1894 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1894 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines common loop utility functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/PriorityWorklist.h"
 | 
						|
#include "llvm/ADT/ScopeExit.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopAccessAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/MemorySSA.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/MustExecute.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-utils"
 | 
						|
 | 
						|
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
 | 
						|
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
 | 
						|
static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
 | 
						|
 | 
						|
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                                   MemorySSAUpdater *MSSAU,
 | 
						|
                                   bool PreserveLCSSA) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // We re-use a vector for the in-loop predecesosrs.
 | 
						|
  SmallVector<BasicBlock *, 4> InLoopPredecessors;
 | 
						|
 | 
						|
  auto RewriteExit = [&](BasicBlock *BB) {
 | 
						|
    assert(InLoopPredecessors.empty() &&
 | 
						|
           "Must start with an empty predecessors list!");
 | 
						|
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
 | 
						|
 | 
						|
    // See if there are any non-loop predecessors of this exit block and
 | 
						|
    // keep track of the in-loop predecessors.
 | 
						|
    bool IsDedicatedExit = true;
 | 
						|
    for (auto *PredBB : predecessors(BB))
 | 
						|
      if (L->contains(PredBB)) {
 | 
						|
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
 | 
						|
          // We cannot rewrite exiting edges from an indirectbr.
 | 
						|
          return false;
 | 
						|
        if (isa<CallBrInst>(PredBB->getTerminator()))
 | 
						|
          // We cannot rewrite exiting edges from a callbr.
 | 
						|
          return false;
 | 
						|
 | 
						|
        InLoopPredecessors.push_back(PredBB);
 | 
						|
      } else {
 | 
						|
        IsDedicatedExit = false;
 | 
						|
      }
 | 
						|
 | 
						|
    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
 | 
						|
 | 
						|
    // Nothing to do if this is already a dedicated exit.
 | 
						|
    if (IsDedicatedExit)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *NewExitBB = SplitBlockPredecessors(
 | 
						|
        BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
 | 
						|
 | 
						|
    if (!NewExitBB)
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
 | 
						|
                 << *L << "\n");
 | 
						|
    else
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
 | 
						|
                        << NewExitBB->getName() << "\n");
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // Walk the exit blocks directly rather than building up a data structure for
 | 
						|
  // them, but only visit each one once.
 | 
						|
  SmallPtrSet<BasicBlock *, 4> Visited;
 | 
						|
  for (auto *BB : L->blocks())
 | 
						|
    for (auto *SuccBB : successors(BB)) {
 | 
						|
      // We're looking for exit blocks so skip in-loop successors.
 | 
						|
      if (L->contains(SuccBB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Visit each exit block exactly once.
 | 
						|
      if (!Visited.insert(SuccBB).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Changed |= RewriteExit(SuccBB);
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the instructions that use values defined in the loop.
 | 
						|
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
 | 
						|
  SmallVector<Instruction *, 8> UsedOutside;
 | 
						|
 | 
						|
  for (auto *Block : L->getBlocks())
 | 
						|
    // FIXME: I believe that this could use copy_if if the Inst reference could
 | 
						|
    // be adapted into a pointer.
 | 
						|
    for (auto &Inst : *Block) {
 | 
						|
      auto Users = Inst.users();
 | 
						|
      if (any_of(Users, [&](User *U) {
 | 
						|
            auto *Use = cast<Instruction>(U);
 | 
						|
            return !L->contains(Use->getParent());
 | 
						|
          }))
 | 
						|
        UsedOutside.push_back(&Inst);
 | 
						|
    }
 | 
						|
 | 
						|
  return UsedOutside;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
 | 
						|
  // By definition, all loop passes need the LoopInfo analysis and the
 | 
						|
  // Dominator tree it depends on. Because they all participate in the loop
 | 
						|
  // pass manager, they must also preserve these.
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
 | 
						|
  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
 | 
						|
  // here because users shouldn't directly get them from this header.
 | 
						|
  extern char &LoopSimplifyID;
 | 
						|
  extern char &LCSSAID;
 | 
						|
  AU.addRequiredID(LoopSimplifyID);
 | 
						|
  AU.addPreservedID(LoopSimplifyID);
 | 
						|
  AU.addRequiredID(LCSSAID);
 | 
						|
  AU.addPreservedID(LCSSAID);
 | 
						|
  // This is used in the LPPassManager to perform LCSSA verification on passes
 | 
						|
  // which preserve lcssa form
 | 
						|
  AU.addRequired<LCSSAVerificationPass>();
 | 
						|
  AU.addPreserved<LCSSAVerificationPass>();
 | 
						|
 | 
						|
  // Loop passes are designed to run inside of a loop pass manager which means
 | 
						|
  // that any function analyses they require must be required by the first loop
 | 
						|
  // pass in the manager (so that it is computed before the loop pass manager
 | 
						|
  // runs) and preserved by all loop pasess in the manager. To make this
 | 
						|
  // reasonably robust, the set needed for most loop passes is maintained here.
 | 
						|
  // If your loop pass requires an analysis not listed here, you will need to
 | 
						|
  // carefully audit the loop pass manager nesting structure that results.
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
  AU.addPreserved<BasicAAWrapperPass>();
 | 
						|
  AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
  AU.addPreserved<SCEVAAWrapperPass>();
 | 
						|
  AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
  AU.addPreserved<ScalarEvolutionWrapperPass>();
 | 
						|
  // FIXME: When all loop passes preserve MemorySSA, it can be required and
 | 
						|
  // preserved here instead of the individual handling in each pass.
 | 
						|
}
 | 
						|
 | 
						|
/// Manually defined generic "LoopPass" dependency initialization. This is used
 | 
						|
/// to initialize the exact set of passes from above in \c
 | 
						|
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
 | 
						|
/// with:
 | 
						|
///
 | 
						|
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
///
 | 
						|
/// As-if "LoopPass" were a pass.
 | 
						|
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | 
						|
}
 | 
						|
 | 
						|
/// Create MDNode for input string.
 | 
						|
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
 | 
						|
  LLVMContext &Context = TheLoop->getHeader()->getContext();
 | 
						|
  Metadata *MDs[] = {
 | 
						|
      MDString::get(Context, Name),
 | 
						|
      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
 | 
						|
  return MDNode::get(Context, MDs);
 | 
						|
}
 | 
						|
 | 
						|
/// Set input string into loop metadata by keeping other values intact.
 | 
						|
/// If the string is already in loop metadata update value if it is
 | 
						|
/// different.
 | 
						|
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
 | 
						|
                                   unsigned V) {
 | 
						|
  SmallVector<Metadata *, 4> MDs(1);
 | 
						|
  // If the loop already has metadata, retain it.
 | 
						|
  MDNode *LoopID = TheLoop->getLoopID();
 | 
						|
  if (LoopID) {
 | 
						|
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | 
						|
      MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
 | 
						|
      // If it is of form key = value, try to parse it.
 | 
						|
      if (Node->getNumOperands() == 2) {
 | 
						|
        MDString *S = dyn_cast<MDString>(Node->getOperand(0));
 | 
						|
        if (S && S->getString().equals(StringMD)) {
 | 
						|
          ConstantInt *IntMD =
 | 
						|
              mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
 | 
						|
          if (IntMD && IntMD->getSExtValue() == V)
 | 
						|
            // It is already in place. Do nothing.
 | 
						|
            return;
 | 
						|
          // We need to update the value, so just skip it here and it will
 | 
						|
          // be added after copying other existed nodes.
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      MDs.push_back(Node);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Add new metadata.
 | 
						|
  MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
 | 
						|
  // Replace current metadata node with new one.
 | 
						|
  LLVMContext &Context = TheLoop->getHeader()->getContext();
 | 
						|
  MDNode *NewLoopID = MDNode::get(Context, MDs);
 | 
						|
  // Set operand 0 to refer to the loop id itself.
 | 
						|
  NewLoopID->replaceOperandWith(0, NewLoopID);
 | 
						|
  TheLoop->setLoopID(NewLoopID);
 | 
						|
}
 | 
						|
 | 
						|
/// Find string metadata for loop
 | 
						|
///
 | 
						|
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
 | 
						|
/// operand or null otherwise.  If the string metadata is not found return
 | 
						|
/// Optional's not-a-value.
 | 
						|
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
 | 
						|
                                                            StringRef Name) {
 | 
						|
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
 | 
						|
  if (!MD)
 | 
						|
    return None;
 | 
						|
  switch (MD->getNumOperands()) {
 | 
						|
  case 1:
 | 
						|
    return nullptr;
 | 
						|
  case 2:
 | 
						|
    return &MD->getOperand(1);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("loop metadata has 0 or 1 operand");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
 | 
						|
                                                   StringRef Name) {
 | 
						|
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
 | 
						|
  if (!MD)
 | 
						|
    return None;
 | 
						|
  switch (MD->getNumOperands()) {
 | 
						|
  case 1:
 | 
						|
    // When the value is absent it is interpreted as 'attribute set'.
