1000 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1000 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities for loops with run-time
 | 
						|
// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
 | 
						|
// trip counts.
 | 
						|
//
 | 
						|
// The functions in this file are used to generate extra code when the
 | 
						|
// run-time trip count modulo the unroll factor is not 0.  When this is the
 | 
						|
// case, we need to generate code to execute these 'left over' iterations.
 | 
						|
//
 | 
						|
// The current strategy generates an if-then-else sequence prior to the
 | 
						|
// unrolled loop to execute the 'left over' iterations before or after the
 | 
						|
// unrolled loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
STATISTIC(NumRuntimeUnrolled,
 | 
						|
          "Number of loops unrolled with run-time trip counts");
 | 
						|
static cl::opt<bool> UnrollRuntimeMultiExit(
 | 
						|
    "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Allow runtime unrolling for loops with multiple exits, when "
 | 
						|
             "epilog is generated"));
 | 
						|
static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
 | 
						|
    "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Assume the non latch exit block to be predictable"));
 | 
						|
 | 
						|
/// Connect the unrolling prolog code to the original loop.
 | 
						|
/// The unrolling prolog code contains code to execute the
 | 
						|
/// 'extra' iterations if the run-time trip count modulo the
 | 
						|
/// unroll count is non-zero.
 | 
						|
///
 | 
						|
/// This function performs the following:
 | 
						|
/// - Create PHI nodes at prolog end block to combine values
 | 
						|
///   that exit the prolog code and jump around the prolog.
 | 
						|
/// - Add a PHI operand to a PHI node at the loop exit block
 | 
						|
///   for values that exit the prolog and go around the loop.
 | 
						|
/// - Branch around the original loop if the trip count is less
 | 
						|
///   than the unroll factor.
 | 
						|
///
 | 
						|
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
 | 
						|
                          BasicBlock *PrologExit,
 | 
						|
                          BasicBlock *OriginalLoopLatchExit,
 | 
						|
                          BasicBlock *PreHeader, BasicBlock *NewPreHeader,
 | 
						|
                          ValueToValueMapTy &VMap, DominatorTree *DT,
 | 
						|
                          LoopInfo *LI, bool PreserveLCSSA) {
 | 
						|
  // Loop structure should be the following:
 | 
						|
  // Preheader
 | 
						|
  //  PrologHeader
 | 
						|
  //  ...
 | 
						|
  //  PrologLatch
 | 
						|
  //  PrologExit
 | 
						|
  //   NewPreheader
 | 
						|
  //    Header
 | 
						|
  //    ...
 | 
						|
  //    Latch
 | 
						|
  //      LatchExit
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "Loop must have a latch");
 | 
						|
  BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
 | 
						|
  // Create a PHI node for each outgoing value from the original loop
 | 
						|
  // (which means it is an outgoing value from the prolog code too).
 | 
						|
  // The new PHI node is inserted in the prolog end basic block.
 | 
						|
  // The new PHI node value is added as an operand of a PHI node in either
 | 
						|
  // the loop header or the loop exit block.
 | 
						|
  for (BasicBlock *Succ : successors(Latch)) {
 | 
						|
    for (PHINode &PN : Succ->phis()) {
 | 
						|
      // Add a new PHI node to the prolog end block and add the
 | 
						|
      // appropriate incoming values.
 | 
						|
      // TODO: This code assumes that the PrologExit (or the LatchExit block for
 | 
						|
      // prolog loop) contains only one predecessor from the loop, i.e. the
 | 
						|
      // PrologLatch. When supporting multiple-exiting block loops, we can have
 | 
						|
      // two or more blocks that have the LatchExit as the target in the
 | 
						|
      // original loop.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
 | 
						|
                                       PrologExit->getFirstNonPHI());
 | 
						|
      // Adding a value to the new PHI node from the original loop preheader.
 | 
						|
      // This is the value that skips all the prolog code.
 | 
						|
      if (L->contains(&PN)) {
 | 
						|
        // Succ is loop header.
 | 
						|
        NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
 | 
						|
                           PreHeader);
 | 
						|
      } else {
 | 
						|
        // Succ is LatchExit.
 | 
						|
        NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
 | 
						|
      }
 | 
						|
 | 
						|
      Value *V = PN.getIncomingValueForBlock(Latch);
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
        if (L->contains(I)) {
 | 
						|
          V = VMap.lookup(I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Adding a value to the new PHI node from the last prolog block
 | 
						|
      // that was created.
 | 
						|
      NewPN->addIncoming(V, PrologLatch);
 | 
						|
 | 
						|
      // Update the existing PHI node operand with the value from the
 | 
						|
      // new PHI node.  How this is done depends on if the existing
 | 
						|
      // PHI node is in the original loop block, or the exit block.
 | 
						|
      if (L->contains(&PN))
 | 
						|
        PN.setIncomingValueForBlock(NewPreHeader, NewPN);
 | 
						|
      else
 | 
						|
        PN.addIncoming(NewPN, PrologExit);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that created prolog loop is in simplified form
 | 
						|
  SmallVector<BasicBlock *, 4> PrologExitPreds;
 | 
						|
  Loop *PrologLoop = LI->getLoopFor(PrologLatch);
 | 
						|
  if (PrologLoop) {
 | 
						|
    for (BasicBlock *PredBB : predecessors(PrologExit))
 | 
						|
      if (PrologLoop->contains(PredBB))
 | 
						|
        PrologExitPreds.push_back(PredBB);
 | 
						|
 | 
						|
    SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
 | 
						|
                           nullptr, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a branch around the original loop, which is taken if there are no
 | 
						|
  // iterations remaining to be executed after running the prologue.
