2999 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2999 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the X86 implementation of TargetFrameLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86FrameLowering.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <cstdlib>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
 | |
|                                    unsigned StackAlignOverride)
 | |
|     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
 | |
|                           STI.is64Bit() ? -8 : -4),
 | |
|       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
 | |
|   // Cache a bunch of frame-related predicates for this subtarget.
 | |
|   SlotSize = TRI->getSlotSize();
 | |
|   Is64Bit = STI.is64Bit();
 | |
|   IsLP64 = STI.isTarget64BitLP64();
 | |
|   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
 | |
|   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
 | |
|   StackPtr = TRI->getStackRegister();
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
 | |
|   return !MF.getFrameInfo().hasVarSizedObjects() &&
 | |
|          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
 | |
| }
 | |
| 
 | |
| /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
 | |
| /// call frame pseudos can be simplified.  Having a FP, as in the default
 | |
| /// implementation, is not sufficient here since we can't always use it.
 | |
| /// Use a more nuanced condition.
 | |
| bool
 | |
| X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
 | |
|   return hasReservedCallFrame(MF) ||
 | |
|          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
 | |
|          TRI->hasBasePointer(MF);
 | |
| }
 | |
| 
 | |
| // needsFrameIndexResolution - Do we need to perform FI resolution for
 | |
| // this function. Normally, this is required only when the function
 | |
| // has any stack objects. However, FI resolution actually has another job,
 | |
| // not apparent from the title - it resolves callframesetup/destroy 
 | |
| // that were not simplified earlier.
 | |
| // So, this is required for x86 functions that have push sequences even
 | |
| // when there are no stack objects.
 | |
| bool
 | |
| X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
 | |
|   return MF.getFrameInfo().hasStackObjects() ||
 | |
|          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
 | |
| }
 | |
| 
 | |
| /// hasFP - Return true if the specified function should have a dedicated frame
 | |
| /// pointer register.  This is true if the function has variable sized allocas
 | |
| /// or if frame pointer elimination is disabled.
 | |
| bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   const MachineModuleInfo &MMI = MF.getMMI();
 | |
| 
 | |
|   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
 | |
|           TRI->needsStackRealignment(MF) ||
 | |
|           MFI.hasVarSizedObjects() ||
 | |
|           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
 | |
|           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
 | |
|           MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
 | |
|           MFI.hasStackMap() || MFI.hasPatchPoint() ||
 | |
|           MFI.hasCopyImplyingStackAdjustment());
 | |
| }
 | |
| 
 | |
| static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
 | |
|   if (IsLP64) {
 | |
|     if (isInt<8>(Imm))
 | |
|       return X86::SUB64ri8;
 | |
|     return X86::SUB64ri32;
 | |
|   } else {
 | |
|     if (isInt<8>(Imm))
 | |
|       return X86::SUB32ri8;
 | |
|     return X86::SUB32ri;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
 | |
|   if (IsLP64) {
 | |
|     if (isInt<8>(Imm))
 | |
|       return X86::ADD64ri8;
 | |
|     return X86::ADD64ri32;
 | |
|   } else {
 | |
|     if (isInt<8>(Imm))
 | |
|       return X86::ADD32ri8;
 | |
|     return X86::ADD32ri;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getSUBrrOpcode(unsigned isLP64) {
 | |
|   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
 | |
| }
 | |
| 
 | |
| static unsigned getADDrrOpcode(unsigned isLP64) {
 | |
|   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
 | |
| }
 | |
| 
 | |
| static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
 | |
|   if (IsLP64) {
 | |
|     if (isInt<8>(Imm))
 | |
|       return X86::AND64ri8;
 | |
|     return X86::AND64ri32;
 | |
|   }
 | |
|   if (isInt<8>(Imm))
 | |
|     return X86::AND32ri8;
 | |
|   return X86::AND32ri;
 | |
| }
 | |
| 
 | |
| static unsigned getLEArOpcode(unsigned IsLP64) {
 | |
|   return IsLP64 ? X86::LEA64r : X86::LEA32r;
 | |
| }
 | |
| 
 | |
| /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
 | |
| /// when it reaches the "return" instruction. We can then pop a stack object
 | |
| /// to this register without worry about clobbering it.
 | |
| static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
 | |
|                                        MachineBasicBlock::iterator &MBBI,
 | |
|                                        const X86RegisterInfo *TRI,
 | |
|                                        bool Is64Bit) {
 | |
|   const MachineFunction *MF = MBB.getParent();
 | |
|   const Function *F = MF->getFunction();
 | |
|   if (!F || MF->getMMI().callsEHReturn())
 | |
|     return 0;
 | |
| 
 | |
|   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
 | |
| 
 | |
|   if (MBBI == MBB.end())
 | |
|     return 0;
 | |
| 
 | |
|   switch (MBBI->getOpcode()) {
 | |
|   default: return 0;
 | |
|   case TargetOpcode::PATCHABLE_RET:
 | |
|   case X86::RET:
 | |
|   case X86::RETL:
 | |
|   case X86::RETQ:
 | |
|   case X86::RETIL:
 | |
|   case X86::RETIQ:
 | |
|   case X86::TCRETURNdi:
 | |
|   case X86::TCRETURNri:
 | |
|   case X86::TCRETURNmi:
 | |
|   case X86::TCRETURNdi64:
 | |
|   case X86::TCRETURNri64:
 | |
|   case X86::TCRETURNmi64:
 | |
|   case X86::EH_RETURN:
 | |
|   case X86::EH_RETURN64: {
 | |
|     SmallSet<uint16_t, 8> Uses;
 | |
|     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MBBI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.isDef())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!Reg)
 | |
|         continue;
 | |
|       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | |
|         Uses.insert(*AI);
 | |
|     }
 | |
| 
 | |
|     for (auto CS : AvailableRegs)
 | |
|       if (!Uses.count(CS) && CS != X86::RIP)
 | |
|         return CS;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static bool isEAXLiveIn(MachineBasicBlock &MBB) {
 | |
|   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
 | |
|     unsigned Reg = RegMask.PhysReg;
 | |
| 
 | |
|     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
 | |
|         Reg == X86::AH || Reg == X86::AL)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if the flags need to be preserved before the terminators.
 | |
| /// This would be the case, if the eflags is live-in of the region
 | |
| /// composed by the terminators or live-out of that region, without
 | |
| /// being defined by a terminator.
 | |
| static bool
 | |
| flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
 | |
|   for (const MachineInstr &MI : MBB.terminators()) {
 | |
|     bool BreakNext = false;
 | |
|     for (const MachineOperand &MO : MI.operands()) {
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg != X86::EFLAGS)
 | |
|         continue;
 | |
| 
 | |
|       // This terminator needs an eflags that is not defined
 | |
|       // by a previous another terminator:
 | |
|       // EFLAGS is live-in of the region composed by the terminators.
 | |
|       if (!MO.isDef())
 | |
|         return true;
 | |
|       // This terminator defines the eflags, i.e., we don't need to preserve it.
 | |
|       // However, we still need to check this specific terminator does not
 | |
|       // read a live-in value.
 | |
|       BreakNext = true;
 | |
|     }
 | |
|     // We found a definition of the eflags, no need to preserve them.
 | |
|     if (BreakNext)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // None of the terminators use or define the eflags.
 | |
|   // Check if they are live-out, that would imply we need to preserve them.
 | |
|   for (const MachineBasicBlock *Succ : MBB.successors())
 | |
|     if (Succ->isLiveIn(X86::EFLAGS))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// emitSPUpdate - Emit a series of instructions to increment / decrement the
 | |
| /// stack pointer by a constant value.
 | |
| void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock::iterator &MBBI,
 | |
|                                     int64_t NumBytes, bool InEpilogue) const {
 | |
|   bool isSub = NumBytes < 0;
 | |
|   uint64_t Offset = isSub ? -NumBytes : NumBytes;
 | |
| 
 | |
|   uint64_t Chunk = (1LL << 31) - 1;
 | |
|   DebugLoc DL = MBB.findDebugLoc(MBBI);
 | |
| 
 | |
|   while (Offset) {
 | |
|     if (Offset > Chunk) {
 | |
|       // Rather than emit a long series of instructions for large offsets,
 | |
|       // load the offset into a register and do one sub/add
 | |
|       unsigned Reg = 0;
 | |
| 
 | |
|       if (isSub && !isEAXLiveIn(MBB))
 | |
|         Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
 | |
|       else
 | |
|         Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
 | |
| 
 | |
|       if (Reg) {
 | |
|         unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
 | |
|         BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
 | |
|           .addImm(Offset);
 | |
|         Opc = isSub
 | |
|           ? getSUBrrOpcode(Is64Bit)
 | |
|           : getADDrrOpcode(Is64Bit);
 | |
|         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | |
|           .addReg(StackPtr)
 | |
|           .addReg(Reg);
 | |
|         MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
 | |
|         Offset = 0;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     uint64_t ThisVal = std::min(Offset, Chunk);
 | |
|     if (ThisVal == (Is64Bit ? 8 : 4)) {
 | |
|       // Use push / pop instead.
 | |
|       unsigned Reg = isSub
 | |
|         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
 | |
|         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
 | |
|       if (Reg) {
 | |
|         unsigned Opc = isSub
 | |
|           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
 | |
|           : (Is64Bit ? X86::POP64r  : X86::POP32r);
 | |
|         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
 | |
|           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
 | |
|         if (isSub)
 | |
|           MI->setFlag(MachineInstr::FrameSetup);
 | |
|         else
 | |
|           MI->setFlag(MachineInstr::FrameDestroy);
 | |
|         Offset -= ThisVal;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MachineInstrBuilder MI = BuildStackAdjustment(
 | |
|         MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
 | |
|     if (isSub)
 | |
|       MI.setMIFlag(MachineInstr::FrameSetup);
 | |
|     else
 | |
|       MI.setMIFlag(MachineInstr::FrameDestroy);
 | |
| 
 | |
|     Offset -= ThisVal;
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
 | |
|     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
 | |
|   assert(Offset != 0 && "zero offset stack adjustment requested");
 | |
| 
 | |
|   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
 | |
|   // is tricky.
