() != Int8PtrTy) continue;
 | 
						|
    if (U->stripPointerCasts() != AI) continue;
 | 
						|
    if (isUsedByLifetimeMarker(U))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
 | 
						|
/// block. Allocas used in inalloca calls and allocas of dynamic array size
 | 
						|
/// cannot be static.
 | 
						|
static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
 | 
						|
  return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
 | 
						|
/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
 | 
						|
static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
 | 
						|
                               LLVMContext &Ctx,
 | 
						|
                               DenseMap<const MDNode *, MDNode *> &IANodes) {
 | 
						|
  auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
 | 
						|
  return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
 | 
						|
                         OrigDL.getScope(), IA);
 | 
						|
}
 | 
						|
 | 
						|
/// Update inlined instructions' line numbers to
 | 
						|
/// to encode location where these instructions are inlined.
 | 
						|
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
 | 
						|
                             Instruction *TheCall, bool CalleeHasDebugInfo) {
 | 
						|
  const DebugLoc &TheCallDL = TheCall->getDebugLoc();
 | 
						|
  if (!TheCallDL)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto &Ctx = Fn->getContext();
 | 
						|
  DILocation *InlinedAtNode = TheCallDL;
 | 
						|
 | 
						|
  // Create a unique call site, not to be confused with any other call from the
 | 
						|
  // same location.
 | 
						|
  InlinedAtNode = DILocation::getDistinct(
 | 
						|
      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
 | 
						|
      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
 | 
						|
 | 
						|
  // Cache the inlined-at nodes as they're built so they are reused, without
 | 
						|
  // this every instruction's inlined-at chain would become distinct from each
 | 
						|
  // other.
 | 
						|
  DenseMap<const MDNode *, MDNode *> IANodes;
 | 
						|
 | 
						|
  // Check if we are not generating inline line tables and want to use
 | 
						|
  // the call site location instead.
 | 
						|
  bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
 | 
						|
 | 
						|
  for (; FI != Fn->end(); ++FI) {
 | 
						|
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
 | 
						|
         BI != BE; ++BI) {
 | 
						|
      // Loop metadata needs to be updated so that the start and end locs
 | 
						|
      // reference inlined-at locations.
 | 
						|
      auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
 | 
						|
                                   const DILocation &Loc) -> DILocation * {
 | 
						|
        return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
 | 
						|
      };
 | 
						|
      updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
 | 
						|
 | 
						|
      if (!NoInlineLineTables)
 | 
						|
        if (DebugLoc DL = BI->getDebugLoc()) {
 | 
						|
          DebugLoc IDL =
 | 
						|
              inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
 | 
						|
          BI->setDebugLoc(IDL);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      if (CalleeHasDebugInfo && !NoInlineLineTables)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the inlined instruction has no line number, or if inline info
 | 
						|
      // is not being generated, make it look as if it originates from the call
 | 
						|
      // location. This is important for ((__always_inline, __nodebug__))
 | 
						|
      // functions which must use caller location for all instructions in their
 | 
						|
      // function body.
 | 
						|
 | 
						|
      // Don't update static allocas, as they may get moved later.
 | 
						|
      if (auto *AI = dyn_cast<AllocaInst>(BI))
 | 
						|
        if (allocaWouldBeStaticInEntry(AI))
 | 
						|
          continue;
 | 
						|
 | 
						|
      BI->setDebugLoc(TheCallDL);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove debug info intrinsics if we're not keeping inline info.
 | 
						|
    if (NoInlineLineTables) {
 | 
						|
      BasicBlock::iterator BI = FI->begin();
 | 
						|
      while (BI != FI->end()) {
 | 
						|
        if (isa<DbgInfoIntrinsic>(BI)) {
 | 
						|
          BI = BI->eraseFromParent();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ++BI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the block frequencies of the caller after a callee has been inlined.
 | 
						|
///
 | 
						|
/// Each block cloned into the caller has its block frequency scaled by the
 | 
						|
/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
 | 
						|
/// callee's entry block gets the same frequency as the callsite block and the
 | 
						|
/// relative frequencies of all cloned blocks remain the same after cloning.
 | 
						|
static void updateCallerBFI(BasicBlock *CallSiteBlock,
 | 
						|
                            const ValueToValueMapTy &VMap,
 | 
						|
                            BlockFrequencyInfo *CallerBFI,
 | 
						|
                            BlockFrequencyInfo *CalleeBFI,
 | 
						|
                            const BasicBlock &CalleeEntryBlock) {
 | 
						|
  SmallPtrSet<BasicBlock *, 16> ClonedBBs;
 | 
						|
  for (auto Entry : VMap) {
 | 
						|
    if (!isa<BasicBlock>(Entry.first) || !Entry.second)
 | 
						|
      continue;
 | 
						|
    auto *OrigBB = cast<BasicBlock>(Entry.first);
 | 
						|
    auto *ClonedBB = cast<BasicBlock>(Entry.second);
 | 
						|
    uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
 | 
						|
    if (!ClonedBBs.insert(ClonedBB).second) {
 | 
						|
      // Multiple blocks in the callee might get mapped to one cloned block in
 | 
						|
      // the caller since we prune the callee as we clone it. When that happens,
 | 
						|
      // we want to use the maximum among the original blocks' frequencies.
 | 
						|
      uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
 | 
						|
      if (NewFreq > Freq)
 | 
						|
        Freq = NewFreq;
 | 
						|
    }
 | 
						|
    CallerBFI->setBlockFreq(ClonedBB, Freq);
 | 
						|
  }
 | 
						|
  BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
 | 
						|
  CallerBFI->setBlockFreqAndScale(
 | 
						|
      EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
 | 
						|
      ClonedBBs);
 | 
						|
}
 | 
						|
 | 
						|
/// Update the branch metadata for cloned call instructions.
 | 
						|
static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
 | 
						|
                              const ProfileCount &CalleeEntryCount,
 | 
						|
                              const CallBase &TheCall, ProfileSummaryInfo *PSI,
 | 
						|
                              BlockFrequencyInfo *CallerBFI) {
 | 
						|
  if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
 | 
						|
      CalleeEntryCount.getCount() < 1)
 | 
						|
    return;
 | 
						|
  auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
 | 
						|
  int64_t CallCount =
 | 
						|
      std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
 | 
						|
  updateProfileCallee(Callee, -CallCount, &VMap);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::updateProfileCallee(
 | 
						|
    Function *Callee, int64_t entryDelta,
 | 
						|
    const ValueMap<const Value *, WeakTrackingVH> *VMap) {
 | 
						|
  auto CalleeCount = Callee->getEntryCount();
 | 
						|
  if (!CalleeCount.hasValue())
 | 
						|
    return;
 | 
						|
 | 
						|
  uint64_t priorEntryCount = CalleeCount.getCount();
 | 
						|
  uint64_t newEntryCount;
 | 
						|
 | 
						|
  // Since CallSiteCount is an estimate, it could exceed the original callee
 | 
						|
  // count and has to be set to 0 so guard against underflow.