 | 
						|
  Instruction *InsertPt = PrologExit->getTerminator();
 | 
						|
  IRBuilder<> B(InsertPt);
 | 
						|
 | 
						|
  assert(Count != 0 && "nonsensical Count!");
 | 
						|
 | 
						|
  // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
 | 
						|
  // This means %xtraiter is (BECount + 1) and all of the iterations of this
 | 
						|
  // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
 | 
						|
  // then (BECount + 1) cannot unsigned-overflow.
 | 
						|
  Value *BrLoopExit =
 | 
						|
      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
 | 
						|
  // Split the exit to maintain loop canonicalization guarantees
 | 
						|
  SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
 | 
						|
  SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
 | 
						|
                         nullptr, PreserveLCSSA);
 | 
						|
  // Add the branch to the exit block (around the unrolled loop)
 | 
						|
  B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
 | 
						|
  InsertPt->eraseFromParent();
 | 
						|
  if (DT)
 | 
						|
    DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
 | 
						|
}
 | 
						|
 | 
						|
/// Connect the unrolling epilog code to the original loop.
 | 
						|
/// The unrolling epilog code contains code to execute the
 | 
						|
/// 'extra' iterations if the run-time trip count modulo the
 | 
						|
/// unroll count is non-zero.
 | 
						|
///
 | 
						|
/// This function performs the following:
 | 
						|
/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
 | 
						|
/// - Create PHI nodes at the unrolling loop exit to combine
 | 
						|
///   values that exit the unrolling loop code and jump around it.
 | 
						|
/// - Update PHI operands in the epilog loop by the new PHI nodes
 | 
						|
/// - Branch around the epilog loop if extra iters (ModVal) is zero.
 | 
						|
///
 | 
						|
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
 | 
						|
                          BasicBlock *Exit, BasicBlock *PreHeader,
 | 
						|
                          BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
 | 
						|
                          ValueToValueMapTy &VMap, DominatorTree *DT,
 | 
						|
                          LoopInfo *LI, bool PreserveLCSSA)  {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "Loop must have a latch");
 | 
						|
  BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
 | 
						|
  // Loop structure should be the following:
 | 
						|
  //
 | 
						|
  // PreHeader
 | 
						|
  // NewPreHeader
 | 
						|
  //   Header
 | 
						|
  //   ...
 | 
						|
  //   Latch
 | 
						|
  // NewExit (PN)
 | 
						|
  // EpilogPreHeader
 | 
						|
  //   EpilogHeader
 | 
						|
  //   ...
 | 
						|
  //   EpilogLatch
 | 
						|
  // Exit (EpilogPN)
 | 
						|
 | 
						|
  // Update PHI nodes at NewExit and Exit.
 | 
						|
  for (PHINode &PN : NewExit->phis()) {
 | 
						|
    // PN should be used in another PHI located in Exit block as
 | 
						|
    // Exit was split by SplitBlockPredecessors into Exit and NewExit
 | 
						|
    // Basicaly it should look like:
 | 
						|
    // NewExit:
 | 
						|
    //   PN = PHI [I, Latch]
 | 
						|
    // ...
 | 
						|
    // Exit:
 | 
						|
    //   EpilogPN = PHI [PN, EpilogPreHeader]
 | 
						|
    //
 | 
						|
    // There is EpilogPreHeader incoming block instead of NewExit as
 | 
						|
    // NewExit was spilt 1 more time to get EpilogPreHeader.
 | 
						|
    assert(PN.hasOneUse() && "The phi should have 1 use");
 | 
						|
    PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
 | 
						|
    assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
 | 
						|
 | 
						|
    // Add incoming PreHeader from branch around the Loop
 | 
						|
    PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
 | 
						|
 | 
						|
    Value *V = PN.getIncomingValueForBlock(Latch);
 | 
						|
    Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
    if (I && L->contains(I))
 | 
						|
      // If value comes from an instruction in the loop add VMap value.
 | 
						|
      V = VMap.lookup(I);
 | 
						|
    // For the instruction out of the loop, constant or undefined value
 | 
						|
    // insert value itself.
 | 
						|
    EpilogPN->addIncoming(V, EpilogLatch);
 | 
						|
 | 
						|
    assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
 | 
						|
          "EpilogPN should have EpilogPreHeader incoming block");
 | 
						|
    // Change EpilogPreHeader incoming block to NewExit.
 | 
						|
    EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
 | 
						|
                               NewExit);
 | 
						|
    // Now PHIs should look like:
 | 
						|
    // NewExit:
 | 
						|
    //   PN = PHI [I, Latch], [undef, PreHeader]
 | 
						|
    // ...
 | 
						|
    // Exit:
 | 
						|
    //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
 | 
						|
  }
 | 
						|
 | 
						|
  // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
 | 
						|
  // Update corresponding PHI nodes in epilog loop.
 | 
						|
  for (BasicBlock *Succ : successors(Latch)) {
 | 
						|
    // Skip this as we already updated phis in exit blocks.
 | 
						|
    if (!L->contains(Succ))
 | 
						|
      continue;
 | 
						|
    for (PHINode &PN : Succ->phis()) {
 | 
						|
      // Add new PHI nodes to the loop exit block and update epilog
 | 
						|
      // PHIs with the new PHI values.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
 | 
						|
                                       NewExit->getFirstNonPHI());
 | 
						|
      // Adding a value to the new PHI node from the unrolling loop preheader.