 | 
						|
    return true;
 | 
						|
  case 2:
 | 
						|
    if (ConstantInt *IntMD =
 | 
						|
            mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
 | 
						|
      return IntMD->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected number of options");
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
 | 
						|
  return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
 | 
						|
}
 | 
						|
 | 
						|
Optional<ElementCount>
 | 
						|
llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
 | 
						|
  Optional<int> Width =
 | 
						|
      getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
 | 
						|
 | 
						|
  if (Width.hasValue()) {
 | 
						|
    Optional<int> IsScalable = getOptionalIntLoopAttribute(
 | 
						|
        TheLoop, "llvm.loop.vectorize.scalable.enable");
 | 
						|
    return ElementCount::get(*Width, IsScalable.getValueOr(false));
 | 
						|
  }
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
 | 
						|
                                                      StringRef Name) {
 | 
						|
  const MDOperand *AttrMD =
 | 
						|
      findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
 | 
						|
  if (!AttrMD)
 | 
						|
    return None;
 | 
						|
 | 
						|
  ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
 | 
						|
  if (!IntMD)
 | 
						|
    return None;
 | 
						|
 | 
						|
  return IntMD->getSExtValue();
 | 
						|
}
 | 
						|
 | 
						|
Optional<MDNode *> llvm::makeFollowupLoopID(
 | 
						|
    MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
 | 
						|
    const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
 | 
						|
  if (!OrigLoopID) {
 | 
						|
    if (AlwaysNew)
 | 
						|
      return nullptr;
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(OrigLoopID->getOperand(0) == OrigLoopID);
 | 
						|
 | 
						|
  bool InheritAllAttrs = !InheritOptionsExceptPrefix;
 | 
						|
  bool InheritSomeAttrs =
 | 
						|
      InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
 | 
						|
  SmallVector<Metadata *, 8> MDs;
 | 
						|
  MDs.push_back(nullptr);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  if (InheritAllAttrs || InheritSomeAttrs) {
 | 
						|
    for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
 | 
						|
      MDNode *Op = cast<MDNode>(Existing.get());
 | 
						|
 | 
						|
      auto InheritThisAttribute = [InheritSomeAttrs,
 | 
						|
                                   InheritOptionsExceptPrefix](MDNode *Op) {
 | 
						|
        if (!InheritSomeAttrs)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Skip malformatted attribute metadata nodes.
 | 
						|
        if (Op->getNumOperands() == 0)
 | 
						|
          return true;
 | 
						|
        Metadata *NameMD = Op->getOperand(0).get();
 | 
						|
        if (!isa<MDString>(NameMD))
 | 
						|
          return true;
 | 
						|
        StringRef AttrName = cast<MDString>(NameMD)->getString();
 | 
						|
 | 
						|
        // Do not inherit excluded attributes.
 | 
						|
        return !AttrName.startswith(InheritOptionsExceptPrefix);
 | 
						|
      };
 | 
						|
 | 
						|
      if (InheritThisAttribute(Op))
 | 
						|
        MDs.push_back(Op);
 | 
						|
      else
 | 
						|
        Changed = true;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Modified if we dropped at least one attribute.
 | 
						|
    Changed = OrigLoopID->getNumOperands() > 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasAnyFollowup = false;
 | 
						|
  for (StringRef OptionName : FollowupOptions) {
 | 
						|
    MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
 | 
						|
    if (!FollowupNode)
 | 
						|
      continue;
 | 
						|
 | 
						|
    HasAnyFollowup = true;
 | 
						|
    for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
 | 
						|
      MDs.push_back(Option.get());
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Attributes of the followup loop not specified explicity, so signal to the
 | 
						|
  // transformation pass to add suitable attributes.
 | 
						|
  if (!AlwaysNew && !HasAnyFollowup)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // If no attributes were added or remove, the previous loop Id can be reused.
 | 
						|
  if (!AlwaysNew && !Changed)
 | 
						|
    return OrigLoopID;
 | 
						|
 | 
						|
  // No attributes is equivalent to having no !llvm.loop metadata at all.
 | 
						|
  if (MDs.size() == 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Build the new loop ID.
 | 
						|
  MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
 | 
						|
  FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
 | 
						|
  return FollowupLoopID;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
 | 
						|
  return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
 | 
						|
  return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::hasMustProgress(const Loop *L) {
 | 
						|
  return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
 | 
						|
}
 | 
						|
 | 
						|
TransformationMode llvm::hasUnrollTransformation(Loop *L) {
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
 | 
						|
    return TM_SuppressedByUser;
 | 
						|
 | 
						|
  Optional<int> Count =
 | 
						|
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
 | 
						|
  if (Count.hasValue())
 | 
						|
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
 | 
						|
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
 | 
						|
    return TM_ForcedByUser;
 | 
						|
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
 | 
						|
    return TM_ForcedByUser;
 | 
						|
 | 
						|
  if (hasDisableAllTransformsHint(L))
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  return TM_Unspecified;
 | 
						|
}
 | 
						|
 | 
						|
TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
 | 
						|
    return TM_SuppressedByUser;
 | 
						|
 | 
						|
  Optional<int> Count =
 | 
						|
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
 | 
						|
  if (Count.hasValue())
 | 
						|
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
 | 
						|
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
 | 
						|
    return TM_ForcedByUser;
 | 
						|
 | 
						|
  if (hasDisableAllTransformsHint(L))
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  return TM_Unspecified;
 | 
						|
}
 | 
						|
 | 
						|
TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
 | 
						|
  Optional<bool> Enable =
 | 
						|
      getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
 | 
						|
 | 
						|
  if (Enable == false)
 | 
						|
    return TM_SuppressedByUser;
 | 
						|
 | 
						|
  Optional<ElementCount> VectorizeWidth =
 | 
						|
      getOptionalElementCountLoopAttribute(L);
 | 
						|
  Optional<int> InterleaveCount =
 | 
						|
      getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
 | 
						|
 | 
						|
  // 'Forcing' vector width and interleave count to one effectively disables
 | 
						|
  // this tranformation.
 | 
						|
  if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
 | 
						|
      InterleaveCount == 1)
 | 
						|
    return TM_SuppressedByUser;
 | 
						|
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  if (Enable == true)
 | 
						|
    return TM_ForcedByUser;
 | 
						|
 | 
						|
  if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
 | 
						|
    return TM_Enable;
 | 
						|
 | 
						|
  if (hasDisableAllTransformsHint(L))
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  return TM_Unspecified;
 | 
						|
}
 | 
						|
 | 
						|
TransformationMode llvm::hasDistributeTransformation(Loop *L) {
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
 | 
						|
    return TM_ForcedByUser;
 | 
						|
 | 
						|
  if (hasDisableAllTransformsHint(L))
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  return TM_Unspecified;
 | 
						|
}
 | 
						|
 | 
						|
TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
 | 
						|
  if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
 | 
						|
    return TM_SuppressedByUser;
 | 
						|
 | 
						|
  if (hasDisableAllTransformsHint(L))
 | 
						|
    return TM_Disable;
 | 
						|
 | 
						|
  return TM_Unspecified;
 | 
						|
}
 | 
						|
 | 
						|
/// Does a BFS from a given node to all of its children inside a given loop.
 | 
						|
/// The returned vector of nodes includes the starting point.
 | 
						|
SmallVector<DomTreeNode *, 16>
 | 
						|
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
 | 
						|
  SmallVector<DomTreeNode *, 16> Worklist;
 | 
						|
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
 | 
						|
    // Only include subregions in the top level loop.
 | 
						|
    BasicBlock *BB = DTN->getBlock();
 | 
						|
    if (CurLoop->contains(BB))
 | 
						|
      Worklist.push_back(DTN);
 | 
						|
  };
 | 
						|
 | 
						|
  AddRegionToWorklist(N);
 | 
						|
 | 
						|
  for (size_t I = 0; I < Worklist.size(); I++) {
 | 
						|
    for (DomTreeNode *Child : Worklist[I]->children())
 | 
						|
      AddRegionToWorklist(Child);
 | 
						|
  }
 | 
						|
 | 
						|
  return Worklist;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
 | 
						|
                          LoopInfo *LI, MemorySSA *MSSA) {
 | 
						|
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
 | 
						|
  auto *Preheader = L->getLoopPreheader();
 | 
						|
  assert(Preheader && "Preheader should exist!");
 | 
						|
 | 
						|
  std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
  if (MSSA)
 | 
						|
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
 | 
						|
 | 
						|
  // Now that we know the removal is safe, remove the loop by changing the
 | 
						|
  // branch from the preheader to go to the single exit block.
 | 
						|
  //
 | 
						|
  // Because we're deleting a large chunk of code at once, the sequence in which
 | 
						|
  // we remove things is very important to avoid invalidation issues.
 | 
						|
 | 
						|
  // Tell ScalarEvolution that the loop is deleted. Do this before
 | 
						|
  // deleting the loop so that ScalarEvolution can look at the loop
 | 
						|
  // to determine what it needs to clean up.
 | 
						|
  if (SE)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
 | 
						|
  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
 | 
						|
  assert(OldBr && "Preheader must end with a branch");
 | 
						|
  assert(OldBr->isUnconditional() && "Preheader must have a single successor");
 | 
						|
  // Connect the preheader to the exit block. Keep the old edge to the header
 | 
						|
  // around to perform the dominator tree update in two separate steps
 | 
						|
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
 | 
						|
  // preheader -> header.