 | 
						|
  if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
 | 
						|
    newEntryCount = 0;
 | 
						|
  else
 | 
						|
    newEntryCount = priorEntryCount + entryDelta;
 | 
						|
 | 
						|
  // During inlining ?
 | 
						|
  if (VMap) {
 | 
						|
    uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
 | 
						|
    for (auto Entry : *VMap)
 | 
						|
      if (isa<CallInst>(Entry.first))
 | 
						|
        if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
 | 
						|
          CI->updateProfWeight(cloneEntryCount, priorEntryCount);
 | 
						|
  }
 | 
						|
 | 
						|
  if (entryDelta) {
 | 
						|
    Callee->setEntryCount(newEntryCount);
 | 
						|
 | 
						|
    for (BasicBlock &BB : *Callee)
 | 
						|
      // No need to update the callsite if it is pruned during inlining.
 | 
						|
      if (!VMap || VMap->count(&BB))
 | 
						|
        for (Instruction &I : BB)
 | 
						|
          if (CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
            CI->updateProfWeight(newEntryCount, priorEntryCount);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// An operand bundle "clang.arc.attachedcall" on a call indicates the call
 | 
						|
/// result is implicitly consumed by a call to retainRV or claimRV immediately
 | 
						|
/// after the call. This function inlines the retainRV/claimRV calls.
 | 
						|
///
 | 
						|
/// There are three cases to consider:
 | 
						|
///
 | 
						|
/// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
 | 
						|
///    object in the callee return block, the autoreleaseRV call and the
 | 
						|
///    retainRV/claimRV call in the caller cancel out. If the call in the caller
 | 
						|
///    is a claimRV call, a call to objc_release is emitted.
 | 
						|
///
 | 
						|
/// 2. If there is a call in the callee return block that doesn't have operand
 | 
						|
///    bundle "clang.arc.attachedcall", the operand bundle on the original call
 | 
						|
///    is transferred to the call in the callee.
 | 
						|
///
 | 
						|
/// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
 | 
						|
///    a retainRV call.
 | 
						|
static void
 | 
						|
inlineRetainOrClaimRVCalls(CallBase &CB,
 | 
						|
                           const SmallVectorImpl<ReturnInst *> &Returns) {
 | 
						|
  Module *Mod = CB.getModule();
 | 
						|
  bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true),
 | 
						|
       IsClaimRV = !IsRetainRV;
 | 
						|
 | 
						|
  for (auto *RI : Returns) {
 | 
						|
    Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
 | 
						|
    BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
 | 
						|
    BasicBlock::reverse_iterator EI = RI->getParent()->rend();
 | 
						|
    bool InsertRetainCall = IsRetainRV;
 | 
						|
    IRBuilder<> Builder(RI->getContext());
 | 
						|
 | 
						|
    // Walk backwards through the basic block looking for either a matching
 | 
						|
    // autoreleaseRV call or an unannotated call.
 | 
						|
    for (; I != EI;) {
 | 
						|
      auto CurI = I++;
 | 
						|
 | 
						|
      // Ignore casts.
 | 
						|
      if (isa<CastInst>(*CurI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
 | 
						|
            II->hasNUses(0) &&
 | 
						|
            objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
 | 
						|
          // If we've found a matching authoreleaseRV call:
 | 
						|
          // - If claimRV is attached to the call, insert a call to objc_release
 | 
						|
          //   and erase the autoreleaseRV call.
 | 
						|
          // - If retainRV is attached to the call, just erase the autoreleaseRV
 | 
						|
          //   call.
 | 
						|
          if (IsClaimRV) {
 | 
						|
            Builder.SetInsertPoint(II);
 | 
						|
            Function *IFn =
 | 
						|
                Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
 | 
						|
            Value *BC =
 | 
						|
                Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
 | 
						|
            Builder.CreateCall(IFn, BC, "");
 | 
						|
          }
 | 
						|
          II->eraseFromParent();
 | 
						|
          InsertRetainCall = false;
 | 
						|
        }
 | 
						|
      } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
 | 
						|
        if (objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
 | 
						|
            !objcarc::hasAttachedCallOpBundle(CI)) {
 | 
						|
          // If we've found an unannotated call that defines RetOpnd, add a
 | 
						|
          // "clang.arc.attachedcall" operand bundle.
 | 
						|
          Value *BundleArgs[] = {ConstantInt::get(
 | 
						|
              Builder.getInt64Ty(),
 | 
						|
              objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
 | 
						|
          OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
 | 
						|
          auto *NewCall = CallBase::addOperandBundle(
 | 
						|
              CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
 | 
						|
          NewCall->copyMetadata(*CI);
 | 
						|
          CI->replaceAllUsesWith(NewCall);
 | 
						|
          CI->eraseFromParent();
 | 
						|
          InsertRetainCall = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InsertRetainCall) {
 | 
						|
      // The retainRV is attached to the call and we've failed to find a
 | 
						|
      // matching autoreleaseRV or an annotated call in the callee. Emit a call
 | 
						|
      // to objc_retain.
 | 
						|
      Builder.SetInsertPoint(RI);
 | 
						|
      Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
 | 
						|
      Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
 | 
						|
      Builder.CreateCall(IFn, BC, "");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This function inlines the called function into the basic block of the
 | 
						|
/// caller. This returns false if it is not possible to inline this call.
 | 
						|
/// The program is still in a well defined state if this occurs though.
 | 
						|
///
 | 
						|
/// Note that this only does one level of inlining.  For example, if the
 | 
						|
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | 
						|
/// exists in the instruction stream.  Similarly this will inline a recursive
 | 
						|
/// function by one level.
 | 
						|
llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
 | 
						|
                                        AAResults *CalleeAAR,
 | 
						|
                                        bool InsertLifetime,
 | 
						|
                                        Function *ForwardVarArgsTo) {
 | 
						|
  assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
 | 
						|
 | 
						|
  // FIXME: we don't inline callbr yet.
 | 
						|
  if (isa<CallBrInst>(CB))
 | 
						|
    return InlineResult::failure("We don't inline callbr yet.");
 | 
						|
 | 
						|
  // If IFI has any state in it, zap it before we fill it in.
