1812 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1812 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation implements the well known scalar replacement of
 | 
						|
// aggregates transformation.  This xform breaks up alloca instructions of
 | 
						|
// aggregate type (structure or array) into individual alloca instructions for
 | 
						|
// each member (if possible).  Then, if possible, it transforms the individual
 | 
						|
// alloca instructions into nice clean scalar SSA form.
 | 
						|
//
 | 
						|
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | 
						|
// often interact, especially for C++ programs.  As such, iterating between
 | 
						|
// SRoA, then Mem2Reg until we run out of things to promote works well.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "scalarrepl"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/IRBuilder.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumReplaced,  "Number of allocas broken up");
 | 
						|
STATISTIC(NumPromoted,  "Number of allocas promoted");
 | 
						|
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
 | 
						|
STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct SROA : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit SROA(signed T = -1) : FunctionPass(&ID) {
 | 
						|
      if (T == -1)
 | 
						|
        SRThreshold = 128;
 | 
						|
      else
 | 
						|
        SRThreshold = T;
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    bool performScalarRepl(Function &F);
 | 
						|
    bool performPromotion(Function &F);
 | 
						|
 | 
						|
    // getAnalysisUsage - This pass does not require any passes, but we know it
 | 
						|
    // will not alter the CFG, so say so.
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<DominanceFrontier>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    TargetData *TD;
 | 
						|
    
 | 
						|
    /// DeadInsts - Keep track of instructions we have made dead, so that
 | 
						|
    /// we can remove them after we are done working.
 | 
						|
    SmallVector<Value*, 32> DeadInsts;
 | 
						|
 | 
						|
    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
 | 
						|
    /// information about the uses.  All these fields are initialized to false
 | 
						|
    /// and set to true when something is learned.
 | 
						|
    struct AllocaInfo {
 | 
						|
      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
 | 
						|
      bool isUnsafe : 1;
 | 
						|
      
 | 
						|
      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
 | 
						|
      bool isMemCpySrc : 1;
 | 
						|
 | 
						|
      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
 | 
						|
      bool isMemCpyDst : 1;
 | 
						|
 | 
						|
      AllocaInfo()
 | 
						|
        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
 | 
						|
    };
 | 
						|
    
 | 
						|
    unsigned SRThreshold;
 | 
						|
 | 
						|
    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
 | 
						|
 | 
						|
    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
 | 
						|
 | 
						|
    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | 
						|
                             AllocaInfo &Info);
 | 
						|
    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
 | 
						|
                   AllocaInfo &Info);
 | 
						|
    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
 | 
						|
                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
 | 
						|
    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
 | 
						|
    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
 | 
						|
                                  const Type *&IdxTy);
 | 
						|
    
 | 
						|
    void DoScalarReplacement(AllocaInst *AI, 
 | 
						|
                             std::vector<AllocaInst*> &WorkList);
 | 
						|
    void DeleteDeadInstructions();
 | 
						|
    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
 | 
						|
    
 | 
						|
    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | 
						|
                              SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
 | 
						|
                        SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
 | 
						|
                    SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
 | 
						|
                                      AllocaInst *AI,
 | 
						|
                                      SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
 | 
						|
                                       SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
 | 
						|
                                      SmallVector<AllocaInst*, 32> &NewElts);
 | 
						|
    
 | 
						|
    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char SROA::ID = 0;
 | 
						|
INITIALIZE_PASS(SROA, "scalarrepl",
 | 
						|
                "Scalar Replacement of Aggregates", false, false);
 | 
						|
 | 
						|
// Public interface to the ScalarReplAggregates pass
 | 
						|
FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { 
 | 
						|
  return new SROA(Threshold);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Convert To Scalar Optimization.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
 | 
						|
/// optimization, which scans the uses of an alloca and determines if it can
 | 
						|
/// rewrite it in terms of a single new alloca that can be mem2reg'd.
 | 
						|
class ConvertToScalarInfo {
 | 
						|
  /// AllocaSize - The size of the alloca being considered.
 | 
						|
  unsigned AllocaSize;
 | 
						|
  const TargetData &TD;
 | 
						|
 
 | 
						|
  /// IsNotTrivial - This is set to true if there is some access to the object
 | 
						|
  /// which means that mem2reg can't promote it.
 | 
						|
  bool IsNotTrivial;
 | 
						|
  
 | 
						|
  /// VectorTy - This tracks the type that we should promote the vector to if
 | 
						|
  /// it is possible to turn it into a vector.  This starts out null, and if it
 | 
						|
  /// isn't possible to turn into a vector type, it gets set to VoidTy.
 | 
						|
  const Type *VectorTy;
 | 
						|
  
 | 
						|
  /// HadAVector - True if there is at least one vector access to the alloca.
 | 
						|
  /// We don't want to turn random arrays into vectors and use vector element
 | 
						|
  /// insert/extract, but if there are element accesses to something that is
 | 
						|
  /// also declared as a vector, we do want to promote to a vector.
 | 
						|
  bool HadAVector;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
 | 
						|
    : AllocaSize(Size), TD(td) {
 | 
						|
    IsNotTrivial = false;
 | 
						|
    VectorTy = 0;
 | 
						|
    HadAVector = false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  AllocaInst *TryConvert(AllocaInst *AI);
 | 
						|
  
 | 
						|
private:
 | 
						|
  bool CanConvertToScalar(Value *V, uint64_t Offset);
 | 
						|
  void MergeInType(const Type *In, uint64_t Offset);
 | 
						|
  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
 | 
						|
  
 | 
						|
  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
 | 
						|
                                    uint64_t Offset, IRBuilder<> &Builder);
 | 
						|
  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
 | 
						|
                                   uint64_t Offset, IRBuilder<> &Builder);
 | 
						|
};
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
 | 
						|
/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
 | 
						|
/// alloca if possible or null if not.
 | 
						|
AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
 | 
						|
  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
 | 
						|
  // out.
 | 
						|
  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // If we were able to find a vector type that can handle this with
 | 
						|
  // insert/extract elements, and if there was at least one use that had
 | 
						|
  // a vector type, promote this to a vector.  We don't want to promote
 | 
						|
  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
 | 
						|
  // we just get a lot of insert/extracts.  If at least one vector is
 | 
						|
  // involved, then we probably really do have a union of vector/array.
 | 
						|
  const Type *NewTy;
 | 
						|
  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
 | 
						|
    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
 | 
						|
          << *VectorTy << '\n');
 | 
						|
    NewTy = VectorTy;  // Use the vector type.
 | 
						|
  } else {
 | 
						|
    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
 | 
						|
    // Create and insert the integer alloca.
 | 
						|
    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
 | 
						|
  }
 | 
						|
  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
 | 
						|
  ConvertUsesToScalar(AI, NewAI, 0);
 | 
						|
  return NewAI;
 | 
						|
}
 | 
						|
 | 
						|
/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
 | 
						|
/// so far at the offset specified by Offset (which is specified in bytes).
 | 
						|
///
 | 
						|
/// There are two cases we handle here:
 | 
						|
///   1) A union of vector types of the same size and potentially its elements.
 | 
						|
///      Here we turn element accesses into insert/extract element operations.
 | 
						|
///      This promotes a <4 x float> with a store of float to the third element
 | 
						|
///      into a <4 x float> that uses insert element.
 | 
						|
///   2) A fully general blob of memory, which we turn into some (potentially
 | 
						|
///      large) integer type with extract and insert operations where the loads
 | 
						|
///      and stores would mutate the memory.  We mark this by setting VectorTy
 | 
						|
///      to VoidTy.
 | 
						|
void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
 | 
						|
  // If we already decided to turn this into a blob of integer memory, there is
 | 
						|
  // nothing to be done.
 | 
						|
  if (VectorTy && VectorTy->isVoidTy())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // If this could be contributing to a vector, analyze it.
 | 
						|
 | 
						|
  // If the In type is a vector that is the same size as the alloca, see if it
 | 
						|
  // matches the existing VecTy.
 | 
						|
  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
 | 
						|
    // Remember if we saw a vector type.
 | 
						|
    HadAVector = true;
 | 
						|
    