 | 
						|
  //
 | 
						|
  //
 | 
						|
  // 0.  Preheader          1.  Preheader           2.  Preheader
 | 
						|
  //        |                    |   |                   |
 | 
						|
  //        V                    |   V                   |
 | 
						|
  //      Header <--\            | Header <--\           | Header <--\
 | 
						|
  //       |  |     |            |  |  |     |           |  |  |     |
 | 
						|
  //       |  V     |            |  |  V     |           |  |  V     |
 | 
						|
  //       | Body --/            |  | Body --/           |  | Body --/
 | 
						|
  //       V                     V  V                    V  V
 | 
						|
  //      Exit                   Exit                    Exit
 | 
						|
  //
 | 
						|
  // By doing this is two separate steps we can perform the dominator tree
 | 
						|
  // update without using the batch update API.
 | 
						|
  //
 | 
						|
  // Even when the loop is never executed, we cannot remove the edge from the
 | 
						|
  // source block to the exit block. Consider the case where the unexecuted loop
 | 
						|
  // branches back to an outer loop. If we deleted the loop and removed the edge
 | 
						|
  // coming to this inner loop, this will break the outer loop structure (by
 | 
						|
  // deleting the backedge of the outer loop). If the outer loop is indeed a
 | 
						|
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
 | 
						|
  IRBuilder<> Builder(OldBr);
 | 
						|
 | 
						|
  auto *ExitBlock = L->getUniqueExitBlock();
 | 
						|
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
 | 
						|
  if (ExitBlock) {
 | 
						|
    assert(ExitBlock && "Should have a unique exit block!");
 | 
						|
    assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
 | 
						|
 | 
						|
    Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
 | 
						|
    // Remove the old branch. The conditional branch becomes a new terminator.
 | 
						|
    OldBr->eraseFromParent();
 | 
						|
 | 
						|
    // Rewrite phis in the exit block to get their inputs from the Preheader
 | 
						|
    // instead of the exiting block.
 | 
						|
    for (PHINode &P : ExitBlock->phis()) {
 | 
						|
      // Set the zero'th element of Phi to be from the preheader and remove all
 | 
						|
      // other incoming values. Given the loop has dedicated exits, all other
 | 
						|
      // incoming values must be from the exiting blocks.
 | 
						|
      int PredIndex = 0;
 | 
						|
      P.setIncomingBlock(PredIndex, Preheader);
 | 
						|
      // Removes all incoming values from all other exiting blocks (including
 | 
						|
      // duplicate values from an exiting block).
 | 
						|
      // Nuke all entries except the zero'th entry which is the preheader entry.
 | 
						|
      // NOTE! We need to remove Incoming Values in the reverse order as done
 | 
						|
      // below, to keep the indices valid for deletion (removeIncomingValues
 | 
						|
      // updates getNumIncomingValues and shifts all values down into the
 | 
						|
      // operand being deleted).
 | 
						|
      for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
 | 
						|
        P.removeIncomingValue(e - i, false);
 | 
						|
 | 
						|
      assert((P.getNumIncomingValues() == 1 &&
 | 
						|
              P.getIncomingBlock(PredIndex) == Preheader) &&
 | 
						|
             "Should have exactly one value and that's from the preheader!");
 | 
						|
    }
 | 
						|
 | 
						|
    if (DT) {
 | 
						|
      DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
 | 
						|
      if (MSSA) {
 | 
						|
        MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
 | 
						|
                            *DT);
 | 
						|
        if (VerifyMemorySSA)
 | 
						|
          MSSA->verifyMemorySSA();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Disconnect the loop body by branching directly to its exit.
 | 
						|
    Builder.SetInsertPoint(Preheader->getTerminator());
 | 
						|
    Builder.CreateBr(ExitBlock);
 | 
						|
    // Remove the old branch.
 | 
						|
    Preheader->getTerminator()->eraseFromParent();
 | 
						|
  } else {
 | 
						|
    assert(L->hasNoExitBlocks() &&
 | 
						|
           "Loop should have either zero or one exit blocks.");
 | 
						|
 | 
						|
    Builder.SetInsertPoint(OldBr);
 | 
						|
    Builder.CreateUnreachable();
 | 
						|
    Preheader->getTerminator()->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  if (DT) {
 | 
						|
    DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
 | 
						|
    if (MSSA) {
 | 
						|
      MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
 | 
						|
                          *DT);
 | 
						|
      SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
 | 
						|
                                                   L->block_end());
 | 
						|
      MSSAU->removeBlocks(DeadBlockSet);
 | 
						|
      if (VerifyMemorySSA)
 | 
						|
        MSSA->verifyMemorySSA();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Use a map to unique and a vector to guarantee deterministic ordering.
 | 
						|
  llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
 | 
						|
  llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
 | 
						|
 | 
						|
  if (ExitBlock) {
 | 
						|
    // Given LCSSA form is satisfied, we should not have users of instructions
 | 
						|
    // within the dead loop outside of the loop. However, LCSSA doesn't take
 | 
						|
    // unreachable uses into account. We handle them here.
 | 
						|
    // We could do it after drop all references (in this case all users in the
 | 
						|
    // loop will be already eliminated and we have less work to do but according
 | 
						|
    // to API doc of User::dropAllReferences only valid operation after dropping
 | 
						|
    // references, is deletion. So let's substitute all usages of
 | 
						|
    // instruction from the loop with undef value of corresponding type first.
 | 
						|
    for (auto *Block : L->blocks())
 | 
						|
      for (Instruction &I : *Block) {
 | 
						|
        auto *Undef = UndefValue::get(I.getType());
 | 
						|
        for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
 | 
						|
             UI != E;) {
 | 
						|
          Use &U = *UI;
 | 
						|
          ++UI;
 | 
						|
          if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
 | 
						|
            if (L->contains(Usr->getParent()))
 | 
						|
              continue;
 | 
						|
          // If we have a DT then we can check that uses outside a loop only in
 | 
						|
          // unreachable block.
 | 
						|
          if (DT)
 | 
						|
            assert(!DT->isReachableFromEntry(U) &&
 | 
						|
                   "Unexpected user in reachable block");
 | 
						|
          U.set(Undef);
 | 
						|
        }
 | 
						|
        auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
 | 
						|
        if (!DVI)
 | 
						|
          continue;
 | 
						|
        auto Key =
 | 
						|
            DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
 | 
						|
        if (Key != DeadDebugSet.end())
 | 
						|
          continue;
 | 
						|
        DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
 | 
						|
        DeadDebugInst.push_back(DVI);
 | 
						|
      }
 | 
						|
 | 
						|
    // After the loop has been deleted all the values defined and modified
 | 
						|
    // inside the loop are going to be unavailable.
 | 
						|
    // Since debug values in the loop have been deleted, inserting an undef
 | 
						|
    // dbg.value truncates the range of any dbg.value before the loop where the
 | 
						|
    // loop used to be. This is particularly important for constant values.
 | 
						|
    DIBuilder DIB(*ExitBlock->getModule());
 | 
						|
    Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
 | 
						|
    assert(InsertDbgValueBefore &&
 | 
						|
           "There should be a non-PHI instruction in exit block, else these "
 | 
						|
           "instructions will have no parent.");
 | 
						|
    for (auto *DVI : DeadDebugInst)
 | 
						|
      DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
 | 
						|
                                  DVI->getVariable(), DVI->getExpression(),
 | 
						|
                                  DVI->getDebugLoc(), InsertDbgValueBefore);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the block from the reference counting scheme, so that we can
 | 
						|
  // delete it freely later.
 | 
						|
  for (auto *Block : L->blocks())
 | 
						|
    Block->dropAllReferences();
 | 
						|
 | 
						|
  if (MSSA && VerifyMemorySSA)
 | 
						|
    MSSA->verifyMemorySSA();
 | 
						|
 | 
						|
  if (LI) {
 | 
						|
    // Erase the instructions and the blocks without having to worry
 | 
						|
    // about ordering because we already dropped the references.
 | 
						|
    // NOTE: This iteration is safe because erasing the block does not remove
 | 
						|
    // its entry from the loop's block list.  We do that in the next section.
 | 
						|
    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
 | 
						|
         LpI != LpE; ++LpI)
 | 
						|
      (*LpI)->eraseFromParent();
 | 
						|
 | 
						|
    // Finally, the blocks from loopinfo.  This has to happen late because
 | 
						|
    // otherwise our loop iterators won't work.
 | 
						|
 | 
						|
    SmallPtrSet<BasicBlock *, 8> blocks;
 | 
						|
    blocks.insert(L->block_begin(), L->block_end());
 | 
						|
    for (BasicBlock *BB : blocks)
 | 
						|
      LI->removeBlock(BB);
 | 
						|
 | 
						|
    // The last step is to update LoopInfo now that we've eliminated this loop.
 | 
						|
    // Note: LoopInfo::erase remove the given loop and relink its subloops with
 | 
						|
    // its parent. While removeLoop/removeChildLoop remove the given loop but
 | 
						|
    // not relink its subloops, which is what we want.