 | 
						|
  IFI.reset();
 | 
						|
 | 
						|
  Function *CalledFunc = CB.getCalledFunction();
 | 
						|
  if (!CalledFunc ||               // Can't inline external function or indirect
 | 
						|
      CalledFunc->isDeclaration()) // call!
 | 
						|
    return InlineResult::failure("external or indirect");
 | 
						|
 | 
						|
  // The inliner does not know how to inline through calls with operand bundles
 | 
						|
  // in general ...
 | 
						|
  if (CB.hasOperandBundles()) {
 | 
						|
    for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
 | 
						|
      uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
 | 
						|
      // ... but it knows how to inline through "deopt" operand bundles ...
 | 
						|
      if (Tag == LLVMContext::OB_deopt)
 | 
						|
        continue;
 | 
						|
      // ... and "funclet" operand bundles.
 | 
						|
      if (Tag == LLVMContext::OB_funclet)
 | 
						|
        continue;
 | 
						|
      if (Tag == LLVMContext::OB_clang_arc_attachedcall)
 | 
						|
        continue;
 | 
						|
 | 
						|
      return InlineResult::failure("unsupported operand bundle");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the call to the callee cannot throw, set the 'nounwind' flag on any
 | 
						|
  // calls that we inline.
 | 
						|
  bool MarkNoUnwind = CB.doesNotThrow();
 | 
						|
 | 
						|
  BasicBlock *OrigBB = CB.getParent();
 | 
						|
  Function *Caller = OrigBB->getParent();
 | 
						|
 | 
						|
  // GC poses two hazards to inlining, which only occur when the callee has GC:
 | 
						|
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
 | 
						|
  //     caller.
 | 
						|
  //  2. If the caller has a differing GC, it is invalid to inline.
 | 
						|
  if (CalledFunc->hasGC()) {
 | 
						|
    if (!Caller->hasGC())
 | 
						|
      Caller->setGC(CalledFunc->getGC());
 | 
						|
    else if (CalledFunc->getGC() != Caller->getGC())
 | 
						|
      return InlineResult::failure("incompatible GC");
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the personality function from the callee if it contains a landing pad.
 | 
						|
  Constant *CalledPersonality =
 | 
						|
      CalledFunc->hasPersonalityFn()
 | 
						|
          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
 | 
						|
          : nullptr;
 | 
						|
 | 
						|
  // Find the personality function used by the landing pads of the caller. If it
 | 
						|
  // exists, then check to see that it matches the personality function used in
 | 
						|
  // the callee.
 | 
						|
  Constant *CallerPersonality =
 | 
						|
      Caller->hasPersonalityFn()
 | 
						|
          ? Caller->getPersonalityFn()->stripPointerCasts()
 | 
						|
          : nullptr;
 | 
						|
  if (CalledPersonality) {
 | 
						|
    if (!CallerPersonality)
 | 
						|
      Caller->setPersonalityFn(CalledPersonality);
 | 
						|
    // If the personality functions match, then we can perform the
 | 
						|
    // inlining. Otherwise, we can't inline.
 | 
						|
    // TODO: This isn't 100% true. Some personality functions are proper
 | 
						|
    //       supersets of others and can be used in place of the other.
 | 
						|
    else if (CalledPersonality != CallerPersonality)
 | 
						|
      return InlineResult::failure("incompatible personality");
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to figure out which funclet the callsite was in so that we may
 | 
						|
  // properly nest the callee.
 | 
						|
  Instruction *CallSiteEHPad = nullptr;
 | 
						|
  if (CallerPersonality) {
 | 
						|
    EHPersonality Personality = classifyEHPersonality(CallerPersonality);
 | 
						|
    if (isScopedEHPersonality(Personality)) {
 | 
						|
      Optional<OperandBundleUse> ParentFunclet =
 | 
						|
          CB.getOperandBundle(LLVMContext::OB_funclet);
 | 
						|
      if (ParentFunclet)
 | 
						|
        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
 | 
						|
 | 
						|
      // OK, the inlining site is legal.  What about the target function?
 | 
						|
 | 
						|
      if (CallSiteEHPad) {
 | 
						|
        if (Personality == EHPersonality::MSVC_CXX) {
 | 
						|
          // The MSVC personality cannot tolerate catches getting inlined into
 | 
						|
          // cleanup funclets.
 | 
						|
          if (isa<CleanupPadInst>(CallSiteEHPad)) {
 | 
						|
            // Ok, the call site is within a cleanuppad.  Let's check the callee
 | 
						|
            // for catchpads.
 | 
						|
            for (const BasicBlock &CalledBB : *CalledFunc) {
 | 
						|
              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
 | 
						|
                return InlineResult::failure("catch in cleanup funclet");
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else if (isAsynchronousEHPersonality(Personality)) {
 | 
						|
          // SEH is even less tolerant, there may not be any sort of exceptional
 | 
						|
          // funclet in the callee.
 | 
						|
          for (const BasicBlock &CalledBB : *CalledFunc) {
 | 
						|
            if (CalledBB.isEHPad())
 | 
						|
              return InlineResult::failure("SEH in cleanup funclet");
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine if we are dealing with a call in an EHPad which does not unwind
 | 
						|
  // to caller.
 | 
						|
  bool EHPadForCallUnwindsLocally = false;
 | 
						|
  if (CallSiteEHPad && isa<CallInst>(CB)) {
 | 
						|
    UnwindDestMemoTy FuncletUnwindMap;
 | 
						|
    Value *CallSiteUnwindDestToken =
 | 
						|
        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
 | 
						|
 | 
						|
    EHPadForCallUnwindsLocally =
 | 
						|
        CallSiteUnwindDestToken &&
 | 
						|
        !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get an iterator to the last basic block in the function, which will have
 | 
						|
  // the new function inlined after it.
 | 
						|
  Function::iterator LastBlock = --Caller->end();
 | 
						|
 | 
						|
  // Make sure to capture all of the return instructions from the cloned
 | 
						|
  // function.
 | 
						|
  SmallVector<ReturnInst*, 8> Returns;
 | 
						|
  ClonedCodeInfo InlinedFunctionInfo;
 | 
						|
  Function::iterator FirstNewBlock;
 | 
						|
 | 
						|
  { // Scope to destroy VMap after cloning.
 | 
						|
    ValueToValueMapTy VMap;
 | 
						|
    // Keep a list of pair (dst, src) to emit byval initializations.
 | 
						|
    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
 | 
						|
 | 
						|
    // When inlining a function that contains noalias scope metadata,
 | 
						|
    // this metadata needs to be cloned so that the inlined blocks
 | 
						|
    // have different "unique scopes" at every call site.