 | 
						|
    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
 | 
						|
      // If we're storing/loading a vector of the right size, allow it as a
 | 
						|
      // vector.  If this the first vector we see, remember the type so that
 | 
						|
      // we know the element size.  If this is a subsequent access, ignore it
 | 
						|
      // even if it is a differing type but the same size.  Worst case we can
 | 
						|
      // bitcast the resultant vectors.
 | 
						|
      if (VectorTy == 0)
 | 
						|
        VectorTy = VInTy;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (In->isFloatTy() || In->isDoubleTy() ||
 | 
						|
             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
 | 
						|
              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
 | 
						|
    // If we're accessing something that could be an element of a vector, see
 | 
						|
    // if the implied vector agrees with what we already have and if Offset is
 | 
						|
    // compatible with it.
 | 
						|
    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
 | 
						|
    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
 | 
						|
        (VectorTy == 0 || 
 | 
						|
         cast<VectorType>(VectorTy)->getElementType()
 | 
						|
               ->getPrimitiveSizeInBits()/8 == EltSize)) {
 | 
						|
      if (VectorTy == 0)
 | 
						|
        VectorTy = VectorType::get(In, AllocaSize/EltSize);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we have a case that we can't handle with an optimized vector
 | 
						|
  // form.  We can still turn this into a large integer.
 | 
						|
  VectorTy = Type::getVoidTy(In->getContext());
 | 
						|
}
 | 
						|
 | 
						|
/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
 | 
						|
/// its accesses to a single vector type, return true and set VecTy to
 | 
						|
/// the new type.  If we could convert the alloca into a single promotable
 | 
						|
/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
 | 
						|
/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
 | 
						|
/// is the current offset from the base of the alloca being analyzed.
 | 
						|
///
 | 
						|
/// If we see at least one access to the value that is as a vector type, set the
 | 
						|
/// SawVec flag.
 | 
						|
bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
    
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      // Don't break volatile loads.
 | 
						|
      if (LI->isVolatile())
 | 
						|
        return false;
 | 
						|
      MergeInType(LI->getType(), Offset);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      // Storing the pointer, not into the value?
 | 
						|
      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
 | 
						|
      MergeInType(SI->getOperand(0)->getType(), Offset);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      if (!CanConvertToScalar(BCI, Offset))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      // If this is a GEP with a variable indices, we can't handle it.
 | 
						|
      if (!GEP->hasAllConstantIndices())
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      // Compute the offset that this GEP adds to the pointer.
 | 
						|
      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | 
						|
      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
 | 
						|
                                               &Indices[0], Indices.size());
 | 
						|
      // See if all uses can be converted.
 | 
						|
      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
 | 
						|
        return false;
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a constant sized memset of a constant value (e.g. 0) we can
 | 
						|
    // handle it.
 | 
						|
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | 
						|
      // Store of constant value and constant size.
 | 
						|
      if (!isa<ConstantInt>(MSI->getValue()) ||
 | 
						|
          !isa<ConstantInt>(MSI->getLength()))
 | 
						|
        return false;
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a memcpy or memmove into or out of the whole allocation, we
 | 
						|
    // can handle it like a load or store of the scalar type.
 | 
						|
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | 
						|
      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
 | 
						|
      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      IsNotTrivial = true;  // Can't be mem2reg'd.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we cannot handle this!
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
 | 
						|
/// directly.  This happens when we are converting an "integer union" to a
 | 
						|
/// single integer scalar, or when we are converting a "vector union" to a
 | 
						|
/// vector with insert/extractelement instructions.
 | 
						|
///
 | 
						|
/// Offset is an offset from the original alloca, in bits that need to be
 | 
						|
/// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | 
						|
void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
 | 
						|
                                              uint64_t Offset) {
 | 
						|
  while (!Ptr->use_empty()) {
 | 
						|
    Instruction *User = cast<Instruction>(Ptr->use_back());
 | 
						|
 | 
						|
    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
 | 
						|
      ConvertUsesToScalar(CI, NewAI, Offset);
 | 
						|
      CI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      // Compute the offset that this GEP adds to the pointer.
 | 
						|
      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | 
						|
      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
 | 
						|
                                               &Indices[0], Indices.size());
 | 
						|
      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
 | 
						|
      GEP->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    IRBuilder<> Builder(User->getParent(), User);
 | 
						|
    
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      // The load is a bit extract from NewAI shifted right by Offset bits.
 | 
						|
      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
 | 
						|
      Value *NewLoadVal
 | 
						|
        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
 | 
						|
      LI->replaceAllUsesWith(NewLoadVal);
 | 
						|
      LI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      assert(SI->getOperand(0) != Ptr && "Consistency error!");
 | 
						|
      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
 | 
						|
      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
 | 
						|
                                             Builder);
 | 
						|
      Builder.CreateStore(New, NewAI);
 | 
						|
      SI->eraseFromParent();
 | 
						|
      
 | 
						|
      // If the load we just inserted is now dead, then the inserted store
 | 
						|
      // overwrote the entire thing.
 | 
						|
      if (Old->use_empty())
 | 
						|
        Old->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a constant sized memset of a constant value (e.g. 0) we can
 | 
						|
    // transform it into a store of the expanded constant value.
 | 
						|
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | 
						|
      assert(MSI->getRawDest() == Ptr && "Consistency error!");
 | 
						|
      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | 
						|
      if (NumBytes != 0) {
 | 
						|
        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
 | 
						|
        
 | 
						|
        // Compute the value replicated the right number of times.
 | 
						|
        APInt APVal(NumBytes*8, Val);
 | 
						|
 | 
						|
        // Splat the value if non-zero.
 | 
						|
        if (Val)
 | 
						|
          for (unsigned i = 1; i != NumBytes; ++i)
 | 
						|
            APVal |= APVal << 8;
 | 
						|
        
 | 
						|
        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
 | 
						|
        Value *New = ConvertScalar_InsertValue(
 | 
						|
                                    ConstantInt::get(User->getContext(), APVal),
 | 
						|
                                               Old, Offset, Builder);
 | 
						|
        Builder.CreateStore(New, NewAI);
 | 
						|
        
 | 
						|
        // If the load we just inserted is now dead, then the memset overwrote
 | 
						|
        // the entire thing.
 | 
						|
        if (Old->use_empty())
 | 
						|
          Old->eraseFromParent();        
 | 
						|
      }
 | 
						|
      MSI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a memcpy or memmove into or out of the whole allocation, we
 | 
						|
    // can handle it like a load or store of the scalar type.
 | 
						|
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | 
						|
      assert(Offset == 0 && "must be store to start of alloca");
 | 
						|
      
 | 
						|
      // If the source and destination are both to the same alloca, then this is
 | 
						|
      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
 | 
						|
      // as appropriate.
 | 
						|
      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
 | 
						|
      
 | 
						|
      if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
 | 
						|
        // Dest must be OrigAI, change this to be a load from the original
 | 
						|
        // pointer (bitcasted), then a store to our new alloca.
 | 
						|
        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
 | 
						|
        Value *SrcPtr = MTI->getSource();
 | 
						|
        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
 | 
						|
        