 | 
						|
    if (Loop *ParentLoop = L->getParentLoop()) {
 | 
						|
      Loop::iterator I = find(*ParentLoop, L);
 | 
						|
      assert(I != ParentLoop->end() && "Couldn't find loop");
 | 
						|
      ParentLoop->removeChildLoop(I);
 | 
						|
    } else {
 | 
						|
      Loop::iterator I = find(*LI, L);
 | 
						|
      assert(I != LI->end() && "Couldn't find loop");
 | 
						|
      LI->removeLoop(I);
 | 
						|
    }
 | 
						|
    LI->destroy(L);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Loop *getOutermostLoop(Loop *L) {
 | 
						|
  while (Loop *Parent = L->getParentLoop())
 | 
						|
    L = Parent;
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
 | 
						|
                             LoopInfo &LI, MemorySSA *MSSA) {
 | 
						|
  auto *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "multiple latches not yet supported");
 | 
						|
  auto *Header = L->getHeader();
 | 
						|
  Loop *OutermostLoop = getOutermostLoop(L);
 | 
						|
 | 
						|
  SE.forgetLoop(L);
 | 
						|
 | 
						|
  // Note: By splitting the backedge, and then explicitly making it unreachable
 | 
						|
  // we gracefully handle corner cases such as non-bottom tested loops and the
 | 
						|
  // like.  We also have the benefit of being able to reuse existing well tested
 | 
						|
  // code.  It might be worth special casing the common bottom tested case at
 | 
						|
  // some point to avoid code churn.
 | 
						|
 | 
						|
  std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
  if (MSSA)
 | 
						|
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
 | 
						|
 | 
						|
  auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
 | 
						|
 | 
						|
  DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
 | 
						|
  (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false,
 | 
						|
                            /*PreserveLCSSA*/true, &DTU, MSSAU.get());
 | 
						|
 | 
						|
  // Erase (and destroy) this loop instance.  Handles relinking sub-loops
 | 
						|
  // and blocks within the loop as needed.
 | 
						|
  LI.erase(L);
 | 
						|
 | 
						|
  // If the loop we broke had a parent, then changeToUnreachable might have
 | 
						|
  // caused a block to be removed from the parent loop (see loop_nest_lcssa
 | 
						|
  // test case in zero-btc.ll for an example), thus changing the parent's
 | 
						|
  // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
 | 
						|
  // loop which might have a had a block removed.
 | 
						|
  if (OutermostLoop != L)
 | 
						|
    formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Checks if \p L has single exit through latch block except possibly
 | 
						|
/// "deoptimizing" exits. Returns branch instruction terminating the loop
 | 
						|
/// latch if above check is successful, nullptr otherwise.
 | 
						|
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Latch)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
 | 
						|
          LatchBR->getSuccessor(1) == L->getHeader()) &&
 | 
						|
         "At least one edge out of the latch must go to the header");
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
  L->getUniqueNonLatchExitBlocks(ExitBlocks);
 | 
						|
  if (any_of(ExitBlocks, [](const BasicBlock *EB) {
 | 
						|
        return !EB->getTerminatingDeoptimizeCall();
 | 
						|
      }))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return LatchBR;
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned>
 | 
						|
llvm::getLoopEstimatedTripCount(Loop *L,
 | 
						|
                                unsigned *EstimatedLoopInvocationWeight) {
 | 
						|
  // Support loops with an exiting latch and other existing exists only
 | 
						|
  // deoptimize.
 | 
						|
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
 | 
						|
  if (!LatchBranch)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // To estimate the number of times the loop body was executed, we want to
 | 
						|
  // know the number of times the backedge was taken, vs. the number of times
 | 
						|
  // we exited the loop.
 | 
						|
  uint64_t BackedgeTakenWeight, LatchExitWeight;
 | 
						|
  if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
 | 
						|
    return None;
 | 
						|
 | 
						|
  if (LatchBranch->getSuccessor(0) != L->getHeader())
 | 
						|
    std::swap(BackedgeTakenWeight, LatchExitWeight);
 | 
						|
 | 
						|
  if (!LatchExitWeight)
 | 
						|
    return None;
 | 
						|
 | 
						|
  if (EstimatedLoopInvocationWeight)
 | 
						|
    *EstimatedLoopInvocationWeight = LatchExitWeight;
 | 
						|
 | 
						|
  // Estimated backedge taken count is a ratio of the backedge taken weight by
 | 
						|
  // the weight of the edge exiting the loop, rounded to nearest.
 | 
						|
  uint64_t BackedgeTakenCount =
 | 
						|
      llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
 | 
						|
  // Estimated trip count is one plus estimated backedge taken count.
 | 
						|
  return BackedgeTakenCount + 1;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
 | 
						|
                                     unsigned EstimatedloopInvocationWeight) {
 | 
						|
  // Support loops with an exiting latch and other existing exists only
 | 
						|
  // deoptimize.
 | 
						|
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
 | 
						|
  if (!LatchBranch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Calculate taken and exit weights.
 | 
						|
  unsigned LatchExitWeight = 0;
 | 
						|
  unsigned BackedgeTakenWeight = 0;
 | 
						|
 | 
						|
  if (EstimatedTripCount > 0) {
 | 
						|
    LatchExitWeight = EstimatedloopInvocationWeight;
 | 
						|
    BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make a swap if back edge is taken when condition is "false".
 | 
						|
  if (LatchBranch->getSuccessor(0) != L->getHeader())
 | 
						|
    std::swap(BackedgeTakenWeight, LatchExitWeight);
 | 
						|
 | 
						|
  MDBuilder MDB(LatchBranch->getContext());
 | 
						|
 | 
						|
  // Set/Update profile metadata.
 | 
						|
  LatchBranch->setMetadata(
 | 
						|
      LLVMContext::MD_prof,
 | 
						|
      MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
 | 
						|
                                              ScalarEvolution &SE) {
 | 
						|
  Loop *OuterL = InnerLoop->getParentLoop();
 | 
						|
  if (!OuterL)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Get the backedge taken count for the inner loop
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
 | 
						|
  if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
 | 
						|
      !InnerLoopBECountSC->getType()->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get whether count is invariant to the outer loop
 | 
						|
  ScalarEvolution::LoopDisposition LD =
 | 
						|
      SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
 | 
						|
  if (LD != ScalarEvolution::LoopInvariant)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
 | 
						|
                            Value *Right) {
 | 
						|
  CmpInst::Predicate Pred;
 | 
						|
  switch (RK) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown min/max recurrence kind");
 | 
						|
  case RecurKind::UMin:
 | 
						|
    Pred = CmpInst::ICMP_ULT;
 | 
						|
    break;
 | 
						|
  case RecurKind::UMax:
 | 
						|
    Pred = CmpInst::ICMP_UGT;
 | 
						|
    break;
 | 
						|
  case RecurKind::SMin:
 | 
						|
    Pred = CmpInst::ICMP_SLT;
 | 
						|
    break;
 | 
						|
  case RecurKind::SMax:
 | 
						|
    Pred = CmpInst::ICMP_SGT;
 | 
						|
    break;
 | 
						|
  case RecurKind::FMin:
 | 
						|
    Pred = CmpInst::FCMP_OLT;
 | 
						|
    break;
 | 
						|
  case RecurKind::FMax:
 | 
						|
    Pred = CmpInst::FCMP_OGT;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
 | 
						|
  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | 
						|
  return Select;
 | 
						|
}
 | 
						|
 | 
						|
// Helper to generate an ordered reduction.
 | 
						|
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
 | 
						|
                                 unsigned Op, RecurKind RdxKind,
 | 
						|
                                 ArrayRef<Value *> RedOps) {
 | 
						|
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
 | 
						|
 | 
						|
  // Extract and apply reduction ops in ascending order:
 | 
						|
  // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
 | 
						|
  Value *Result = Acc;
 | 
						|
  for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
 | 
						|
    Value *Ext =
 | 
						|
        Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
 | 
						|
 | 
						|
    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | 
						|
      Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
 | 
						|
                                   "bin.rdx");
 | 
						|
    } else {
 | 
						|
      assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
 | 
						|
             "Invalid min/max");
 | 
						|
      Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!RedOps.empty())
 | 
						|
      propagateIRFlags(Result, RedOps);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// Helper to generate a log2 shuffle reduction.
 | 
						|
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
 | 
						|
                                 unsigned Op, RecurKind RdxKind,
 | 
						|
                                 ArrayRef<Value *> RedOps) {
 | 
						|
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
 | 
						|
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
 | 
						|
  // and vector ops, reducing the set of values being computed by half each
 | 
						|
  // round.
 | 
						|
  assert(isPowerOf2_32(VF) &&
 | 
						|
         "Reduction emission only supported for pow2 vectors!");
 | 
						|
  Value *TmpVec = Src;
 | 
						|
  SmallVector<int, 32> ShuffleMask(VF);
 | 
						|
  for (unsigned i = VF; i != 1; i >>= 1) {
 | 
						|
    // Move the upper half of the vector to the lower half.
 | 
						|
    for (unsigned j = 0; j != i / 2; ++j)
 | 
						|
      ShuffleMask[j] = i / 2 + j;
 | 
						|
 | 
						|
    // Fill the rest of the mask with undef.
 | 
						|
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
 | 
						|
 | 
						|
    Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
 | 
						|
 | 
						|
    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | 
						|
      // The builder propagates its fast-math-flags setting.
 | 
						|
      TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
 | 
						|
                                   "bin.rdx");
 | 
						|
    } else {
 | 
						|
      assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
 | 
						|
             "Invalid min/max");
 | 
						|
      TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
 | 
						|
    }
 | 
						|
    if (!RedOps.empty())
 | 
						|
      propagateIRFlags(TmpVec, RedOps);
 | 
						|
 | 
						|
    // We may compute the reassociated scalar ops in a way that does not
 | 
						|
    // preserve nsw/nuw etc. Conservatively, drop those flags.