 | 
						|
      NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
 | 
						|
      // Adding a value to the new PHI node from the unrolling loop latch.
 | 
						|
      NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
 | 
						|
 | 
						|
      // Update the existing PHI node operand with the value from the new PHI
 | 
						|
      // node.  Corresponding instruction in epilog loop should be PHI.
 | 
						|
      PHINode *VPN = cast<PHINode>(VMap[&PN]);
 | 
						|
      VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *InsertPt = NewExit->getTerminator();
 | 
						|
  IRBuilder<> B(InsertPt);
 | 
						|
  Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
 | 
						|
  assert(Exit && "Loop must have a single exit block only");
 | 
						|
  // Split the epilogue exit to maintain loop canonicalization guarantees
 | 
						|
  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
 | 
						|
  SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
 | 
						|
                         PreserveLCSSA);
 | 
						|
  // Add the branch to the exit block (around the unrolling loop)
 | 
						|
  B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
 | 
						|
  InsertPt->eraseFromParent();
 | 
						|
  if (DT)
 | 
						|
    DT->changeImmediateDominator(Exit, NewExit);
 | 
						|
 | 
						|
  // Split the main loop exit to maintain canonicalization guarantees.
 | 
						|
  SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
 | 
						|
  SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
 | 
						|
                         PreserveLCSSA);
 | 
						|
}
 | 
						|
 | 
						|
/// Create a clone of the blocks in a loop and connect them together.
 | 
						|
/// If CreateRemainderLoop is false, loop structure will not be cloned,
 | 
						|
/// otherwise a new loop will be created including all cloned blocks, and the
 | 
						|
/// iterator of it switches to count NewIter down to 0.
 | 
						|
/// The cloned blocks should be inserted between InsertTop and InsertBot.
 | 
						|
/// If loop structure is cloned InsertTop should be new preheader, InsertBot
 | 
						|
/// new loop exit.
 | 
						|
/// Return the new cloned loop that is created when CreateRemainderLoop is true.
 | 
						|
static Loop *
 | 
						|
CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
 | 
						|
                const bool UseEpilogRemainder, const bool UnrollRemainder,
 | 
						|
                BasicBlock *InsertTop,
 | 
						|
                BasicBlock *InsertBot, BasicBlock *Preheader,
 | 
						|
                std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
 | 
						|
                ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
 | 
						|
  StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | 
						|
  Loop *ParentLoop = L->getParentLoop();
 | 
						|
  NewLoopsMap NewLoops;
 | 
						|
  NewLoops[ParentLoop] = ParentLoop;
 | 
						|
  if (!CreateRemainderLoop)
 | 
						|
    NewLoops[L] = ParentLoop;
 | 
						|
 | 
						|
  // For each block in the original loop, create a new copy,
 | 
						|
  // and update the value map with the newly created values.
 | 
						|
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
 | 
						|
    NewBlocks.push_back(NewBB);
 | 
						|
 | 
						|
    // If we're unrolling the outermost loop, there's no remainder loop,
 | 
						|
    // and this block isn't in a nested loop, then the new block is not
 | 
						|
    // in any loop. Otherwise, add it to loopinfo.
 | 
						|
    if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
 | 
						|
      addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
 | 
						|
 | 
						|
    VMap[*BB] = NewBB;
 | 
						|
    if (Header == *BB) {
 | 
						|
      // For the first block, add a CFG connection to this newly
 | 
						|
      // created block.
 | 
						|
      InsertTop->getTerminator()->setSuccessor(0, NewBB);
 | 
						|
    }
 | 
						|
 | 
						|
    if (DT) {
 | 
						|
      if (Header == *BB) {
 | 
						|
        // The header is dominated by the preheader.
 | 
						|
        DT->addNewBlock(NewBB, InsertTop);
 | 
						|
      } else {
 | 
						|
        // Copy information from original loop to unrolled loop.
 | 
						|
        BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
 | 
						|
        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Latch == *BB) {
 | 
						|
      // For the last block, if CreateRemainderLoop is false, create a direct
 | 
						|
      // jump to InsertBot. If not, create a loop back to cloned head.
 | 
						|
      VMap.erase((*BB)->getTerminator());
 | 
						|
      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
 | 
						|
      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
 | 
						|
      IRBuilder<> Builder(LatchBR);
 | 
						|
      if (!CreateRemainderLoop) {
 | 
						|
        Builder.CreateBr(InsertBot);
 | 
						|
      } else {
 | 
						|
        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
 | 
						|
                                          suffix + ".iter",
 | 
						|
                                          FirstLoopBB->getFirstNonPHI());
 | 
						|
        Value *IdxSub =
 | 
						|
            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | 
						|
                              NewIdx->getName() + ".sub");
 | 
						|
        Value *IdxCmp =
 | 
						|
            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
 | 
						|
        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
 | 
						|
        NewIdx->addIncoming(NewIter, InsertTop);
 | 
						|
        NewIdx->addIncoming(IdxSub, NewBB);
 | 
						|
      }
 | 
						|
      LatchBR->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the incoming values to the ones defined in the preheader or
 | 
						|
  // cloned loop.
