1666 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1666 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs peephole optimizations to clean up ugly code
 | 
						|
// sequences at the MachineInstruction layer.  It runs at the end of
 | 
						|
// the SSA phases, following VSX swap removal.  A pass of dead code
 | 
						|
// elimination follows this one for quick clean-up of any dead
 | 
						|
// instructions introduced here.  Although we could do this as callbacks
 | 
						|
// from the generic peephole pass, this would have a couple of bad
 | 
						|
// effects:  it might remove optimization opportunities for VSX swap
 | 
						|
// removal, and it would miss cleanups made possible following VSX
 | 
						|
// swap removal.
 | 
						|
//
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/PPCMCTargetDesc.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCInstrBuilder.h"
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachinePostDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-mi-peepholes"
 | 
						|
 | 
						|
STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
 | 
						|
STATISTIC(MultiTOCSaves,
 | 
						|
          "Number of functions with multiple TOC saves that must be kept");
 | 
						|
STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
 | 
						|
STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
 | 
						|
STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
 | 
						|
STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
 | 
						|
STATISTIC(NumConvertedToImmediateForm,
 | 
						|
          "Number of instructions converted to their immediate form");
 | 
						|
STATISTIC(NumFunctionsEnteredInMIPeephole,
 | 
						|
          "Number of functions entered in PPC MI Peepholes");
 | 
						|
STATISTIC(NumFixedPointIterations,
 | 
						|
          "Number of fixed-point iterations converting reg-reg instructions "
 | 
						|
          "to reg-imm ones");
 | 
						|
STATISTIC(NumRotatesCollapsed,
 | 
						|
          "Number of pairs of rotate left, clear left/right collapsed");
 | 
						|
STATISTIC(NumEXTSWAndSLDICombined,
 | 
						|
          "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
 | 
						|
STATISTIC(NumLoadImmZeroFoldedAndRemoved,
 | 
						|
          "Number of LI(8) reg, 0 that are folded to r0 and removed");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
 | 
						|
                   cl::desc("Iterate to a fixed point when attempting to "
 | 
						|
                            "convert reg-reg instructions to reg-imm"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
 | 
						|
              cl::desc("Convert eligible reg+reg instructions to reg+imm"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableSExtElimination("ppc-eliminate-signext",
 | 
						|
                          cl::desc("enable elimination of sign-extensions"),
 | 
						|
                          cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableZExtElimination("ppc-eliminate-zeroext",
 | 
						|
                          cl::desc("enable elimination of zero-extensions"),
 | 
						|
                          cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct PPCMIPeephole : public MachineFunctionPass {
 | 
						|
 | 
						|
  static char ID;
 | 
						|
  const PPCInstrInfo *TII;
 | 
						|
  MachineFunction *MF;
 | 
						|
  MachineRegisterInfo *MRI;
 | 
						|
 | 
						|
  PPCMIPeephole() : MachineFunctionPass(ID) {
 | 
						|
    initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  MachineDominatorTree *MDT;
 | 
						|
  MachinePostDominatorTree *MPDT;
 | 
						|
  MachineBlockFrequencyInfo *MBFI;
 | 
						|
  uint64_t EntryFreq;
 | 
						|
 | 
						|
  // Initialize class variables.
 | 
						|
  void initialize(MachineFunction &MFParm);
 | 
						|
 | 
						|
  // Perform peepholes.
 | 
						|
  bool simplifyCode(void);
 | 
						|
 | 
						|
  // Perform peepholes.
 | 
						|
  bool eliminateRedundantCompare(void);
 | 
						|
  bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
 | 
						|
  bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
 | 
						|
  bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
 | 
						|
  void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
 | 
						|
                      MachineInstr *MI);
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<MachineDominatorTree>();
 | 
						|
    AU.addRequired<MachinePostDominatorTree>();
 | 
						|
    AU.addRequired<MachineBlockFrequencyInfo>();
 | 
						|
    AU.addPreserved<MachineDominatorTree>();
 | 
						|
    AU.addPreserved<MachinePostDominatorTree>();
 | 
						|
    AU.addPreserved<MachineBlockFrequencyInfo>();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  // Main entry point for this pass.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
    initialize(MF);
 | 
						|
    // At this point, TOC pointer should not be used in a function that uses
 | 
						|
    // PC-Relative addressing.
 | 
						|
    assert((MF.getRegInfo().use_empty(PPC::X2) ||
 | 
						|
            !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
 | 
						|
           "TOC pointer used in a function using PC-Relative addressing!");
 | 
						|
    if (skipFunction(MF.getFunction()))
 | 
						|
      return false;
 | 
						|
    return simplifyCode();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Initialize class variables.
 | 
						|
void PPCMIPeephole::initialize(MachineFunction &MFParm) {
 | 
						|
  MF = &MFParm;
 | 
						|
  MRI = &MF->getRegInfo();
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  MPDT = &getAnalysis<MachinePostDominatorTree>();
 | 
						|
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
 | 
						|
  EntryFreq = MBFI->getEntryFreq();
 | 
						|
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
 | 
						|
  LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
 | 
						|
  LLVM_DEBUG(MF->dump());
 | 
						|
}
 | 
						|
 | 
						|
static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
 | 
						|
                                      MachineRegisterInfo *MRI) {
 | 
						|
  assert(Op && "Invalid Operand!");
 | 
						|
  if (!Op->isReg())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Register Reg = Op->getReg();
 | 
						|
  if (!Register::isVirtualRegister(Reg))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return MRI->getVRegDef(Reg);
 | 
						|
}
 | 
						|
 | 
						|
// This function returns number of known zero bits in output of MI
 | 
						|
// starting from the most significant bit.
 | 
						|
static unsigned
 | 
						|
getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
 | 
						|
      Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
 | 
						|
    return MI->getOperand(3).getImm();
 | 
						|
 | 
						|
  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
 | 
						|
      MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
 | 
						|
    return MI->getOperand(3).getImm();
 | 
						|
 | 
						|
  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
 | 
						|
       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
 | 
						|
       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
 | 
						|
      MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
 | 
						|
    return 32 + MI->getOperand(3).getImm();
 | 
						|
 | 
						|
  if (Opcode == PPC::ANDI_rec) {
 | 
						|
    uint16_t Imm = MI->getOperand(2).getImm();
 | 
						|
    return 48 + countLeadingZeros(Imm);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
 | 
						|
      Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
 | 
						|
      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
 | 
						|
    // The result ranges from 0 to 32.
 | 
						|
    return 58;
 | 
						|
 | 
						|
  if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
 | 
						|
      Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
 | 
						|
    // The result ranges from 0 to 64.
 | 
						|
    return 57;
 | 
						|
 | 
						|
  if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
 | 
						|
      Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
 | 
						|
      Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
 | 
						|
      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
 | 
						|
    return 48;
 | 
						|
 | 
						|
  if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
 | 
						|
      Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
 | 
						|
      Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
 | 
						|
      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
 | 
						|
    return 56;
 | 
						|
 | 
						|
  if (TII->isZeroExtended(*MI))
 | 
						|
    return 32;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// This function maintains a map for the pairs <TOC Save Instr, Keep>
 | 
						|
// Each time a new TOC save is encountered, it checks if any of the existing
 | 
						|
// ones are dominated by the new one. If so, it marks the existing one as
 | 
						|
// redundant by setting it's entry in the map as false. It then adds the new
 | 
						|
// instruction to the map with either true or false depending on if any
 | 
						|
// existing instructions dominated the new one.
 | 
						|
void PPCMIPeephole::UpdateTOCSaves(
 | 
						|
  std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
 | 
						|
  assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
 | 
						|
  assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
 | 
						|
         "TOC-save removal only supported on ELFv2");
 | 
						|
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  MachineBasicBlock *Entry = &MF->front();
 | 
						|
  uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
 | 
						|
 | 
						|
  // If the block in which the TOC save resides is in a block that
 | 
						|
  // post-dominates Entry, or a block that is hotter than entry (keep in mind
 | 
						|
  // that early MachineLICM has already run so the TOC save won't be hoisted)
 | 
						|
  // we can just do the save in the prologue.
 | 
						|
  if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
 | 
						|
    FI->setMustSaveTOC(true);
 | 
						|
 | 
						|
  // If we are saving the TOC in the prologue, all the TOC saves can be removed
 | 
						|
  // from the code.
 | 
						|
  if (FI->mustSaveTOC()) {
 | 
						|
    for (auto &TOCSave : TOCSaves)
 | 
						|
      TOCSave.second = false;
 | 
						|
    // Add new instruction to map.