 | 
						|
    if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
 | 
						|
      ReductionInst->dropPoisonGeneratingFlags();
 | 
						|
  }
 | 
						|
  // The result is in the first element of the vector.
 | 
						|
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
 | 
						|
                                         const TargetTransformInfo *TTI,
 | 
						|
                                         Value *Src, RecurKind RdxKind,
 | 
						|
                                         ArrayRef<Value *> RedOps) {
 | 
						|
  TargetTransformInfo::ReductionFlags RdxFlags;
 | 
						|
  RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
 | 
						|
                     RdxKind == RecurKind::FMax;
 | 
						|
  RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
 | 
						|
 | 
						|
  auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
 | 
						|
  switch (RdxKind) {
 | 
						|
  case RecurKind::Add:
 | 
						|
    return Builder.CreateAddReduce(Src);
 | 
						|
  case RecurKind::Mul:
 | 
						|
    return Builder.CreateMulReduce(Src);
 | 
						|
  case RecurKind::And:
 | 
						|
    return Builder.CreateAndReduce(Src);
 | 
						|
  case RecurKind::Or:
 | 
						|
    return Builder.CreateOrReduce(Src);
 | 
						|
  case RecurKind::Xor:
 | 
						|
    return Builder.CreateXorReduce(Src);
 | 
						|
  case RecurKind::FAdd:
 | 
						|
    return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
 | 
						|
                                    Src);
 | 
						|
  case RecurKind::FMul:
 | 
						|
    return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
 | 
						|
  case RecurKind::SMax:
 | 
						|
    return Builder.CreateIntMaxReduce(Src, true);
 | 
						|
  case RecurKind::SMin:
 | 
						|
    return Builder.CreateIntMinReduce(Src, true);
 | 
						|
  case RecurKind::UMax:
 | 
						|
    return Builder.CreateIntMaxReduce(Src, false);
 | 
						|
  case RecurKind::UMin:
 | 
						|
    return Builder.CreateIntMinReduce(Src, false);
 | 
						|
  case RecurKind::FMax:
 | 
						|
    return Builder.CreateFPMaxReduce(Src);
 | 
						|
  case RecurKind::FMin:
 | 
						|
    return Builder.CreateFPMinReduce(Src);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unhandled opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::createTargetReduction(IRBuilderBase &B,
 | 
						|
                                   const TargetTransformInfo *TTI,
 | 
						|
                                   RecurrenceDescriptor &Desc, Value *Src) {
 | 
						|
  // TODO: Support in-order reductions based on the recurrence descriptor.
 | 
						|
  // All ops in the reduction inherit fast-math-flags from the recurrence
 | 
						|
  // descriptor.
 | 
						|
  IRBuilderBase::FastMathFlagGuard FMFGuard(B);
 | 
						|
  B.setFastMathFlags(Desc.getFastMathFlags());
 | 
						|
  return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::createOrderedReduction(IRBuilderBase &B,
 | 
						|
                                    RecurrenceDescriptor &Desc, Value *Src,
 | 
						|
                                    Value *Start) {
 | 
						|
  assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&
 | 
						|
         "Unexpected reduction kind");
 | 
						|
  assert(Src->getType()->isVectorTy() && "Expected a vector type");
 | 
						|
  assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
 | 
						|
 | 
						|
  return B.CreateFAddReduce(Start, Src);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
 | 
						|
  auto *VecOp = dyn_cast<Instruction>(I);
 | 
						|
  if (!VecOp)
 | 
						|
    return;
 | 
						|
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
 | 
						|
                                            : dyn_cast<Instruction>(OpValue);
 | 
						|
  if (!Intersection)
 | 
						|
    return;
 | 
						|
  const unsigned Opcode = Intersection->getOpcode();
 | 
						|
  VecOp->copyIRFlags(Intersection);
 | 
						|
  for (auto *V : VL) {
 | 
						|
    auto *Instr = dyn_cast<Instruction>(V);
 | 
						|
    if (!Instr)
 | 
						|
      continue;
 | 
						|
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
 | 
						|
      VecOp->andIRFlags(V);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
 | 
						|
                                 ScalarEvolution &SE) {
 | 
						|
  const SCEV *Zero = SE.getZero(S->getType());
 | 
						|
  return SE.isAvailableAtLoopEntry(S, L) &&
 | 
						|
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
 | 
						|
                                    ScalarEvolution &SE) {
 | 
						|
  const SCEV *Zero = SE.getZero(S->getType());
 | 
						|
  return SE.isAvailableAtLoopEntry(S, L) &&
 | 
						|
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 | 
						|
                             bool Signed) {
 | 
						|
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
 | 
						|
  APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
 | 
						|
    APInt::getMinValue(BitWidth);
 | 
						|
  auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | 
						|
  return SE.isAvailableAtLoopEntry(S, L) &&
 | 
						|
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
 | 
						|
                                     SE.getConstant(Min));
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 | 
						|
                             bool Signed) {
 | 
						|
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
 | 
						|
  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
 | 
						|
    APInt::getMaxValue(BitWidth);
 | 
						|
  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | 
						|
  return SE.isAvailableAtLoopEntry(S, L) &&
 | 
						|
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
 | 
						|
                                     SE.getConstant(Max));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// rewriteLoopExitValues - Optimize IV users outside the loop.
 | 
						|
// As a side effect, reduces the amount of IV processing within the loop.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Return true if the SCEV expansion generated by the rewriter can replace the
 | 
						|
// original value. SCEV guarantees that it produces the same value, but the way
 | 
						|
// it is produced may be illegal IR.  Ideally, this function will only be
 | 
						|
// called for verification.
 | 
						|
static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
 | 
						|
  // If an SCEV expression subsumed multiple pointers, its expansion could
 | 
						|
  // reassociate the GEP changing the base pointer. This is illegal because the
 | 
						|
  // final address produced by a GEP chain must be inbounds relative to its
 | 
						|
  // underlying object. Otherwise basic alias analysis, among other things,
 | 
						|
  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
 | 
						|
  // producing an expression involving multiple pointers. Until then, we must
 | 
						|
  // bail out here.
 | 
						|
  //
 | 
						|
  // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
 | 
						|
  // because it understands lcssa phis while SCEV does not.
 | 
						|
  Value *FromPtr = FromVal;
 | 
						|
  Value *ToPtr = ToVal;
 | 
						|
  if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
 | 
						|
    FromPtr = GEP->getPointerOperand();
 | 
						|
 | 
						|
  if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
 | 
						|
    ToPtr = GEP->getPointerOperand();
 | 
						|
 | 
						|
  if (FromPtr != FromVal || ToPtr != ToVal) {
 | 
						|
    // Quickly check the common case
 | 
						|
    if (FromPtr == ToPtr)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // SCEV may have rewritten an expression that produces the GEP's pointer
 | 
						|
    // operand. That's ok as long as the pointer operand has the same base
 | 
						|
    // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
 | 
						|
    // base of a recurrence. This handles the case in which SCEV expansion
 | 
						|
    // converts a pointer type recurrence into a nonrecurrent pointer base
 | 
						|
    // indexed by an integer recurrence.
 | 
						|
 | 
						|
    // If the GEP base pointer is a vector of pointers, abort.
 | 
						|
    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
 | 
						|
    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
 | 
						|
    if (FromBase == ToBase)
 | 
						|
      return true;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
 | 
						|
                      << *FromBase << " != " << *ToBase << "\n");
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
 | 
						|
  SmallPtrSet<const Instruction *, 8> Visited;
 | 
						|
  SmallVector<const Instruction *, 8> WorkList;
 | 
						|
  Visited.insert(I);
 | 
						|
  WorkList.push_back(I);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    const Instruction *Curr = WorkList.pop_back_val();
 | 
						|
    // This use is outside the loop, nothing to do.
 | 
						|
    if (!L->contains(Curr))
 | 
						|
      continue;
 | 
						|
    // Do we assume it is a "hard" use which will not be eliminated easily?
 | 
						|
    if (Curr->mayHaveSideEffects())
 | 
						|
      return true;
 | 
						|
    // Otherwise, add all its users to worklist.
 | 
						|
    for (auto U : Curr->users()) {
 | 
						|
      auto *UI = cast<Instruction>(U);
 | 
						|
      if (Visited.insert(UI).second)
 | 
						|
        WorkList.push_back(UI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Collect information about PHI nodes which can be transformed in
 | 
						|
// rewriteLoopExitValues.
 | 
						|
struct RewritePhi {
 | 
						|
  PHINode *PN;               // For which PHI node is this replacement?
 | 
						|
  unsigned Ith;              // For which incoming value?
 | 
						|
  const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
 | 
						|
  Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
 | 
						|
  bool HighCost;               // Is this expansion a high-cost?
 | 
						|
 | 
						|
  Value *Expansion = nullptr;
 | 
						|
  bool ValidRewrite = false;
 | 
						|
 | 
						|
  RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
 | 
						|
             bool H)
 | 
						|
      : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
 | 
						|
        HighCost(H) {}
 | 
						|
};
 | 
						|
 | 
						|
// Check whether it is possible to delete the loop after rewriting exit
 | 
						|
// value. If it is possible, ignore ReplaceExitValue and do rewriting
 | 
						|
// aggressively.