 | 
						|
        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
 | 
						|
        SrcVal->setAlignment(MTI->getAlignment());
 | 
						|
        Builder.CreateStore(SrcVal, NewAI);
 | 
						|
      } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
 | 
						|
        // Src must be OrigAI, change this to be a load from NewAI then a store
 | 
						|
        // through the original dest pointer (bitcasted).
 | 
						|
        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
 | 
						|
        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
 | 
						|
 | 
						|
        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
 | 
						|
        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
 | 
						|
        NewStore->setAlignment(MTI->getAlignment());
 | 
						|
      } else {
 | 
						|
        // Noop transfer. Src == Dst
 | 
						|
      }
 | 
						|
 | 
						|
      MTI->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    llvm_unreachable("Unsupported operation!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
 | 
						|
/// or vector value FromVal, extracting the bits from the offset specified by
 | 
						|
/// Offset.  This returns the value, which is of type ToType.
 | 
						|
///
 | 
						|
/// This happens when we are converting an "integer union" to a single
 | 
						|
/// integer scalar, or when we are converting a "vector union" to a vector with
 | 
						|
/// insert/extractelement instructions.
 | 
						|
///
 | 
						|
/// Offset is an offset from the original alloca, in bits that need to be
 | 
						|
/// shifted to the right.
 | 
						|
Value *ConvertToScalarInfo::
 | 
						|
ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
 | 
						|
                           uint64_t Offset, IRBuilder<> &Builder) {
 | 
						|
  // If the load is of the whole new alloca, no conversion is needed.
 | 
						|
  if (FromVal->getType() == ToType && Offset == 0)
 | 
						|
    return FromVal;
 | 
						|
 | 
						|
  // If the result alloca is a vector type, this is either an element
 | 
						|
  // access or a bitcast to another vector type of the same size.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
 | 
						|
    if (ToType->isVectorTy())
 | 
						|
      return Builder.CreateBitCast(FromVal, ToType, "tmp");
 | 
						|
 | 
						|
    // Otherwise it must be an element access.
 | 
						|
    unsigned Elt = 0;
 | 
						|
    if (Offset) {
 | 
						|
      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
 | 
						|
      Elt = Offset/EltSize;
 | 
						|
      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
 | 
						|
    }
 | 
						|
    // Return the element extracted out of it.
 | 
						|
    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
 | 
						|
                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
 | 
						|
    if (V->getType() != ToType)
 | 
						|
      V = Builder.CreateBitCast(V, ToType, "tmp");
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If ToType is a first class aggregate, extract out each of the pieces and
 | 
						|
  // use insertvalue's to form the FCA.
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
 | 
						|
    const StructLayout &Layout = *TD.getStructLayout(ST);
 | 
						|
    Value *Res = UndefValue::get(ST);
 | 
						|
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
 | 
						|
                                        Offset+Layout.getElementOffsetInBits(i),
 | 
						|
                                              Builder);
 | 
						|
      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
 | 
						|
    }
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
 | 
						|
    Value *Res = UndefValue::get(AT);
 | 
						|
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
 | 
						|
                                              Offset+i*EltSize, Builder);
 | 
						|
      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
 | 
						|
    }
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this must be a union that was converted to an integer value.
 | 
						|
  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
 | 
						|
 | 
						|
  // If this is a big-endian system and the load is narrower than the
 | 
						|
  // full alloca type, we need to do a shift to get the right bits.
 | 
						|
  int ShAmt = 0;
 | 
						|
  if (TD.isBigEndian()) {
 | 
						|
    // On big-endian machines, the lowest bit is stored at the bit offset
 | 
						|
    // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | 
						|
    // integers with a bitwidth that is not a multiple of 8.
 | 
						|
    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
 | 
						|
            TD.getTypeStoreSizeInBits(ToType) - Offset;
 | 
						|
  } else {
 | 
						|
    ShAmt = Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: we support negative bitwidths (with shl) which are not defined.
 | 
						|
  // We do this to support (f.e.) loads off the end of a structure where
 | 
						|
  // only some bits are used.
 | 
						|
  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
 | 
						|
    FromVal = Builder.CreateLShr(FromVal,
 | 
						|
                                 ConstantInt::get(FromVal->getType(),
 | 
						|
                                                           ShAmt), "tmp");
 | 
						|
  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
 | 
						|
    FromVal = Builder.CreateShl(FromVal, 
 | 
						|
                                ConstantInt::get(FromVal->getType(),
 | 
						|
                                                          -ShAmt), "tmp");
 | 
						|
 | 
						|
  // Finally, unconditionally truncate the integer to the right width.
 | 
						|
  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
 | 
						|
  if (LIBitWidth < NTy->getBitWidth())
 | 
						|
    FromVal =
 | 
						|
      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), 
 | 
						|
                                                    LIBitWidth), "tmp");
 | 
						|
  else if (LIBitWidth > NTy->getBitWidth())
 | 
						|
    FromVal =
 | 
						|
       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), 
 | 
						|
                                                    LIBitWidth), "tmp");
 | 
						|
 | 
						|
  // If the result is an integer, this is a trunc or bitcast.
 | 
						|
  if (ToType->isIntegerTy()) {
 | 
						|
    // Should be done.
 | 
						|
  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
 | 
						|
    // Just do a bitcast, we know the sizes match up.
 | 
						|
    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
 | 
						|
  } else {
 | 
						|
    // Otherwise must be a pointer.
 | 
						|
    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
 | 
						|
  }
 | 
						|
  assert(FromVal->getType() == ToType && "Didn't convert right?");
 | 
						|
  return FromVal;
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
 | 
						|
/// or vector value "Old" at the offset specified by Offset.
 | 
						|
///
 | 
						|
/// This happens when we are converting an "integer union" to a
 | 
						|
/// single integer scalar, or when we are converting a "vector union" to a
 | 
						|
/// vector with insert/extractelement instructions.
 | 
						|
///
 | 
						|
/// Offset is an offset from the original alloca, in bits that need to be
 | 
						|
/// shifted to the right.
 | 
						|
Value *ConvertToScalarInfo::
 | 
						|
ConvertScalar_InsertValue(Value *SV, Value *Old,
 | 
						|
                          uint64_t Offset, IRBuilder<> &Builder) {
 | 
						|
  // Convert the stored type to the actual type, shift it left to insert
 | 
						|
  // then 'or' into place.
 | 
						|
  const Type *AllocaType = Old->getType();
 | 
						|
  LLVMContext &Context = Old->getContext();
 | 
						|
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
 | 
						|
    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
 | 
						|
    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
 | 
						|
    
 | 
						|
    // Changing the whole vector with memset or with an access of a different
 | 
						|
    // vector type?
 | 
						|
    if (ValSize == VecSize)
 | 
						|
      return Builder.CreateBitCast(SV, AllocaType, "tmp");
 | 
						|
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
 | 
						|
 | 
						|
    // Must be an element insertion.
 | 
						|
    unsigned Elt = Offset/EltSize;
 | 
						|
    
 | 
						|
    if (SV->getType() != VTy->getElementType())
 | 
						|
      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
 | 
						|
    