 | |
|   bool UseLEA;
 | |
|   if (!InEpilogue) {
 | |
|     // Check if inserting the prologue at the beginning
 | |
|     // of MBB would require to use LEA operations.
 | |
|     // We need to use LEA operations if EFLAGS is live in, because
 | |
|     // it means an instruction will read it before it gets defined.
 | |
|     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
 | |
|   } else {
 | |
|     // If we can use LEA for SP but we shouldn't, check that none
 | |
|     // of the terminators uses the eflags. Otherwise we will insert
 | |
|     // a ADD that will redefine the eflags and break the condition.
 | |
|     // Alternatively, we could move the ADD, but this may not be possible
 | |
|     // and is an optimization anyway.
 | |
|     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
 | |
|     if (UseLEA && !STI.useLeaForSP())
 | |
|       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
 | |
|     // If that assert breaks, that means we do not do the right thing
 | |
|     // in canUseAsEpilogue.
 | |
|     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
 | |
|            "We shouldn't have allowed this insertion point");
 | |
|   }
 | |
| 
 | |
|   MachineInstrBuilder MI;
 | |
|   if (UseLEA) {
 | |
|     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
 | |
|                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
 | |
|                               StackPtr),
 | |
|                       StackPtr, false, Offset);
 | |
|   } else {
 | |
|     bool IsSub = Offset < 0;
 | |
|     uint64_t AbsOffset = IsSub ? -Offset : Offset;
 | |
|     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
 | |
|                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
 | |
|     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | |
|              .addReg(StackPtr)
 | |
|              .addImm(AbsOffset);
 | |
|     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
 | |
|   }
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
 | |
|                                      MachineBasicBlock::iterator &MBBI,
 | |
|                                      bool doMergeWithPrevious) const {
 | |
|   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
 | |
|       (!doMergeWithPrevious && MBBI == MBB.end()))
 | |
|     return 0;
 | |
| 
 | |
|   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
 | |
|   MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
 | |
|                                                        : std::next(MBBI);
 | |
|   unsigned Opc = PI->getOpcode();
 | |
|   int Offset = 0;
 | |
| 
 | |
|   if (!doMergeWithPrevious && NI != MBB.end() &&
 | |
|       NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) {
 | |
|     // Don't merge with the next instruction if it has CFI.
 | |
|     return Offset;
 | |
|   }
 | |
| 
 | |
|   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
 | |
|        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
 | |
|       PI->getOperand(0).getReg() == StackPtr){
 | |
|     assert(PI->getOperand(1).getReg() == StackPtr);
 | |
|     Offset += PI->getOperand(2).getImm();
 | |
|     MBB.erase(PI);
 | |
|     if (!doMergeWithPrevious) MBBI = NI;
 | |
|   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
 | |
|              PI->getOperand(0).getReg() == StackPtr &&
 | |
|              PI->getOperand(1).getReg() == StackPtr &&
 | |
|              PI->getOperand(2).getImm() == 1 &&
 | |
|              PI->getOperand(3).getReg() == X86::NoRegister &&
 | |
|              PI->getOperand(5).getReg() == X86::NoRegister) {
 | |
|     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
 | |
|     Offset += PI->getOperand(4).getImm();
 | |
|     MBB.erase(PI);
 | |
|     if (!doMergeWithPrevious) MBBI = NI;
 | |
|   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
 | |
|               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
 | |
|              PI->getOperand(0).getReg() == StackPtr) {
 | |
|     assert(PI->getOperand(1).getReg() == StackPtr);
 | |
|     Offset -= PI->getOperand(2).getImm();
 | |
|     MBB.erase(PI);
 | |
|     if (!doMergeWithPrevious) MBBI = NI;
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
 | |
|                                 MachineBasicBlock::iterator MBBI,
 | |
|                                 const DebugLoc &DL,
 | |
|                                 const MCCFIInstruction &CFIInst) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
 | |
|   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
 | |
|       .addCFIIndex(CFIIndex);
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::emitCalleeSavedFrameMoves(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
 | |
|     const DebugLoc &DL) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineModuleInfo &MMI = MF.getMMI();
 | |
|   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
 | |
| 
 | |
|   // Add callee saved registers to move list.
 | |
|   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
 | |
|   if (CSI.empty()) return;
 | |
| 
 | |
|   // Calculate offsets.
 | |
|   for (std::vector<CalleeSavedInfo>::const_iterator
 | |
|          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
 | |
|     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
 | |
|     unsigned Reg = I->getReg();
 | |
| 
 | |
|     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
 | |
|     BuildCFI(MBB, MBBI, DL,
 | |
|              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::emitStackProbe(MachineFunction &MF,
 | |
|                                       MachineBasicBlock &MBB,
 | |
|                                       MachineBasicBlock::iterator MBBI,
 | |
|                                       const DebugLoc &DL, bool InProlog) const {
 | |
|   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
 | |
|   if (STI.isTargetWindowsCoreCLR()) {
 | |
|     if (InProlog) {
 | |
|       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
 | |
|     } else {
 | |
|       emitStackProbeInline(MF, MBB, MBBI, DL, false);
 | |
|     }
 | |
|   } else {
 | |
|     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
 | |
|                                         MachineBasicBlock &PrologMBB) const {
 | |
|   const StringRef ChkStkStubSymbol = "__chkstk_stub";
 | |
|   MachineInstr *ChkStkStub = nullptr;
 | |
| 
 | |
|   for (MachineInstr &MI : PrologMBB) {
 | |
|     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
 | |
|         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
 | |
|       ChkStkStub = &MI;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ChkStkStub != nullptr) {
 | |
|     assert(!ChkStkStub->isBundled() &&
 | |
|            "Not expecting bundled instructions here");
 | |
|     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
 | |
|     assert(std::prev(MBBI) == ChkStkStub &&
 | |
|            "MBBI expected after __chkstk_stub.");
 | |
|     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
 | |
|     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
 | |
|     ChkStkStub->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
 | |
|                                             MachineBasicBlock &MBB,
 | |
|                                             MachineBasicBlock::iterator MBBI,
 | |
|                                             const DebugLoc &DL,
 | |
|                                             bool InProlog) const {
 | |
|   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
 | |
|   assert(STI.is64Bit() && "different expansion needed for 32 bit");
 | |
|   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
 | |
|   const TargetInstrInfo &TII = *STI.getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
 | |
| 
 | |
|   // RAX contains the number of bytes of desired stack adjustment.
 | |
|   // The handling here assumes this value has already been updated so as to
 | |
|   // maintain stack alignment.
 | |
|   //
 | |
|   // We need to exit with RSP modified by this amount and execute suitable
 | |
|   // page touches to notify the OS that we're growing the stack responsibly.
 | |
|   // All stack probing must be done without modifying RSP.
 | |
|   //
 | |
|   // MBB:
 | |
|   //    SizeReg = RAX;
 | |
|   //    ZeroReg = 0
 | |
|   //    CopyReg = RSP
 | |
|   //    Flags, TestReg = CopyReg - SizeReg
 | |
|   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
 | |
|   //    LimitReg = gs magic thread env access
 | |
|   //    if FinalReg >= LimitReg goto ContinueMBB
 | |
|   // RoundBB:
 | |
|   //    RoundReg = page address of FinalReg
 | |
|   // LoopMBB:
 | |
|   //    LoopReg = PHI(LimitReg,ProbeReg)
 | |
|   //    ProbeReg = LoopReg - PageSize
 | |
|   //    [ProbeReg] = 0
 | |
|   //    if (ProbeReg > RoundReg) goto LoopMBB
 | |
|   // ContinueMBB:
 | |
|   //    RSP = RSP - RAX
 | |
|   //    [rest of original MBB]
 | |
| 
 | |
|   // Set up the new basic blocks
 | |
|   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
 | |
| 
 | |
|   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
 | |
|   MF.insert(MBBIter, RoundMBB);
 | |
|   MF.insert(MBBIter, LoopMBB);
 | |
|   MF.insert(MBBIter, ContinueMBB);
 | |
| 
 | |
|   // Split MBB and move the tail portion down to ContinueMBB.
 | |
|   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
 | |
|   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
 | |
|   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
 | |
| 
 | |
|   // Some useful constants
 | |
|   const int64_t ThreadEnvironmentStackLimit = 0x10;
 | |
|   const int64_t PageSize = 0x1000;
 | |
|   const int64_t PageMask = ~(PageSize - 1);
 | |
| 
 | |
|   // Registers we need. For the normal case we use virtual
 | |
|   // registers. For the prolog expansion we use RAX, RCX and RDX.