 | 
						|
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  // If there is no preheader, the loop will not be deleted.
 | 
						|
  if (!Preheader)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
 | 
						|
  // We obviate multiple ExitingBlocks case for simplicity.
 | 
						|
  // TODO: If we see testcase with multiple ExitingBlocks can be deleted
 | 
						|
  // after exit value rewriting, we can enhance the logic here.
 | 
						|
  SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *ExitBlock = ExitBlocks[0];
 | 
						|
  BasicBlock::iterator BI = ExitBlock->begin();
 | 
						|
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
 | 
						|
    Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
 | 
						|
 | 
						|
    // If the Incoming value of P is found in RewritePhiSet, we know it
 | 
						|
    // could be rewritten to use a loop invariant value in transformation
 | 
						|
    // phase later. Skip it in the loop invariant check below.
 | 
						|
    bool found = false;
 | 
						|
    for (const RewritePhi &Phi : RewritePhiSet) {
 | 
						|
      if (!Phi.ValidRewrite)
 | 
						|
        continue;
 | 
						|
      unsigned i = Phi.Ith;
 | 
						|
      if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
 | 
						|
        found = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *I;
 | 
						|
    if (!found && (I = dyn_cast<Instruction>(Incoming)))
 | 
						|
      if (!L->hasLoopInvariantOperands(I))
 | 
						|
        return false;
 | 
						|
 | 
						|
    ++BI;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *BB : L->blocks())
 | 
						|
    if (llvm::any_of(*BB, [](Instruction &I) {
 | 
						|
          return I.mayHaveSideEffects();
 | 
						|
        }))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
 | 
						|
                                ScalarEvolution *SE,
 | 
						|
                                const TargetTransformInfo *TTI,
 | 
						|
                                SCEVExpander &Rewriter, DominatorTree *DT,
 | 
						|
                                ReplaceExitVal ReplaceExitValue,
 | 
						|
                                SmallVector<WeakTrackingVH, 16> &DeadInsts) {
 | 
						|
  // Check a pre-condition.
 | 
						|
  assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
 | 
						|
         "Indvars did not preserve LCSSA!");
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  SmallVector<RewritePhi, 8> RewritePhiSet;
 | 
						|
  // Find all values that are computed inside the loop, but used outside of it.
 | 
						|
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | 
						|
  // the exit blocks of the loop to find them.
 | 
						|
  for (BasicBlock *ExitBB : ExitBlocks) {
 | 
						|
    // If there are no PHI nodes in this exit block, then no values defined
 | 
						|
    // inside the loop are used on this path, skip it.
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | 
						|
    if (!PN) continue;
 | 
						|
 | 
						|
    unsigned NumPreds = PN->getNumIncomingValues();
 | 
						|
 | 
						|
    // Iterate over all of the PHI nodes.
 | 
						|
    BasicBlock::iterator BBI = ExitBB->begin();
 | 
						|
    while ((PN = dyn_cast<PHINode>(BBI++))) {
 | 
						|
      if (PN->use_empty())
 | 
						|
        continue; // dead use, don't replace it
 | 
						|
 | 
						|
      if (!SE->isSCEVable(PN->getType()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // It's necessary to tell ScalarEvolution about this explicitly so that
 | 
						|
      // it can walk the def-use list and forget all SCEVs, as it may not be
 | 
						|
      // watching the PHI itself. Once the new exit value is in place, there
 | 
						|
      // may not be a def-use connection between the loop and every instruction
 | 
						|
      // which got a SCEVAddRecExpr for that loop.
 | 
						|
      SE->forgetValue(PN);
 | 
						|
 | 
						|
      // Iterate over all of the values in all the PHI nodes.
 | 
						|
      for (unsigned i = 0; i != NumPreds; ++i) {
 | 
						|
        // If the value being merged in is not integer or is not defined
 | 
						|
        // in the loop, skip it.
 | 
						|
        Value *InVal = PN->getIncomingValue(i);
 | 
						|
        if (!isa<Instruction>(InVal))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this pred is for a subloop, not L itself, skip it.
 | 
						|
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | 
						|
          continue; // The Block is in a subloop, skip it.
 | 
						|
 | 
						|
        // Check that InVal is defined in the loop.
 | 
						|
        Instruction *Inst = cast<Instruction>(InVal);
 | 
						|
        if (!L->contains(Inst))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Okay, this instruction has a user outside of the current loop
 | 
						|
        // and varies predictably *inside* the loop.  Evaluate the value it
 | 
						|
        // contains when the loop exits, if possible.  We prefer to start with
 | 
						|
        // expressions which are true for all exits (so as to maximize
 | 
						|
        // expression reuse by the SCEVExpander), but resort to per-exit
 | 
						|
        // evaluation if that fails.
 | 
						|
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | 
						|
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
 | 
						|
            !SE->isLoopInvariant(ExitValue, L) ||
 | 
						|
            !isSafeToExpand(ExitValue, *SE)) {
 | 
						|
          // TODO: This should probably be sunk into SCEV in some way; maybe a
 | 
						|
          // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
 | 
						|
          // most SCEV expressions and other recurrence types (e.g. shift
 | 
						|
          // recurrences).  Is there existing code we can reuse?
 | 
						|
          const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
 | 
						|
          if (isa<SCEVCouldNotCompute>(ExitCount))
 | 
						|
            continue;
 | 
						|
          if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
 | 
						|
            if (AddRec->getLoop() == L)
 | 
						|
              ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
 | 
						|
          if (isa<SCEVCouldNotCompute>(ExitValue) ||
 | 
						|
              !SE->isLoopInvariant(ExitValue, L) ||
 | 
						|
              !isSafeToExpand(ExitValue, *SE))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Computing the value outside of the loop brings no benefit if it is
 | 
						|
        // definitely used inside the loop in a way which can not be optimized
 | 
						|
        // away. Avoid doing so unless we know we have a value which computes
 | 
						|
        // the ExitValue already. TODO: This should be merged into SCEV
 | 
						|
        // expander to leverage its knowledge of existing expressions.
 | 
						|
        if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
 | 
						|
            !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Check if expansions of this SCEV would count as being high cost.
 | 
						|
        bool HighCost = Rewriter.isHighCostExpansion(
 | 
						|
            ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
 | 
						|
 | 
						|
        // Note that we must not perform expansions until after
 | 
						|
        // we query *all* the costs, because if we perform temporary expansion
 | 
						|
        // inbetween, one that we might not intend to keep, said expansion
 | 
						|
        // *may* affect cost calculation of the the next SCEV's we'll query,
 | 
						|
        // and next SCEV may errneously get smaller cost.
 | 
						|
 | 
						|
        // Collect all the candidate PHINodes to be rewritten.
 | 
						|
        RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we've done preliminary filtering and billed all the SCEV's,
 | 
						|
  // we can perform the last sanity check - the expansion must be valid.
 | 
						|
  for (RewritePhi &Phi : RewritePhiSet) {
 | 
						|
    Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
 | 
						|
                                           Phi.ExpansionPoint);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
 | 
						|
                      << *(Phi.Expansion) << '\n'
 | 
						|
                      << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
 | 
						|
 | 
						|
    // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
 | 
						|
    Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
 | 
						|
    if (!Phi.ValidRewrite) {
 | 
						|
      DeadInsts.push_back(Phi.Expansion);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    // If we reuse an instruction from a loop which is neither L nor one of
 | 
						|
    // its containing loops, we end up breaking LCSSA form for this loop by
 | 
						|
    // creating a new use of its instruction.
 | 
						|
    if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
 | 
						|
      if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
 | 
						|
        if (EVL != L)
 | 
						|
          assert(EVL->contains(L) && "LCSSA breach detected!");
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: after isValidRewrite() is an assertion, evaluate whether
 | 
						|
  // it is beneficial to change how we calculate high-cost:
 | 
						|
  // if we have SCEV 'A' which we know we will expand, should we calculate
 | 
						|
  // the cost of other SCEV's after expanding SCEV 'A',
 | 
						|
  // thus potentially giving cost bonus to those other SCEV's?
 | 
						|
 | 
						|
  bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
 | 
						|
  int NumReplaced = 0;
 | 
						|
 | 
						|
  // Transformation.
 | 
						|
  for (const RewritePhi &Phi : RewritePhiSet) {
 | 
						|
    if (!Phi.ValidRewrite)
 | 
						|
      continue;
 | 
						|
 | 
						|
    PHINode *PN = Phi.PN;
 | 
						|
    Value *ExitVal = Phi.Expansion;
 | 
						|
 | 
						|
    // Only do the rewrite when the ExitValue can be expanded cheaply.
 | 
						|
    // If LoopCanBeDel is true, rewrite exit value aggressively.
 | 
						|
    if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
 | 
						|
      DeadInsts.push_back(ExitVal);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    NumReplaced++;
 | 
						|
    Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
 | 
						|
    PN->setIncomingValue(Phi.Ith, ExitVal);
 | 
						|
 | 
						|
    // If this instruction is dead now, delete it. Don't do it now to avoid
 | 
						|
    // invalidating iterators.