 | 
						|
    TOCSaves[MI] = false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Keep = true;
 | 
						|
  for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
 | 
						|
    MachineInstr *CurrInst = It->first;
 | 
						|
    // If new instruction dominates an existing one, mark existing one as
 | 
						|
    // redundant.
 | 
						|
    if (It->second && MDT->dominates(MI, CurrInst))
 | 
						|
      It->second = false;
 | 
						|
    // Check if the new instruction is redundant.
 | 
						|
    if (MDT->dominates(CurrInst, MI)) {
 | 
						|
      Keep = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Add new instruction to map.
 | 
						|
  TOCSaves[MI] = Keep;
 | 
						|
}
 | 
						|
 | 
						|
// This function returns a list of all PHI nodes in the tree starting from
 | 
						|
// the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
 | 
						|
// The list initially only contains the root PHI. When we visit a PHI node, we
 | 
						|
// add it to the list. We continue to look for other PHI node operands while
 | 
						|
// there are nodes to visit in the list. The function returns false if the
 | 
						|
// optimization cannot be applied on this tree.
 | 
						|
static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
 | 
						|
                                   MachineInstr *RootPHI,
 | 
						|
                                   SmallVectorImpl<MachineInstr *> &PHIs) {
 | 
						|
  PHIs.push_back(RootPHI);
 | 
						|
  unsigned VisitedIndex = 0;
 | 
						|
  while (VisitedIndex < PHIs.size()) {
 | 
						|
    MachineInstr *VisitedPHI = PHIs[VisitedIndex];
 | 
						|
    for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
 | 
						|
         PHIOp != NumOps; PHIOp += 2) {
 | 
						|
      Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
 | 
						|
      if (!Register::isVirtualRegister(RegOp))
 | 
						|
        return false;
 | 
						|
      MachineInstr *Instr = MRI->getVRegDef(RegOp);
 | 
						|
      // While collecting the PHI nodes, we check if they can be converted (i.e.
 | 
						|
      // all the operands are either copies, implicit defs or PHI nodes).
 | 
						|
      unsigned Opcode = Instr->getOpcode();
 | 
						|
      if (Opcode == PPC::COPY) {
 | 
						|
        Register Reg = Instr->getOperand(1).getReg();
 | 
						|
        if (!Register::isVirtualRegister(Reg) ||
 | 
						|
            MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
 | 
						|
          return false;
 | 
						|
      } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
 | 
						|
        return false;
 | 
						|
      // If we detect a cycle in the PHI nodes, we exit. It would be
 | 
						|
      // possible to change cycles as well, but that would add a lot
 | 
						|
      // of complexity for a case that is unlikely to occur with MMA
 | 
						|
      // code.
 | 
						|
      if (Opcode != PPC::PHI)
 | 
						|
        continue;
 | 
						|
      if (llvm::is_contained(PHIs, Instr))
 | 
						|
        return false;
 | 
						|
      PHIs.push_back(Instr);
 | 
						|
    }
 | 
						|
    VisitedIndex++;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// This function changes the unprimed accumulator PHI nodes in the PHIs list to
 | 
						|
// primed accumulator PHI nodes. The list is traversed in reverse order to
 | 
						|
// change all the PHI operands of a PHI node before changing the node itself.
 | 
						|
// We keep a map to associate each changed PHI node to its non-changed form.
 | 
						|
static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
 | 
						|
                                   MachineRegisterInfo *MRI,
 | 
						|
                                   SmallVectorImpl<MachineInstr *> &PHIs,
 | 
						|
                                   Register Dst) {
 | 
						|
  DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
 | 
						|
  for (auto It = PHIs.rbegin(), End = PHIs.rend(); It != End; ++It) {
 | 
						|
    MachineInstr *PHI = *It;
 | 
						|
    SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
 | 
						|
    // We check if the current PHI node can be changed by looking at its
 | 
						|
    // operands. If all the operands are either copies from primed
 | 
						|
    // accumulators, implicit definitions or other unprimed accumulator
 | 
						|
    // PHI nodes, we change it.
 | 
						|
    for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
 | 
						|
         PHIOp += 2) {
 | 
						|
      Register RegOp = PHI->getOperand(PHIOp).getReg();
 | 
						|
      MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
 | 
						|
      unsigned Opcode = PHIInput->getOpcode();
 | 
						|
      assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
 | 
						|
              Opcode == PPC::PHI) &&
 | 
						|
             "Unexpected instruction");
 | 
						|
      if (Opcode == PPC::COPY) {
 | 
						|
        assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
 | 
						|
                   &PPC::ACCRCRegClass &&
 | 
						|
               "Unexpected register class");
 | 
						|
        PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
 | 
						|
      } else if (Opcode == PPC::IMPLICIT_DEF) {
 | 
						|
        Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
 | 
						|
        BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
 | 
						|
                TII->get(PPC::IMPLICIT_DEF), AccReg);
 | 
						|
        PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
 | 
						|
                          PHI->getOperand(PHIOp + 1)});
 | 
						|
      } else if (Opcode == PPC::PHI) {
 | 
						|
        // We found a PHI operand. At this point we know this operand
 | 
						|
        // has already been changed so we get its associated changed form
 | 
						|
        // from the map.
 | 
						|
        assert(ChangedPHIMap.count(PHIInput) == 1 &&
 | 
						|
               "This PHI node should have already been changed.");
 | 
						|
        MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
 | 
						|
        PHIOps.push_back({MachineOperand::CreateReg(
 | 
						|
                              PrimedAccPHI->getOperand(0).getReg(), false),
 | 
						|
                          PHI->getOperand(PHIOp + 1)});
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Register AccReg = Dst;
 | 
						|
    // If the PHI node we are changing is the root node, the register it defines
 | 
						|
    // will be the destination register of the original copy (of the PHI def).
 | 
						|
    // For all other PHI's in the list, we need to create another primed
 | 
						|
    // accumulator virtual register as the PHI will no longer define the
 | 
						|
    // unprimed accumulator.
 | 
						|
    if (PHI != PHIs[0])
 | 
						|
      AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
 | 
						|
    MachineInstrBuilder NewPHI = BuildMI(
 | 
						|
        *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
 | 
						|
    for (auto RegMBB : PHIOps)
 | 
						|
      NewPHI.add(RegMBB.first).add(RegMBB.second);
 | 
						|
    ChangedPHIMap[PHI] = NewPHI.getInstr();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Perform peephole optimizations.
 | 
						|
bool PPCMIPeephole::simplifyCode(void) {
 | 
						|
  bool Simplified = false;
 | 
						|
  MachineInstr* ToErase = nullptr;
 | 
						|
  std::map<MachineInstr *, bool> TOCSaves;
 | 
						|
  const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
 | 
						|
  NumFunctionsEnteredInMIPeephole++;
 | 
						|
  if (ConvertRegReg) {
 | 
						|
    // Fixed-point conversion of reg/reg instructions fed by load-immediate
 | 
						|
    // into reg/imm instructions. FIXME: This is expensive, control it with
 | 
						|
    // an option.
 | 
						|
    bool SomethingChanged = false;
 | 
						|
    do {
 | 
						|
      NumFixedPointIterations++;
 | 
						|
      SomethingChanged = false;
 | 
						|
      for (MachineBasicBlock &MBB : *MF) {
 | 
						|
        for (MachineInstr &MI : MBB) {
 | 
						|
          if (MI.isDebugInstr())
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (TII->convertToImmediateForm(MI)) {
 | 
						|
            // We don't erase anything in case the def has other uses. Let DCE
 | 
						|
            // remove it if it can be removed.
 | 
						|
            LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
            NumConvertedToImmediateForm++;
 | 
						|
            SomethingChanged = true;
 | 
						|
            Simplified = true;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } while (SomethingChanged && FixedPointRegToImm);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineBasicBlock &MBB : *MF) {
 | 
						|
    for (MachineInstr &MI : MBB) {
 | 
						|
 | 
						|
      // If the previous instruction was marked for elimination,
 | 
						|
      // remove it now.
 | 
						|
      if (ToErase) {
 | 
						|
        ToErase->eraseFromParent();
 | 
						|
        ToErase = nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      // Ignore debug instructions.
 | 
						|
      if (MI.isDebugInstr())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Per-opcode peepholes.