 | 
						|
    SV = Builder.CreateInsertElement(Old, SV, 
 | 
						|
                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
 | 
						|
                                     "tmp");
 | 
						|
    return SV;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If SV is a first-class aggregate value, insert each value recursively.
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
 | 
						|
    const StructLayout &Layout = *TD.getStructLayout(ST);
 | 
						|
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
 | 
						|
      Old = ConvertScalar_InsertValue(Elt, Old, 
 | 
						|
                                      Offset+Layout.getElementOffsetInBits(i),
 | 
						|
                                      Builder);
 | 
						|
    }
 | 
						|
    return Old;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
 | 
						|
    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
 | 
						|
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
 | 
						|
      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
 | 
						|
    }
 | 
						|
    return Old;
 | 
						|
  }
 | 
						|
 | 
						|
  // If SV is a float, convert it to the appropriate integer type.
 | 
						|
  // If it is a pointer, do the same.
 | 
						|
  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
 | 
						|
  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
 | 
						|
  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
 | 
						|
  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
 | 
						|
  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
 | 
						|
    SV = Builder.CreateBitCast(SV,
 | 
						|
                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
 | 
						|
  else if (SV->getType()->isPointerTy())
 | 
						|
    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
 | 
						|
 | 
						|
  // Zero extend or truncate the value if needed.
 | 
						|
  if (SV->getType() != AllocaType) {
 | 
						|
    if (SV->getType()->getPrimitiveSizeInBits() <
 | 
						|
             AllocaType->getPrimitiveSizeInBits())
 | 
						|
      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
 | 
						|
    else {
 | 
						|
      // Truncation may be needed if storing more than the alloca can hold
 | 
						|
      // (undefined behavior).
 | 
						|
      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
 | 
						|
      SrcWidth = DestWidth;
 | 
						|
      SrcStoreWidth = DestStoreWidth;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a big-endian system and the store is narrower than the
 | 
						|
  // full alloca type, we need to do a shift to get the right bits.
 | 
						|
  int ShAmt = 0;
 | 
						|
  if (TD.isBigEndian()) {
 | 
						|
    // On big-endian machines, the lowest bit is stored at the bit offset
 | 
						|
    // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | 
						|
    // integers with a bitwidth that is not a multiple of 8.
 | 
						|
    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
 | 
						|
  } else {
 | 
						|
    ShAmt = Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: we support negative bitwidths (with shr) which are not defined.
 | 
						|
  // We do this to support (f.e.) stores off the end of a structure where
 | 
						|
  // only some bits in the structure are set.
 | 
						|
  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
 | 
						|
  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
 | 
						|
    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
 | 
						|
                           ShAmt), "tmp");
 | 
						|
    Mask <<= ShAmt;
 | 
						|
  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
 | 
						|
    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
 | 
						|
                            -ShAmt), "tmp");
 | 
						|
    Mask = Mask.lshr(-ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Mask out the bits we are about to insert from the old value, and or
 | 
						|
  // in the new bits.
 | 
						|
  if (SrcWidth != DestWidth) {
 | 
						|
    assert(DestWidth > SrcWidth);
 | 
						|
    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
 | 
						|
    SV = Builder.CreateOr(Old, SV, "ins");
 | 
						|
  }
 | 
						|
  return SV;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SRoA Driver
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
bool SROA::runOnFunction(Function &F) {
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
 | 
						|
  bool Changed = performPromotion(F);
 | 
						|
 | 
						|
  // FIXME: ScalarRepl currently depends on TargetData more than it
 | 
						|
  // theoretically needs to. It should be refactored in order to support
 | 
						|
  // target-independent IR. Until this is done, just skip the actual
 | 
						|
  // scalar-replacement portion of this pass.
 | 
						|
  if (!TD) return Changed;
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    bool LocalChange = performScalarRepl(F);
 | 
						|
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | 
						|
    Changed = true;
 | 
						|
    LocalChange = performPromotion(F);
 | 
						|
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool SROA::performPromotion(Function &F) {
 | 
						|
  std::vector<AllocaInst*> Allocas;
 | 
						|
  DominatorTree         &DT = getAnalysis<DominatorTree>();
 | 
						|
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
 | 
						|
 | 
						|
  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    Allocas.clear();
 | 
						|
 | 
						|
    // Find allocas that are safe to promote, by looking at all instructions in
 | 
						|
    // the entry node
 | 
						|
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | 
						|
        if (isAllocaPromotable(AI))
 | 
						|
          Allocas.push_back(AI);
 | 
						|
 | 
						|
    if (Allocas.empty()) break;
 | 
						|
 | 
						|
    PromoteMemToReg(Allocas, DT, DF);
 | 
						|
    NumPromoted += Allocas.size();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
 | 
						|
/// SROA.  It must be a struct or array type with a small number of elements.
 | 
						|
static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
 | 
						|
  const Type *T = AI->getAllocatedType();
 | 
						|
  // Do not promote any struct into more than 32 separate vars.
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(T))
 | 
						|
    return ST->getNumElements() <= 32;
 | 
						|
  // Arrays are much less likely to be safe for SROA; only consider
 | 
						|
  // them if they are very small.
 | 
						|
  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
 | 
						|
    return AT->getNumElements() <= 8;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | 
						|
// which runs on all of the malloc/alloca instructions in the function, removing
 | 
						|
// them if they are only used by getelementptr instructions.
 | 
						|
//
 | 
						|
bool SROA::performScalarRepl(Function &F) {
 | 
						|
  std::vector<AllocaInst*> WorkList;
 | 
						|
 | 
						|
  // Scan the entry basic block, adding allocas to the worklist.
 | 
						|
  BasicBlock &BB = F.getEntryBlock();
 | 
						|
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | 
						|
    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
 | 
						|
      WorkList.push_back(A);
 | 
						|
 | 
						|
  // Process the worklist
 | 
						|
  bool Changed = false;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    AllocaInst *AI = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    
 | 
						|
    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
 | 
						|
    // with unused elements.
 | 
						|
    if (AI->use_empty()) {
 | 
						|
      AI->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this alloca is impossible for us to promote, reject it early.
 | 
						|
    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Check to see if this allocation is only modified by a memcpy/memmove from
 | 
						|
    // a constant global.  If this is the case, we can change all users to use
 | 
						|
    // the constant global instead.  This is commonly produced by the CFE by
 | 
						|
    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | 
						|
    // is only subsequently read.
 | 
						|
    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
 | 
						|
      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
 | 
						|
      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
 | 
						|
      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
 | 
						|
      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
 | 
						|
      TheCopy->eraseFromParent();  // Don't mutate the global.
 | 
						|
      AI->eraseFromParent();
 | 
						|
      ++NumGlobals;
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check to see if we can perform the core SROA transformation.  We cannot
 | 
						|
    // transform the allocation instruction if it is an array allocation
 | 
						|
    // (allocations OF arrays are ok though), and an allocation of a scalar
 | 
						|
    // value cannot be decomposed at all.
 | 
						|
    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
 | 
						|
 | 
						|
    // Do not promote [0 x %struct].
 | 
						|
    if (AllocaSize == 0) continue;
 | 
						|
    
 | 
						|
    // Do not promote any struct whose size is too big.
 | 
						|
    if (AllocaSize > SRThreshold) continue;
 | 
						|
    
 | 
						|
    // If the alloca looks like a good candidate for scalar replacement, and if
 | 
						|
    // all its users can be transformed, then split up the aggregate into its
 | 
						|
    // separate elements.
 | 
						|
    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
 | 
						|
      DoScalarReplacement(AI, WorkList);
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we can turn this aggregate value (potentially with casts) into a
 | 
						|
    // simple scalar value that can be mem2reg'd into a register value.
 | 
						|
    // IsNotTrivial tracks whether this is something that mem2reg could have
 | 
						|
    // promoted itself.  If so, we don't want to transform it needlessly.  Note
 | 
						|
    // that we can't just check based on the type: the alloca may be of an i32
 | 
						|
    // but that has pointer arithmetic to set byte 3 of it or something.
 | 
						|
    if (AllocaInst *NewAI =
 | 
						|
          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
 | 
						|
      NewAI->takeName(AI);
 | 
						|
      AI->eraseFromParent();
 | 
						|
      ++NumConverted;
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }      
 | 
						|
    
 | 
						|
    // Otherwise, couldn't process this alloca.
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
 | 
						|
/// predicate, do SROA now.
 | 
						|
void SROA::DoScalarReplacement(AllocaInst *AI, 
 | 
						|
                               std::vector<AllocaInst*> &WorkList) {
 | 
						|
  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
 | 
						|
  SmallVector<AllocaInst*, 32> ElementAllocas;
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | 
						|
    ElementAllocas.reserve(ST->getNumContainedTypes());
 | 
						|
    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | 
						|
      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
 | 
						|
                                      AI->getAlignment(),
 | 
						|
                                      AI->getName() + "." + Twine(i), AI);
 | 
						|
      ElementAllocas.push_back(NA);
 | 
						|
      WorkList.push_back(NA);  // Add to worklist for recursive processing
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | 
						|
    ElementAllocas.reserve(AT->getNumElements());
 | 
						|
    const Type *ElTy = AT->getElementType();
 | 
						|
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | 
						|
      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
 | 
						|
                                      AI->getName() + "." + Twine(i), AI);
 | 
						|
      ElementAllocas.push_back(NA);
 | 
						|
      WorkList.push_back(NA);  // Add to worklist for recursive processing
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have created the new alloca instructions, rewrite all the
 | 
						|
  // uses of the old alloca.
 | 
						|
  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
 | 
						|
 | 
						|
  // Now erase any instructions that were made dead while rewriting the alloca.
 | 
						|
  DeleteDeadInstructions();
 | 
						|
  AI->eraseFromParent();
 | 
						|
 | 
						|
  ++NumReplaced;
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
 | 
						|
/// recursively including all their operands that become trivially dead.
 | 
						|
void SROA::DeleteDeadInstructions() {
 | 
						|
  while (!DeadInsts.empty()) {
 | 
						|
    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
 | 
						|
 | 
						|
    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | 
						|
        // Zero out the operand and see if it becomes trivially dead.
 | 
						|
        // (But, don't add allocas to the dead instruction list -- they are
 | 
						|
        // already on the worklist and will be deleted separately.)
 | 
						|
        *OI = 0;
 | 
						|
        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
 | 
						|
          DeadInsts.push_back(U);
 | 
						|
      }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
    