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
 | |
|   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
 | |
|                                     : MRI.createVirtualRegister(RegClass),
 | |
|                  ZeroReg = InProlog ? (unsigned)X86::RCX
 | |
|                                     : MRI.createVirtualRegister(RegClass),
 | |
|                  CopyReg = InProlog ? (unsigned)X86::RDX
 | |
|                                     : MRI.createVirtualRegister(RegClass),
 | |
|                  TestReg = InProlog ? (unsigned)X86::RDX
 | |
|                                     : MRI.createVirtualRegister(RegClass),
 | |
|                  FinalReg = InProlog ? (unsigned)X86::RDX
 | |
|                                      : MRI.createVirtualRegister(RegClass),
 | |
|                  RoundedReg = InProlog ? (unsigned)X86::RDX
 | |
|                                        : MRI.createVirtualRegister(RegClass),
 | |
|                  LimitReg = InProlog ? (unsigned)X86::RCX
 | |
|                                      : MRI.createVirtualRegister(RegClass),
 | |
|                  JoinReg = InProlog ? (unsigned)X86::RCX
 | |
|                                     : MRI.createVirtualRegister(RegClass),
 | |
|                  ProbeReg = InProlog ? (unsigned)X86::RCX
 | |
|                                      : MRI.createVirtualRegister(RegClass);
 | |
| 
 | |
|   // SP-relative offsets where we can save RCX and RDX.
 | |
|   int64_t RCXShadowSlot = 0;
 | |
|   int64_t RDXShadowSlot = 0;
 | |
| 
 | |
|   // If inlining in the prolog, save RCX and RDX.     
 | |
|   // Future optimization: don't save or restore if not live in.
 | |
|   if (InProlog) {
 | |
|     // Compute the offsets. We need to account for things already
 | |
|     // pushed onto the stack at this point: return address, frame
 | |
|     // pointer (if used), and callee saves.
 | |
|     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
 | |
|     const bool HasFP = hasFP(MF);
 | |
|     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
 | |
|     RDXShadowSlot = RCXShadowSlot + 8;
 | |
|     // Emit the saves.
 | |
|     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
 | |
|                  RCXShadowSlot)
 | |
|         .addReg(X86::RCX);
 | |
|     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
 | |
|                  RDXShadowSlot)
 | |
|         .addReg(X86::RDX);
 | |
|   } else {
 | |
|     // Not in the prolog. Copy RAX to a virtual reg.
 | |
|     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
 | |
|   }
 | |
| 
 | |
|   // Add code to MBB to check for overflow and set the new target stack pointer
 | |
|   // to zero if so.
 | |
|   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
 | |
|       .addReg(ZeroReg, RegState::Undef)
 | |
|       .addReg(ZeroReg, RegState::Undef);
 | |
|   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
 | |
|   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
 | |
|       .addReg(CopyReg)
 | |
|       .addReg(SizeReg);
 | |
|   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
 | |
|       .addReg(TestReg)
 | |
|       .addReg(ZeroReg);
 | |
| 
 | |
|   // FinalReg now holds final stack pointer value, or zero if
 | |
|   // allocation would overflow. Compare against the current stack
 | |
|   // limit from the thread environment block. Note this limit is the
 | |
|   // lowest touched page on the stack, not the point at which the OS
 | |
|   // will cause an overflow exception, so this is just an optimization
 | |
|   // to avoid unnecessarily touching pages that are below the current
 | |
|   // SP but already commited to the stack by the OS.
 | |
|   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
 | |
|       .addReg(0)
 | |
|       .addImm(1)
 | |
|       .addReg(0)
 | |
|       .addImm(ThreadEnvironmentStackLimit)
 | |
|       .addReg(X86::GS);
 | |
|   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
 | |
|   // Jump if the desired stack pointer is at or above the stack limit.
 | |
|   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
 | |
| 
 | |
|   // Add code to roundMBB to round the final stack pointer to a page boundary.
 | |
|   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
 | |
|       .addReg(FinalReg)
 | |
|       .addImm(PageMask);
 | |
|   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
 | |
| 
 | |
|   // LimitReg now holds the current stack limit, RoundedReg page-rounded
 | |
|   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
 | |
|   // and probe until we reach RoundedReg.
 | |
|   if (!InProlog) {
 | |
|     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
 | |
|         .addReg(LimitReg)
 | |
|         .addMBB(RoundMBB)
 | |
|         .addReg(ProbeReg)
 | |
|         .addMBB(LoopMBB);
 | |
|   }
 | |
| 
 | |
|   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
 | |
|                false, -PageSize);
 | |
| 
 | |
|   // Probe by storing a byte onto the stack.
 | |
|   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
 | |
|       .addReg(ProbeReg)
 | |
|       .addImm(1)
 | |
|       .addReg(0)
 | |
|       .addImm(0)
 | |
|       .addReg(0)
 | |
|       .addImm(0);
 | |
|   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
 | |
|       .addReg(RoundedReg)
 | |
|       .addReg(ProbeReg);
 | |
|   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
 | |
| 
 | |
|   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
 | |
| 
 | |
|   // If in prolog, restore RDX and RCX.
 | |
|   if (InProlog) {
 | |
|     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
 | |
|                          X86::RCX),
 | |
|                  X86::RSP, false, RCXShadowSlot);
 | |
|     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
 | |
|                          X86::RDX),
 | |
|                  X86::RSP, false, RDXShadowSlot);
 | |
|   }
 | |
| 
 | |
|   // Now that the probing is done, add code to continueMBB to update
 | |
|   // the stack pointer for real.
 | |
|   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
 | |
|       .addReg(X86::RSP)
 | |
|       .addReg(SizeReg);
 | |
| 
 | |
|   // Add the control flow edges we need.
 | |
|   MBB.addSuccessor(ContinueMBB);
 | |
|   MBB.addSuccessor(RoundMBB);
 | |
|   RoundMBB->addSuccessor(LoopMBB);
 | |
|   LoopMBB->addSuccessor(ContinueMBB);
 | |
|   LoopMBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   // Mark all the instructions added to the prolog as frame setup.
 | |
|   if (InProlog) {
 | |
|     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
 | |
|       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
|     for (MachineInstr &MI : *RoundMBB) {
 | |
|       MI.setFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
|     for (MachineInstr &MI : *LoopMBB) {
 | |
|       MI.setFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
|     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
 | |
|          CMBBI != ContinueMBBI; ++CMBBI) {
 | |
|       CMBBI->setFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Possible TODO: physreg liveness for InProlog case.
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
 | |
|                                           MachineBasicBlock &MBB,
 | |
|                                           MachineBasicBlock::iterator MBBI,
 | |
|                                           const DebugLoc &DL,
 | |
|                                           bool InProlog) const {
 | |
|   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
 | |
| 
 | |
|   unsigned CallOp;
 | |
|   if (Is64Bit)
 | |
|     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
 | |
|   else
 | |
|     CallOp = X86::CALLpcrel32;
 | |
| 
 | |
|   const char *Symbol;
 | |
|   if (Is64Bit) {
 | |
|     if (STI.isTargetCygMing()) {
 | |
|       Symbol = "___chkstk_ms";
 | |
|     } else {
 | |
|       Symbol = "__chkstk";
 | |
|     }
 | |
|   } else if (STI.isTargetCygMing())
 | |
|     Symbol = "_alloca";
 | |
|   else
 | |
|     Symbol = "_chkstk";
 | |
| 
 | |
|   MachineInstrBuilder CI;
 | |
|   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
 | |
| 
 | |
|   // All current stack probes take AX and SP as input, clobber flags, and
 | |
|   // preserve all registers. x86_64 probes leave RSP unmodified.
 | |
|   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
 | |
|     // For the large code model, we have to call through a register. Use R11,
 | |
|     // as it is scratch in all supported calling conventions.
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
 | |
|         .addExternalSymbol(Symbol);
 | |
|     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
 | |
|   } else {
 | |
|     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
 | |
|   }
 | |
| 
 | |
|   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
 | |
|   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
 | |
|   CI.addReg(AX, RegState::Implicit)
 | |
|       .addReg(SP, RegState::Implicit)
 | |
|       .addReg(AX, RegState::Define | RegState::Implicit)
 | |
|       .addReg(SP, RegState::Define | RegState::Implicit)
 | |
|       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
 | |
| 
 | |
|   if (Is64Bit) {
 | |
|     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
 | |
|     // themselves. It also does not clobber %rax so we can reuse it when
 | |
|     // adjusting %rsp.
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
 | |
|         .addReg(X86::RSP)
 | |
|         .addReg(X86::RAX);
 | |
|   }
 | |
| 
 | |
|   if (InProlog) {
 | |
|     // Apply the frame setup flag to all inserted instrs.
 | |
|     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
 | |
|       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::emitStackProbeInlineStub(
 | |
|     MachineFunction &MF, MachineBasicBlock &MBB,
 | |
|     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
 | |
| 
 | |
|   assert(InProlog && "ChkStkStub called outside prolog!");
 | |
| 
 | |
|   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
 | |
|       .addExternalSymbol("__chkstk_stub");
 | |
| }
 | |
| 
 | |
| static unsigned calculateSetFPREG(uint64_t SPAdjust) {
 | |
|   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
 | |
|   // and might require smaller successive adjustments.
 | |
|   const uint64_t Win64MaxSEHOffset = 128;
 | |
|   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
 | |
|   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
 | |
|   return SEHFrameOffset & -16;
 | |
| }
 | |
| 
 | |
| // If we're forcing a stack realignment we can't rely on just the frame
 | |
| // info, we need to know the ABI stack alignment as well in case we
 | |
| // have a call out.  Otherwise just make sure we have some alignment - we'll
 | |
| // go with the minimum SlotSize.
 | |
| uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
 | |
|   unsigned StackAlign = getStackAlignment();
 | |
|   if (MF.getFunction()->hasFnAttribute("stackrealign")) {
 | |
|     if (MFI.hasCalls())
 | |
|       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
 | |
|     else if (MaxAlign < SlotSize)
 | |
|       MaxAlign = SlotSize;
 | |
|   }
 | |
|   return MaxAlign;
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
 | |
|                                           MachineBasicBlock::iterator MBBI,
 | |
|                                           const DebugLoc &DL, unsigned Reg,
 | |
|                                           uint64_t MaxAlign) const {
 | |
|   uint64_t Val = -MaxAlign;
 | |
|   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
 | |
|   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
 | |
|                          .addReg(Reg)
 | |
|                          .addImm(Val)
 | |
|                          .setMIFlag(MachineInstr::FrameSetup);
 | |
| 
 | |
|   // The EFLAGS implicit def is dead.
 | |
|   MI->getOperand(3).setIsDead();
 | |
| }
 | |
| 
 | |
| /// emitPrologue - Push callee-saved registers onto the stack, which
 | |
| /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
 | |
| /// space for local variables. Also emit labels used by the exception handler to
 | |
| /// generate the exception handling frames.