 | 
						|
      switch (MI.getOpcode()) {
 | 
						|
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case PPC::COPY: {
 | 
						|
        Register Src = MI.getOperand(1).getReg();
 | 
						|
        Register Dst = MI.getOperand(0).getReg();
 | 
						|
        if (!Register::isVirtualRegister(Src) ||
 | 
						|
            !Register::isVirtualRegister(Dst))
 | 
						|
          break;
 | 
						|
        if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
 | 
						|
            MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
 | 
						|
          break;
 | 
						|
 | 
						|
        // We are copying an unprimed accumulator to a primed accumulator.
 | 
						|
        // If the input to the copy is a PHI that is fed only by (i) copies in
 | 
						|
        // the other direction (ii) implicitly defined unprimed accumulators or
 | 
						|
        // (iii) other PHI nodes satisfying (i) and (ii), we can change
 | 
						|
        // the PHI to a PHI on primed accumulators (as long as we also change
 | 
						|
        // its operands). To detect and change such copies, we first get a list
 | 
						|
        // of all the PHI nodes starting from the root PHI node in BFS order.
 | 
						|
        // We then visit all these PHI nodes to check if they can be changed to
 | 
						|
        // primed accumulator PHI nodes and if so, we change them.
 | 
						|
        MachineInstr *RootPHI = MRI->getVRegDef(Src);
 | 
						|
        if (RootPHI->getOpcode() != PPC::PHI)
 | 
						|
          break;
 | 
						|
 | 
						|
        SmallVector<MachineInstr *, 4> PHIs;
 | 
						|
        if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
 | 
						|
          break;
 | 
						|
 | 
						|
        convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
 | 
						|
 | 
						|
        ToErase = &MI;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::LI:
 | 
						|
      case PPC::LI8: {
 | 
						|
        // If we are materializing a zero, look for any use operands for which
 | 
						|
        // zero means immediate zero. All such operands can be replaced with
 | 
						|
        // PPC::ZERO.
 | 
						|
        if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
 | 
						|
          break;
 | 
						|
        unsigned MIDestReg = MI.getOperand(0).getReg();
 | 
						|
        for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
 | 
						|
          Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
 | 
						|
        if (MRI->use_nodbg_empty(MIDestReg)) {
 | 
						|
          ++NumLoadImmZeroFoldedAndRemoved;
 | 
						|
          ToErase = &MI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::STD: {
 | 
						|
        MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
        if (MFI.hasVarSizedObjects() ||
 | 
						|
            !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
 | 
						|
          break;
 | 
						|
        // When encountering a TOC save instruction, call UpdateTOCSaves
 | 
						|
        // to add it to the TOCSaves map and mark any existing TOC saves
 | 
						|
        // it dominates as redundant.
 | 
						|
        if (TII->isTOCSaveMI(MI))
 | 
						|
          UpdateTOCSaves(TOCSaves, &MI);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::XXPERMDI: {
 | 
						|
        // Perform simplifications of 2x64 vector swaps and splats.
 | 
						|
        // A swap is identified by an immediate value of 2, and a splat
 | 
						|
        // is identified by an immediate value of 0 or 3.
 | 
						|
        int Immed = MI.getOperand(3).getImm();
 | 
						|
 | 
						|
        if (Immed == 1)
 | 
						|
          break;
 | 
						|
 | 
						|
        // For each of these simplifications, we need the two source
 | 
						|
        // regs to match.  Unfortunately, MachineCSE ignores COPY and
 | 
						|
        // SUBREG_TO_REG, so for example we can see
 | 
						|
        //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
 | 
						|
        // We have to look through chains of COPY and SUBREG_TO_REG
 | 
						|
        // to find the real source values for comparison.
 | 
						|
        unsigned TrueReg1 =
 | 
						|
          TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
 | 
						|
        unsigned TrueReg2 =
 | 
						|
          TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
 | 
						|
 | 
						|
        if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
 | 
						|
          break;
 | 
						|
 | 
						|
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
 | 
						|
 | 
						|
        if (!DefMI)
 | 
						|
          break;
 | 
						|
 | 
						|
        unsigned DefOpc = DefMI->getOpcode();
 | 
						|
 | 
						|
        // If this is a splat fed by a splatting load, the splat is
 | 
						|
        // redundant. Replace with a copy. This doesn't happen directly due
 | 
						|
        // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
 | 
						|
        // a load of a double to a vector of 64-bit integers.
 | 
						|
        auto isConversionOfLoadAndSplat = [=]() -> bool {
 | 
						|
          if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
 | 
						|
            return false;
 | 
						|
          unsigned FeedReg1 =
 | 
						|
            TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
 | 
						|
          if (Register::isVirtualRegister(FeedReg1)) {
 | 
						|
            MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
 | 
						|
            if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
 | 
						|
              return true;
 | 
						|
          }
 | 
						|
          return false;
 | 
						|
        };
 | 
						|
        if ((Immed == 0 || Immed == 3) &&
 | 
						|
            (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
 | 
						|
                               "to load-and-splat/copy: ");
 | 
						|
          LLVM_DEBUG(MI.dump());
 | 
						|
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
 | 
						|
                  MI.getOperand(0).getReg())
 | 
						|
              .add(MI.getOperand(1));
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is a splat or a swap fed by another splat, we
 | 
						|
        // can replace it with a copy.
 | 
						|
        if (DefOpc == PPC::XXPERMDI) {
 | 
						|
          unsigned DefReg1 = DefMI->getOperand(1).getReg();
 | 
						|
          unsigned DefReg2 = DefMI->getOperand(2).getReg();
 | 
						|
          unsigned DefImmed = DefMI->getOperand(3).getImm();
 | 
						|
 | 
						|
          // If the two inputs are not the same register, check to see if
 | 
						|
          // they originate from the same virtual register after only
 | 
						|
          // copy-like instructions.
 | 
						|
          if (DefReg1 != DefReg2) {
 | 
						|
            unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
 | 
						|
            unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
 | 
						|
 | 
						|
            if (!(FeedReg1 == FeedReg2 &&
 | 
						|
                  Register::isVirtualRegister(FeedReg1)))
 | 
						|
              break;
 | 
						|
          }
 | 
						|
 | 
						|
          if (DefImmed == 0 || DefImmed == 3) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
 | 
						|
                                 "to splat/copy: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
            BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
 | 
						|
                    MI.getOperand(0).getReg())
 | 
						|
                .add(MI.getOperand(1));
 | 
						|
            ToErase = &MI;
 | 
						|
            Simplified = true;
 | 
						|
          }
 | 
						|
 | 
						|
          // If this is a splat fed by a swap, we can simplify modify
 | 
						|
          // the splat to splat the other value from the swap's input
 | 
						|
          // parameter.
 | 
						|
          else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
            MI.getOperand(1).setReg(DefReg1);
 | 
						|
            MI.getOperand(2).setReg(DefReg2);
 | 
						|
            MI.getOperand(3).setImm(3 - Immed);
 | 
						|
            Simplified = true;
 | 
						|
          }
 | 
						|
 | 
						|
          // If this is a swap fed by a swap, we can replace it
 | 
						|
          // with a copy from the first swap's input.
 | 
						|
          else if (Immed == 2 && DefImmed == 2) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
            BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
 | 
						|
                    MI.getOperand(0).getReg())
 | 
						|
                .add(DefMI->getOperand(1));
 | 
						|
            ToErase = &MI;
 | 
						|
            Simplified = true;
 | 
						|
          }
 | 
						|
        } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
 | 
						|
                   (DefMI->getOperand(2).getImm() == 0 ||
 | 
						|
                    DefMI->getOperand(2).getImm() == 3)) {
 | 
						|
          // Splat fed by another splat - switch the output of the first
 | 
						|
          // and remove the second.
 | 
						|
          DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
          LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
 | 
						|
          LLVM_DEBUG(MI.dump());
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::VSPLTB:
 | 
						|
      case PPC::VSPLTH:
 | 
						|
      case PPC::XXSPLTW: {
 | 
						|
        unsigned MyOpcode = MI.getOpcode();
 | 
						|
        unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
 | 
						|
        unsigned TrueReg =
 | 
						|
          TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
 | 
						|
        if (!Register::isVirtualRegister(TrueReg))
 | 
						|
          break;
 | 
						|
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
 | 
						|
        if (!DefMI)
 | 
						|
          break;
 | 
						|
        unsigned DefOpcode = DefMI->getOpcode();
 | 
						|
        auto isConvertOfSplat = [=]() -> bool {
 | 
						|
          if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
 | 
						|
            return false;
 | 
						|
          Register ConvReg = DefMI->getOperand(1).getReg();
 | 
						|
          if (!Register::isVirtualRegister(ConvReg))
 | 
						|
            return false;
 | 
						|
          MachineInstr *Splt = MRI->getVRegDef(ConvReg);
 | 
						|
          return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
 | 
						|
            Splt->getOpcode() == PPC::XXSPLTW);
 | 
						|
        };
 | 
						|
        bool AlreadySplat = (MyOpcode == DefOpcode) ||
 | 
						|
          (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
 | 
						|
          (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
 | 
						|
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
 | 
						|
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
 | 
						|
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
 | 
						|
          (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
 | 
						|
        // If the instruction[s] that feed this splat have already splat
 | 
						|
        // the value, this splat is redundant.