 | 
						|
/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
 | 
						|
/// performing scalar replacement of alloca AI.  The results are flagged in
 | 
						|
/// the Info parameter.  Offset indicates the position within AI that is
 | 
						|
/// referenced by this instruction.
 | 
						|
void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | 
						|
                               AllocaInfo &Info) {
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | 
						|
      isSafeForScalarRepl(BC, AI, Offset, Info);
 | 
						|
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      uint64_t GEPOffset = Offset;
 | 
						|
      isSafeGEP(GEPI, AI, GEPOffset, Info);
 | 
						|
      if (!Info.isUnsafe)
 | 
						|
        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
 | 
						|
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | 
						|
      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
      if (Length)
 | 
						|
        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
 | 
						|
                        UI.getOperandNo() == 0, Info);
 | 
						|
      else
 | 
						|
        MarkUnsafe(Info);
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      if (!LI->isVolatile()) {
 | 
						|
        const Type *LIType = LI->getType();
 | 
						|
        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
 | 
						|
                        LIType, false, Info);
 | 
						|
      } else
 | 
						|
        MarkUnsafe(Info);
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      // Store is ok if storing INTO the pointer, not storing the pointer
 | 
						|
      if (!SI->isVolatile() && SI->getOperand(0) != I) {
 | 
						|
        const Type *SIType = SI->getOperand(0)->getType();
 | 
						|
        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
 | 
						|
                        SIType, true, Info);
 | 
						|
      } else
 | 
						|
        MarkUnsafe(Info);
 | 
						|
    } else {
 | 
						|
      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
 | 
						|
      MarkUnsafe(Info);
 | 
						|
    }
 | 
						|
    if (Info.isUnsafe) return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeGEP - Check if a GEP instruction can be handled for scalar
 | 
						|
/// replacement.  It is safe when all the indices are constant, in-bounds
 | 
						|
/// references, and when the resulting offset corresponds to an element within
 | 
						|
/// the alloca type.  The results are flagged in the Info parameter.  Upon
 | 
						|
/// return, Offset is adjusted as specified by the GEP indices.
 | 
						|
void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
 | 
						|
                     uint64_t &Offset, AllocaInfo &Info) {
 | 
						|
  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | 
						|
  if (GEPIt == E)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Walk through the GEP type indices, checking the types that this indexes
 | 
						|
  // into.
 | 
						|
  for (; GEPIt != E; ++GEPIt) {
 | 
						|
    // Ignore struct elements, no extra checking needed for these.
 | 
						|
    if ((*GEPIt)->isStructTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
 | 
						|
    if (!IdxVal)
 | 
						|
      return MarkUnsafe(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the offset due to this GEP and check if the alloca has a
 | 
						|
  // component element at that offset.
 | 
						|
  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
 | 
						|
  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
 | 
						|
                                 &Indices[0], Indices.size());
 | 
						|
  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
 | 
						|
    MarkUnsafe(Info);
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
 | 
						|
/// alloca or has an offset and size that corresponds to a component element
 | 
						|
/// within it.  The offset checked here may have been formed from a GEP with a
 | 
						|
/// pointer bitcasted to a different type.
 | 
						|
void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
 | 
						|
                           const Type *MemOpType, bool isStore,
 | 
						|
                           AllocaInfo &Info) {
 | 
						|
  // Check if this is a load/store of the entire alloca.
 | 
						|
  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
 | 
						|
    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
 | 
						|
    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
 | 
						|
    // (which are essentially the same as the MemIntrinsics, especially with
 | 
						|
    // regard to copying padding between elements), or references using the
 | 
						|
    // aggregate type of the alloca.
 | 
						|
    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
 | 
						|
      if (!UsesAggregateType) {
 | 
						|
        if (isStore)
 | 
						|
          Info.isMemCpyDst = true;
 | 
						|
        else
 | 
						|
          Info.isMemCpySrc = true;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Check if the offset/size correspond to a component within the alloca type.
 | 
						|
  const Type *T = AI->getAllocatedType();
 | 
						|
  if (TypeHasComponent(T, Offset, MemSize))
 | 
						|
    return;
 | 
						|
 | 
						|
  return MarkUnsafe(Info);
 | 
						|
}
 | 
						|
 | 
						|
/// TypeHasComponent - Return true if T has a component type with the
 | 
						|
/// specified offset and size.  If Size is zero, do not check the size.
 | 
						|
bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
 | 
						|
  const Type *EltTy;
 | 
						|
  uint64_t EltSize;
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(T)) {
 | 
						|
    const StructLayout *Layout = TD->getStructLayout(ST);
 | 
						|
    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
 | 
						|
    EltTy = ST->getContainedType(EltIdx);
 | 
						|
    EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    Offset -= Layout->getElementOffset(EltIdx);
 | 
						|
  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    EltTy = AT->getElementType();
 | 
						|
    EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    if (Offset >= AT->getNumElements() * EltSize)
 | 
						|
      return false;
 | 
						|
    Offset %= EltSize;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (Offset == 0 && (Size == 0 || EltSize == Size))
 | 
						|
    return true;
 | 
						|
  // Check if the component spans multiple elements.
 | 
						|
  if (Offset + Size > EltSize)
 | 
						|
    return false;
 | 
						|
  return TypeHasComponent(EltTy, Offset, Size);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
 | 
						|
/// the instruction I, which references it, to use the separate elements.
 | 
						|
/// Offset indicates the position within AI that is referenced by this
 | 
						|
/// instruction.
 | 
						|
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | 
						|
                                SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | 
						|
      RewriteBitCast(BC, AI, Offset, NewElts);
 | 
						|
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | 
						|
      RewriteGEP(GEPI, AI, Offset, NewElts);
 | 
						|
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | 
						|
      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
      uint64_t MemSize = Length->getZExtValue();
 | 
						|
      if (Offset == 0 &&
 | 
						|
          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
 | 
						|
        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
 | 
						|
      // Otherwise the intrinsic can only touch a single element and the
 | 
						|
      // address operand will be updated, so nothing else needs to be done.
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | 
						|
      const Type *LIType = LI->getType();
 | 
						|
      if (LIType == AI->getAllocatedType()) {
 | 
						|
        // Replace:
 | 
						|
        //   %res = load { i32, i32 }* %alloc
 | 
						|
        // with:
 | 
						|
        //   %load.0 = load i32* %alloc.0
 | 
						|
        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
 | 
						|
        //   %load.1 = load i32* %alloc.1
 | 
						|
        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
 | 
						|
        // (Also works for arrays instead of structs)
 | 
						|
        Value *Insert = UndefValue::get(LIType);
 | 
						|
        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
          Value *Load = new LoadInst(NewElts[i], "load", LI);
 | 
						|
          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
 | 
						|
        }
 | 
						|
        LI->replaceAllUsesWith(Insert);
 | 
						|
        DeadInsts.push_back(LI);
 | 
						|
      } else if (LIType->isIntegerTy() &&
 | 
						|
                 TD->getTypeAllocSize(LIType) ==
 | 
						|
                 TD->getTypeAllocSize(AI->getAllocatedType())) {
 | 
						|
        // If this is a load of the entire alloca to an integer, rewrite it.
 | 
						|
        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
 | 
						|
      }
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
      Value *Val = SI->getOperand(0);
 | 
						|
      const Type *SIType = Val->getType();
 | 
						|
      if (SIType == AI->getAllocatedType()) {
 | 
						|
        // Replace:
 | 
						|
        //   store { i32, i32 } %val, { i32, i32 }* %alloc
 | 
						|
        // with:
 | 
						|
        //   %val.0 = extractvalue { i32, i32 } %val, 0
 | 
						|
        //   store i32 %val.0, i32* %alloc.0
 | 
						|
        //   %val.1 = extractvalue { i32, i32 } %val, 1
 | 
						|
        //   store i32 %val.1, i32* %alloc.1
 | 
						|
        // (Also works for arrays instead of structs)
 | 
						|
        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
 | 
						|
          new StoreInst(Extract, NewElts[i], SI);
 | 
						|
        }
 | 
						|
        DeadInsts.push_back(SI);
 | 
						|
      } else if (SIType->isIntegerTy() &&
 | 
						|
                 TD->getTypeAllocSize(SIType) ==
 | 
						|
                 TD->getTypeAllocSize(AI->getAllocatedType())) {
 | 
						|
        // If this is a store of the entire alloca from an integer, rewrite it.
 | 
						|
        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
 | 
						|
/// and recursively continue updating all of its uses.
 | 
						|
void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
 | 
						|
                          SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  RewriteForScalarRepl(BC, AI, Offset, NewElts);
 | 
						|
  if (BC->getOperand(0) != AI)
 | 
						|
    return;
 | 
						|
 | 
						|
  // The bitcast references the original alloca.  Replace its uses with
 | 
						|
  // references to the first new element alloca.
 | 
						|
  Instruction *Val = NewElts[0];
 | 
						|
  if (Val->getType() != BC->getDestTy()) {
 | 
						|
    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
 | 
						|
    Val->takeName(BC);
 | 
						|
  }
 | 
						|
  BC->replaceAllUsesWith(Val);
 | 
						|
  DeadInsts.push_back(BC);
 | 
						|
}
 | 
						|
 | 
						|
/// FindElementAndOffset - Return the index of the element containing Offset
 | 
						|
/// within the specified type, which must be either a struct or an array.
 | 
						|
/// Sets T to the type of the element and Offset to the offset within that
 | 
						|
/// element.  IdxTy is set to the type of the index result to be used in a
 | 
						|
/// GEP instruction.
 | 
						|
uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
 | 
						|
                                    const Type *&IdxTy) {
 | 
						|
  uint64_t Idx = 0;
 | 
						|
  if (const StructType *ST = dyn_cast<StructType>(T)) {
 | 
						|
    const StructLayout *Layout = TD->getStructLayout(ST);
 | 
						|
    Idx = Layout->getElementContainingOffset(Offset);
 | 
						|
    T = ST->getContainedType(Idx);
 | 
						|
    Offset -= Layout->getElementOffset(Idx);
 | 
						|
    IdxTy = Type::getInt32Ty(T->getContext());
 | 
						|
    return Idx;
 | 
						|
  }
 | 
						|
  const ArrayType *AT = cast<ArrayType>(T);
 | 
						|
  T = AT->getElementType();
 | 
						|
  uint64_t EltSize = TD->getTypeAllocSize(T);
 | 
						|
  Idx = Offset / EltSize;
 | 
						|
  Offset -= Idx * EltSize;
 | 
						|
  IdxTy = Type::getInt64Ty(T->getContext());
 | 
						|
  return Idx;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteGEP - Check if this GEP instruction moves the pointer across
 | 
						|
/// elements of the alloca that are being split apart, and if so, rewrite
 | 
						|
/// the GEP to be relative to the new element.
 | 
						|
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
 | 
						|
                      SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  uint64_t OldOffset = Offset;
 | 
						|
  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
 | 
						|
  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
 | 
						|
                                 &Indices[0], Indices.size());
 | 
						|
 | 
						|
  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
 | 
						|
 | 
						|
  const Type *T = AI->getAllocatedType();
 | 
						|
  const Type *IdxTy;
 | 
						|
  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
 | 
						|
  if (GEPI->getOperand(0) == AI)
 | 
						|
    OldIdx = ~0ULL; // Force the GEP to be rewritten.
 | 
						|
 | 
						|
  T = AI->getAllocatedType();
 | 
						|
  uint64_t EltOffset = Offset;
 | 
						|
  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
 | 
						|
 | 
						|
  // If this GEP does not move the pointer across elements of the alloca
 | 
						|
  // being split, then it does not needs to be rewritten.
 | 
						|
  if (Idx == OldIdx)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
 | 
						|
  SmallVector<Value*, 8> NewArgs;
 | 
						|
  NewArgs.push_back(Constant::getNullValue(i32Ty));
 | 
						|
  while (EltOffset != 0) {
 | 
						|
    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
 | 
						|
    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
 | 
						|
  }
 | 
						|
  Instruction *Val = NewElts[Idx];
 | 
						|
  if (NewArgs.size() > 1) {
 | 
						|
    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
 | 
						|
                                            NewArgs.end(), "", GEPI);
 | 
						|
    Val->takeName(GEPI);
 | 
						|
  }
 | 
						|
  if (Val->getType() != GEPI->getType())
 | 
						|
    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
 | 
						|
  GEPI->replaceAllUsesWith(Val);
 | 
						|
  DeadInsts.push_back(GEPI);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
 | 
						|
/// Rewrite it to copy or set the elements of the scalarized memory.
 | 
						|
void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
 | 
						|
                                        AllocaInst *AI,
 | 
						|
                                        SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  // If this is a memcpy/memmove, construct the other pointer as the
 | 
						|
  // appropriate type.  The "Other" pointer is the pointer that goes to memory
 | 
						|
  // that doesn't have anything to do with the alloca that we are promoting. For
 | 
						|
  // memset, this Value* stays null.
 | 
						|
  Value *OtherPtr = 0;
 | 
						|
  unsigned MemAlignment = MI->getAlignment();
 | 
						|
  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
 | 
						|
    if (Inst == MTI->getRawDest())
 | 
						|
      OtherPtr = MTI->getRawSource();
 | 
						|
    else {
 | 
						|
      assert(Inst == MTI->getRawSource());
 | 
						|
      OtherPtr = MTI->getRawDest();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is an other pointer, we want to convert it to the same pointer
 | 
						|
  // type as AI has, so we can GEP through it safely.
 | 
						|
  if (OtherPtr) {
 | 
						|
    unsigned AddrSpace =
 | 
						|
      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
 | 
						|
 | 
						|
    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
 | 
						|
    // optimization, but it's also required to detect the corner case where
 | 
						|
    // both pointer operands are referencing the same memory, and where
 | 
						|
    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
 | 
						|
    // function is only called for mem intrinsics that access the whole
 | 
						|
    // aggregate, so non-zero GEPs are not an issue here.)
 | 
						|
    OtherPtr = OtherPtr->stripPointerCasts();
 | 
						|
    