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
 | 
						|
    if (!CreateRemainderLoop) {
 | 
						|
      if (UseEpilogRemainder) {
 | 
						|
        unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | 
						|
        NewPHI->setIncomingBlock(idx, InsertTop);
 | 
						|
        NewPHI->removeIncomingValue(Latch, false);
 | 
						|
      } else {
 | 
						|
        VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
 | 
						|
        cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | 
						|
      NewPHI->setIncomingBlock(idx, InsertTop);
 | 
						|
      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
      idx = NewPHI->getBasicBlockIndex(Latch);
 | 
						|
      Value *InVal = NewPHI->getIncomingValue(idx);
 | 
						|
      NewPHI->setIncomingBlock(idx, NewLatch);
 | 
						|
      if (Value *V = VMap.lookup(InVal))
 | 
						|
        NewPHI->setIncomingValue(idx, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (CreateRemainderLoop) {
 | 
						|
    Loop *NewLoop = NewLoops[L];  
 | 
						|
    assert(NewLoop && "L should have been cloned");
 | 
						|
    MDNode *LoopID = NewLoop->getLoopID();
 | 
						|
 | 
						|
    // Only add loop metadata if the loop is not going to be completely
 | 
						|
    // unrolled.
 | 
						|
    if (UnrollRemainder)
 | 
						|
      return NewLoop;
 | 
						|
 | 
						|
    Optional<MDNode *> NewLoopID = makeFollowupLoopID(
 | 
						|
        LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
 | 
						|
    if (NewLoopID.hasValue()) {
 | 
						|
      NewLoop->setLoopID(NewLoopID.getValue());
 | 
						|
 | 
						|
      // Do not setLoopAlreadyUnrolled if loop attributes have been defined
 | 
						|
      // explicitly.
 | 
						|
      return NewLoop;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add unroll disable metadata to disable future unrolling for this loop.
 | 
						|
    NewLoop->setLoopAlreadyUnrolled();
 | 
						|
    return NewLoop;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
 | 
						|
/// is populated with all the loop exit blocks other than the LatchExit block.
 | 
						|
static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
 | 
						|
                                         bool PreserveLCSSA,
 | 
						|
                                         bool UseEpilogRemainder) {
 | 
						|
 | 
						|
  // We currently have some correctness constrains in unrolling a multi-exit
 | 
						|
  // loop. Check for these below.
 | 
						|
 | 
						|
  // We rely on LCSSA form being preserved when the exit blocks are transformed.
 | 
						|
  if (!PreserveLCSSA)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
 | 
						|
  // UnrollRuntimeMultiExit is true. This will need updating the logic in
 | 
						|
  // connectEpilog/connectProlog.
 | 
						|
  if (!LatchExit->getSinglePredecessor()) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
 | 
						|
                  "predecessor.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
 | 
						|
  // and L is an inner loop. This is because in presence of multiple exits, the
 | 
						|
  // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
 | 
						|
  // outer loop. This is automatically handled in the prolog case, so we do not
 | 
						|
  // have that bug in prolog generation.
 | 
						|
  if (UseEpilogRemainder && L->getParentLoop())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // All constraints have been satisfied.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we can profitably unroll the multi-exit loop L. Currently,
 | 
						|
/// we return true only if UnrollRuntimeMultiExit is set to true.
 | 
						|
static bool canProfitablyUnrollMultiExitLoop(
 | 
						|
    Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
 | 
						|
    bool PreserveLCSSA, bool UseEpilogRemainder) {
 | 
						|
 | 
						|
#if !defined(NDEBUG)
 | 
						|
  assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
 | 
						|
                                      UseEpilogRemainder) &&
 | 
						|
         "Should be safe to unroll before checking profitability!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Priority goes to UnrollRuntimeMultiExit if it's supplied.
 | 
						|
  if (UnrollRuntimeMultiExit.getNumOccurrences())
 | 
						|
    return UnrollRuntimeMultiExit;
 | 
						|
 | 
						|
  // The main pain point with multi-exit loop unrolling is that once unrolled,
 | 
						|
  // we will not be able to merge all blocks into a straight line code.
 | 
						|
  // There are branches within the unrolled loop that go to the OtherExits.
 | 
						|
  // The second point is the increase in code size, but this is true
 | 
						|
  // irrespective of multiple exits.
 | 
						|
 | 
						|
  // Note: Both the heuristics below are coarse grained. We are essentially
 | 
						|
  // enabling unrolling of loops that have a single side exit other than the
 | 
						|
  // normal LatchExit (i.e. exiting into a deoptimize block).
 | 
						|
  // The heuristics considered are:
 | 
						|
  // 1. low number of branches in the unrolled version.
 | 
						|
  // 2. high predictability of these extra branches.
 | 
						|
  // We avoid unrolling loops that have more than two exiting blocks. This
 | 
						|
  // limits the total number of branches in the unrolled loop to be atmost
 | 
						|
  // the unroll factor (since one of the exiting blocks is the latch block).
 | 
						|
  SmallVector<BasicBlock*, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
  if (ExitingBlocks.size() > 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allow unrolling of loops with no non latch exit blocks.
 | 
						|
  if (OtherExits.size() == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The second heuristic is that L has one exit other than the latchexit and
 | 
						|
  // that exit is a deoptimize block. We know that deoptimize blocks are rarely
 | 
						|
  // taken, which also implies the branch leading to the deoptimize block is
 | 
						|
  // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
 | 
						|
  // assume the other exit branch is predictable even if it has no deoptimize
 | 
						|
  // call.
 | 
						|
  return (OtherExits.size() == 1 &&
 | 
						|
          (UnrollRuntimeOtherExitPredictable ||
 | 
						|
           OtherExits[0]->getTerminatingDeoptimizeCall()));
 | 
						|
  // TODO: These can be fine-tuned further to consider code size or deopt states
 | 
						|
  // that are captured by the deoptimize exit block.