 | 
						|
    // Track the metadata that must be cloned. Do this before other changes to
 | 
						|
    // the function, so that we do not get in trouble when inlining caller ==
 | 
						|
    // callee.
 | 
						|
    ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
 | 
						|
 | 
						|
    auto &DL = Caller->getParent()->getDataLayout();
 | 
						|
 | 
						|
    // Calculate the vector of arguments to pass into the function cloner, which
 | 
						|
    // matches up the formal to the actual argument values.
 | 
						|
    auto AI = CB.arg_begin();
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    for (Function::arg_iterator I = CalledFunc->arg_begin(),
 | 
						|
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
 | 
						|
      Value *ActualArg = *AI;
 | 
						|
 | 
						|
      // When byval arguments actually inlined, we need to make the copy implied
 | 
						|
      // by them explicit.  However, we don't do this if the callee is readonly
 | 
						|
      // or readnone, because the copy would be unneeded: the callee doesn't
 | 
						|
      // modify the struct.
 | 
						|
      if (CB.isByValArgument(ArgNo)) {
 | 
						|
        ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
 | 
						|
                                        CalledFunc->getParamAlignment(ArgNo));
 | 
						|
        if (ActualArg != *AI)
 | 
						|
          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
 | 
						|
      }
 | 
						|
 | 
						|
      VMap[&*I] = ActualArg;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: Remove this when users have been updated to the assume bundles.
 | 
						|
    // Add alignment assumptions if necessary. We do this before the inlined
 | 
						|
    // instructions are actually cloned into the caller so that we can easily
 | 
						|
    // check what will be known at the start of the inlined code.
 | 
						|
    AddAlignmentAssumptions(CB, IFI);
 | 
						|
 | 
						|
    AssumptionCache *AC =
 | 
						|
        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
 | 
						|
 | 
						|
    /// Preserve all attributes on of the call and its parameters.
 | 
						|
    salvageKnowledge(&CB, AC);
 | 
						|
 | 
						|
    // We want the inliner to prune the code as it copies.  We would LOVE to
 | 
						|
    // have no dead or constant instructions leftover after inlining occurs
 | 
						|
    // (which can happen, e.g., because an argument was constant), but we'll be
 | 
						|
    // happy with whatever the cloner can do.
 | 
						|
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
 | 
						|
                              /*ModuleLevelChanges=*/false, Returns, ".i",
 | 
						|
                              &InlinedFunctionInfo, &CB);
 | 
						|
    // Remember the first block that is newly cloned over.
 | 
						|
    FirstNewBlock = LastBlock; ++FirstNewBlock;
 | 
						|
 | 
						|
    // Insert retainRV/clainRV runtime calls.
 | 
						|
    if (objcarc::hasAttachedCallOpBundle(&CB))
 | 
						|
      inlineRetainOrClaimRVCalls(CB, Returns);
 | 
						|
 | 
						|
    // Updated caller/callee profiles only when requested. For sample loader
 | 
						|
    // inlining, the context-sensitive inlinee profile doesn't need to be
 | 
						|
    // subtracted from callee profile, and the inlined clone also doesn't need
 | 
						|
    // to be scaled based on call site count.
 | 
						|
    if (IFI.UpdateProfile) {
 | 
						|
      if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
 | 
						|
        // Update the BFI of blocks cloned into the caller.
 | 
						|
        updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
 | 
						|
                        CalledFunc->front());
 | 
						|
 | 
						|
      updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
 | 
						|
                        IFI.PSI, IFI.CallerBFI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Inject byval arguments initialization.
 | 
						|
    for (std::pair<Value*, Value*> &Init : ByValInit)
 | 
						|
      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
 | 
						|
                              &*FirstNewBlock, IFI);
 | 
						|
 | 
						|
    Optional<OperandBundleUse> ParentDeopt =
 | 
						|
        CB.getOperandBundle(LLVMContext::OB_deopt);
 | 
						|
    if (ParentDeopt) {
 | 
						|
      SmallVector<OperandBundleDef, 2> OpDefs;
 | 
						|
 | 
						|
      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
 | 
						|
        CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
 | 
						|
        if (!ICS)
 | 
						|
          continue; // instruction was DCE'd or RAUW'ed to undef
 | 
						|
 | 
						|
        OpDefs.clear();
 | 
						|
 | 
						|
        OpDefs.reserve(ICS->getNumOperandBundles());
 | 
						|
 | 
						|
        for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
 | 
						|
             ++COBi) {
 | 
						|
          auto ChildOB = ICS->getOperandBundleAt(COBi);
 | 
						|
          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
 | 
						|
            // If the inlined call has other operand bundles, let them be
 | 
						|
            OpDefs.emplace_back(ChildOB);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
 | 
						|
          // It may be useful to separate this logic (of handling operand
 | 
						|
          // bundles) out to a separate "policy" component if this gets crowded.
 | 
						|
          // Prepend the parent's deoptimization continuation to the newly
 | 
						|
          // inlined call's deoptimization continuation.
 | 
						|
          std::vector<Value *> MergedDeoptArgs;
 | 
						|
          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
 | 
						|
                                  ChildOB.Inputs.size());
 | 
						|
 | 
						|
          llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
 | 
						|
          llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
 | 
						|
 | 
						|
          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
 | 
						|
        }
 | 
						|
 | 
						|
        Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
 | 
						|
 | 
						|
        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
 | 
						|
        // this even if the call returns void.
 | 
						|
        ICS->replaceAllUsesWith(NewI);
 | 
						|
 | 
						|
        VH = nullptr;
 | 
						|
        ICS->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Update the callgraph if requested.
 | 
						|
    if (IFI.CG)
 | 
						|
      UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
 | 
						|
 | 
						|
    // For 'nodebug' functions, the associated DISubprogram is always null.
 | 
						|
    // Conservatively avoid propagating the callsite debug location to
 | 
						|
    // instructions inlined from a function whose DISubprogram is not null.
 | 
						|
    fixupLineNumbers(Caller, FirstNewBlock, &CB,
 | 
						|
                     CalledFunc->getSubprogram() != nullptr);
 | 
						|
 | 
						|
    // Now clone the inlined noalias scope metadata.
 | 
						|
    SAMetadataCloner.clone();
 | 
						|
    SAMetadataCloner.remap(VMap);
 | 
						|
 | 
						|
    // Add noalias metadata if necessary.
 | 
						|
    AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
 | 
						|
 | 
						|
    // Clone return attributes on the callsite into the calls within the inlined
 | 
						|
    // function which feed into its return value.