 | 
						|
    if (isInstructionTriviallyDead(Inst, TLI))
 | 
						|
      DeadInsts.push_back(Inst);
 | 
						|
 | 
						|
    // Replace PN with ExitVal if that is legal and does not break LCSSA.
 | 
						|
    if (PN->getNumIncomingValues() == 1 &&
 | 
						|
        LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
 | 
						|
      PN->replaceAllUsesWith(ExitVal);
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The insertion point instruction may have been deleted; clear it out
 | 
						|
  // so that the rewriter doesn't trip over it later.
 | 
						|
  Rewriter.clearInsertPoint();
 | 
						|
  return NumReplaced;
 | 
						|
}
 | 
						|
 | 
						|
/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
 | 
						|
/// \p OrigLoop.
 | 
						|
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
 | 
						|
                                        Loop *RemainderLoop, uint64_t UF) {
 | 
						|
  assert(UF > 0 && "Zero unrolled factor is not supported");
 | 
						|
  assert(UnrolledLoop != RemainderLoop &&
 | 
						|
         "Unrolled and Remainder loops are expected to distinct");
 | 
						|
 | 
						|
  // Get number of iterations in the original scalar loop.
 | 
						|
  unsigned OrigLoopInvocationWeight = 0;
 | 
						|
  Optional<unsigned> OrigAverageTripCount =
 | 
						|
      getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
 | 
						|
  if (!OrigAverageTripCount)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Calculate number of iterations in unrolled loop.
 | 
						|
  unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
 | 
						|
  // Calculate number of iterations for remainder loop.
 | 
						|
  unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
 | 
						|
 | 
						|
  setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
 | 
						|
                            OrigLoopInvocationWeight);
 | 
						|
  setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
 | 
						|
                            OrigLoopInvocationWeight);
 | 
						|
}
 | 
						|
 | 
						|
/// Utility that implements appending of loops onto a worklist.
 | 
						|
/// Loops are added in preorder (analogous for reverse postorder for trees),
 | 
						|
/// and the worklist is processed LIFO.
 | 
						|
template <typename RangeT>
 | 
						|
void llvm::appendReversedLoopsToWorklist(
 | 
						|
    RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
 | 
						|
  // We use an internal worklist to build up the preorder traversal without
 | 
						|
  // recursion.
 | 
						|
  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
 | 
						|
 | 
						|
  // We walk the initial sequence of loops in reverse because we generally want
 | 
						|
  // to visit defs before uses and the worklist is LIFO.
 | 
						|
  for (Loop *RootL : Loops) {
 | 
						|
    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
 | 
						|
    assert(PreOrderWorklist.empty() &&
 | 
						|
           "Must start with an empty preorder walk worklist.");
 | 
						|
    PreOrderWorklist.push_back(RootL);
 | 
						|
    do {
 | 
						|
      Loop *L = PreOrderWorklist.pop_back_val();
 | 
						|
      PreOrderWorklist.append(L->begin(), L->end());
 | 
						|
      PreOrderLoops.push_back(L);
 | 
						|
    } while (!PreOrderWorklist.empty());
 | 
						|
 | 
						|
    Worklist.insert(std::move(PreOrderLoops));
 | 
						|
    PreOrderLoops.clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename RangeT>
 | 
						|
void llvm::appendLoopsToWorklist(RangeT &&Loops,
 | 
						|
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
 | 
						|
  appendReversedLoopsToWorklist(reverse(Loops), Worklist);
 | 
						|
}
 | 
						|
 | 
						|
template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
 | 
						|
    ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
 | 
						|
 | 
						|
template void
 | 
						|
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
 | 
						|
                                    SmallPriorityWorklist<Loop *, 4> &Worklist);
 | 
						|
 | 
						|
void llvm::appendLoopsToWorklist(LoopInfo &LI,
 | 
						|
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
 | 
						|
  appendReversedLoopsToWorklist(LI, Worklist);
 | 
						|
}
 | 
						|
 | 
						|
Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
 | 
						|
                      LoopInfo *LI, LPPassManager *LPM) {
 | 
						|
  Loop &New = *LI->AllocateLoop();
 | 
						|
  if (PL)
 | 
						|
    PL->addChildLoop(&New);
 | 
						|
  else
 | 
						|
    LI->addTopLevelLoop(&New);
 | 
						|
 | 
						|
  if (LPM)
 | 
						|
    LPM->addLoop(New);
 | 
						|
 | 
						|
  // Add all of the blocks in L to the new loop.
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (LI->getLoopFor(*I) == L)
 | 
						|
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
 | 
						|
 | 
						|
  // Add all of the subloops to the new loop.
 | 
						|
  for (Loop *I : *L)
 | 
						|
    cloneLoop(I, &New, VM, LI, LPM);
 | 
						|
 | 
						|
  return &New;
 | 
						|
}
 | 
						|
 | 
						|
/// IR Values for the lower and upper bounds of a pointer evolution.  We
 | 
						|
/// need to use value-handles because SCEV expansion can invalidate previously
 | 
						|
/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
 | 
						|
/// a previous one.
 | 
						|
struct PointerBounds {
 | 
						|
  TrackingVH<Value> Start;
 | 
						|
  TrackingVH<Value> End;
 | 
						|
};
 | 
						|
 | 
						|
/// Expand code for the lower and upper bound of the pointer group \p CG
 | 
						|
/// in \p TheLoop.  \return the values for the bounds.
 | 
						|
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
 | 
						|
                                  Loop *TheLoop, Instruction *Loc,
 | 
						|
                                  SCEVExpander &Exp) {
 | 
						|
  ScalarEvolution *SE = Exp.getSE();
 | 
						|
  // TODO: Add helper to retrieve pointers to CG.
 | 
						|
  Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
 | 
						|
  const SCEV *Sc = SE->getSCEV(Ptr);
 | 
						|
 | 
						|
  unsigned AS = Ptr->getType()->getPointerAddressSpace();
 | 
						|
  LLVMContext &Ctx = Loc->getContext();
 | 
						|
 | 
						|
  // Use this type for pointer arithmetic.
 | 
						|
  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
 | 
						|
 | 
						|
  if (SE->isLoopInvariant(Sc, TheLoop)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
 | 
						|
                      << *Ptr << "\n");
 | 
						|
    // Ptr could be in the loop body. If so, expand a new one at the correct
 | 
						|
    // location.
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(Ptr);
 | 
						|
    Value *NewPtr = (Inst && TheLoop->contains(Inst))
 | 
						|
                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
 | 
						|
                        : Ptr;
 | 
						|
    // We must return a half-open range, which means incrementing Sc.
 | 
						|
    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
 | 
						|
    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
 | 
						|
    return {NewPtr, NewPtrPlusOne};
 | 
						|
  } else {
 | 
						|
    Value *Start = nullptr, *End = nullptr;
 | 
						|
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
 | 
						|
    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
 | 
						|
    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
 | 
						|
    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
 | 
						|
                      << "\n");
 | 
						|
    return {Start, End};
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Turns a collection of checks into a collection of expanded upper and
 | 
						|
/// lower bounds for both pointers in the check.
 | 
						|
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
 | 
						|
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
 | 
						|
             Instruction *Loc, SCEVExpander &Exp) {
 | 
						|
  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
 | 
						|
 | 
						|
  // Here we're relying on the SCEV Expander's cache to only emit code for the
 | 
						|
  // same bounds once.
 | 
						|
  transform(PointerChecks, std::back_inserter(ChecksWithBounds),
 | 
						|
            [&](const RuntimePointerCheck &Check) {
 | 
						|
              PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
 | 
						|
                            Second = expandBounds(Check.second, L, Loc, Exp);
 | 
						|
              return std::make_pair(First, Second);
 | 
						|
            });
 | 
						|
 | 
						|
  return ChecksWithBounds;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
 | 
						|
    Instruction *Loc, Loop *TheLoop,
 | 
						|
    const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
 | 
						|
    SCEVExpander &Exp) {
 | 
						|
  // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
 | 
						|
  // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
 | 
						|
  auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
 | 
						|
 | 
						|
  LLVMContext &Ctx = Loc->getContext();
 | 
						|
  Instruction *FirstInst = nullptr;
 | 
						|
  IRBuilder<> ChkBuilder(Loc);
 | 
						|
  // Our instructions might fold to a constant.
 | 
						|
  Value *MemoryRuntimeCheck = nullptr;
 | 
						|
 | 
						|
  // FIXME: this helper is currently a duplicate of the one in
 | 
						|
  // LoopVectorize.cpp.
 | 
						|
  auto GetFirstInst = [](Instruction *FirstInst, Value *V,
 | 
						|
                         Instruction *Loc) -> Instruction * {
 | 
						|
    if (FirstInst)
 | 
						|
      return FirstInst;
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
      return I->getParent() == Loc->getParent() ? I : nullptr;
 | 
						|
    return nullptr;
 | 
						|
  };
 | 
						|
 | 
						|
  for (const auto &Check : ExpandedChecks) {
 | 
						|
    const PointerBounds &A = Check.first, &B = Check.second;
 | 
						|
    // Check if two pointers (A and B) conflict where conflict is computed as:
 | 
						|
    // start(A) <= end(B) && start(B) <= end(A)
 | 
						|
    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
 | 
						|
    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
 | 
						|
 | 
						|
    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
 | 
						|
           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
 | 
						|
           "Trying to bounds check pointers with different address spaces");
 | 
						|
 | 
						|
    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
 | 
						|
    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
 | 
						|
 | 
						|
    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
 | 
						|
    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
 | 
						|
    Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
 | 
						|
    Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
 | 
						|
 | 
						|
    // [A|B].Start points to the first accessed byte under base [A|B].