 | 
						|
  // Also, we can extend this to support more cases, if we actually
 | 
						|
  // know of kinds of multiexit loops that would benefit from unrolling.
 | 
						|
}
 | 
						|
 | 
						|
// Assign the maximum possible trip count as the back edge weight for the
 | 
						|
// remainder loop if the original loop comes with a branch weight.
 | 
						|
static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
 | 
						|
                                                     Loop *RemainderLoop,
 | 
						|
                                                     uint64_t UnrollFactor) {
 | 
						|
  uint64_t TrueWeight, FalseWeight;
 | 
						|
  BranchInst *LatchBR =
 | 
						|
      cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
 | 
						|
  if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
 | 
						|
    uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
 | 
						|
                              ? FalseWeight
 | 
						|
                              : TrueWeight;
 | 
						|
    assert(UnrollFactor > 1);
 | 
						|
    uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
 | 
						|
    BasicBlock *Header = RemainderLoop->getHeader();
 | 
						|
    BasicBlock *Latch = RemainderLoop->getLoopLatch();
 | 
						|
    auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
 | 
						|
    unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
 | 
						|
    MDBuilder MDB(RemainderLatchBR->getContext());
 | 
						|
    MDNode *WeightNode =
 | 
						|
        HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
 | 
						|
                  : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
 | 
						|
    RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert code in the prolog/epilog code when unrolling a loop with a
 | 
						|
/// run-time trip-count.
 | 
						|
///
 | 
						|
/// This method assumes that the loop unroll factor is total number
 | 
						|
/// of loop bodies in the loop after unrolling. (Some folks refer
 | 
						|
/// to the unroll factor as the number of *extra* copies added).
 | 
						|
/// We assume also that the loop unroll factor is a power-of-two. So, after
 | 
						|
/// unrolling the loop, the number of loop bodies executed is 2,
 | 
						|
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
 | 
						|
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
 | 
						|
/// the switch instruction is generated.
 | 
						|
///
 | 
						|
/// ***Prolog case***
 | 
						|
///        extraiters = tripcount % loopfactor
 | 
						|
///        if (extraiters == 0) jump Loop:
 | 
						|
///        else jump Prol:
 | 
						|
/// Prol:  LoopBody;
 | 
						|
///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | 
						|
///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
 | 
						|
///        if (tripcount < loopfactor) jump End:
 | 
						|
/// Loop:
 | 
						|
/// ...
 | 
						|
/// End:
 | 
						|
///
 | 
						|
/// ***Epilog case***
 | 
						|
///        extraiters = tripcount % loopfactor
 | 
						|
///        if (tripcount < loopfactor) jump LoopExit:
 | 
						|
///        unroll_iters = tripcount - extraiters
 | 
						|
/// Loop:  LoopBody; (executes unroll_iter times);
 | 
						|
///        unroll_iter -= 1
 | 
						|
///        if (unroll_iter != 0) jump Loop:
 | 
						|
/// LoopExit:
 | 
						|
///        if (extraiters == 0) jump EpilExit:
 | 
						|
/// Epil:  LoopBody; (executes extraiters times)
 | 
						|
///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | 
						|
///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
 | 
						|
/// EpilExit:
 | 
						|
 | 
						|
bool llvm::UnrollRuntimeLoopRemainder(
 | 
						|
    Loop *L, unsigned Count, bool AllowExpensiveTripCount,
 | 
						|
    bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
 | 
						|
    LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
 | 
						|
    const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
 | 
						|
  LLVM_DEBUG(L->dump());
 | 
						|
  LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
 | 
						|
                                : dbgs() << "Using prolog remainder.\n");
 | 
						|
 | 
						|
  // Make sure the loop is in canonical form.
 | 
						|
  if (!L->isLoopSimplifyForm()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Guaranteed by LoopSimplifyForm.
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
 | 
						|
 | 
						|
  if (!LatchBR || LatchBR->isUnconditional()) {
 | 
						|
    // The loop-rotate pass can be helpful to avoid this in many cases.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs()
 | 
						|
        << "Loop latch not terminated by a conditional branch.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
 | 
						|
  BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
 | 
						|
 | 
						|
  if (L->contains(LatchExit)) {
 | 
						|
    // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
 | 
						|
    // targets of the Latch be an exit block out of the loop.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs()
 | 
						|
        << "One of the loop latch successors must be the exit block.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // These are exit blocks other than the target of the latch exiting block.
 | 
						|
  SmallVector<BasicBlock *, 4> OtherExits;
 | 
						|
  L->getUniqueNonLatchExitBlocks(OtherExits);
 | 
						|
  bool isMultiExitUnrollingEnabled =
 | 
						|
      canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
 | 
						|
                                   UseEpilogRemainder) &&
 | 
						|
      canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
 | 
						|
                                       UseEpilogRemainder);
 | 
						|
  // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
 | 
						|
  if (!isMultiExitUnrollingEnabled &&
 | 
						|
      (!L->getExitingBlock() || OtherExits.size())) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs()
 | 
						|
        << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
 | 
						|
           "enabled!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // Use Scalar Evolution to compute the trip count. This allows more loops to
 | 
						|
  // be unrolled than relying on induction var simplification.
 | 
						|
  if (!SE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only unroll loops with a computable trip count, and the trip count needs
 | 
						|
  // to be an int value (allowing a pointer type is a TODO item).
 | 
						|
  // We calculate the backedge count by using getExitCount on the Latch block,
 | 
						|
  // which is proven to be the only exiting block in this loop. This is same as
 | 
						|
  // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
 | 
						|
  // exiting blocks).