 | 
						|
    AddReturnAttributes(CB, VMap);
 | 
						|
 | 
						|
    // Propagate metadata on the callsite if necessary.
 | 
						|
    PropagateCallSiteMetadata(CB, VMap);
 | 
						|
 | 
						|
    // Register any cloned assumptions.
 | 
						|
    if (IFI.GetAssumptionCache)
 | 
						|
      for (BasicBlock &NewBlock :
 | 
						|
           make_range(FirstNewBlock->getIterator(), Caller->end()))
 | 
						|
        for (Instruction &I : NewBlock)
 | 
						|
          if (auto *II = dyn_cast<AssumeInst>(&I))
 | 
						|
            IFI.GetAssumptionCache(*Caller).registerAssumption(II);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any alloca instructions in the block that used to be the entry
 | 
						|
  // block for the callee, move them to the entry block of the caller.  First
 | 
						|
  // calculate which instruction they should be inserted before.  We insert the
 | 
						|
  // instructions at the end of the current alloca list.
 | 
						|
  {
 | 
						|
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | 
						|
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | 
						|
         E = FirstNewBlock->end(); I != E; ) {
 | 
						|
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
 | 
						|
      if (!AI) continue;
 | 
						|
 | 
						|
      // If the alloca is now dead, remove it.  This often occurs due to code
 | 
						|
      // specialization.
 | 
						|
      if (AI->use_empty()) {
 | 
						|
        AI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!allocaWouldBeStaticInEntry(AI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Keep track of the static allocas that we inline into the caller.
 | 
						|
      IFI.StaticAllocas.push_back(AI);
 | 
						|
 | 
						|
      // Scan for the block of allocas that we can move over, and move them
 | 
						|
      // all at once.
 | 
						|
      while (isa<AllocaInst>(I) &&
 | 
						|
             !cast<AllocaInst>(I)->use_empty() &&
 | 
						|
             allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
 | 
						|
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
 | 
						|
      // Transfer all of the allocas over in a block.  Using splice means
 | 
						|
      // that the instructions aren't removed from the symbol table, then
 | 
						|
      // reinserted.
 | 
						|
      Caller->getEntryBlock().getInstList().splice(
 | 
						|
          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Value*,4> VarArgsToForward;
 | 
						|
  SmallVector<AttributeSet, 4> VarArgsAttrs;
 | 
						|
  for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
 | 
						|
       i < CB.getNumArgOperands(); i++) {
 | 
						|
    VarArgsToForward.push_back(CB.getArgOperand(i));
 | 
						|
    VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
 | 
						|
  }
 | 
						|
 | 
						|
  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
 | 
						|
  if (InlinedFunctionInfo.ContainsCalls) {
 | 
						|
    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(&CB))
 | 
						|
      CallSiteTailKind = CI->getTailCallKind();
 | 
						|
 | 
						|
    // For inlining purposes, the "notail" marker is the same as no marker.
 | 
						|
    if (CallSiteTailKind == CallInst::TCK_NoTail)
 | 
						|
      CallSiteTailKind = CallInst::TCK_None;
 | 
						|
 | 
						|
    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
 | 
						|
         ++BB) {
 | 
						|
      for (auto II = BB->begin(); II != BB->end();) {
 | 
						|
        Instruction &I = *II++;
 | 
						|
        CallInst *CI = dyn_cast<CallInst>(&I);
 | 
						|
        if (!CI)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Forward varargs from inlined call site to calls to the
 | 
						|
        // ForwardVarArgsTo function, if requested, and to musttail calls.
 | 
						|
        if (!VarArgsToForward.empty() &&
 | 
						|
            ((ForwardVarArgsTo &&
 | 
						|
              CI->getCalledFunction() == ForwardVarArgsTo) ||
 | 
						|
             CI->isMustTailCall())) {
 | 
						|
          // Collect attributes for non-vararg parameters.
 | 
						|
          AttributeList Attrs = CI->getAttributes();
 | 
						|
          SmallVector<AttributeSet, 8> ArgAttrs;
 | 
						|
          if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
 | 
						|
            for (unsigned ArgNo = 0;
 | 
						|
                 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
 | 
						|
              ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
 | 
						|
          }
 | 
						|
 | 
						|
          // Add VarArg attributes.
 | 
						|
          ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
 | 
						|
          Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
 | 
						|
                                     Attrs.getRetAttributes(), ArgAttrs);
 | 
						|
          // Add VarArgs to existing parameters.
 | 
						|
          SmallVector<Value *, 6> Params(CI->arg_operands());
 | 
						|
          Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
 | 
						|
          CallInst *NewCI = CallInst::Create(
 | 
						|
              CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
 | 
						|
          NewCI->setDebugLoc(CI->getDebugLoc());
 | 
						|
          NewCI->setAttributes(Attrs);
 | 
						|
          NewCI->setCallingConv(CI->getCallingConv());
 | 
						|
          CI->replaceAllUsesWith(NewCI);
 | 
						|
          CI->eraseFromParent();
 | 
						|
          CI = NewCI;
 | 
						|
        }
 | 
						|
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          InlinedDeoptimizeCalls |=
 | 
						|
              F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
 | 
						|
 | 
						|
        // We need to reduce the strength of any inlined tail calls.  For
 | 
						|
        // musttail, we have to avoid introducing potential unbounded stack
 | 
						|
        // growth.  For example, if functions 'f' and 'g' are mutually recursive
 | 
						|
        // with musttail, we can inline 'g' into 'f' so long as we preserve
 | 
						|
        // musttail on the cloned call to 'f'.  If either the inlined call site
 | 
						|
        // or the cloned call site is *not* musttail, the program already has
 | 
						|
        // one frame of stack growth, so it's safe to remove musttail.  Here is
 | 
						|
        // a table of example transformations:
 | 
						|
        //
 | 
						|
        //    f -> musttail g -> musttail f  ==>  f -> musttail f
 | 
						|
        //    f -> musttail g ->     tail f  ==>  f ->     tail f
 | 
						|
        //    f ->          g -> musttail f  ==>  f ->          f
 | 
						|
        //    f ->          g ->     tail f  ==>  f ->          f
 | 
						|
        //
 | 
						|
        // Inlined notail calls should remain notail calls.
 | 
						|
        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
 | 
						|
        if (ChildTCK != CallInst::TCK_NoTail)
 | 
						|
          ChildTCK = std::min(CallSiteTailKind, ChildTCK);
 | 
						|
        CI->setTailCallKind(ChildTCK);
 | 
						|
        InlinedMustTailCalls |= CI->isMustTailCall();
 | 
						|
 | 
						|
        // Calls inlined through a 'nounwind' call site should be marked
 | 
						|
        // 'nounwind'.