 | 
						|
        if (AlreadySplat) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
 | 
						|
          LLVM_DEBUG(MI.dump());
 | 
						|
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
 | 
						|
                  MI.getOperand(0).getReg())
 | 
						|
              .add(MI.getOperand(OpNo));
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
        }
 | 
						|
        // Splat fed by a shift. Usually when we align value to splat into
 | 
						|
        // vector element zero.
 | 
						|
        if (DefOpcode == PPC::XXSLDWI) {
 | 
						|
          Register ShiftRes = DefMI->getOperand(0).getReg();
 | 
						|
          Register ShiftOp1 = DefMI->getOperand(1).getReg();
 | 
						|
          Register ShiftOp2 = DefMI->getOperand(2).getReg();
 | 
						|
          unsigned ShiftImm = DefMI->getOperand(3).getImm();
 | 
						|
          unsigned SplatImm = MI.getOperand(2).getImm();
 | 
						|
          if (ShiftOp1 == ShiftOp2) {
 | 
						|
            unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
 | 
						|
            if (MRI->hasOneNonDBGUse(ShiftRes)) {
 | 
						|
              LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
 | 
						|
              LLVM_DEBUG(DefMI->dump());
 | 
						|
              ToErase = DefMI;
 | 
						|
            }
 | 
						|
            Simplified = true;
 | 
						|
            LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
 | 
						|
                              << " to " << NewElem << " in instruction: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
            MI.getOperand(1).setReg(ShiftOp1);
 | 
						|
            MI.getOperand(2).setImm(NewElem);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::XVCVDPSP: {
 | 
						|
        // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
 | 
						|
        unsigned TrueReg =
 | 
						|
          TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
 | 
						|
        if (!Register::isVirtualRegister(TrueReg))
 | 
						|
          break;
 | 
						|
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
 | 
						|
 | 
						|
        // This can occur when building a vector of single precision or integer
 | 
						|
        // values.
 | 
						|
        if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
 | 
						|
          unsigned DefsReg1 =
 | 
						|
            TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
 | 
						|
          unsigned DefsReg2 =
 | 
						|
            TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
 | 
						|
          if (!Register::isVirtualRegister(DefsReg1) ||
 | 
						|
              !Register::isVirtualRegister(DefsReg2))
 | 
						|
            break;
 | 
						|
          MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
 | 
						|
          MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
 | 
						|
 | 
						|
          if (!P1 || !P2)
 | 
						|
            break;
 | 
						|
 | 
						|
          // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
 | 
						|
          // and set any uses of that FRSP/XSRSP (in this MI) to the source of
 | 
						|
          // the FRSP/XSRSP.
 | 
						|
          auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
 | 
						|
            unsigned Opc = RoundInstr->getOpcode();
 | 
						|
            if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
 | 
						|
                MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
 | 
						|
              Simplified = true;
 | 
						|
              Register ConvReg1 = RoundInstr->getOperand(1).getReg();
 | 
						|
              Register FRSPDefines = RoundInstr->getOperand(0).getReg();
 | 
						|
              MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
 | 
						|
              for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
 | 
						|
                if (Use.getOperand(i).isReg() &&
 | 
						|
                    Use.getOperand(i).getReg() == FRSPDefines)
 | 
						|
                  Use.getOperand(i).setReg(ConvReg1);
 | 
						|
              LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
 | 
						|
              LLVM_DEBUG(RoundInstr->dump());
 | 
						|
              LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
 | 
						|
              LLVM_DEBUG(MI.dump());
 | 
						|
              LLVM_DEBUG(dbgs() << "Through instruction:\n");
 | 
						|
              LLVM_DEBUG(DefMI->dump());
 | 
						|
              RoundInstr->eraseFromParent();
 | 
						|
            }
 | 
						|
          };
 | 
						|
 | 
						|
          // If the input to XVCVDPSP is a vector that was built (even
 | 
						|
          // partially) out of FRSP's, the FRSP(s) can safely be removed
 | 
						|
          // since this instruction performs the same operation.
 | 
						|
          if (P1 != P2) {
 | 
						|
            removeFRSPIfPossible(P1);
 | 
						|
            removeFRSPIfPossible(P2);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          removeFRSPIfPossible(P1);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::EXTSH:
 | 
						|
      case PPC::EXTSH8:
 | 
						|
      case PPC::EXTSH8_32_64: {
 | 
						|
        if (!EnableSExtElimination) break;
 | 
						|
        Register NarrowReg = MI.getOperand(1).getReg();
 | 
						|
        if (!Register::isVirtualRegister(NarrowReg))
 | 
						|
          break;
 | 
						|
 | 
						|
        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
 | 
						|
        // If we've used a zero-extending load that we will sign-extend,
 | 
						|
        // just do a sign-extending load.
 | 
						|
        if (SrcMI->getOpcode() == PPC::LHZ ||
 | 
						|
            SrcMI->getOpcode() == PPC::LHZX) {
 | 
						|
          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
 | 
						|
            break;
 | 
						|
          auto is64Bit = [] (unsigned Opcode) {
 | 
						|
            return Opcode == PPC::EXTSH8;
 | 
						|
          };
 | 
						|
          auto isXForm = [] (unsigned Opcode) {
 | 
						|
            return Opcode == PPC::LHZX;
 | 
						|
          };
 | 
						|
          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
 | 
						|
            if (is64Bit)
 | 
						|
              if (isXForm) return PPC::LHAX8;
 | 
						|
              else         return PPC::LHA8;
 | 
						|
            else
 | 
						|
              if (isXForm) return PPC::LHAX;
 | 
						|
              else         return PPC::LHA;
 | 
						|
          };
 | 
						|
          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
 | 
						|
                                       isXForm(SrcMI->getOpcode()));
 | 
						|
          LLVM_DEBUG(dbgs() << "Zero-extending load\n");
 | 
						|
          LLVM_DEBUG(SrcMI->dump());
 | 
						|
          LLVM_DEBUG(dbgs() << "and sign-extension\n");
 | 
						|
          LLVM_DEBUG(MI.dump());
 | 
						|
          LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
 | 
						|
          SrcMI->setDesc(TII->get(Opc));
 | 
						|
          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
          NumEliminatedSExt++;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::EXTSW:
 | 
						|
      case PPC::EXTSW_32:
 | 
						|
      case PPC::EXTSW_32_64: {
 | 
						|
        if (!EnableSExtElimination) break;
 | 
						|
        Register NarrowReg = MI.getOperand(1).getReg();
 | 
						|
        if (!Register::isVirtualRegister(NarrowReg))
 | 
						|
          break;
 | 
						|
 | 
						|
        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
 | 
						|
        // If we've used a zero-extending load that we will sign-extend,
 | 
						|
        // just do a sign-extending load.
 | 
						|
        if (SrcMI->getOpcode() == PPC::LWZ ||
 | 
						|
            SrcMI->getOpcode() == PPC::LWZX) {
 | 
						|
          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
 | 
						|
            break;
 | 
						|
          auto is64Bit = [] (unsigned Opcode) {
 | 
						|
            return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
 | 
						|
          };
 | 
						|
          auto isXForm = [] (unsigned Opcode) {
 | 
						|
            return Opcode == PPC::LWZX;
 | 
						|
          };
 | 
						|
          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
 | 
						|
            if (is64Bit)
 | 
						|
              if (isXForm) return PPC::LWAX;
 | 
						|
              else         return PPC::LWA;
 | 
						|
            else
 | 
						|
              if (isXForm) return PPC::LWAX_32;
 | 
						|
              else         return PPC::LWA_32;
 | 
						|
          };
 | 
						|
          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
 | 
						|
                                       isXForm(SrcMI->getOpcode()));
 | 
						|
          LLVM_DEBUG(dbgs() << "Zero-extending load\n");
 | 
						|
          LLVM_DEBUG(SrcMI->dump());
 | 
						|
          LLVM_DEBUG(dbgs() << "and sign-extension\n");
 | 
						|
          LLVM_DEBUG(MI.dump());
 | 
						|
          LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
 | 
						|
          SrcMI->setDesc(TII->get(Opc));
 | 
						|
          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
          NumEliminatedSExt++;
 | 
						|
        } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
 | 
						|
                   TII->isSignExtended(*SrcMI)) {
 | 
						|
          // We can eliminate EXTSW if the input is known to be already
 | 
						|
          // sign-extended.