 | 
						|
  const SCEV *BECountSC = SE->getExitCount(L, Latch);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BECountSC) ||
 | 
						|
      !BECountSC->getType()->isIntegerTy()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
 | 
						|
 | 
						|
  // Add 1 since the backedge count doesn't include the first loop iteration.
 | 
						|
  const SCEV *TripCountSC =
 | 
						|
      SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
 | 
						|
  if (isa<SCEVCouldNotCompute>(TripCountSC)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
  BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
 | 
						|
  const DataLayout &DL = Header->getModule()->getDataLayout();
 | 
						|
  SCEVExpander Expander(*SE, DL, "loop-unroll");
 | 
						|
  if (!AllowExpensiveTripCount &&
 | 
						|
      Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
 | 
						|
                                   TTI, PreHeaderBR)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // This constraint lets us deal with an overflowing trip count easily; see the
 | 
						|
  // comment on ModVal below.
 | 
						|
  if (Log2_32(Count) > BEWidth) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs()
 | 
						|
        << "Count failed constraint on overflow trip count calculation.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop structure is the following:
 | 
						|
  //
 | 
						|
  // PreHeader
 | 
						|
  //   Header
 | 
						|
  //   ...
 | 
						|
  //   Latch
 | 
						|
  // LatchExit
 | 
						|
 | 
						|
  BasicBlock *NewPreHeader;
 | 
						|
  BasicBlock *NewExit = nullptr;
 | 
						|
  BasicBlock *PrologExit = nullptr;
 | 
						|
  BasicBlock *EpilogPreHeader = nullptr;
 | 
						|
  BasicBlock *PrologPreHeader = nullptr;
 | 
						|
 | 
						|
  if (UseEpilogRemainder) {
 | 
						|
    // If epilog remainder
 | 
						|
    // Split PreHeader to insert a branch around loop for unrolling.
 | 
						|
    NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
 | 
						|
    NewPreHeader->setName(PreHeader->getName() + ".new");
 | 
						|
    // Split LatchExit to create phi nodes from branch above.
 | 
						|
    SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
 | 
						|
    NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI,
 | 
						|
                                     nullptr, PreserveLCSSA);
 | 
						|
    // NewExit gets its DebugLoc from LatchExit, which is not part of the
 | 
						|
    // original Loop.
 | 
						|
    // Fix this by setting Loop's DebugLoc to NewExit.
 | 
						|
    auto *NewExitTerminator = NewExit->getTerminator();
 | 
						|
    NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
 | 
						|
    // Split NewExit to insert epilog remainder loop.
 | 
						|
    EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
 | 
						|
    EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
 | 
						|
  } else {
 | 
						|
    // If prolog remainder
 | 
						|
    // Split the original preheader twice to insert prolog remainder loop
 | 
						|
    PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
 | 
						|
    PrologPreHeader->setName(Header->getName() + ".prol.preheader");
 | 
						|
    PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
 | 
						|
                            DT, LI);
 | 
						|
    PrologExit->setName(Header->getName() + ".prol.loopexit");
 | 
						|
    // Split PrologExit to get NewPreHeader.
 | 
						|
    NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
 | 
						|
    NewPreHeader->setName(PreHeader->getName() + ".new");
 | 
						|
  }
 | 
						|
  // Loop structure should be the following:
 | 
						|
  //  Epilog             Prolog
 | 
						|
  //
 | 
						|
  // PreHeader         PreHeader
 | 
						|
  // *NewPreHeader     *PrologPreHeader
 | 
						|
  //   Header          *PrologExit
 | 
						|
  //   ...             *NewPreHeader
 | 
						|
  //   Latch             Header
 | 
						|
  // *NewExit            ...
 | 
						|
  // *EpilogPreHeader    Latch
 | 
						|
  // LatchExit              LatchExit
 | 
						|
 | 
						|
  // Calculate conditions for branch around loop for unrolling
 | 
						|
  // in epilog case and around prolog remainder loop in prolog case.
 | 
						|
  // Compute the number of extra iterations required, which is:
 | 
						|
  //  extra iterations = run-time trip count % loop unroll factor
 | 
						|
  PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
 | 
						|
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
 | 
						|
                                            PreHeaderBR);
 | 
						|
  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
 | 
						|
                                          PreHeaderBR);
 | 
						|
  IRBuilder<> B(PreHeaderBR);
 | 
						|
  Value *ModVal;
 | 
						|
  // Calculate ModVal = (BECount + 1) % Count.
 | 
						|
  // Note that TripCount is BECount + 1.
 | 
						|
  if (isPowerOf2_32(Count)) {
 | 
						|
    // When Count is power of 2 we don't BECount for epilog case, however we'll
 | 
						|
    // need it for a branch around unrolling loop for prolog case.
 | 
						|
    ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
 | 
						|
    //  1. There are no iterations to be run in the prolog/epilog loop.
 | 
						|
    // OR
 | 
						|
    //  2. The addition computing TripCount overflowed.
 | 
						|
    //
 | 
						|
    // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
 | 
						|
    // the number of iterations that remain to be run in the original loop is a
 | 
						|
    // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
 | 
						|
    // explicitly check this above).
 | 
						|
  } else {
 | 
						|
    // As (BECount + 1) can potentially unsigned overflow we count
 | 
						|
    // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
 | 
						|
    Value *ModValTmp = B.CreateURem(BECount,
 | 
						|
                                    ConstantInt::get(BECount->getType(),
 | 
						|
                                                     Count));
 | 
						|
    Value *ModValAdd = B.CreateAdd(ModValTmp,
 | 
						|
                                   ConstantInt::get(ModValTmp->getType(), 1));
 | 
						|
    // At that point (BECount % Count) + 1 could be equal to Count.