 | 
						|
        if (MarkNoUnwind)
 | 
						|
          CI->setDoesNotThrow();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Leave lifetime markers for the static alloca's, scoping them to the
 | 
						|
  // function we just inlined.
 | 
						|
  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
 | 
						|
    IRBuilder<> builder(&FirstNewBlock->front());
 | 
						|
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
 | 
						|
      AllocaInst *AI = IFI.StaticAllocas[ai];
 | 
						|
      // Don't mark swifterror allocas. They can't have bitcast uses.
 | 
						|
      if (AI->isSwiftError())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the alloca is already scoped to something smaller than the whole
 | 
						|
      // function then there's no need to add redundant, less accurate markers.
 | 
						|
      if (hasLifetimeMarkers(AI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Try to determine the size of the allocation.
 | 
						|
      ConstantInt *AllocaSize = nullptr;
 | 
						|
      if (ConstantInt *AIArraySize =
 | 
						|
          dyn_cast<ConstantInt>(AI->getArraySize())) {
 | 
						|
        auto &DL = Caller->getParent()->getDataLayout();
 | 
						|
        Type *AllocaType = AI->getAllocatedType();
 | 
						|
        TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
 | 
						|
        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
 | 
						|
 | 
						|
        // Don't add markers for zero-sized allocas.
 | 
						|
        if (AllocaArraySize == 0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Check that array size doesn't saturate uint64_t and doesn't
 | 
						|
        // overflow when it's multiplied by type size.
 | 
						|
        if (!AllocaTypeSize.isScalable() &&
 | 
						|
            AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
 | 
						|
            std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
 | 
						|
                AllocaTypeSize.getFixedSize()) {
 | 
						|
          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
 | 
						|
                                        AllocaArraySize * AllocaTypeSize);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      builder.CreateLifetimeStart(AI, AllocaSize);
 | 
						|
      for (ReturnInst *RI : Returns) {
 | 
						|
        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
 | 
						|
        // call and a return.  The return kills all local allocas.
 | 
						|
        if (InlinedMustTailCalls &&
 | 
						|
            RI->getParent()->getTerminatingMustTailCall())
 | 
						|
          continue;
 | 
						|
        if (InlinedDeoptimizeCalls &&
 | 
						|
            RI->getParent()->getTerminatingDeoptimizeCall())
 | 
						|
          continue;
 | 
						|
        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the inlined code contained dynamic alloca instructions, wrap the inlined
 | 
						|
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
 | 
						|
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
 | 
						|
    Module *M = Caller->getParent();
 | 
						|
    // Get the two intrinsics we care about.
 | 
						|
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
 | 
						|
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
 | 
						|
 | 
						|
    // Insert the llvm.stacksave.
 | 
						|
    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
 | 
						|
                             .CreateCall(StackSave, {}, "savedstack");
 | 
						|
 | 
						|
    // Insert a call to llvm.stackrestore before any return instructions in the
 | 
						|
    // inlined function.
 | 
						|
    for (ReturnInst *RI : Returns) {
 | 
						|
      // Don't insert llvm.stackrestore calls between a musttail or deoptimize
 | 
						|
      // call and a return.  The return will restore the stack pointer.
 | 
						|
      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
 | 
						|
        continue;
 | 
						|
      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
 | 
						|
        continue;
 | 
						|
      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are inlining for an invoke instruction, we must make sure to rewrite
 | 
						|
  // any call instructions into invoke instructions.  This is sensitive to which
 | 
						|
  // funclet pads were top-level in the inlinee, so must be done before
 | 
						|
  // rewriting the "parent pad" links.
 | 
						|
  if (auto *II = dyn_cast<InvokeInst>(&CB)) {
 | 
						|
    BasicBlock *UnwindDest = II->getUnwindDest();
 | 
						|
    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
 | 
						|
    if (isa<LandingPadInst>(FirstNonPHI)) {
 | 
						|
      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
 | 
						|
    } else {
 | 
						|
      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the lexical scopes of the new funclets and callsites.
 | 
						|
  // Anything that had 'none' as its parent is now nested inside the callsite's
 | 
						|
  // EHPad.
 | 
						|
 | 
						|
  if (CallSiteEHPad) {
 | 
						|
    for (Function::iterator BB = FirstNewBlock->getIterator(),
 | 
						|
                            E = Caller->end();
 | 
						|
         BB != E; ++BB) {
 | 
						|
      // Add bundle operands to any top-level call sites.
 | 
						|
      SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
 | 
						|
        CallBase *I = dyn_cast<CallBase>(&*BBI++);
 | 
						|
        if (!I)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Skip call sites which are nounwind intrinsics.
 | 
						|
        auto *CalledFn =
 | 
						|
            dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
 | 
						|
        if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Skip call sites which already have a "funclet" bundle.
 | 
						|
        if (I->getOperandBundle(LLVMContext::OB_funclet))
 | 
						|
          continue;
 | 
						|
 | 
						|
        I->getOperandBundlesAsDefs(OpBundles);
 | 
						|
        OpBundles.emplace_back("funclet", CallSiteEHPad);
 | 
						|
 | 
						|
        Instruction *NewInst = CallBase::Create(I, OpBundles, I);
 | 
						|
        NewInst->takeName(I);
 | 
						|
        I->replaceAllUsesWith(NewInst);
 | 
						|
        I->eraseFromParent();
 | 
						|
 | 
						|
        OpBundles.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      // It is problematic if the inlinee has a cleanupret which unwinds to
 | 
						|
      // caller and we inline it into a call site which doesn't unwind but into
 | 
						|
      // an EH pad that does.  Such an edge must be dynamically unreachable.
 | 
						|
      // As such, we replace the cleanupret with unreachable.
 | 
						|
      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
 | 
						|
        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
 | 
						|
          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
 | 
						|
 | 
						|
      Instruction *I = BB->getFirstNonPHI();
 | 
						|
      if (!I->isEHPad())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
 | 
						|
        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
 | 
						|
          CatchSwitch->setParentPad(CallSiteEHPad);
 | 
						|
      } else {
 | 
						|
        auto *FPI = cast<FuncletPadInst>(I);
 | 
						|
        if (isa<ConstantTokenNone>(FPI->getParentPad()))
 | 
						|
          FPI->setParentPad(CallSiteEHPad);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (InlinedDeoptimizeCalls) {
 | 
						|
    // We need to at least remove the deoptimizing returns from the Return set,
 | 
						|
    // so that the control flow from those returns does not get merged into the
 | 
						|
    // caller (but terminate it instead).  If the caller's return type does not
 | 
						|
    // match the callee's return type, we also need to change the return type of
 | 
						|
    // the intrinsic.