 | 
						|
          LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
 | 
						|
          Register TmpReg =
 | 
						|
              MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
 | 
						|
                  TmpReg);
 | 
						|
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
 | 
						|
                  MI.getOperand(0).getReg())
 | 
						|
              .addReg(TmpReg)
 | 
						|
              .addReg(NarrowReg)
 | 
						|
              .addImm(PPC::sub_32);
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
          NumEliminatedSExt++;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::RLDICL: {
 | 
						|
        // We can eliminate RLDICL (e.g. for zero-extension)
 | 
						|
        // if all bits to clear are already zero in the input.
 | 
						|
        // This code assume following code sequence for zero-extension.
 | 
						|
        //   %6 = COPY %5:sub_32; (optional)
 | 
						|
        //   %8 = IMPLICIT_DEF;
 | 
						|
        //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
 | 
						|
        if (!EnableZExtElimination) break;
 | 
						|
 | 
						|
        if (MI.getOperand(2).getImm() != 0)
 | 
						|
          break;
 | 
						|
 | 
						|
        Register SrcReg = MI.getOperand(1).getReg();
 | 
						|
        if (!Register::isVirtualRegister(SrcReg))
 | 
						|
          break;
 | 
						|
 | 
						|
        MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | 
						|
        if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
 | 
						|
              SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
 | 
						|
          break;
 | 
						|
 | 
						|
        MachineInstr *ImpDefMI, *SubRegMI;
 | 
						|
        ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
 | 
						|
        SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
 | 
						|
        if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
 | 
						|
 | 
						|
        SrcMI = SubRegMI;
 | 
						|
        if (SubRegMI->getOpcode() == PPC::COPY) {
 | 
						|
          Register CopyReg = SubRegMI->getOperand(1).getReg();
 | 
						|
          if (Register::isVirtualRegister(CopyReg))
 | 
						|
            SrcMI = MRI->getVRegDef(CopyReg);
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
 | 
						|
        if (MI.getOperand(3).getImm() <= KnownZeroCount) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
 | 
						|
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
 | 
						|
                  MI.getOperand(0).getReg())
 | 
						|
              .addReg(SrcReg);
 | 
						|
          ToErase = &MI;
 | 
						|
          Simplified = true;
 | 
						|
          NumEliminatedZExt++;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // TODO: Any instruction that has an immediate form fed only by a PHI
 | 
						|
      // whose operands are all load immediate can be folded away. We currently
 | 
						|
      // do this for ADD instructions, but should expand it to arithmetic and
 | 
						|
      // binary instructions with immediate forms in the future.
 | 
						|
      case PPC::ADD4:
 | 
						|
      case PPC::ADD8: {
 | 
						|
        auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
 | 
						|
          assert(PhiOp && "Invalid Operand!");
 | 
						|
          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
 | 
						|
 | 
						|
          return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
 | 
						|
                 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
 | 
						|
        };
 | 
						|
 | 
						|
        auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
 | 
						|
                                            MachineOperand *PhiOp) {
 | 
						|
          assert(PhiOp && "Invalid Operand!");
 | 
						|
          assert(DominatorOp && "Invalid Operand!");
 | 
						|
          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
 | 
						|
          MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
 | 
						|
 | 
						|
          // Note: the vregs only show up at odd indices position of PHI Node,
 | 
						|
          // the even indices position save the BB info.
 | 
						|
          for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
 | 
						|
            MachineInstr *LiMI =
 | 
						|
                getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
 | 
						|
            if (!LiMI ||
 | 
						|
                (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
 | 
						|
                || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
 | 
						|
                !MDT->dominates(DefDomMI, LiMI))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
 | 
						|
          return true;
 | 
						|
        };
 | 
						|
 | 
						|
        MachineOperand Op1 = MI.getOperand(1);
 | 
						|
        MachineOperand Op2 = MI.getOperand(2);
 | 
						|
        if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
 | 
						|
          std::swap(Op1, Op2);
 | 
						|
        else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
 | 
						|
          break; // We don't have an ADD fed by LI's that can be transformed
 | 
						|
 | 
						|
        // Now we know that Op1 is the PHI node and Op2 is the dominator
 | 
						|
        Register DominatorReg = Op2.getReg();
 | 
						|
 | 
						|
        const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
 | 
						|
                                             ? &PPC::G8RC_and_G8RC_NOX0RegClass
 | 
						|
                                             : &PPC::GPRC_and_GPRC_NOR0RegClass;
 | 
						|
        MRI->setRegClass(DominatorReg, TRC);
 | 
						|
 | 
						|
        // replace LIs with ADDIs
 | 
						|
        MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
 | 
						|
        for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
 | 
						|
          MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
 | 
						|
          LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
 | 
						|
          LLVM_DEBUG(LiMI->dump());
 | 
						|
 | 
						|
          // There could be repeated registers in the PHI, e.g: %1 =
 | 
						|
          // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
 | 
						|
          // already replaced the def instruction, skip.
 | 
						|
          if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
 | 
						|
            continue;
 | 
						|
 | 
						|
          assert((LiMI->getOpcode() == PPC::LI ||
 | 
						|
                  LiMI->getOpcode() == PPC::LI8) &&
 | 
						|
                 "Invalid Opcode!");
 | 
						|
          auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
 | 
						|
          LiMI->RemoveOperand(1);                    // remove the imm of LI
 | 
						|
          LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
 | 
						|
                                                              : PPC::ADDI8));
 | 
						|
          MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
 | 
						|
              .addReg(DominatorReg)
 | 
						|
              .addImm(LiImm); // restore the imm of LI
 | 
						|
          LLVM_DEBUG(LiMI->dump());
 | 
						|
        }
 | 
						|
 | 
						|
        // Replace ADD with COPY
 | 
						|
        LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
 | 
						|
        LLVM_DEBUG(MI.dump());
 | 
						|
        BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
 | 
						|
                MI.getOperand(0).getReg())
 | 
						|
            .add(Op1);
 | 
						|
        ToErase = &MI;
 | 
						|
        Simplified = true;
 | 
						|
        NumOptADDLIs++;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::RLDICR: {
 | 
						|
        Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
 | 
						|
                      combineSEXTAndSHL(MI, ToErase);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PPC::RLWINM:
 | 
						|
      case PPC::RLWINM_rec:
 | 
						|
      case PPC::RLWINM8:
 | 
						|
      case PPC::RLWINM8_rec: {
 | 
						|
        Simplified = TII->combineRLWINM(MI, &ToErase);
 | 
						|
        if (Simplified)
 | 
						|
          ++NumRotatesCollapsed;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the last instruction was marked for elimination,
 | 
						|
    // remove it now.
 | 
						|
    if (ToErase) {
 | 
						|
      ToErase->eraseFromParent();
 | 
						|
      ToErase = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate all the TOC save instructions which are redundant.
 | 
						|
  Simplified |= eliminateRedundantTOCSaves(TOCSaves);
 | 
						|
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
 | 
						|
  if (FI->mustSaveTOC())
 | 
						|
    NumTOCSavesInPrologue++;
 | 
						|
 | 
						|
  // We try to eliminate redundant compare instruction.