 | |
| 
 | |
| /*
 | |
|   Here's a gist of what gets emitted:
 | |
| 
 | |
|   ; Establish frame pointer, if needed
 | |
|   [if needs FP]
 | |
|       push  %rbp
 | |
|       .cfi_def_cfa_offset 16
 | |
|       .cfi_offset %rbp, -16
 | |
|       .seh_pushreg %rpb
 | |
|       mov  %rsp, %rbp
 | |
|       .cfi_def_cfa_register %rbp
 | |
| 
 | |
|   ; Spill general-purpose registers
 | |
|   [for all callee-saved GPRs]
 | |
|       pushq %<reg>
 | |
|       [if not needs FP]
 | |
|          .cfi_def_cfa_offset (offset from RETADDR)
 | |
|       .seh_pushreg %<reg>
 | |
| 
 | |
|   ; If the required stack alignment > default stack alignment
 | |
|   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
 | |
|   ; of unknown size in the stack frame.
 | |
|   [if stack needs re-alignment]
 | |
|       and  $MASK, %rsp
 | |
| 
 | |
|   ; Allocate space for locals
 | |
|   [if target is Windows and allocated space > 4096 bytes]
 | |
|       ; Windows needs special care for allocations larger
 | |
|       ; than one page.
 | |
|       mov $NNN, %rax
 | |
|       call ___chkstk_ms/___chkstk
 | |
|       sub  %rax, %rsp
 | |
|   [else]
 | |
|       sub  $NNN, %rsp
 | |
| 
 | |
|   [if needs FP]
 | |
|       .seh_stackalloc (size of XMM spill slots)
 | |
|       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
 | |
|   [else]
 | |
|       .seh_stackalloc NNN
 | |
| 
 | |
|   ; Spill XMMs
 | |
|   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
 | |
|   ; they may get spilled on any platform, if the current function
 | |
|   ; calls @llvm.eh.unwind.init
 | |
|   [if needs FP]
 | |
|       [for all callee-saved XMM registers]
 | |
|           movaps  %<xmm reg>, -MMM(%rbp)
 | |
|       [for all callee-saved XMM registers]
 | |
|           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
 | |
|               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
 | |
|   [else]
 | |
|       [for all callee-saved XMM registers]
 | |
|           movaps  %<xmm reg>, KKK(%rsp)
 | |
|       [for all callee-saved XMM registers]
 | |
|           .seh_savexmm %<xmm reg>, KKK
 | |
| 
 | |
|   .seh_endprologue
 | |
| 
 | |
|   [if needs base pointer]
 | |
|       mov  %rsp, %rbx
 | |
|       [if needs to restore base pointer]
 | |
|           mov %rsp, -MMM(%rbp)
 | |
| 
 | |
|   ; Emit CFI info
 | |
|   [if needs FP]
 | |
|       [for all callee-saved registers]
 | |
|           .cfi_offset %<reg>, (offset from %rbp)
 | |
|   [else]
 | |
|        .cfi_def_cfa_offset (offset from RETADDR)
 | |
|       [for all callee-saved registers]
 | |
|           .cfi_offset %<reg>, (offset from %rsp)
 | |
| 
 | |
|   Notes:
 | |
|   - .seh directives are emitted only for Windows 64 ABI
 | |
|   - .cfi directives are emitted for all other ABIs
 | |
|   - for 32-bit code, substitute %e?? registers for %r??
 | |
| */
 | |
| 
 | |
| void X86FrameLowering::emitPrologue(MachineFunction &MF,
 | |
|                                     MachineBasicBlock &MBB) const {
 | |
|   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
 | |
|          "MF used frame lowering for wrong subtarget");
 | |
|   MachineBasicBlock::iterator MBBI = MBB.begin();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   const Function *Fn = MF.getFunction();
 | |
|   MachineModuleInfo &MMI = MF.getMMI();
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
 | |
|   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
 | |
|   bool IsFunclet = MBB.isEHFuncletEntry();
 | |
|   EHPersonality Personality = EHPersonality::Unknown;
 | |
|   if (Fn->hasPersonalityFn())
 | |
|     Personality = classifyEHPersonality(Fn->getPersonalityFn());
 | |
|   bool FnHasClrFunclet =
 | |
|       MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
 | |
|   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
 | |
|   bool HasFP = hasFP(MF);
 | |
|   bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
 | |
|   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | |
|   bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
 | |
|   bool NeedsDwarfCFI =
 | |
|       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
 | |
|   unsigned FramePtr = TRI->getFrameRegister(MF);
 | |
|   const unsigned MachineFramePtr =
 | |
|       STI.isTarget64BitILP32()
 | |
|           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
 | |
|   unsigned BasePtr = TRI->getBaseRegister();
 | |
|   bool HasWinCFI = false;
 | |
|   
 | |
|   // Debug location must be unknown since the first debug location is used
 | |
|   // to determine the end of the prologue.
 | |
|   DebugLoc DL;
 | |
| 
 | |
|   // Add RETADDR move area to callee saved frame size.
 | |
|   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | |
|   if (TailCallReturnAddrDelta && IsWin64Prologue)
 | |
|     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
 | |
| 
 | |
|   if (TailCallReturnAddrDelta < 0)
 | |
|     X86FI->setCalleeSavedFrameSize(
 | |
|       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
 | |
| 
 | |
|   bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
 | |
| 
 | |
|   // The default stack probe size is 4096 if the function has no stackprobesize
 | |
|   // attribute.
 | |
|   unsigned StackProbeSize = 4096;
 | |
|   if (Fn->hasFnAttribute("stack-probe-size"))
 | |
|     Fn->getFnAttribute("stack-probe-size")
 | |
|         .getValueAsString()
 | |
|         .getAsInteger(0, StackProbeSize);
 | |
| 
 | |
|   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
 | |
|   // function, and use up to 128 bytes of stack space, don't have a frame
 | |
|   // pointer, calls, or dynamic alloca then we do not need to adjust the
 | |
|   // stack pointer (we fit in the Red Zone). We also check that we don't
 | |
|   // push and pop from the stack.
 | |
|   if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
 | |
|       !TRI->needsStackRealignment(MF) &&
 | |
|       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
 | |
|       !MFI.adjustsStack() &&                   // No calls.
 | |
|       !IsWin64CC &&                            // Win64 has no Red Zone
 | |
|       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
 | |
|       !MF.shouldSplitStack()) {                // Regular stack
 | |
|     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
 | |
|     if (HasFP) MinSize += SlotSize;
 | |
|     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
 | |
|     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
 | |
|     MFI.setStackSize(StackSize);
 | |
|   }
 | |
| 
 | |
|   // Insert stack pointer adjustment for later moving of return addr.  Only
 | |
|   // applies to tail call optimized functions where the callee argument stack
 | |
|   // size is bigger than the callers.
 | |
|   if (TailCallReturnAddrDelta < 0) {
 | |
|     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
 | |
|                          /*InEpilogue=*/false)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|   }
 | |
| 
 | |
|   // Mapping for machine moves:
 | |
|   //
 | |
|   //   DST: VirtualFP AND
 | |
|   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
 | |
|   //        ELSE                        => DW_CFA_def_cfa
 | |
|   //
 | |
|   //   SRC: VirtualFP AND
 | |
|   //        DST: Register               => DW_CFA_def_cfa_register
 | |
|   //
 | |
|   //   ELSE
 | |
|   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
 | |
|   //        REG < 64                    => DW_CFA_offset + Reg
 | |
|   //        ELSE                        => DW_CFA_offset_extended
 | |
| 
 | |
|   uint64_t NumBytes = 0;
 | |
|   int stackGrowth = -SlotSize;
 | |
| 
 | |
|   // Find the funclet establisher parameter
 | |
|   unsigned Establisher = X86::NoRegister;
 | |
|   if (IsClrFunclet)
 | |
|     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
 | |
|   else if (IsFunclet)
 | |
|     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
 | |
| 
 | |
|   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
 | |
|     // Immediately spill establisher into the home slot.
 | |
|     // The runtime cares about this.
 | |
|     // MOV64mr %rdx, 16(%rsp)
 | |
|     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
 | |
|     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
 | |
|         .addReg(Establisher)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|     MBB.addLiveIn(Establisher);
 | |
|   }
 | |
| 
 | |
|   if (HasFP) {
 | |
|     // Calculate required stack adjustment.
 | |
|     uint64_t FrameSize = StackSize - SlotSize;
 | |
|     // If required, include space for extra hidden slot for stashing base pointer.
 | |
|     if (X86FI->getRestoreBasePointer())
 | |
|       FrameSize += SlotSize;
 | |
| 
 | |
|     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
 | |
| 
 | |
|     // Callee-saved registers are pushed on stack before the stack is realigned.
 | |
|     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
 | |
|       NumBytes = alignTo(NumBytes, MaxAlign);
 | |
| 
 | |
|     // Get the offset of the stack slot for the EBP register, which is
 | |
|     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
 | |
|     // Update the frame offset adjustment.
 | |
|     if (!IsFunclet)
 | |
|       MFI.setOffsetAdjustment(-NumBytes);
 | |
|     else
 | |
|       assert(MFI.getOffsetAdjustment() == -(int)NumBytes &&
 | |
|              "should calculate same local variable offset for funclets");
 | |
| 
 | |
|     // Save EBP/RBP into the appropriate stack slot.