 | 
						|
    // To handle this case we need to take mod by Count one more time.
 | 
						|
    ModVal = B.CreateURem(ModValAdd,
 | 
						|
                          ConstantInt::get(BECount->getType(), Count),
 | 
						|
                          "xtraiter");
 | 
						|
  }
 | 
						|
  Value *BranchVal =
 | 
						|
      UseEpilogRemainder ? B.CreateICmpULT(BECount,
 | 
						|
                                           ConstantInt::get(BECount->getType(),
 | 
						|
                                                            Count - 1)) :
 | 
						|
                           B.CreateIsNotNull(ModVal, "lcmp.mod");
 | 
						|
  BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
 | 
						|
  BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
 | 
						|
  // Branch to either remainder (extra iterations) loop or unrolling loop.
 | 
						|
  B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
 | 
						|
  PreHeaderBR->eraseFromParent();
 | 
						|
  if (DT) {
 | 
						|
    if (UseEpilogRemainder)
 | 
						|
      DT->changeImmediateDominator(NewExit, PreHeader);
 | 
						|
    else
 | 
						|
      DT->changeImmediateDominator(PrologExit, PreHeader);
 | 
						|
  }
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  // Get an ordered list of blocks in the loop to help with the ordering of the
 | 
						|
  // cloned blocks in the prolog/epilog code
 | 
						|
  LoopBlocksDFS LoopBlocks(L);
 | 
						|
  LoopBlocks.perform(LI);
 | 
						|
 | 
						|
  //
 | 
						|
  // For each extra loop iteration, create a copy of the loop's basic blocks
 | 
						|
  // and generate a condition that branches to the copy depending on the
 | 
						|
  // number of 'left over' iterations.
 | 
						|
  //
 | 
						|
  std::vector<BasicBlock *> NewBlocks;
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
 | 
						|
  // For unroll factor 2 remainder loop will have 1 iterations.
 | 
						|
  // Do not create 1 iteration loop.
 | 
						|
  bool CreateRemainderLoop = (Count != 2);
 | 
						|
 | 
						|
  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
 | 
						|
  // the loop, otherwise we create a cloned loop to execute the extra
 | 
						|
  // iterations. This function adds the appropriate CFG connections.
 | 
						|
  BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
 | 
						|
  BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
 | 
						|
  Loop *remainderLoop = CloneLoopBlocks(
 | 
						|
      L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
 | 
						|
      InsertTop, InsertBot,
 | 
						|
      NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
 | 
						|
 | 
						|
  // Assign the maximum possible trip count as the back edge weight for the
 | 
						|
  // remainder loop if the original loop comes with a branch weight.
 | 
						|
  if (remainderLoop && !UnrollRemainder)
 | 
						|
    updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
 | 
						|
 | 
						|
  // Insert the cloned blocks into the function.
 | 
						|
  F->getBasicBlockList().splice(InsertBot->getIterator(),
 | 
						|
                                F->getBasicBlockList(),
 | 
						|
                                NewBlocks[0]->getIterator(),
 | 
						|
                                F->end());
 | 
						|
 | 
						|
  // Now the loop blocks are cloned and the other exiting blocks from the
 | 
						|
  // remainder are connected to the original Loop's exit blocks. The remaining
 | 
						|
  // work is to update the phi nodes in the original loop, and take in the
 | 
						|
  // values from the cloned region.
 | 
						|
  for (auto *BB : OtherExits) {
 | 
						|
   for (auto &II : *BB) {
 | 
						|
 | 
						|
     // Given we preserve LCSSA form, we know that the values used outside the
 | 
						|
     // loop will be used through these phi nodes at the exit blocks that are
 | 
						|
     // transformed below.
 | 
						|
     if (!isa<PHINode>(II))
 | 
						|
       break;
 | 
						|
     PHINode *Phi = cast<PHINode>(&II);
 | 
						|
     unsigned oldNumOperands = Phi->getNumIncomingValues();
 | 
						|
     // Add the incoming values from the remainder code to the end of the phi
 | 
						|
     // node.
 | 
						|
     for (unsigned i =0; i < oldNumOperands; i++){
 | 
						|
       Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
 | 
						|
       // newVal can be a constant or derived from values outside the loop, and
 | 
						|
       // hence need not have a VMap value. Also, since lookup already generated
 | 
						|
       // a default "null" VMap entry for this value, we need to populate that
 | 
						|
       // VMap entry correctly, with the mapped entry being itself.
 | 
						|
       if (!newVal) {
 | 
						|
         newVal = Phi->getIncomingValue(i);
 | 
						|
         VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
 | 
						|
       }
 | 
						|
       Phi->addIncoming(newVal,
 | 
						|
                           cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
 | 
						|
     }
 | 
						|
   }
 | 
						|
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
 | 
						|
    for (BasicBlock *SuccBB : successors(BB)) {
 | 
						|
      assert(!(any_of(OtherExits,
 | 
						|
                      [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
 | 
						|
               SuccBB == LatchExit) &&
 | 
						|
             "Breaks the definition of dedicated exits!");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the immediate dominator of the exit blocks and blocks that are
 | 
						|
  // reachable from the exit blocks. This is needed because we now have paths
 | 
						|
  // from both the original loop and the remainder code reaching the exit
 | 
						|
  // blocks. While the IDom of these exit blocks were from the original loop,
 | 
						|
  // now the IDom is the preheader (which decides whether the original loop or
 | 
						|
  // remainder code should run).