 | 
						|
  Simplified |= eliminateRedundantCompare();
 | 
						|
 | 
						|
  return Simplified;
 | 
						|
}
 | 
						|
 | 
						|
// helper functions for eliminateRedundantCompare
 | 
						|
static bool isEqOrNe(MachineInstr *BI) {
 | 
						|
  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
 | 
						|
  unsigned PredCond = PPC::getPredicateCondition(Pred);
 | 
						|
  return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
 | 
						|
}
 | 
						|
 | 
						|
static bool isSupportedCmpOp(unsigned opCode) {
 | 
						|
  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
 | 
						|
          opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
 | 
						|
          opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
 | 
						|
          opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
 | 
						|
}
 | 
						|
 | 
						|
static bool is64bitCmpOp(unsigned opCode) {
 | 
						|
  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
 | 
						|
          opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
 | 
						|
}
 | 
						|
 | 
						|
static bool isSignedCmpOp(unsigned opCode) {
 | 
						|
  return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
 | 
						|
          opCode == PPC::CMPDI || opCode == PPC::CMPWI);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getSignedCmpOpCode(unsigned opCode) {
 | 
						|
  if (opCode == PPC::CMPLD)  return PPC::CMPD;
 | 
						|
  if (opCode == PPC::CMPLW)  return PPC::CMPW;
 | 
						|
  if (opCode == PPC::CMPLDI) return PPC::CMPDI;
 | 
						|
  if (opCode == PPC::CMPLWI) return PPC::CMPWI;
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
 | 
						|
// (LT x) to (LE x-1)
 | 
						|
static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
 | 
						|
  uint64_t Imm = CMPI->getOperand(2).getImm();
 | 
						|
  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
 | 
						|
  if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
 | 
						|
  unsigned PredCond = PPC::getPredicateCondition(Pred);
 | 
						|
  unsigned PredHint = PPC::getPredicateHint(Pred);
 | 
						|
  if (PredCond == PPC::PRED_GE)
 | 
						|
    return PPC::getPredicate(PPC::PRED_GT, PredHint);
 | 
						|
  if (PredCond == PPC::PRED_LT)
 | 
						|
    return PPC::getPredicate(PPC::PRED_LE, PredHint);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// We can increment immediate x in (GT x) by changing it to (GE x+1) or
 | 
						|
// (LE x) to (LT x+1)
 | 
						|
static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
 | 
						|
  uint64_t Imm = CMPI->getOperand(2).getImm();
 | 
						|
  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
 | 
						|
  if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
 | 
						|
  unsigned PredCond = PPC::getPredicateCondition(Pred);
 | 
						|
  unsigned PredHint = PPC::getPredicateHint(Pred);
 | 
						|
  if (PredCond == PPC::PRED_GT)
 | 
						|
    return PPC::getPredicate(PPC::PRED_GE, PredHint);
 | 
						|
  if (PredCond == PPC::PRED_LE)
 | 
						|
    return PPC::getPredicate(PPC::PRED_LT, PredHint);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// This takes a Phi node and returns a register value for the specified BB.
 | 
						|
static unsigned getIncomingRegForBlock(MachineInstr *Phi,
 | 
						|
                                       MachineBasicBlock *MBB) {
 | 
						|
  for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
 | 
						|
    MachineOperand &MO = Phi->getOperand(I);
 | 
						|
    if (MO.getMBB() == MBB)
 | 
						|
      return Phi->getOperand(I-1).getReg();
 | 
						|
  }
 | 
						|
  llvm_unreachable("invalid src basic block for this Phi node\n");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// This function tracks the source of the register through register copy.
 | 
						|
// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
 | 
						|
// assuming that the control comes from BB1 into BB2.
 | 
						|
static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
 | 
						|
                           MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
 | 
						|
  unsigned SrcReg = Reg;
 | 
						|
  while (1) {
 | 
						|
    unsigned NextReg = SrcReg;
 | 
						|
    MachineInstr *Inst = MRI->getVRegDef(SrcReg);
 | 
						|
    if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
 | 
						|
      NextReg = getIncomingRegForBlock(Inst, BB1);
 | 
						|
      // We track through PHI only once to avoid infinite loop.
 | 
						|
      BB1 = nullptr;
 | 
						|
    }
 | 
						|
    else if (Inst->isFullCopy())
 | 
						|
      NextReg = Inst->getOperand(1).getReg();
 | 
						|
    if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
 | 
						|
      break;
 | 
						|
    SrcReg = NextReg;
 | 
						|
  }
 | 
						|
  return SrcReg;
 | 
						|
}
 | 
						|
 | 
						|
static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
 | 
						|
                                          MachineBasicBlock *&PredMBB,
 | 
						|
                                          MachineBasicBlock *&MBBtoMoveCmp,
 | 
						|
                                          MachineRegisterInfo *MRI) {
 | 
						|
 | 
						|
  auto isEligibleBB = [&](MachineBasicBlock &BB) {
 | 
						|
    auto BII = BB.getFirstInstrTerminator();
 | 
						|
    // We optimize BBs ending with a conditional branch.
 | 
						|
    // We check only for BCC here, not BCCLR, because BCCLR
 | 
						|
    // will be formed only later in the pipeline.
 | 
						|
    if (BB.succ_size() == 2 &&
 | 
						|
        BII != BB.instr_end() &&
 | 
						|
        (*BII).getOpcode() == PPC::BCC &&
 | 
						|
        (*BII).getOperand(1).isReg()) {
 | 
						|
      // We optimize only if the condition code is used only by one BCC.
 | 
						|
      Register CndReg = (*BII).getOperand(1).getReg();
 | 
						|
      if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
 | 
						|
        return false;
 | 
						|
 | 
						|
      MachineInstr *CMPI = MRI->getVRegDef(CndReg);
 | 
						|
      // We assume compare and branch are in the same BB for ease of analysis.
 | 
						|
      if (CMPI->getParent() != &BB)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // We skip this BB if a physical register is used in comparison.
 | 
						|
      for (MachineOperand &MO : CMPI->operands())
 | 
						|
        if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
 | 
						|
          return false;
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // If this BB has more than one successor, we can create a new BB and
 | 
						|
  // move the compare instruction in the new BB.
 | 
						|
  // So far, we do not move compare instruction to a BB having multiple
 | 
						|
  // successors to avoid potentially increasing code size.
 | 
						|
  auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
 | 
						|
    return BB.succ_size() == 1;
 | 
						|
  };
 | 
						|
 | 
						|
  if (!isEligibleBB(MBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumPredBBs = MBB.pred_size();
 | 
						|
  if (NumPredBBs == 1) {
 | 
						|
    MachineBasicBlock *TmpMBB = *MBB.pred_begin();
 | 
						|
    if (isEligibleBB(*TmpMBB)) {
 | 
						|
      PredMBB = TmpMBB;
 | 
						|
      MBBtoMoveCmp = nullptr;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (NumPredBBs == 2) {
 | 
						|
    // We check for partially redundant case.
 | 
						|
    // So far, we support cases with only two predecessors
 | 
						|
    // to avoid increasing the number of instructions.
 | 
						|
    MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
 | 
						|
    MachineBasicBlock *Pred1MBB = *PI;
 | 
						|
    MachineBasicBlock *Pred2MBB = *(PI+1);
 | 
						|
 | 
						|
    if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
 | 
						|
      // We assume Pred1MBB is the BB containing the compare to be merged and
 | 
						|
      // Pred2MBB is the BB to which we will append a compare instruction.
 | 
						|
      // Hence we can proceed as is.
 | 
						|
    }
 | 
						|
    else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
 | 
						|
      // We need to swap Pred1MBB and Pred2MBB to canonicalize.
 | 
						|
      std::swap(Pred1MBB, Pred2MBB);
 | 
						|
    }
 | 
						|
    else return false;
 | 
						|
 | 
						|
    // Here, Pred2MBB is the BB to which we need to append a compare inst.
 | 
						|
    // We cannot move the compare instruction if operands are not available
 | 
						|
    // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
 | 
						|
    MachineInstr *BI = &*MBB.getFirstInstrTerminator();
 | 
						|
    MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
 | 
						|
    for (int I = 1; I <= 2; I++)
 | 
						|
      if (CMPI->getOperand(I).isReg()) {
 | 
						|
        MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
 | 
						|
        if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
    PredMBB = Pred1MBB;
 | 
						|
    MBBtoMoveCmp = Pred2MBB;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// This function will iterate over the input map containing a pair of TOC save
 | 
						|
// instruction and a flag. The flag will be set to false if the TOC save is
 | 
						|
// proven redundant. This function will erase from the basic block all the TOC
 | 
						|
// saves marked as redundant.
 | 
						|
bool PPCMIPeephole::eliminateRedundantTOCSaves(
 | 
						|
    std::map<MachineInstr *, bool> &TOCSaves) {
 | 
						|
  bool Simplified = false;
 | 
						|
  int NumKept = 0;
 | 
						|
  for (auto TOCSave : TOCSaves) {
 | 
						|
    if (!TOCSave.second) {
 | 
						|
      TOCSave.first->eraseFromParent();
 | 
						|
      RemoveTOCSave++;
 | 
						|
      Simplified = true;
 | 
						|
    } else {
 | 
						|
      NumKept++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumKept > 1)
 | 
						|
    MultiTOCSaves++;
 | 
						|
 | 
						|
  return Simplified;
 | 
						|
}
 | 
						|
 | 
						|
// If multiple conditional branches are executed based on the (essentially)
 | 
						|
// same comparison, we merge compare instructions into one and make multiple
 | 
						|
// conditional branches on this comparison.