 | 
						|
    if (Caller->getReturnType() == CB.getType()) {
 | 
						|
      llvm::erase_if(Returns, [](ReturnInst *RI) {
 | 
						|
        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
 | 
						|
      });
 | 
						|
    } else {
 | 
						|
      SmallVector<ReturnInst *, 8> NormalReturns;
 | 
						|
      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
 | 
						|
          Caller->getParent(), Intrinsic::experimental_deoptimize,
 | 
						|
          {Caller->getReturnType()});
 | 
						|
 | 
						|
      for (ReturnInst *RI : Returns) {
 | 
						|
        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
 | 
						|
        if (!DeoptCall) {
 | 
						|
          NormalReturns.push_back(RI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // The calling convention on the deoptimize call itself may be bogus,
 | 
						|
        // since the code we're inlining may have undefined behavior (and may
 | 
						|
        // never actually execute at runtime); but all
 | 
						|
        // @llvm.experimental.deoptimize declarations have to have the same
 | 
						|
        // calling convention in a well-formed module.
 | 
						|
        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
 | 
						|
        NewDeoptIntrinsic->setCallingConv(CallingConv);
 | 
						|
        auto *CurBB = RI->getParent();
 | 
						|
        RI->eraseFromParent();
 | 
						|
 | 
						|
        SmallVector<Value *, 4> CallArgs(DeoptCall->args());
 | 
						|
 | 
						|
        SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
        DeoptCall->getOperandBundlesAsDefs(OpBundles);
 | 
						|
        DeoptCall->eraseFromParent();
 | 
						|
        assert(!OpBundles.empty() &&
 | 
						|
               "Expected at least the deopt operand bundle");
 | 
						|
 | 
						|
        IRBuilder<> Builder(CurBB);
 | 
						|
        CallInst *NewDeoptCall =
 | 
						|
            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
 | 
						|
        NewDeoptCall->setCallingConv(CallingConv);
 | 
						|
        if (NewDeoptCall->getType()->isVoidTy())
 | 
						|
          Builder.CreateRetVoid();
 | 
						|
        else
 | 
						|
          Builder.CreateRet(NewDeoptCall);
 | 
						|
      }
 | 
						|
 | 
						|
      // Leave behind the normal returns so we can merge control flow.
 | 
						|
      std::swap(Returns, NormalReturns);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle any inlined musttail call sites.  In order for a new call site to be
 | 
						|
  // musttail, the source of the clone and the inlined call site must have been
 | 
						|
  // musttail.  Therefore it's safe to return without merging control into the
 | 
						|
  // phi below.
 | 
						|
  if (InlinedMustTailCalls) {
 | 
						|
    // Check if we need to bitcast the result of any musttail calls.
 | 
						|
    Type *NewRetTy = Caller->getReturnType();
 | 
						|
    bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
 | 
						|
 | 
						|
    // Handle the returns preceded by musttail calls separately.
 | 
						|
    SmallVector<ReturnInst *, 8> NormalReturns;
 | 
						|
    for (ReturnInst *RI : Returns) {
 | 
						|
      CallInst *ReturnedMustTail =
 | 
						|
          RI->getParent()->getTerminatingMustTailCall();
 | 
						|
      if (!ReturnedMustTail) {
 | 
						|
        NormalReturns.push_back(RI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!NeedBitCast)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Delete the old return and any preceding bitcast.
 | 
						|
      BasicBlock *CurBB = RI->getParent();
 | 
						|
      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
 | 
						|
      RI->eraseFromParent();
 | 
						|
      if (OldCast)
 | 
						|
        OldCast->eraseFromParent();
 | 
						|
 | 
						|
      // Insert a new bitcast and return with the right type.
 | 
						|
      IRBuilder<> Builder(CurBB);
 | 
						|
      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
 | 
						|
    }
 | 
						|
 | 
						|
    // Leave behind the normal returns so we can merge control flow.
 | 
						|
    std::swap(Returns, NormalReturns);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all of the transforms on the inlined code have taken place but
 | 
						|
  // before we splice the inlined code into the CFG and lose track of which
 | 
						|
  // blocks were actually inlined, collect the call sites. We only do this if
 | 
						|
  // call graph updates weren't requested, as those provide value handle based
 | 
						|
  // tracking of inlined call sites instead.
 | 
						|
  if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
 | 
						|
    // Otherwise just collect the raw call sites that were inlined.
 | 
						|
    for (BasicBlock &NewBB :
 | 
						|
         make_range(FirstNewBlock->getIterator(), Caller->end()))
 | 
						|
      for (Instruction &I : NewBB)
 | 
						|
        if (auto *CB = dyn_cast<CallBase>(&I))
 | 
						|
          IFI.InlinedCallSites.push_back(CB);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we cloned in _exactly one_ basic block, and if that block ends in a
 | 
						|
  // return instruction, we splice the body of the inlined callee directly into
 | 
						|
  // the calling basic block.
 | 
						|
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | 
						|
    // Move all of the instructions right before the call.
 | 
						|
    OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
 | 
						|
                                 FirstNewBlock->begin(), FirstNewBlock->end());
 | 
						|
    // Remove the cloned basic block.
 | 
						|
    Caller->getBasicBlockList().pop_back();
 | 
						|
 | 
						|
    // If the call site was an invoke instruction, add a branch to the normal
 | 
						|
    // destination.
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
 | 
						|
      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
 | 
						|
      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // If the return instruction returned a value, replace uses of the call with
 | 
						|
    // uses of the returned value.
 | 
						|
    if (!CB.use_empty()) {
 | 
						|
      ReturnInst *R = Returns[0];
 | 
						|
      if (&CB == R->getReturnValue())
 | 
						|
        CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
 | 
						|
      else
 | 
						|
        CB.replaceAllUsesWith(R->getReturnValue());
 | 
						|
    }
 | 
						|
    // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
    CB.eraseFromParent();
 | 
						|
 | 
						|
    // Since we are now done with the return instruction, delete it also.
 | 
						|
    Returns[0]->eraseFromParent();
 | 
						|
 | 
						|
    // We are now done with the inlining.
 | 
						|
    return InlineResult::success();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have the normal case, of more than one block to inline or
 | 
						|
  // multiple return sites.
 | 
						|
 | 
						|
  // We want to clone the entire callee function into the hole between the
 | 
						|
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | 
						|
  // this is an invoke instruction or a call instruction.
 | 
						|
  BasicBlock *AfterCallBB;
 | 
						|
  BranchInst *CreatedBranchToNormalDest = nullptr;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
 | 
						|
 | 
						|
    // Add an unconditional branch to make this look like the CallInst case...