 | 
						|
    // [A|B].End points to the last accessed byte, plus one.
 | 
						|
    // There is no conflict when the intervals are disjoint:
 | 
						|
    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
 | 
						|
    //
 | 
						|
    // bound0 = (B.Start < A.End)
 | 
						|
    // bound1 = (A.Start < B.End)
 | 
						|
    //  IsConflict = bound0 & bound1
 | 
						|
    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
 | 
						|
    FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
 | 
						|
    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
 | 
						|
    FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
 | 
						|
    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
 | 
						|
    FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
 | 
						|
    if (MemoryRuntimeCheck) {
 | 
						|
      IsConflict =
 | 
						|
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
 | 
						|
      FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
 | 
						|
    }
 | 
						|
    MemoryRuntimeCheck = IsConflict;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemoryRuntimeCheck)
 | 
						|
    return std::make_pair(nullptr, nullptr);
 | 
						|
 | 
						|
  // We have to do this trickery because the IRBuilder might fold the check to a
 | 
						|
  // constant expression in which case there is no Instruction anchored in a
 | 
						|
  // the block.
 | 
						|
  Instruction *Check =
 | 
						|
      BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
 | 
						|
  ChkBuilder.Insert(Check, "memcheck.conflict");
 | 
						|
  FirstInst = GetFirstInst(FirstInst, Check, Loc);
 | 
						|
  return std::make_pair(FirstInst, Check);
 | 
						|
}
 | 
						|
 | 
						|
Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
 | 
						|
                                                      unsigned MSSAThreshold,
 | 
						|
                                                      MemorySSA &MSSA,
 | 
						|
                                                      AAResults &AA) {
 | 
						|
  auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
 | 
						|
  if (!TI || !TI->isConditional())
 | 
						|
    return {};
 | 
						|
 | 
						|
  auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
 | 
						|
  // The case with the condition outside the loop should already be handled
 | 
						|
  // earlier.
 | 
						|
  if (!CondI || !L.contains(CondI))
 | 
						|
    return {};
 | 
						|
 | 
						|
  SmallVector<Instruction *> InstToDuplicate;
 | 
						|
  InstToDuplicate.push_back(CondI);
 | 
						|
 | 
						|
  SmallVector<Value *, 4> WorkList;
 | 
						|
  WorkList.append(CondI->op_begin(), CondI->op_end());
 | 
						|
 | 
						|
  SmallVector<MemoryAccess *, 4> AccessesToCheck;
 | 
						|
  SmallVector<MemoryLocation, 4> AccessedLocs;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
 | 
						|
    if (!I || !L.contains(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // TODO: support additional instructions.
 | 
						|
    if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
 | 
						|
      return {};
 | 
						|
 | 
						|
    // Do not duplicate volatile and atomic loads.
 | 
						|
    if (auto *LI = dyn_cast<LoadInst>(I))
 | 
						|
      if (LI->isVolatile() || LI->isAtomic())
 | 
						|
        return {};
 | 
						|
 | 
						|
    InstToDuplicate.push_back(I);
 | 
						|
    if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
 | 
						|
      if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
 | 
						|
        // Queue the defining access to check for alias checks.
 | 
						|
        AccessesToCheck.push_back(MemUse->getDefiningAccess());
 | 
						|
        AccessedLocs.push_back(MemoryLocation::get(I));
 | 
						|
      } else {
 | 
						|
        // MemoryDefs may clobber the location or may be atomic memory
 | 
						|
        // operations. Bail out.
 | 
						|
        return {};
 | 
						|
      }
 | 
						|
    }
 | 
						|
    WorkList.append(I->op_begin(), I->op_end());
 | 
						|
  }
 | 
						|
 | 
						|
  if (InstToDuplicate.empty())
 | 
						|
    return {};
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
  L.getExitingBlocks(ExitingBlocks);
 | 
						|
  auto HasNoClobbersOnPath =
 | 
						|
      [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
 | 
						|
       MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
 | 
						|
                      SmallVector<MemoryAccess *, 4> AccessesToCheck)
 | 
						|
      -> Optional<IVConditionInfo> {
 | 
						|
    IVConditionInfo Info;
 | 
						|
    // First, collect all blocks in the loop that are on a patch from Succ
 | 
						|
    // to the header.
 | 
						|
    SmallVector<BasicBlock *, 4> WorkList;
 | 
						|
    WorkList.push_back(Succ);
 | 
						|
    WorkList.push_back(Header);
 | 
						|
    SmallPtrSet<BasicBlock *, 4> Seen;
 | 
						|
    Seen.insert(Header);
 | 
						|
    Info.PathIsNoop &=
 | 
						|
        all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
 | 
						|
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      BasicBlock *Current = WorkList.pop_back_val();
 | 
						|
      if (!L.contains(Current))
 | 
						|
        continue;
 | 
						|
      const auto &SeenIns = Seen.insert(Current);
 | 
						|
      if (!SeenIns.second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Info.PathIsNoop &= all_of(
 | 
						|
          *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
 | 
						|
      WorkList.append(succ_begin(Current), succ_end(Current));
 | 
						|
    }
 | 
						|
 | 
						|
    // Require at least 2 blocks on a path through the loop. This skips
 | 
						|
    // paths that directly exit the loop.
 | 
						|
    if (Seen.size() < 2)
 | 
						|
      return {};
 | 
						|
 | 
						|
    // Next, check if there are any MemoryDefs that are on the path through
 | 
						|
    // the loop (in the Seen set) and they may-alias any of the locations in
 | 
						|
    // AccessedLocs. If that is the case, they may modify the condition and
 | 
						|
    // partial unswitching is not possible.
 | 
						|
    SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
 | 
						|
    while (!AccessesToCheck.empty()) {
 | 
						|
      MemoryAccess *Current = AccessesToCheck.pop_back_val();
 | 
						|
      auto SeenI = SeenAccesses.insert(Current);
 | 
						|
      if (!SeenI.second || !Seen.contains(Current->getBlock()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Bail out if exceeded the threshold.
 | 
						|
      if (SeenAccesses.size() >= MSSAThreshold)
 | 
						|
        return {};
 | 
						|
 | 
						|
      // MemoryUse are read-only accesses.
 | 
						|
      if (isa<MemoryUse>(Current))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // For a MemoryDef, check if is aliases any of the location feeding
 | 
						|
      // the original condition.
 | 
						|
      if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
 | 
						|
        if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
 | 
						|
              return isModSet(
 | 
						|
                  AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
 | 
						|
            }))
 | 
						|
          return {};
 | 
						|
      }
 | 
						|
 | 
						|
      for (Use &U : Current->uses())
 | 
						|
        AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
 | 
						|
    }
 | 
						|
 | 
						|
    // We could also allow loops with known trip counts without mustprogress,
 | 
						|
    // but ScalarEvolution may not be available.
 | 
						|
    Info.PathIsNoop &=
 | 
						|
        L.getHeader()->getParent()->mustProgress() || hasMustProgress(&L);
 | 
						|
 | 
						|
    // If the path is considered a no-op so far, check if it reaches a
 | 
						|
    // single exit block without any phis. This ensures no values from the
 | 
						|
    // loop are used outside of the loop.
 | 
						|
    if (Info.PathIsNoop) {
 | 
						|
      for (auto *Exiting : ExitingBlocks) {
 | 
						|
        if (!Seen.contains(Exiting))
 | 
						|
          continue;
 | 
						|
        for (auto *Succ : successors(Exiting)) {
 | 
						|
          if (L.contains(Succ))
 | 
						|
            continue;
 | 
						|
 | 
						|
          Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
 | 
						|
                             (!Info.ExitForPath || Info.ExitForPath == Succ);
 | 
						|
          if (!Info.PathIsNoop)
 | 
						|
            break;
 | 
						|
          assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
 | 
						|
                 "cannot have multiple exit blocks");
 | 
						|
          Info.ExitForPath = Succ;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!Info.ExitForPath)
 | 
						|
      Info.PathIsNoop = false;
 | 
						|
 | 
						|
    Info.InstToDuplicate = InstToDuplicate;
 | 
						|
    return Info;
 | 
						|
  };
 | 
						|
 | 
						|
  // If we branch to the same successor, partial unswitching will not be
 | 
						|
  // beneficial.
 | 
						|
  if (TI->getSuccessor(0) == TI->getSuccessor(1))
 | 
						|
    return {};
 | 
						|
 | 
						|
  if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
 | 
						|
                                      AccessesToCheck)) {
 | 
						|
    Info->KnownValue = ConstantInt::getTrue(TI->getContext());
 | 
						|
    return Info;
 | 
						|
  }
 | 
						|
  if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
 | 
						|
                                      AccessesToCheck)) {
 | 
						|
    Info->KnownValue = ConstantInt::getFalse(TI->getContext());
 | 
						|
    return Info;
 | 
						|
  }
 | 
						|
 | 
						|
  return {};
 | 
						|
}
 |