 | 
						|
// For example,
 | 
						|
//   if (a == 0) { ... }
 | 
						|
//   else if (a < 0) { ... }
 | 
						|
// can be executed by one compare and two conditional branches instead of
 | 
						|
// two pairs of a compare and a conditional branch.
 | 
						|
//
 | 
						|
// This method merges two compare instructions in two MBBs and modifies the
 | 
						|
// compare and conditional branch instructions if needed.
 | 
						|
// For the above example, the input for this pass looks like:
 | 
						|
//   cmplwi r3, 0
 | 
						|
//   beq    0, .LBB0_3
 | 
						|
//   cmpwi  r3, -1
 | 
						|
//   bgt    0, .LBB0_4
 | 
						|
// So, before merging two compares, we need to modify these instructions as
 | 
						|
//   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
 | 
						|
//   beq    0, .LBB0_3
 | 
						|
//   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
 | 
						|
//   bge    0, .LBB0_4
 | 
						|
 | 
						|
bool PPCMIPeephole::eliminateRedundantCompare(void) {
 | 
						|
  bool Simplified = false;
 | 
						|
 | 
						|
  for (MachineBasicBlock &MBB2 : *MF) {
 | 
						|
    MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
 | 
						|
 | 
						|
    // For fully redundant case, we select two basic blocks MBB1 and MBB2
 | 
						|
    // as an optimization target if
 | 
						|
    // - both MBBs end with a conditional branch,
 | 
						|
    // - MBB1 is the only predecessor of MBB2, and
 | 
						|
    // - compare does not take a physical register as a operand in both MBBs.
 | 
						|
    // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
 | 
						|
    //
 | 
						|
    // As partially redundant case, we additionally handle if MBB2 has one
 | 
						|
    // additional predecessor, which has only one successor (MBB2).
 | 
						|
    // In this case, we move the compare instruction originally in MBB2 into
 | 
						|
    // MBBtoMoveCmp. This partially redundant case is typically appear by
 | 
						|
    // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
 | 
						|
    //
 | 
						|
    // Overview of CFG of related basic blocks
 | 
						|
    // Fully redundant case        Partially redundant case
 | 
						|
    //   --------                   ----------------  --------
 | 
						|
    //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
 | 
						|
    //   --------                   ----------------  --------
 | 
						|
    //      |    \                     (w/ 1 succ) \     |    \
 | 
						|
    //      |     \                                 \    |     \
 | 
						|
    //      |                                        \   |
 | 
						|
    //   --------                                     --------
 | 
						|
    //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
 | 
						|
    //   -------- and 2 succ)                         -------- and 2 succ)
 | 
						|
    //      |    \                                       |    \
 | 
						|
    //      |     \                                      |     \
 | 
						|
    //
 | 
						|
    if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
 | 
						|
    MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
 | 
						|
 | 
						|
    MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
 | 
						|
    MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
 | 
						|
    bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
 | 
						|
 | 
						|
    // We cannot optimize an unsupported compare opcode or
 | 
						|
    // a mix of 32-bit and 64-bit comaprisons
 | 
						|
    if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
 | 
						|
        !isSupportedCmpOp(CMPI2->getOpcode()) ||
 | 
						|
        is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned NewOpCode = 0;
 | 
						|
    unsigned NewPredicate1 = 0, NewPredicate2 = 0;
 | 
						|
    int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
 | 
						|
    bool SwapOperands = false;
 | 
						|
 | 
						|
    if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
 | 
						|
      // Typically, unsigned comparison is used for equality check, but
 | 
						|
      // we replace it with a signed comparison if the comparison
 | 
						|
      // to be merged is a signed comparison.
 | 
						|
      // In other cases of opcode mismatch, we cannot optimize this.
 | 
						|
 | 
						|
      // We cannot change opcode when comparing against an immediate
 | 
						|
      // if the most significant bit of the immediate is one
 | 
						|
      // due to the difference in sign extension.
 | 
						|
      auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
 | 
						|
        if (!I->getOperand(2).isImm())
 | 
						|
          return false;
 | 
						|
        int16_t Imm = (int16_t)I->getOperand(2).getImm();
 | 
						|
        return Imm < 0;
 | 
						|
      };
 | 
						|
 | 
						|
      if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
 | 
						|
          CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
 | 
						|
        NewOpCode = CMPI1->getOpcode();
 | 
						|
      else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
 | 
						|
               getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
 | 
						|
        NewOpCode = CMPI2->getOpcode();
 | 
						|
      else continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
 | 
						|
      // In case of comparisons between two registers, these two registers
 | 
						|
      // must be same to merge two comparisons.
 | 
						|
      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
 | 
						|
                                         nullptr, nullptr, MRI);
 | 
						|
      unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
 | 
						|
                                         nullptr, nullptr, MRI);
 | 
						|
      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
 | 
						|
                                         MBB1, &MBB2, MRI);
 | 
						|
      unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
 | 
						|
                                         MBB1, &MBB2, MRI);
 | 
						|
 | 
						|
      if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
 | 
						|
        // Same pair of registers in the same order; ready to merge as is.
 | 
						|
      }
 | 
						|
      else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
 | 
						|
        // Same pair of registers in different order.
 | 
						|
        // We reverse the predicate to merge compare instructions.
 | 
						|
        PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
 | 
						|
        NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
 | 
						|
        // In case of partial redundancy, we need to swap operands
 | 
						|
        // in another compare instruction.
 | 
						|
        SwapOperands = true;
 | 
						|
      }
 | 
						|
      else continue;
 | 
						|
    }
 | 
						|
    else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
 | 
						|
      // In case of comparisons between a register and an immediate,
 | 
						|
      // the operand register must be same for two compare instructions.
 | 
						|
      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
 | 
						|
                                         nullptr, nullptr, MRI);
 | 
						|
      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
 | 
						|
                                         MBB1, &MBB2, MRI);
 | 
						|
      if (Cmp1Operand1 != Cmp2Operand1)
 | 
						|
        continue;
 | 
						|
 | 
						|
      NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
 | 
						|
      NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
 | 
						|
 | 
						|
      // If immediate are not same, we try to adjust by changing predicate;
 | 
						|
      // e.g. GT imm means GE (imm+1).
 | 
						|
      if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
 | 
						|
        int Diff = Imm1 - Imm2;
 | 
						|
        if (Diff < -2 || Diff > 2)
 | 
						|
          continue;
 | 
						|
 | 
						|
        unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
 | 
						|
        unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
 | 
						|
        unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
 | 
						|
        unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
 | 
						|
        if (Diff == 2) {
 | 
						|
          if (PredToInc2 && PredToDec1) {
 | 
						|
            NewPredicate2 = PredToInc2;
 | 
						|
            NewPredicate1 = PredToDec1;
 | 
						|
            NewImm2++;
 | 
						|
            NewImm1--;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if (Diff == 1) {
 | 
						|
          if (PredToInc2) {
 | 
						|
            NewImm2++;
 | 
						|
            NewPredicate2 = PredToInc2;
 | 
						|
          }
 | 
						|
          else if (PredToDec1) {
 | 
						|
            NewImm1--;
 | 
						|
            NewPredicate1 = PredToDec1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if (Diff == -1) {
 | 
						|
          if (PredToDec2) {
 | 
						|
            NewImm2--;
 | 
						|
            NewPredicate2 = PredToDec2;
 | 
						|
          }
 | 
						|
          else if (PredToInc1) {
 | 
						|
            NewImm1++;
 | 
						|
            NewPredicate1 = PredToInc1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if (Diff == -2) {
 | 
						|
          if (PredToDec2 && PredToInc1) {
 | 
						|
            NewPredicate2 = PredToDec2;
 | 
						|
            NewPredicate1 = PredToInc1;
 | 
						|
            NewImm2--;
 | 
						|
            NewImm1++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We cannot merge two compares if the immediates are not same.
 | 
						|
      if (NewImm2 != NewImm1)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
 | 
						|
    LLVM_DEBUG(CMPI1->dump());
 | 
						|
    LLVM_DEBUG(BI1->dump());
 | 
						|
    LLVM_DEBUG(CMPI2->dump());
 | 
						|
    LLVM_DEBUG(BI2->dump());
 | 
						|
 | 
						|
    // We adjust opcode, predicates and immediate as we determined above.