 | 
						|
    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
 | 
						|
 | 
						|
    // Split the basic block.  This guarantees that no PHI nodes will have to be
 | 
						|
    // updated due to new incoming edges, and make the invoke case more
 | 
						|
    // symmetric to the call case.
 | 
						|
    AfterCallBB =
 | 
						|
        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
 | 
						|
                                CalledFunc->getName() + ".exit");
 | 
						|
 | 
						|
  } else { // It's a call
 | 
						|
    // If this is a call instruction, we need to split the basic block that
 | 
						|
    // the call lives in.
 | 
						|
    //
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
 | 
						|
                                          CalledFunc->getName() + ".exit");
 | 
						|
  }
 | 
						|
 | 
						|
  if (IFI.CallerBFI) {
 | 
						|
    // Copy original BB's block frequency to AfterCallBB
 | 
						|
    IFI.CallerBFI->setBlockFreq(
 | 
						|
        AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the branch that used to go to AfterCallBB to branch to the first
 | 
						|
  // basic block of the inlined function.
 | 
						|
  //
 | 
						|
  Instruction *Br = OrigBB->getTerminator();
 | 
						|
  assert(Br && Br->getOpcode() == Instruction::Br &&
 | 
						|
         "splitBasicBlock broken!");
 | 
						|
  Br->setOperand(0, &*FirstNewBlock);
 | 
						|
 | 
						|
  // Now that the function is correct, make it a little bit nicer.  In
 | 
						|
  // particular, move the basic blocks inserted from the end of the function
 | 
						|
  // into the space made by splitting the source basic block.
 | 
						|
  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
 | 
						|
                                     Caller->getBasicBlockList(), FirstNewBlock,
 | 
						|
                                     Caller->end());
 | 
						|
 | 
						|
  // Handle all of the return instructions that we just cloned in, and eliminate
 | 
						|
  // any users of the original call/invoke instruction.
 | 
						|
  Type *RTy = CalledFunc->getReturnType();
 | 
						|
 | 
						|
  PHINode *PHI = nullptr;
 | 
						|
  if (Returns.size() > 1) {
 | 
						|
    // The PHI node should go at the front of the new basic block to merge all
 | 
						|
    // possible incoming values.
 | 
						|
    if (!CB.use_empty()) {
 | 
						|
      PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
 | 
						|
                            &AfterCallBB->front());
 | 
						|
      // Anything that used the result of the function call should now use the
 | 
						|
      // PHI node as their operand.
 | 
						|
      CB.replaceAllUsesWith(PHI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over all of the return instructions adding entries to the PHI node
 | 
						|
    // as appropriate.
 | 
						|
    if (PHI) {
 | 
						|
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
        ReturnInst *RI = Returns[i];
 | 
						|
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | 
						|
               "Ret value not consistent in function!");
 | 
						|
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a branch to the merge points and remove return instructions.
 | 
						|
    DebugLoc Loc;
 | 
						|
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
      ReturnInst *RI = Returns[i];
 | 
						|
      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
 | 
						|
      Loc = RI->getDebugLoc();
 | 
						|
      BI->setDebugLoc(Loc);
 | 
						|
      RI->eraseFromParent();
 | 
						|
    }
 | 
						|
    // We need to set the debug location to *somewhere* inside the
 | 
						|
    // inlined function. The line number may be nonsensical, but the
 | 
						|
    // instruction will at least be associated with the right
 | 
						|
    // function.
 | 
						|
    if (CreatedBranchToNormalDest)
 | 
						|
      CreatedBranchToNormalDest->setDebugLoc(Loc);
 | 
						|
  } else if (!Returns.empty()) {
 | 
						|
    // Otherwise, if there is exactly one return value, just replace anything
 | 
						|
    // using the return value of the call with the computed value.
 | 
						|
    if (!CB.use_empty()) {
 | 
						|
      if (&CB == Returns[0]->getReturnValue())
 | 
						|
        CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
 | 
						|
      else
 | 
						|
        CB.replaceAllUsesWith(Returns[0]->getReturnValue());
 | 
						|
    }
 | 
						|
 | 
						|
    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | 
						|
    BasicBlock *ReturnBB = Returns[0]->getParent();
 | 
						|
    ReturnBB->replaceAllUsesWith(AfterCallBB);
 | 
						|
 | 
						|
    // Splice the code from the return block into the block that it will return
 | 
						|
    // to, which contains the code that was after the call.
 | 
						|
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | 
						|
                                      ReturnBB->getInstList());
 | 
						|
 | 
						|
    if (CreatedBranchToNormalDest)
 | 
						|
      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
 | 
						|
 | 
						|
    // Delete the return instruction now and empty ReturnBB now.
 | 
						|
    Returns[0]->eraseFromParent();
 | 
						|
    ReturnBB->eraseFromParent();
 | 
						|
  } else if (!CB.use_empty()) {
 | 
						|
    // No returns, but something is using the return value of the call.  Just
 | 
						|
    // nuke the result.
 | 
						|
    CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
  CB.eraseFromParent();
 | 
						|
 | 
						|
  // If we inlined any musttail calls and the original return is now
 | 
						|
  // unreachable, delete it.  It can only contain a bitcast and ret.
 | 
						|
  if (InlinedMustTailCalls && pred_empty(AfterCallBB))
 | 
						|
    AfterCallBB->eraseFromParent();
 | 
						|
 | 
						|
  // We should always be able to fold the entry block of the function into the
 | 
						|
  // single predecessor of the block...
 | 
						|
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | 
						|
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | 
						|
 | 
						|
  // Splice the code entry block into calling block, right before the
 | 
						|
  // unconditional branch.
 | 
						|
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | 
						|
  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
 | 
						|
 | 
						|
  // Remove the unconditional branch.
 | 
						|
  OrigBB->getInstList().erase(Br);
 | 
						|
 | 
						|
  // Now we can remove the CalleeEntry block, which is now empty.
 | 
						|
  Caller->getBasicBlockList().erase(CalleeEntry);
 | 
						|
 | 
						|
  // If we inserted a phi node, check to see if it has a single value (e.g. all
 | 
						|
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
 | 
						|
  // block other optimizations.
 | 
						|
  if (PHI) {
 | 
						|
    AssumptionCache *AC =
 | 
						|
        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
 | 
						|
    auto &DL = Caller->getParent()->getDataLayout();
 | 
						|
    if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
 | 
						|
      PHI->replaceAllUsesWith(V);
 | 
						|
      PHI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return InlineResult::success();
 | 
						|
}
 |