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
 | |
|       .addReg(MachineFramePtr, RegState::Kill)
 | |
|       .setMIFlag(MachineInstr::FrameSetup);
 | |
| 
 | |
|     if (NeedsDwarfCFI) {
 | |
|       // Mark the place where EBP/RBP was saved.
 | |
|       // Define the current CFA rule to use the provided offset.
 | |
|       assert(StackSize);
 | |
|       BuildCFI(MBB, MBBI, DL,
 | |
|                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
 | |
| 
 | |
|       // Change the rule for the FramePtr to be an "offset" rule.
 | |
|       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
 | |
|       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
 | |
|                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
 | |
|     }
 | |
| 
 | |
|     if (NeedsWinCFI) {
 | |
|       HasWinCFI = true;
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
 | |
|           .addImm(FramePtr)
 | |
|           .setMIFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
| 
 | |
|     if (!IsWin64Prologue && !IsFunclet) {
 | |
|       // Update EBP with the new base value.
 | |
|       BuildMI(MBB, MBBI, DL,
 | |
|               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
 | |
|               FramePtr)
 | |
|           .addReg(StackPtr)
 | |
|           .setMIFlag(MachineInstr::FrameSetup);
 | |
| 
 | |
|       if (NeedsDwarfCFI) {
 | |
|         // Mark effective beginning of when frame pointer becomes valid.
 | |
|         // Define the current CFA to use the EBP/RBP register.
 | |
|         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
 | |
|         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
 | |
|                                     nullptr, DwarfFramePtr));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Mark the FramePtr as live-in in every block. Don't do this again for
 | |
|     // funclet prologues.
 | |
|     if (!IsFunclet) {
 | |
|       for (MachineBasicBlock &EveryMBB : MF)
 | |
|         EveryMBB.addLiveIn(MachineFramePtr);
 | |
|     }
 | |
|   } else {
 | |
|     assert(!IsFunclet && "funclets without FPs not yet implemented");
 | |
|     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
 | |
|   }
 | |
| 
 | |
|   // For EH funclets, only allocate enough space for outgoing calls. Save the
 | |
|   // NumBytes value that we would've used for the parent frame.
 | |
|   unsigned ParentFrameNumBytes = NumBytes;
 | |
|   if (IsFunclet)
 | |
|     NumBytes = getWinEHFuncletFrameSize(MF);
 | |
| 
 | |
|   // Skip the callee-saved push instructions.
 | |
|   bool PushedRegs = false;
 | |
|   int StackOffset = 2 * stackGrowth;
 | |
| 
 | |
|   while (MBBI != MBB.end() &&
 | |
|          MBBI->getFlag(MachineInstr::FrameSetup) &&
 | |
|          (MBBI->getOpcode() == X86::PUSH32r ||
 | |
|           MBBI->getOpcode() == X86::PUSH64r)) {
 | |
|     PushedRegs = true;
 | |
|     unsigned Reg = MBBI->getOperand(0).getReg();
 | |
|     ++MBBI;
 | |
| 
 | |
|     if (!HasFP && NeedsDwarfCFI) {
 | |
|       // Mark callee-saved push instruction.
 | |
|       // Define the current CFA rule to use the provided offset.
 | |
|       assert(StackSize);
 | |
|       BuildCFI(MBB, MBBI, DL,
 | |
|                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
 | |
|       StackOffset += stackGrowth;
 | |
|     }
 | |
| 
 | |
|     if (NeedsWinCFI) {
 | |
|       HasWinCFI = true;
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
 | |
|           MachineInstr::FrameSetup);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Realign stack after we pushed callee-saved registers (so that we'll be
 | |
|   // able to calculate their offsets from the frame pointer).
 | |
|   // Don't do this for Win64, it needs to realign the stack after the prologue.
 | |
|   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
 | |
|     assert(HasFP && "There should be a frame pointer if stack is realigned.");
 | |
|     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
 | |
|   }
 | |
| 
 | |
|   // If there is an SUB32ri of ESP immediately before this instruction, merge
 | |
|   // the two. This can be the case when tail call elimination is enabled and
 | |
|   // the callee has more arguments then the caller.
 | |
|   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
 | |
| 
 | |
|   // Adjust stack pointer: ESP -= numbytes.
 | |
| 
 | |
|   // Windows and cygwin/mingw require a prologue helper routine when allocating
 | |
|   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
 | |
|   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
 | |
|   // stack and adjust the stack pointer in one go.  The 64-bit version of
 | |
|   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
 | |
|   // responsible for adjusting the stack pointer.  Touching the stack at 4K
 | |
|   // increments is necessary to ensure that the guard pages used by the OS
 | |
|   // virtual memory manager are allocated in correct sequence.
 | |
|   uint64_t AlignedNumBytes = NumBytes;
 | |
|   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
 | |
|     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
 | |
|   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
 | |
|     // Check whether EAX is livein for this block.
 | |
|     bool isEAXAlive = isEAXLiveIn(MBB);
 | |
| 
 | |
|     if (isEAXAlive) {
 | |
|       // Sanity check that EAX is not livein for this function.
 | |
|       // It should not be, so throw an assert.
 | |
|       assert(!Is64Bit && "EAX is livein in x64 case!");
 | |
| 
 | |
|       // Save EAX
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
 | |
|         .addReg(X86::EAX, RegState::Kill)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
| 
 | |
|     if (Is64Bit) {
 | |
|       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
 | |
|       // Function prologue is responsible for adjusting the stack pointer.
 | |
|       if (isUInt<32>(NumBytes)) {
 | |
|         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
 | |
|             .addImm(NumBytes)
 | |
|             .setMIFlag(MachineInstr::FrameSetup);
 | |
|       } else if (isInt<32>(NumBytes)) {
 | |
|         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
 | |
|             .addImm(NumBytes)
 | |
|             .setMIFlag(MachineInstr::FrameSetup);
 | |
|       } else {
 | |
|         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
 | |
|             .addImm(NumBytes)
 | |
|             .setMIFlag(MachineInstr::FrameSetup);
 | |
|       }
 | |
|     } else {
 | |
|       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
 | |
|       // We'll also use 4 already allocated bytes for EAX.
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
 | |
|           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
 | |
|           .setMIFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
| 
 | |
|     // Call __chkstk, __chkstk_ms, or __alloca.
 | |
|     emitStackProbe(MF, MBB, MBBI, DL, true);
 | |
| 
 | |
|     if (isEAXAlive) {
 | |
|       // Restore EAX
 | |
|       MachineInstr *MI =
 | |
|           addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
 | |
|                        StackPtr, false, NumBytes - 4);
 | |
|       MI->setFlag(MachineInstr::FrameSetup);
 | |
|       MBB.insert(MBBI, MI);
 | |
|     }
 | |
|   } else if (NumBytes) {
 | |
|     emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
 | |
|   }
 | |
| 
 | |
|   if (NeedsWinCFI && NumBytes) {
 | |
|     HasWinCFI = true;
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
 | |
|         .addImm(NumBytes)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|   }
 | |
| 
 | |
|   int SEHFrameOffset = 0;
 | |
|   unsigned SPOrEstablisher;
 | |
|   if (IsFunclet) {
 | |
|     if (IsClrFunclet) {
 | |
|       // The establisher parameter passed to a CLR funclet is actually a pointer
 | |
|       // to the (mostly empty) frame of its nearest enclosing funclet; we have
 | |
|       // to find the root function establisher frame by loading the PSPSym from
 | |
|       // the intermediate frame.
 | |
|       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
 | |
|       MachinePointerInfo NoInfo;
 | |
|       MBB.addLiveIn(Establisher);
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
 | |
|                    Establisher, false, PSPSlotOffset)
 | |
|           .addMemOperand(MF.getMachineMemOperand(
 | |
|               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
 | |
|       ;
 | |
|       // Save the root establisher back into the current funclet's (mostly
 | |
|       // empty) frame, in case a sub-funclet or the GC needs it.
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
 | |
|                    false, PSPSlotOffset)
 | |
|           .addReg(Establisher)
 | |
|           .addMemOperand(
 | |
|               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
 | |
|                                                   MachineMemOperand::MOVolatile,
 | |
|                                       SlotSize, SlotSize));
 | |
|     }
 | |
|     SPOrEstablisher = Establisher;
 | |
|   } else {
 | |
|     SPOrEstablisher = StackPtr;
 | |
|   }
 | |
| 
 | |
|   if (IsWin64Prologue && HasFP) {
 | |
|     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
 | |
|     // this calculation on the incoming establisher, which holds the value of
 | |
|     // RSP from the parent frame at the end of the prologue.
 | |
|     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
 | |
|     if (SEHFrameOffset)
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
 | |
|                    SPOrEstablisher, false, SEHFrameOffset);
 | |
|     else
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
 | |
|           .addReg(SPOrEstablisher);
 | |
| 
 | |
|     // If this is not a funclet, emit the CFI describing our frame pointer.
 | |
|     if (NeedsWinCFI && !IsFunclet) {
 | |
|       HasWinCFI = true;
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
 | |
|           .addImm(FramePtr)
 | |
|           .addImm(SEHFrameOffset)
 | |
|           .setMIFlag(MachineInstr::FrameSetup);
 | |
|       if (isAsynchronousEHPersonality(Personality))
 | |
|         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
 | |
|     }
 | |
|   } else if (IsFunclet && STI.is32Bit()) {
 | |
|     // Reset EBP / ESI to something good for funclets.
 | |
|     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
 | |
|     // If we're a catch funclet, we can be returned to via catchret. Save ESP
 | |
|     // into the registration node so that the runtime will restore it for us.
 | |
|     if (!MBB.isCleanupFuncletEntry()) {
 | |
|       assert(Personality == EHPersonality::MSVC_CXX);
 | |
|       unsigned FrameReg;
 | |
|       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
 | |
|       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
 | |
|       // ESP is the first field, so no extra displacement is needed.