 | 
						|
  if (DT && !L->getExitingBlock()) {
 | 
						|
    SmallVector<BasicBlock *, 16> ChildrenToUpdate;
 | 
						|
    // NB! We have to examine the dom children of all loop blocks, not just
 | 
						|
    // those which are the IDom of the exit blocks. This is because blocks
 | 
						|
    // reachable from the exit blocks can have their IDom as the nearest common
 | 
						|
    // dominator of the exit blocks.
 | 
						|
    for (auto *BB : L->blocks()) {
 | 
						|
      auto *DomNodeBB = DT->getNode(BB);
 | 
						|
      for (auto *DomChild : DomNodeBB->children()) {
 | 
						|
        auto *DomChildBB = DomChild->getBlock();
 | 
						|
        if (!L->contains(LI->getLoopFor(DomChildBB)))
 | 
						|
          ChildrenToUpdate.push_back(DomChildBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (auto *BB : ChildrenToUpdate)
 | 
						|
      DT->changeImmediateDominator(BB, PreHeader);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop structure should be the following:
 | 
						|
  //  Epilog             Prolog
 | 
						|
  //
 | 
						|
  // PreHeader         PreHeader
 | 
						|
  // NewPreHeader      PrologPreHeader
 | 
						|
  //   Header            PrologHeader
 | 
						|
  //   ...               ...
 | 
						|
  //   Latch             PrologLatch
 | 
						|
  // NewExit           PrologExit
 | 
						|
  // EpilogPreHeader   NewPreHeader
 | 
						|
  //   EpilogHeader      Header
 | 
						|
  //   ...               ...
 | 
						|
  //   EpilogLatch       Latch
 | 
						|
  // LatchExit              LatchExit
 | 
						|
 | 
						|
  // Rewrite the cloned instruction operands to use the values created when the
 | 
						|
  // clone is created.
 | 
						|
  for (BasicBlock *BB : NewBlocks) {
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      RemapInstruction(&I, VMap,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (UseEpilogRemainder) {
 | 
						|
    // Connect the epilog code to the original loop and update the
 | 
						|
    // PHI functions.
 | 
						|
    ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
 | 
						|
                  EpilogPreHeader, NewPreHeader, VMap, DT, LI,
 | 
						|
                  PreserveLCSSA);
 | 
						|
 | 
						|
    // Update counter in loop for unrolling.
 | 
						|
    // I should be multiply of Count.
 | 
						|
    IRBuilder<> B2(NewPreHeader->getTerminator());
 | 
						|
    Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
 | 
						|
    BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
 | 
						|
    B2.SetInsertPoint(LatchBR);
 | 
						|
    PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
 | 
						|
                                      Header->getFirstNonPHI());
 | 
						|
    Value *IdxSub =
 | 
						|
        B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | 
						|
                     NewIdx->getName() + ".nsub");
 | 
						|
    Value *IdxCmp;
 | 
						|
    if (LatchBR->getSuccessor(0) == Header)
 | 
						|
      IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
 | 
						|
    else
 | 
						|
      IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
 | 
						|
    NewIdx->addIncoming(TestVal, NewPreHeader);
 | 
						|
    NewIdx->addIncoming(IdxSub, Latch);
 | 
						|
    LatchBR->setCondition(IdxCmp);
 | 
						|
  } else {
 | 
						|
    // Connect the prolog code to the original loop and update the
 | 
						|
    // PHI functions.
 | 
						|
    ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
 | 
						|
                  NewPreHeader, VMap, DT, LI, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this loop is nested, then the loop unroller changes the code in the any
 | 
						|
  // of its parent loops, so the Scalar Evolution pass needs to be run again.
 | 
						|
  SE->forgetTopmostLoop(L);
 | 
						|
 | 
						|
  // Verify that the Dom Tree is correct.
 | 
						|
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
 | 
						|
  if (DT)
 | 
						|
    assert(DT->verify(DominatorTree::VerificationLevel::Full));
 | 
						|
#endif
 | 
						|
 | 
						|
  // Canonicalize to LoopSimplifyForm both original and remainder loops. We
 | 
						|
  // cannot rely on the LoopUnrollPass to do this because it only does
 | 
						|
  // canonicalization for parent/subloops and not the sibling loops.
 | 
						|
  if (OtherExits.size() > 0) {
 | 
						|
    // Generate dedicated exit blocks for the original loop, to preserve
 | 
						|
    // LoopSimplifyForm.
 | 
						|
    formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
 | 
						|
    // Generate dedicated exit blocks for the remainder loop if one exists, to
 | 
						|
    // preserve LoopSimplifyForm.
 | 
						|
    if (remainderLoop)
 | 
						|
      formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  auto UnrollResult = LoopUnrollResult::Unmodified;
 | 
						|
  if (remainderLoop && UnrollRemainder) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
 | 
						|
    UnrollResult =
 | 
						|
        UnrollLoop(remainderLoop,
 | 
						|
                   {/*Count*/ Count - 1, /*TripCount*/ Count - 1,
 | 
						|
                    /*Force*/ false, /*AllowRuntime*/ false,
 | 
						|
                    /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
 | 
						|
                    /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
 | 
						|
                    /*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV},
 | 
						|
                   LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
 | 
						|
    *ResultLoop = remainderLoop;
 | 
						|
  NumRuntimeUnrolled++;
 | 
						|
  return true;
 | 
						|
}
 |