 | 
						|
    if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
 | 
						|
      CMPI1->setDesc(TII->get(NewOpCode));
 | 
						|
    }
 | 
						|
    if (NewPredicate1) {
 | 
						|
      BI1->getOperand(0).setImm(NewPredicate1);
 | 
						|
    }
 | 
						|
    if (NewPredicate2) {
 | 
						|
      BI2->getOperand(0).setImm(NewPredicate2);
 | 
						|
    }
 | 
						|
    if (NewImm1 != Imm1) {
 | 
						|
      CMPI1->getOperand(2).setImm(NewImm1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsPartiallyRedundant) {
 | 
						|
      // We touch up the compare instruction in MBB2 and move it to
 | 
						|
      // a previous BB to handle partially redundant case.
 | 
						|
      if (SwapOperands) {
 | 
						|
        Register Op1 = CMPI2->getOperand(1).getReg();
 | 
						|
        Register Op2 = CMPI2->getOperand(2).getReg();
 | 
						|
        CMPI2->getOperand(1).setReg(Op2);
 | 
						|
        CMPI2->getOperand(2).setReg(Op1);
 | 
						|
      }
 | 
						|
      if (NewImm2 != Imm2)
 | 
						|
        CMPI2->getOperand(2).setImm(NewImm2);
 | 
						|
 | 
						|
      for (int I = 1; I <= 2; I++) {
 | 
						|
        if (CMPI2->getOperand(I).isReg()) {
 | 
						|
          MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
 | 
						|
          if (Inst->getParent() != &MBB2)
 | 
						|
            continue;
 | 
						|
 | 
						|
          assert(Inst->getOpcode() == PPC::PHI &&
 | 
						|
                 "We cannot support if an operand comes from this BB.");
 | 
						|
          unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
 | 
						|
          CMPI2->getOperand(I).setReg(SrcReg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
 | 
						|
      MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
 | 
						|
 | 
						|
      DebugLoc DL = CMPI2->getDebugLoc();
 | 
						|
      Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
 | 
						|
      BuildMI(MBB2, MBB2.begin(), DL,
 | 
						|
              TII->get(PPC::PHI), NewVReg)
 | 
						|
        .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
 | 
						|
        .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
 | 
						|
      BI2->getOperand(1).setReg(NewVReg);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // We finally eliminate compare instruction in MBB2.
 | 
						|
      BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
 | 
						|
      CMPI2->eraseFromParent();
 | 
						|
    }
 | 
						|
    BI2->getOperand(1).setIsKill(true);
 | 
						|
    BI1->getOperand(1).setIsKill(false);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
 | 
						|
    LLVM_DEBUG(CMPI1->dump());
 | 
						|
    LLVM_DEBUG(BI1->dump());
 | 
						|
    LLVM_DEBUG(BI2->dump());
 | 
						|
    if (IsPartiallyRedundant) {
 | 
						|
      LLVM_DEBUG(dbgs() << "The following compare is moved into "
 | 
						|
                        << printMBBReference(*MBBtoMoveCmp)
 | 
						|
                        << " to handle partial redundancy.\n");
 | 
						|
      LLVM_DEBUG(CMPI2->dump());
 | 
						|
    }
 | 
						|
 | 
						|
    Simplified = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Simplified;
 | 
						|
}
 | 
						|
 | 
						|
// We miss the opportunity to emit an RLDIC when lowering jump tables
 | 
						|
// since ISEL sees only a single basic block. When selecting, the clear
 | 
						|
// and shift left will be in different blocks.
 | 
						|
bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
 | 
						|
  if (MI.getOpcode() != PPC::RLDICR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Register SrcReg = MI.getOperand(1).getReg();
 | 
						|
  if (!Register::isVirtualRegister(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | 
						|
  if (SrcMI->getOpcode() != PPC::RLDICL)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand MOpSHSrc = SrcMI->getOperand(2);
 | 
						|
  MachineOperand MOpMBSrc = SrcMI->getOperand(3);
 | 
						|
  MachineOperand MOpSHMI = MI.getOperand(2);
 | 
						|
  MachineOperand MOpMEMI = MI.getOperand(3);
 | 
						|
  if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
 | 
						|
        MOpMEMI.isImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t SHSrc = MOpSHSrc.getImm();
 | 
						|
  uint64_t MBSrc = MOpMBSrc.getImm();
 | 
						|
  uint64_t SHMI = MOpSHMI.getImm();
 | 
						|
  uint64_t MEMI = MOpMEMI.getImm();
 | 
						|
  uint64_t NewSH = SHSrc + SHMI;
 | 
						|
  uint64_t NewMB = MBSrc - SHMI;
 | 
						|
  if (NewMB > 63 || NewSH > 63)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The bits cleared with RLDICL are [0, MBSrc).
 | 
						|
  // The bits cleared with RLDICR are (MEMI, 63].
 | 
						|
  // After the sequence, the bits cleared are:
 | 
						|
  // [0, MBSrc-SHMI) and (MEMI, 63).
 | 
						|
  //
 | 
						|
  // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
 | 
						|
  if ((63 - NewSH) != MEMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Converting pair: ");
 | 
						|
  LLVM_DEBUG(SrcMI->dump());
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
  MI.setDesc(TII->get(PPC::RLDIC));
 | 
						|
  MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
 | 
						|
  MI.getOperand(2).setImm(NewSH);
 | 
						|
  MI.getOperand(3).setImm(NewMB);
 | 
						|
  MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
 | 
						|
  SrcMI->getOperand(1).setIsKill(false);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "To: ");
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
  NumRotatesCollapsed++;
 | 
						|
  // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
 | 
						|
  if (MRI->use_nodbg_empty(SrcReg)) {
 | 
						|
    assert(!SrcMI->hasImplicitDef() &&
 | 
						|
           "Not expecting an implicit def with this instr.");
 | 
						|
    SrcMI->eraseFromParent();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// For case in LLVM IR
 | 
						|
// entry:
 | 
						|
//   %iconv = sext i32 %index to i64
 | 
						|
//   br i1 undef label %true, label %false
 | 
						|
// true:
 | 
						|
//   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
 | 
						|
// ...
 | 
						|
// PPCISelLowering::combineSHL fails to combine, because sext and shl are in
 | 
						|
// different BBs when conducting instruction selection. We can do a peephole
 | 
						|
// optimization to combine these two instructions into extswsli after
 | 
						|
// instruction selection.
 | 
						|
bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
 | 
						|
                                      MachineInstr *&ToErase) {
 | 
						|
  if (MI.getOpcode() != PPC::RLDICR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
 | 
						|
 | 
						|
  MachineOperand MOpSHMI = MI.getOperand(2);
 | 
						|
  MachineOperand MOpMEMI = MI.getOperand(3);
 | 
						|
  if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t SHMI = MOpSHMI.getImm();
 | 
						|
  uint64_t MEMI = MOpMEMI.getImm();
 | 
						|
  if (SHMI + MEMI != 63)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Register SrcReg = MI.getOperand(1).getReg();
 | 
						|
  if (!Register::isVirtualRegister(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | 
						|
  if (SrcMI->getOpcode() != PPC::EXTSW &&
 | 
						|
      SrcMI->getOpcode() != PPC::EXTSW_32_64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the register defined by extsw has more than one use, combination is not
 | 
						|
  // needed.
 | 
						|
  if (!MRI->hasOneNonDBGUse(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
 | 
						|
  assert(SrcMI->getOperand(1).isReg() &&
 | 
						|
         "EXTSW's second operand should be a register");
 | 
						|
  if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Combining pair: ");
 | 
						|
  LLVM_DEBUG(SrcMI->dump());
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
  MachineInstr *NewInstr =
 | 
						|
      BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
 | 
						|
              SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
 | 
						|
                                               : TII->get(PPC::EXTSWSLI_32_64),
 | 
						|
              MI.getOperand(0).getReg())
 | 
						|
          .add(SrcMI->getOperand(1))
 | 
						|
          .add(MOpSHMI);
 | 
						|
  (void)NewInstr;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "TO: ");
 | 
						|
  LLVM_DEBUG(NewInstr->dump());
 | 
						|
  ++NumEXTSWAndSLDICombined;
 | 
						|
  ToErase = &MI;
 | 
						|
  // SrcMI, which is extsw, is of no use now, erase it.
 | 
						|
  SrcMI->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
} // end default namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
 | 
						|
                      "PowerPC MI Peephole Optimization", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
 | 
						|
INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
 | 
						|
                    "PowerPC MI Peephole Optimization", false, false)
 | 
						|
 | 
						|
char PPCMIPeephole::ID = 0;
 | 
						|
FunctionPass*
 | 
						|
llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
 | 
						|
 |