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
 | |
|                    false, EHRegOffset)
 | |
|           .addReg(X86::ESP);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
 | |
|     const MachineInstr &FrameInstr = *MBBI;
 | |
|     ++MBBI;
 | |
| 
 | |
|     if (NeedsWinCFI) {
 | |
|       int FI;
 | |
|       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
 | |
|         if (X86::FR64RegClass.contains(Reg)) {
 | |
|           unsigned IgnoredFrameReg;
 | |
|           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
 | |
|           Offset += SEHFrameOffset;
 | |
| 
 | |
|           HasWinCFI = true;
 | |
|           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
 | |
|               .addImm(Reg)
 | |
|               .addImm(Offset)
 | |
|               .setMIFlag(MachineInstr::FrameSetup);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NeedsWinCFI && HasWinCFI)
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
| 
 | |
|   if (FnHasClrFunclet && !IsFunclet) {
 | |
|     // Save the so-called Initial-SP (i.e. the value of the stack pointer
 | |
|     // immediately after the prolog)  into the PSPSlot so that funclets
 | |
|     // and the GC can recover it.
 | |
|     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
 | |
|     auto PSPInfo = MachinePointerInfo::getFixedStack(
 | |
|         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
 | |
|     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
 | |
|                  PSPSlotOffset)
 | |
|         .addReg(StackPtr)
 | |
|         .addMemOperand(MF.getMachineMemOperand(
 | |
|             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
 | |
|             SlotSize, SlotSize));
 | |
|   }
 | |
| 
 | |
|   // Realign stack after we spilled callee-saved registers (so that we'll be
 | |
|   // able to calculate their offsets from the frame pointer).
 | |
|   // Win64 requires aligning the stack after the prologue.
 | |
|   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
 | |
|     assert(HasFP && "There should be a frame pointer if stack is realigned.");
 | |
|     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
 | |
|   }
 | |
| 
 | |
|   // We already dealt with stack realignment and funclets above.
 | |
|   if (IsFunclet && STI.is32Bit())
 | |
|     return;
 | |
| 
 | |
|   // If we need a base pointer, set it up here. It's whatever the value
 | |
|   // of the stack pointer is at this point. Any variable size objects
 | |
|   // will be allocated after this, so we can still use the base pointer
 | |
|   // to reference locals.
 | |
|   if (TRI->hasBasePointer(MF)) {
 | |
|     // Update the base pointer with the current stack pointer.
 | |
|     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
 | |
|       .addReg(SPOrEstablisher)
 | |
|       .setMIFlag(MachineInstr::FrameSetup);
 | |
|     if (X86FI->getRestoreBasePointer()) {
 | |
|       // Stash value of base pointer.  Saving RSP instead of EBP shortens
 | |
|       // dependence chain. Used by SjLj EH.
 | |
|       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
 | |
|                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
 | |
|         .addReg(SPOrEstablisher)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
| 
 | |
|     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
 | |
|       // Stash the value of the frame pointer relative to the base pointer for
 | |
|       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
 | |
|       // it recovers the frame pointer from the base pointer rather than the
 | |
|       // other way around.
 | |
|       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
 | |
|       unsigned UsedReg;
 | |
|       int Offset =
 | |
|           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
 | |
|       assert(UsedReg == BasePtr);
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
 | |
|           .addReg(FramePtr)
 | |
|           .setMIFlag(MachineInstr::FrameSetup);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
 | |
|     // Mark end of stack pointer adjustment.
 | |
|     if (!HasFP && NumBytes) {
 | |
|       // Define the current CFA rule to use the provided offset.
 | |
|       assert(StackSize);
 | |
|       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
 | |
|                                   nullptr, -StackSize + stackGrowth));
 | |
|     }
 | |
| 
 | |
|     // Emit DWARF info specifying the offsets of the callee-saved registers.
 | |
|     if (PushedRegs)
 | |
|       emitCalleeSavedFrameMoves(MBB, MBBI, DL);
 | |
|   }
 | |
| 
 | |
|   // X86 Interrupt handling function cannot assume anything about the direction
 | |
|   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
 | |
|   // in each prologue of interrupt handler function.
 | |
|   //
 | |
|   // FIXME: Create "cld" instruction only in these cases:
 | |
|   // 1. The interrupt handling function uses any of the "rep" instructions.
 | |
|   // 2. Interrupt handling function calls another function.
 | |
|   //
 | |
|   if (Fn->getCallingConv() == CallingConv::X86_INTR)
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
| 
 | |
|   // At this point we know if the function has WinCFI or not.
 | |
|   MF.setHasWinCFI(HasWinCFI);
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::canUseLEAForSPInEpilogue(
 | |
|     const MachineFunction &MF) const {
 | |
|   // We can't use LEA instructions for adjusting the stack pointer if we don't
 | |
|   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
 | |
|   // to deallocate the stack.
 | |
|   // This means that we can use LEA for SP in two situations:
 | |
|   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
 | |
|   // 2. We *have* a frame pointer which means we are permitted to use LEA.
 | |
|   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
 | |
| }
 | |
| 
 | |
| static bool isFuncletReturnInstr(MachineInstr &MI) {
 | |
|   switch (MI.getOpcode()) {
 | |
|   case X86::CATCHRET:
 | |
|   case X86::CLEANUPRET:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable("impossible");
 | |
| }
 | |
| 
 | |
| // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
 | |
| // stack. It holds a pointer to the bottom of the root function frame.  The
 | |
| // establisher frame pointer passed to a nested funclet may point to the
 | |
| // (mostly empty) frame of its parent funclet, but it will need to find
 | |
| // the frame of the root function to access locals.  To facilitate this,
 | |
| // every funclet copies the pointer to the bottom of the root function
 | |
| // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
 | |
| // same offset for the PSPSym in the root function frame that's used in the
 | |
| // funclets' frames allows each funclet to dynamically accept any ancestor
 | |
| // frame as its establisher argument (the runtime doesn't guarantee the
 | |
| // immediate parent for some reason lost to history), and also allows the GC,
 | |
| // which uses the PSPSym for some bookkeeping, to find it in any funclet's
 | |
| // frame with only a single offset reported for the entire method.
 | |
| unsigned
 | |
| X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
 | |
|   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
 | |
|   unsigned SPReg;
 | |
|   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
 | |
|                                               /*IgnoreSPUpdates*/ true);
 | |
|   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
 | |
|   return static_cast<unsigned>(Offset);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
 | |
|   // This is the size of the pushed CSRs.
 | |
|   unsigned CSSize =
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
 | |
|   // This is the amount of stack a funclet needs to allocate.
 | |
|   unsigned UsedSize;
 | |
|   EHPersonality Personality =
 | |
|       classifyEHPersonality(MF.getFunction()->getPersonalityFn());
 | |
|   if (Personality == EHPersonality::CoreCLR) {
 | |
|     // CLR funclets need to hold enough space to include the PSPSym, at the
 | |
|     // same offset from the stack pointer (immediately after the prolog) as it
 | |
|     // resides at in the main function.
 | |
|     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
 | |
|   } else {
 | |
|     // Other funclets just need enough stack for outgoing call arguments.
 | |
|     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
 | |
|   }
 | |
|   // RBP is not included in the callee saved register block. After pushing RBP,
 | |
|   // everything is 16 byte aligned. Everything we allocate before an outgoing
 | |
|   // call must also be 16 byte aligned.
 | |
|   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
 | |
|   // Subtract out the size of the callee saved registers. This is how much stack
 | |
|   // each funclet will allocate.
 | |
|   return FrameSizeMinusRBP - CSSize;
 | |
| }
 | |
| 
 | |
| static bool isTailCallOpcode(unsigned Opc) {
 | |
|     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
 | |
|         Opc == X86::TCRETURNmi ||
 | |
|         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
 | |
|         Opc == X86::TCRETURNmi64;
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::emitEpilogue(MachineFunction &MF,
 | |
|                                     MachineBasicBlock &MBB) const {
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
 | |
|   Optional<unsigned> RetOpcode;
 | |
|   if (MBBI != MBB.end())
 | |
|     RetOpcode = MBBI->getOpcode();
 | |
|   DebugLoc DL;
 | |
|   if (MBBI != MBB.end())
 | |
|     DL = MBBI->getDebugLoc();
 | |
|   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
 | |
|   const bool Is64BitILP32 = STI.isTarget64BitILP32();
 | |
|   unsigned FramePtr = TRI->getFrameRegister(MF);
 | |
|   unsigned MachineFramePtr =
 | |
|       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
 | |
| 
 | |
|   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | |
|   bool NeedsWinCFI =
 | |
|       IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
 | |
|   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
 | |
|   MachineBasicBlock *TargetMBB = nullptr;
 | |
| 
 | |
|   // Get the number of bytes to allocate from the FrameInfo.
 | |
|   uint64_t StackSize = MFI.getStackSize();
 | |
|   uint64_t MaxAlign = calculateMaxStackAlign(MF);
 | |
|   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
 | |
|   uint64_t NumBytes = 0;
 | |
| 
 | |
|   if (RetOpcode && *RetOpcode == X86::CATCHRET) {
 | |
|     // SEH shouldn't use catchret.
 | |
|     assert(!isAsynchronousEHPersonality(
 | |
|                classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
 | |
|            "SEH should not use CATCHRET");
 | |
| 
 | |
|     NumBytes = getWinEHFuncletFrameSize(MF);
 | |
|     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
 | |
|     TargetMBB = MBBI->getOperand(0).getMBB();
 | |
| 
 | |
|     // Pop EBP.
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
 | |
|             MachineFramePtr)
 | |
|         .setMIFlag(MachineInstr::FrameDestroy);
 | |
|   } else if (RetOpcode && *RetOpcode == X86::CLEANUPRET) {
 | |
|     NumBytes = getWinEHFuncletFrameSize(MF);
 | |
|     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
 | |
|             MachineFramePtr)
 | |
|         .setMIFlag(MachineInstr::FrameDestroy);
 | |
|   } else if (hasFP(MF)) {
 | |
|     // Calculate required stack adjustment.
 | |
|     uint64_t FrameSize = StackSize - SlotSize;
 | |
|     NumBytes = FrameSize - CSSize;
 | |
| 
 | |
|     // Callee-saved registers were pushed on stack before the stack was
 | |
|     // realigned.
 | |
|     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
 | |
|       NumBytes = alignTo(FrameSize, MaxAlign);
 | |
| 
 | |
|     // Pop EBP.
 | |
|     BuildMI(MBB, MBBI, DL,
 | |
|             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
 | |
|         .setMIFlag(MachineInstr::FrameDestroy);
 | |
|   } else {
 | |
|     NumBytes = StackSize - CSSize;
 | |
|   }
 | |
|   uint64_t SEHStackAllocAmt = NumBytes;
 | |
| 
 | |
|   // Skip the callee-saved pop instructions.
 | |
|   while (MBBI != MBB.begin()) {
 | |
|     MachineBasicBlock::iterator PI = std::prev(MBBI);
 | |
|     unsigned Opc = PI->getOpcode();
 | |
| 
 | |
|     if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
 | |
|         (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
 | |
|         Opc != X86::DBG_VALUE && !PI->isTerminator())
 | |
|       break;
 | |
| 
 | |
|     --MBBI;
 | |
|   }
 | |
|   MachineBasicBlock::iterator FirstCSPop = MBBI;
 | |
| 
 | |
|   if (TargetMBB) {
 | |
|     // Fill EAX/RAX with the address of the target block.