 | 
						|
    // Copying the alloca to itself is a no-op: just delete it.
 | 
						|
    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
 | 
						|
      // This code will run twice for a no-op memcpy -- once for each operand.
 | 
						|
      // Put only one reference to MI on the DeadInsts list.
 | 
						|
      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
 | 
						|
             E = DeadInsts.end(); I != E; ++I)
 | 
						|
        if (*I == MI) return;
 | 
						|
      DeadInsts.push_back(MI);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the pointer is not the right type, insert a bitcast to the right
 | 
						|
    // type.
 | 
						|
    const Type *NewTy =
 | 
						|
      PointerType::get(AI->getType()->getElementType(), AddrSpace);
 | 
						|
    
 | 
						|
    if (OtherPtr->getType() != NewTy)
 | 
						|
      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Process each element of the aggregate.
 | 
						|
  Value *TheFn = MI->getCalledValue();
 | 
						|
  const Type *BytePtrTy = MI->getRawDest()->getType();
 | 
						|
  bool SROADest = MI->getRawDest() == Inst;
 | 
						|
  
 | 
						|
  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
    // If this is a memcpy/memmove, emit a GEP of the other element address.
 | 
						|
    Value *OtherElt = 0;
 | 
						|
    unsigned OtherEltAlign = MemAlignment;
 | 
						|
    
 | 
						|
    if (OtherPtr) {
 | 
						|
      Value *Idx[2] = { Zero,
 | 
						|
                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
 | 
						|
      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
 | 
						|
                                              OtherPtr->getName()+"."+Twine(i),
 | 
						|
                                                   MI);
 | 
						|
      uint64_t EltOffset;
 | 
						|
      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
 | 
						|
      const Type *OtherTy = OtherPtrTy->getElementType();
 | 
						|
      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
 | 
						|
        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
 | 
						|
      } else {
 | 
						|
        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
 | 
						|
        EltOffset = TD->getTypeAllocSize(EltTy)*i;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // The alignment of the other pointer is the guaranteed alignment of the
 | 
						|
      // element, which is affected by both the known alignment of the whole
 | 
						|
      // mem intrinsic and the alignment of the element.  If the alignment of
 | 
						|
      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
 | 
						|
      // known alignment is just 4 bytes.
 | 
						|
      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
 | 
						|
    }
 | 
						|
    
 | 
						|
    Value *EltPtr = NewElts[i];
 | 
						|
    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
 | 
						|
    
 | 
						|
    // If we got down to a scalar, insert a load or store as appropriate.
 | 
						|
    if (EltTy->isSingleValueType()) {
 | 
						|
      if (isa<MemTransferInst>(MI)) {
 | 
						|
        if (SROADest) {
 | 
						|
          // From Other to Alloca.
 | 
						|
          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
 | 
						|
          new StoreInst(Elt, EltPtr, MI);
 | 
						|
        } else {
 | 
						|
          // From Alloca to Other.
 | 
						|
          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
 | 
						|
          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      assert(isa<MemSetInst>(MI));
 | 
						|
      