 | |
|     unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
 | |
|     if (STI.is64Bit()) {
 | |
|       // LEA64r TargetMBB(%rip), %rax
 | |
|       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
 | |
|           .addReg(X86::RIP)
 | |
|           .addImm(0)
 | |
|           .addReg(0)
 | |
|           .addMBB(TargetMBB)
 | |
|           .addReg(0);
 | |
|     } else {
 | |
|       // MOV32ri $TargetMBB, %eax
 | |
|       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
 | |
|           .addMBB(TargetMBB);
 | |
|     }
 | |
|     // Record that we've taken the address of TargetMBB and no longer just
 | |
|     // reference it in a terminator.
 | |
|     TargetMBB->setHasAddressTaken();
 | |
|   }
 | |
| 
 | |
|   if (MBBI != MBB.end())
 | |
|     DL = MBBI->getDebugLoc();
 | |
| 
 | |
|   // If there is an ADD32ri or SUB32ri of ESP immediately before this
 | |
|   // instruction, merge the two instructions.
 | |
|   if (NumBytes || MFI.hasVarSizedObjects())
 | |
|     NumBytes += mergeSPUpdates(MBB, MBBI, true);
 | |
| 
 | |
|   // If dynamic alloca is used, then reset esp to point to the last callee-saved
 | |
|   // slot before popping them off! Same applies for the case, when stack was
 | |
|   // realigned. Don't do this if this was a funclet epilogue, since the funclets
 | |
|   // will not do realignment or dynamic stack allocation.
 | |
|   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
 | |
|       !IsFunclet) {
 | |
|     if (TRI->needsStackRealignment(MF))
 | |
|       MBBI = FirstCSPop;
 | |
|     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
 | |
|     uint64_t LEAAmount =
 | |
|         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
 | |
| 
 | |
|     // There are only two legal forms of epilogue:
 | |
|     // - add SEHAllocationSize, %rsp
 | |
|     // - lea SEHAllocationSize(%FramePtr), %rsp
 | |
|     //
 | |
|     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
 | |
|     // However, we may use this sequence if we have a frame pointer because the
 | |
|     // effects of the prologue can safely be undone.
 | |
|     if (LEAAmount != 0) {
 | |
|       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
 | |
|       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
 | |
|                    FramePtr, false, LEAAmount);
 | |
|       --MBBI;
 | |
|     } else {
 | |
|       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
 | |
|       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | |
|         .addReg(FramePtr);
 | |
|       --MBBI;
 | |
|     }
 | |
|   } else if (NumBytes) {
 | |
|     // Adjust stack pointer back: ESP += numbytes.
 | |
|     emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
 | |
|     --MBBI;
 | |
|   }
 | |
| 
 | |
|   // Windows unwinder will not invoke function's exception handler if IP is
 | |
|   // either in prologue or in epilogue.  This behavior causes a problem when a
 | |
|   // call immediately precedes an epilogue, because the return address points
 | |
|   // into the epilogue.  To cope with that, we insert an epilogue marker here,
 | |
|   // then replace it with a 'nop' if it ends up immediately after a CALL in the
 | |
|   // final emitted code.
 | |
|   if (NeedsWinCFI && MF.hasWinCFI())
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
 | |
| 
 | |
|   if (!RetOpcode || !isTailCallOpcode(*RetOpcode)) {
 | |
|     // Add the return addr area delta back since we are not tail calling.
 | |
|     int Offset = -1 * X86FI->getTCReturnAddrDelta();
 | |
|     assert(Offset >= 0 && "TCDelta should never be positive");
 | |
|     if (Offset) {
 | |
|       MBBI = MBB.getFirstTerminator();
 | |
| 
 | |
|       // Check for possible merge with preceding ADD instruction.
 | |
|       Offset += mergeSPUpdates(MBB, MBBI, true);
 | |
|       emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // NOTE: this only has a subset of the full frame index logic. In
 | |
| // particular, the FI < 0 and AfterFPPop logic is handled in
 | |
| // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
 | |
| // (probably?) it should be moved into here.
 | |
| int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
 | |
|                                              unsigned &FrameReg) const {
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   // We can't calculate offset from frame pointer if the stack is realigned,
 | |
|   // so enforce usage of stack/base pointer.  The base pointer is used when we
 | |
|   // have dynamic allocas in addition to dynamic realignment.
 | |
|   if (TRI->hasBasePointer(MF))
 | |
|     FrameReg = TRI->getBaseRegister();
 | |
|   else if (TRI->needsStackRealignment(MF))
 | |
|     FrameReg = TRI->getStackRegister();
 | |
|   else
 | |
|     FrameReg = TRI->getFrameRegister(MF);
 | |
| 
 | |
|   // Offset will hold the offset from the stack pointer at function entry to the
 | |
|   // object.
 | |
|   // We need to factor in additional offsets applied during the prologue to the
 | |
|   // frame, base, and stack pointer depending on which is used.
 | |
|   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
 | |
|   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
 | |
|   uint64_t StackSize = MFI.getStackSize();
 | |
|   bool HasFP = hasFP(MF);
 | |
|   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | |
|   int64_t FPDelta = 0;
 | |
| 
 | |
|   if (IsWin64Prologue) {
 | |
|     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
 | |
| 
 | |
|     // Calculate required stack adjustment.
 | |
|     uint64_t FrameSize = StackSize - SlotSize;
 | |
|     // If required, include space for extra hidden slot for stashing base pointer.
 | |
|     if (X86FI->getRestoreBasePointer())
 | |
|       FrameSize += SlotSize;
 | |
|     uint64_t NumBytes = FrameSize - CSSize;
 | |
| 
 | |
|     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
 | |
|     if (FI && FI == X86FI->getFAIndex())
 | |
|       return -SEHFrameOffset;
 | |
| 
 | |
|     // FPDelta is the offset from the "traditional" FP location of the old base
 | |
|     // pointer followed by return address and the location required by the
 | |
|     // restricted Win64 prologue.
 | |
|     // Add FPDelta to all offsets below that go through the frame pointer.
 | |
|     FPDelta = FrameSize - SEHFrameOffset;
 | |
|     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
 | |
|            "FPDelta isn't aligned per the Win64 ABI!");
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (TRI->hasBasePointer(MF)) {
 | |
|     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
 | |
|     if (FI < 0) {
 | |
|       // Skip the saved EBP.
 | |
|       return Offset + SlotSize + FPDelta;
 | |
|     } else {
 | |
|       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
 | |
|       return Offset + StackSize;
 | |
|     }
 | |
|   } else if (TRI->needsStackRealignment(MF)) {
 | |
|     if (FI < 0) {
 | |
|       // Skip the saved EBP.
 | |
|       return Offset + SlotSize + FPDelta;
 | |
|     } else {
 | |
|       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
 | |
|       return Offset + StackSize;
 | |
|     }
 | |
|     // FIXME: Support tail calls
 | |
|   } else {
 | |
|     if (!HasFP)
 | |
|       return Offset + StackSize;
 | |
| 
 | |
|     // Skip the saved EBP.
 | |
|     Offset += SlotSize;
 | |
| 
 | |
|     // Skip the RETADDR move area
 | |
|     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | |
|     if (TailCallReturnAddrDelta < 0)
 | |
|       Offset -= TailCallReturnAddrDelta;
 | |
|   }
 | |
| 
 | |
|   return Offset + FPDelta;
 | |
| }
 | |
| 
 | |
| int
 | |
| X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
 | |
|                                                  int FI, unsigned &FrameReg,
 | |
|                                                  bool IgnoreSPUpdates) const {
 | |
| 
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   // Does not include any dynamic realign.
 | |
|   const uint64_t StackSize = MFI.getStackSize();
 | |
|   // LLVM arranges the stack as follows:
 | |
|   //   ...
 | |
|   //   ARG2
 | |
|   //   ARG1
 | |
|   //   RETADDR
 | |
|   //   PUSH RBP   <-- RBP points here
 | |
|   //   PUSH CSRs
 | |
|   //   ~~~~~~~    <-- possible stack realignment (non-win64)
 | |
|   //   ...
 | |
|   //   STACK OBJECTS
 | |
|   //   ...        <-- RSP after prologue points here
 | |
|   //   ~~~~~~~    <-- possible stack realignment (win64)
 | |
|   //
 | |
|   // if (hasVarSizedObjects()):
 | |
|   //   ...        <-- "base pointer" (ESI/RBX) points here
 | |
|   //   DYNAMIC ALLOCAS
 | |
|   //   ...        <-- RSP points here
 | |
|   //
 | |
|   // Case 1: In the simple case of no stack realignment and no dynamic
 | |
|   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
 | |
|   // with fixed offsets from RSP.
 | |
|   //
 | |
|   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
 | |
|   // stack objects are addressed with RBP and regular stack objects with RSP.
 | |
|   //
 | |
|   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
 | |
|   // to address stack arguments for outgoing calls and nothing else. The "base
 | |
|   // pointer" points to local variables, and RBP points to fixed objects.
 | |
|   //
 | |
|   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
 | |
|   // answer we give is relative to the SP after the prologue, and not the
 | |
|   // SP in the middle of the function.
 | |
| 
 | |
|   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
 | |
|       !STI.isTargetWin64())
 | |
|     return getFrameIndexReference(MF, FI, FrameReg);
 | |
| 
 | |
|   // If !hasReservedCallFrame the function might have SP adjustement in the
 | |
|   // body.  So, even though the offset is statically known, it depends on where
 | |
|   // we are in the function.
 | |
|   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
 | |
|   if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
 | |
|     return getFrameIndexReference(MF, FI, FrameReg);
 | |
| 
 | |
|   // We don't handle tail calls, and shouldn't be seeing them either.
 | |
|   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
 | |
|          "we don't handle this case!");
 | |
| 
 | |
|   // Fill in FrameReg output argument.