 | 
						|
      // If the stored element is zero (common case), just store a null
 | 
						|
      // constant.
 | 
						|
      Constant *StoreVal;
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
 | 
						|
        if (CI->isZero()) {
 | 
						|
          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
 | 
						|
        } else {
 | 
						|
          // If EltTy is a vector type, get the element type.
 | 
						|
          const Type *ValTy = EltTy->getScalarType();
 | 
						|
 | 
						|
          // Construct an integer with the right value.
 | 
						|
          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
 | 
						|
          APInt OneVal(EltSize, CI->getZExtValue());
 | 
						|
          APInt TotalVal(OneVal);
 | 
						|
          // Set each byte.
 | 
						|
          for (unsigned i = 0; 8*i < EltSize; ++i) {
 | 
						|
            TotalVal = TotalVal.shl(8);
 | 
						|
            TotalVal |= OneVal;
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Convert the integer value to the appropriate type.
 | 
						|
          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
 | 
						|
          if (ValTy->isPointerTy())
 | 
						|
            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
 | 
						|
          else if (ValTy->isFloatingPointTy())
 | 
						|
            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
 | 
						|
          assert(StoreVal->getType() == ValTy && "Type mismatch!");
 | 
						|
          
 | 
						|
          // If the requested value was a vector constant, create it.
 | 
						|
          if (EltTy != ValTy) {
 | 
						|
            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
 | 
						|
            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
 | 
						|
            StoreVal = ConstantVector::get(&Elts[0], NumElts);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        new StoreInst(StoreVal, EltPtr, MI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Otherwise, if we're storing a byte variable, use a memset call for
 | 
						|
      // this element.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Cast the element pointer to BytePtrTy.
 | 
						|
    if (EltPtr->getType() != BytePtrTy)
 | 
						|
      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
 | 
						|
    
 | 
						|
    // Cast the other pointer (if we have one) to BytePtrTy. 
 | 
						|
    if (OtherElt && OtherElt->getType() != BytePtrTy) {
 | 
						|
      // Preserve address space of OtherElt
 | 
						|
      const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
 | 
						|
      const PointerType* PTy = cast<PointerType>(BytePtrTy);
 | 
						|
      if (OtherPTy->getElementType() != PTy->getElementType()) {
 | 
						|
        Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
 | 
						|
                                             OtherPTy->getAddressSpace());
 | 
						|
        OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
 | 
						|
                                   OtherElt->getNameStr(), MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned EltSize = TD->getTypeAllocSize(EltTy);
 | 
						|
    
 | 
						|
    // Finally, insert the meminst for this element.
 | 
						|
    if (isa<MemTransferInst>(MI)) {
 | 
						|
      Value *Ops[] = {
 | 
						|
        SROADest ? EltPtr : OtherElt,  // Dest ptr
 | 
						|
        SROADest ? OtherElt : EltPtr,  // Src ptr
 | 
						|
        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
 | 
						|
        // Align
 | 
						|
        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
 | 
						|
        MI->getVolatileCst()
 | 
						|
      };
 | 
						|
      // In case we fold the address space overloaded memcpy of A to B
 | 
						|
      // with memcpy of B to C, change the function to be a memcpy of A to C.
 | 
						|
      const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
 | 
						|
                            Ops[2]->getType() };
 | 
						|
      Module *M = MI->getParent()->getParent()->getParent();
 | 
						|
      TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
 | 
						|
      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
 | 
						|
    } else {
 | 
						|
      assert(isa<MemSetInst>(MI));
 | 
						|
      Value *Ops[] = {
 | 
						|
        EltPtr, MI->getArgOperand(1),  // Dest, Value,
 | 
						|
        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
 | 
						|
        Zero,  // Align
 | 
						|
        ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
 | 
						|
      };
 | 
						|
      const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
 | 
						|
      Module *M = MI->getParent()->getParent()->getParent();
 | 
						|
      TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
 | 
						|
      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DeadInsts.push_back(MI);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
 | 
						|
/// overwrites the entire allocation.  Extract out the pieces of the stored
 | 
						|
/// integer and store them individually.
 | 
						|
void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
 | 
						|
                                         SmallVector<AllocaInst*, 32> &NewElts){
 | 
						|
  // Extract each element out of the integer according to its structure offset
 | 
						|
  // and store the element value to the individual alloca.
 | 
						|
  Value *SrcVal = SI->getOperand(0);
 | 
						|
  const Type *AllocaEltTy = AI->getAllocatedType();
 | 
						|
  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | 
						|
  
 | 
						|
  // Handle tail padding by extending the operand
 | 
						|
  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
 | 
						|
    SrcVal = new ZExtInst(SrcVal,
 | 
						|
                          IntegerType::get(SI->getContext(), AllocaSizeBits), 
 | 
						|
                          "", SI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
 | 
						|
               << '\n');
 | 
						|
 | 
						|
  // There are two forms here: AI could be an array or struct.  Both cases
 | 
						|
  // have different ways to compute the element offset.
 | 
						|
  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | 
						|
    const StructLayout *Layout = TD->getStructLayout(EltSTy);
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
      // Get the number of bits to shift SrcVal to get the value.
 | 
						|
      const Type *FieldTy = EltSTy->getElementType(i);
 | 
						|
      uint64_t Shift = Layout->getElementOffsetInBits(i);
 | 
						|
      
 | 
						|
      if (TD->isBigEndian())
 | 
						|
        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
 | 
						|
      
 | 
						|
      Value *EltVal = SrcVal;
 | 
						|
      if (Shift) {
 | 
						|
        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | 
						|
        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
 | 
						|
                                            "sroa.store.elt", SI);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Truncate down to an integer of the right size.
 | 
						|
      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | 
						|
      
 | 
						|
      // Ignore zero sized fields like {}, they obviously contain no data.
 | 
						|
      if (FieldSizeBits == 0) continue;
 | 
						|
      
 | 
						|
      if (FieldSizeBits != AllocaSizeBits)
 | 
						|
        EltVal = new TruncInst(EltVal,
 | 
						|
                             IntegerType::get(SI->getContext(), FieldSizeBits),
 | 
						|
                              "", SI);
 | 
						|
      Value *DestField = NewElts[i];
 | 
						|
      if (EltVal->getType() == FieldTy) {
 | 
						|
        // Storing to an integer field of this size, just do it.
 | 
						|
      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
 | 
						|
        // Bitcast to the right element type (for fp/vector values).
 | 
						|
        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
 | 
						|
      } else {
 | 
						|
        // Otherwise, bitcast the dest pointer (for aggregates).
 | 
						|
        DestField = new BitCastInst(DestField,
 | 
						|
                              PointerType::getUnqual(EltVal->getType()),
 | 
						|
                                    "", SI);
 | 
						|
      }
 | 
						|
      new StoreInst(EltVal, DestField, SI);
 | 
						|
    }
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
 | 
						|
    const Type *ArrayEltTy = ATy->getElementType();
 | 
						|
    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | 
						|
    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
 | 
						|
 | 
						|
    uint64_t Shift;
 | 
						|
    
 | 
						|
    if (TD->isBigEndian())
 | 
						|
      Shift = AllocaSizeBits-ElementOffset;
 | 
						|
    else 
 | 
						|
      Shift = 0;
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
      // Ignore zero sized fields like {}, they obviously contain no data.
 | 
						|
      if (ElementSizeBits == 0) continue;
 | 
						|
      
 | 
						|
      Value *EltVal = SrcVal;
 | 
						|
      if (Shift) {
 | 
						|
        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | 
						|
        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
 | 
						|
                                            "sroa.store.elt", SI);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Truncate down to an integer of the right size.
 | 
						|
      if (ElementSizeBits != AllocaSizeBits)
 | 
						|
        EltVal = new TruncInst(EltVal, 
 | 
						|
                               IntegerType::get(SI->getContext(), 
 | 
						|
                                                ElementSizeBits),"",SI);
 | 
						|
      Value *DestField = NewElts[i];
 | 
						|
      if (EltVal->getType() == ArrayEltTy) {
 | 
						|
        // Storing to an integer field of this size, just do it.
 | 
						|
      } else if (ArrayEltTy->isFloatingPointTy() ||
 | 
						|
                 ArrayEltTy->isVectorTy()) {
 | 
						|
        // Bitcast to the right element type (for fp/vector values).
 | 
						|
        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
 | 
						|
      } else {
 | 
						|
        // Otherwise, bitcast the dest pointer (for aggregates).
 | 
						|
        DestField = new BitCastInst(DestField,
 | 
						|
                              PointerType::getUnqual(EltVal->getType()),
 | 
						|
                                    "", SI);
 | 
						|
      }
 | 
						|
      new StoreInst(EltVal, DestField, SI);
 | 
						|
      
 | 
						|
      if (TD->isBigEndian())
 | 
						|
        Shift -= ElementOffset;
 | 
						|
      else 
 | 
						|
        Shift += ElementOffset;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  DeadInsts.push_back(SI);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
 | 
						|
/// an integer.  Load the individual pieces to form the aggregate value.
 | 
						|
void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
 | 
						|
                                        SmallVector<AllocaInst*, 32> &NewElts) {
 | 
						|
  // Extract each element out of the NewElts according to its structure offset
 | 
						|
  // and form the result value.
 | 
						|
  const Type *AllocaEltTy = AI->getAllocatedType();
 | 
						|
  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
 | 
						|
               << '\n');
 | 
						|
  
 | 
						|
  // There are two forms here: AI could be an array or struct.  Both cases
 | 
						|
  // have different ways to compute the element offset.
 | 
						|
  const StructLayout *Layout = 0;
 | 
						|
  uint64_t ArrayEltBitOffset = 0;
 | 
						|
  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | 
						|
    Layout = TD->getStructLayout(EltSTy);
 | 
						|
  } else {
 | 
						|
    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
 | 
						|
    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | 
						|
  }    
 | 
						|
  
 | 
						|
  Value *ResultVal = 
 | 
						|
    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | 
						|
    // Load the value from the alloca.  If the NewElt is an aggregate, cast
 | 
						|
    // the pointer to an integer of the same size before doing the load.
 | 
						|
    Value *SrcField = NewElts[i];
 | 
						|
    const Type *FieldTy =
 | 
						|
      cast<PointerType>(SrcField->getType())->getElementType();
 | 
						|
    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | 
						|
    
 | 
						|
    // Ignore zero sized fields like {}, they obviously contain no data.
 | 
						|
    if (FieldSizeBits == 0) continue;
 | 
						|
    
 | 
						|
    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), 
 | 
						|
                                                     FieldSizeBits);
 | 
						|
    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
 | 
						|
        !FieldTy->isVectorTy())
 | 
						|
      SrcField = new BitCastInst(SrcField,
 | 
						|
                                 PointerType::getUnqual(FieldIntTy),
 | 
						|
                                 "", LI);
 | 
						|
    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
 | 
						|
 | 
						|
    // If SrcField is a fp or vector of the right size but that isn't an
 | 
						|
    // integer type, bitcast to an integer so we can shift it.
 | 
						|
    if (SrcField->getType() != FieldIntTy)
 | 
						|
      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
 | 
						|
 | 
						|
    // Zero extend the field to be the same size as the final alloca so that
 | 
						|
    // we can shift and insert it.
 | 
						|
    if (SrcField->getType() != ResultVal->getType())
 | 
						|
      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
 | 
						|
    
 | 
						|
    // Determine the number of bits to shift SrcField.
 | 
						|
    uint64_t Shift;
 | 
						|
    if (Layout) // Struct case.
 | 
						|
      Shift = Layout->getElementOffsetInBits(i);
 | 
						|
    else  // Array case.
 | 
						|
      Shift = i*ArrayEltBitOffset;
 | 
						|
    
 | 
						|
    if (TD->isBigEndian())
 | 
						|
      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
 | 
						|
    
 | 
						|
    if (Shift) {
 | 
						|
      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
 | 
						|
      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't create an 'or x, 0' on the first iteration.
 | 
						|
    if (!isa<Constant>(ResultVal) ||
 | 
						|
        !cast<Constant>(ResultVal)->isNullValue())
 | 
						|
      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
 | 
						|
    else
 | 
						|
      ResultVal = SrcField;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle tail padding by truncating the result
 | 
						|
  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
 | 
						|
    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 | 
						|
 | 
						|
  LI->replaceAllUsesWith(ResultVal);
 | 
						|
  DeadInsts.push_back(LI);
 | 
						|
}
 | 
						|
 | 
						|
/// HasPadding - Return true if the specified type has any structure or
 | 
						|
/// alignment padding, false otherwise.
 | 
						|
static bool HasPadding(const Type *Ty, const TargetData &TD) {
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    const StructLayout *SL = TD.getStructLayout(STy);
 | 
						|
    unsigned PrevFieldBitOffset = 0;
 | 
						|
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
 | 
						|
 | 
						|
      // Padding in sub-elements?
 | 
						|
      if (HasPadding(STy->getElementType(i), TD))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Check to see if there is any padding between this element and the
 | 
						|
      // previous one.
 | 
						|
      if (i) {
 | 
						|
        unsigned PrevFieldEnd =
 | 
						|
        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
 | 
						|
        if (PrevFieldEnd < FieldBitOffset)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
 | 
						|
      PrevFieldBitOffset = FieldBitOffset;
 | 
						|
    }
 | 
						|
 | 
						|
    //  Check for tail padding.
 | 
						|
    if (unsigned EltCount = STy->getNumElements()) {
 | 
						|
      unsigned PrevFieldEnd = PrevFieldBitOffset +
 | 
						|
                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
 | 
						|
      if (PrevFieldEnd < SL->getSizeInBits())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    return HasPadding(ATy->getElementType(), TD);
 | 
						|
  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | 
						|
    return HasPadding(VTy->getElementType(), TD);
 | 
						|
  }
 | 
						|
  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | 
						|
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | 
						|
/// or 1 if safe after canonicalization has been performed.
 | 
						|
bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
 | 
						|
  // Loop over the use list of the alloca.  We can only transform it if all of
 | 
						|
  // the users are safe to transform.
 | 
						|
  AllocaInfo Info;
 | 
						|
  
 | 
						|
  isSafeForScalarRepl(AI, AI, 0, Info);
 | 
						|
  if (Info.isUnsafe) {
 | 
						|
    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
 | 
						|
  // source and destination, we have to be careful.  In particular, the memcpy
 | 
						|
  // could be moving around elements that live in structure padding of the LLVM
 | 
						|
  // types, but may actually be used.  In these cases, we refuse to promote the
 | 
						|
  // struct.
 | 
						|
  if (Info.isMemCpySrc && Info.isMemCpyDst &&
 | 
						|
      HasPadding(AI->getAllocatedType(), *TD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | 
						|
/// some part of a constant global variable.  This intentionally only accepts
 | 
						|
/// constant expressions because we don't can't rewrite arbitrary instructions.
 | 
						|
static bool PointsToConstantGlobal(Value *V) {
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | 
						|
    return GV->isConstant();
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    if (CE->getOpcode() == Instruction::BitCast || 
 | 
						|
        CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      return PointsToConstantGlobal(CE->getOperand(0));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | 
						|
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | 
						|
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | 
						|
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
 | 
						|
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | 
						|
/// the alloca, and if the source pointer is a pointer to a constant  global, we
 | 
						|
/// can optimize this.
 | 
						|
static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
 | 
						|
                                           bool isOffset) {
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | 
						|
    User *U = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(U))
 | 
						|
      // Ignore non-volatile loads, they are always ok.
 | 
						|
      if (!LI->isVolatile())
 | 
						|
        continue;
 | 
						|
    
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | 
						|
      // If uses of the bitcast are ok, we are ok.
 | 
						|
      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
 | 
						|
      // doesn't, it does.
 | 
						|
      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
 | 
						|
                                         isOffset || !GEP->hasAllZeroIndices()))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is isn't our memcpy/memmove, reject it as something we can't
 | 
						|
    // handle.
 | 
						|
    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
 | 
						|
    if (MI == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If we already have seen a copy, reject the second one.
 | 
						|
    if (TheCopy) return false;
 | 
						|
    
 | 
						|
    // If the pointer has been offset from the start of the alloca, we can't
 | 
						|
    // safely handle this.
 | 
						|
    if (isOffset) return false;
 | 
						|
 | 
						|
    // If the memintrinsic isn't using the alloca as the dest, reject it.
 | 
						|
    if (UI.getOperandNo() != 0) return false;
 | 
						|
    
 | 
						|
    // If the source of the memcpy/move is not a constant global, reject it.
 | 
						|
    if (!PointsToConstantGlobal(MI->getSource()))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Otherwise, the transform is safe.  Remember the copy instruction.
 | 
						|
    TheCopy = MI;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | 
						|
/// modified by a copy from a constant global.  If we can prove this, we can
 | 
						|
/// replace any uses of the alloca with uses of the global directly.
 | 
						|
MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
 | 
						|
  MemTransferInst *TheCopy = 0;
 | 
						|
  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
 | 
						|
    return TheCopy;
 | 
						|
  return 0;
 | 
						|
}
 |