 | |
|   FrameReg = TRI->getStackRegister();
 | |
| 
 | |
|   // This is how the math works out:
 | |
|   //
 | |
|   //  %rsp grows (i.e. gets lower) left to right. Each box below is
 | |
|   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
 | |
|   //  get to.
 | |
|   //
 | |
|   //    ----------------------------------
 | |
|   //    | BP | Obj0 | Obj1 | ... | ObjN |
 | |
|   //    ----------------------------------
 | |
|   //    ^    ^      ^                   ^
 | |
|   //    A    B      C                   E
 | |
|   //
 | |
|   // A is the incoming stack pointer.
 | |
|   // (B - A) is the local area offset (-8 for x86-64) [1]
 | |
|   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
 | |
|   //
 | |
|   // |(E - B)| is the StackSize (absolute value, positive).  For a
 | |
|   // stack that grown down, this works out to be (B - E). [3]
 | |
|   //
 | |
|   // E is also the value of %rsp after stack has been set up, and we
 | |
|   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
 | |
|   // (C - E) == (C - A) - (B - A) + (B - E)
 | |
|   //            { Using [1], [2] and [3] above }
 | |
|   //         == getObjectOffset - LocalAreaOffset + StackSize
 | |
|   //
 | |
| 
 | |
|   // Get the Offset from the StackPointer
 | |
|   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
 | |
| 
 | |
|   return Offset + StackSize;
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::assignCalleeSavedSpillSlots(
 | |
|     MachineFunction &MF, const TargetRegisterInfo *TRI,
 | |
|     std::vector<CalleeSavedInfo> &CSI) const {
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   unsigned CalleeSavedFrameSize = 0;
 | |
|   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
 | |
| 
 | |
|   if (hasFP(MF)) {
 | |
|     // emitPrologue always spills frame register the first thing.
 | |
|     SpillSlotOffset -= SlotSize;
 | |
|     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
 | |
| 
 | |
|     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
 | |
|     // the frame register, we can delete it from CSI list and not have to worry
 | |
|     // about avoiding it later.
 | |
|     unsigned FPReg = TRI->getFrameRegister(MF);
 | |
|     for (unsigned i = 0; i < CSI.size(); ++i) {
 | |
|       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
 | |
|         CSI.erase(CSI.begin() + i);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assign slots for GPRs. It increases frame size.
 | |
|   for (unsigned i = CSI.size(); i != 0; --i) {
 | |
|     unsigned Reg = CSI[i - 1].getReg();
 | |
| 
 | |
|     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
 | |
|       continue;
 | |
| 
 | |
|     SpillSlotOffset -= SlotSize;
 | |
|     CalleeSavedFrameSize += SlotSize;
 | |
| 
 | |
|     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
 | |
|     CSI[i - 1].setFrameIdx(SlotIndex);
 | |
|   }
 | |
| 
 | |
|   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
 | |
| 
 | |
|   // Assign slots for XMMs.
 | |
|   for (unsigned i = CSI.size(); i != 0; --i) {
 | |
|     unsigned Reg = CSI[i - 1].getReg();
 | |
|     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
 | |
|       continue;
 | |
| 
 | |
|     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
 | |
|     // ensure alignment
 | |
|     SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
 | |
|     // spill into slot
 | |
|     SpillSlotOffset -= RC->getSize();
 | |
|     int SlotIndex =
 | |
|         MFI.CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
 | |
|     CSI[i - 1].setFrameIdx(SlotIndex);
 | |
|     MFI.ensureMaxAlignment(RC->getAlignment());
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::spillCalleeSavedRegisters(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | |
|     const std::vector<CalleeSavedInfo> &CSI,
 | |
|     const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
| 
 | |
|   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
 | |
|   // for us, and there are no XMM CSRs on Win32.
 | |
|   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
 | |
|     return true;
 | |
| 
 | |
|   // Push GPRs. It increases frame size.
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
 | |
|   for (unsigned i = CSI.size(); i != 0; --i) {
 | |
|     unsigned Reg = CSI[i - 1].getReg();
 | |
| 
 | |
|     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
 | |
|       continue;
 | |
| 
 | |
|     const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|     bool isLiveIn = MRI.isLiveIn(Reg);
 | |
|     if (!isLiveIn)
 | |
|       MBB.addLiveIn(Reg);
 | |
| 
 | |
|     // Decide whether we can add a kill flag to the use.
 | |
|     bool CanKill = !isLiveIn;
 | |
|     // Check if any subregister is live-in
 | |
|     if (CanKill) {
 | |
|       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
 | |
|         if (MRI.isLiveIn(*AReg)) {
 | |
|           CanKill = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Do not set a kill flag on values that are also marked as live-in. This
 | |
|     // happens with the @llvm-returnaddress intrinsic and with arguments
 | |
|     // passed in callee saved registers.
 | |
|     // Omitting the kill flags is conservatively correct even if the live-in
 | |
|     // is not used after all.
 | |
|     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
 | |
|       .setMIFlag(MachineInstr::FrameSetup);
 | |
|   }
 | |
| 
 | |
|   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
 | |
|   // It can be done by spilling XMMs to stack frame.
 | |
|   for (unsigned i = CSI.size(); i != 0; --i) {
 | |
|     unsigned Reg = CSI[i-1].getReg();
 | |
|     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
 | |
|       continue;
 | |
|     // Add the callee-saved register as live-in. It's killed at the spill.
 | |
|     MBB.addLiveIn(Reg);
 | |
|     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
 | |
| 
 | |
|     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
 | |
|                             TRI);
 | |
|     --MI;
 | |
|     MI->setFlag(MachineInstr::FrameSetup);
 | |
|     ++MI;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
 | |
|                                                MachineBasicBlock::iterator MI,
 | |
|                                         const std::vector<CalleeSavedInfo> &CSI,
 | |
|                                           const TargetRegisterInfo *TRI) const {
 | |
|   if (CSI.empty())
 | |
|     return false;
 | |
| 
 | |
|   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
 | |
|     // Don't restore CSRs in 32-bit EH funclets. Matches
 | |
|     // spillCalleeSavedRegisters.
 | |
|     if (STI.is32Bit())
 | |
|       return true;
 | |
|     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
 | |
|     // funclets. emitEpilogue transforms these to normal jumps.
 | |
|     if (MI->getOpcode() == X86::CATCHRET) {
 | |
|       const Function *Func = MBB.getParent()->getFunction();
 | |
|       bool IsSEH = isAsynchronousEHPersonality(
 | |
|           classifyEHPersonality(Func->getPersonalityFn()));
 | |
|       if (IsSEH)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
| 
 | |
|   // Reload XMMs from stack frame.
 | |
|   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
 | |
|     unsigned Reg = CSI[i].getReg();
 | |
|     if (X86::GR64RegClass.contains(Reg) ||
 | |
|         X86::GR32RegClass.contains(Reg))
 | |
|       continue;
 | |
| 
 | |
|     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
 | |
|     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
 | |
|   }
 | |
| 
 | |
|   // POP GPRs.
 | |
|   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
 | |
|   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
 | |
|     unsigned Reg = CSI[i].getReg();
 | |
|     if (!X86::GR64RegClass.contains(Reg) &&
 | |
|         !X86::GR32RegClass.contains(Reg))
 | |
|       continue;
 | |
| 
 | |
|     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
 | |
|         .setMIFlag(MachineInstr::FrameDestroy);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
 | |
|                                             BitVector &SavedRegs,
 | |
|                                             RegScavenger *RS) const {
 | |
|   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
 | |
| 
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | |
| 
 | |
|   if (TailCallReturnAddrDelta < 0) {
 | |
|     // create RETURNADDR area
 | |
|     //   arg
 | |
|     //   arg
 | |
|     //   RETADDR
 | |
|     //   { ...
 | |
|     //     RETADDR area
 | |
|     //     ...
 | |
|     //   }
 | |
|     //   [EBP]
 | |
|     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
 | |
|                            TailCallReturnAddrDelta - SlotSize, true);
 | |
|   }
 | |
| 
 | |
|   // Spill the BasePtr if it's used.
 | |
|   if (TRI->hasBasePointer(MF)) {
 | |
|     SavedRegs.set(TRI->getBaseRegister());
 | |
| 
 | |
|     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
 | |
|     if (MF.getMMI().hasEHFunclets()) {
 | |
|       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
 | |
|       X86FI->setHasSEHFramePtrSave(true);
 | |
|       X86FI->setSEHFramePtrSaveIndex(FI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool
 | |
| HasNestArgument(const MachineFunction *MF) {
 | |
|   const Function *F = MF->getFunction();
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; I++) {
 | |
|     if (I->hasNestAttr())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// GetScratchRegister - Get a temp register for performing work in the
 | |
| /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
 | |
| /// and the properties of the function either one or two registers will be
 | |
| /// needed. Set primary to true for the first register, false for the second.
 | |
| static unsigned
 | |
| GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
 | |
|   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
 | |
| 
 | |
|   // Erlang stuff.
 | |
|   if (CallingConvention == CallingConv::HiPE) {
 | |
|     if (Is64Bit)
 | |
|       return Primary ? X86::R14 : X86::R13;
 | |
|     else
 | |
|       return Primary ? X86::EBX : X86::EDI;
 | |
|   }
 | |
| 
 | |
|   if (Is64Bit) {
 | |
|     if (IsLP64)
 | |
|       return Primary ? X86::R11 : X86::R12;
 | |
|     else
 | |
|       return Primary ? X86::R11D : X86::R12D;
 | |
|   }
 | |
| 
 | |
|   bool IsNested = HasNestArgument(&MF);
 | |
| 
 | |
|   if (CallingConvention == CallingConv::X86_FastCall ||
 | |
|       CallingConvention == CallingConv::Fast) {
 | |
|     if (IsNested)
 | |
|       report_fatal_error("Segmented stacks does not support fastcall with "
 | |
|                          "nested function.");
 | |
|     return Primary ? X86::EAX : X86::ECX;
 | |
|   }
 | |
|   if (IsNested)
 | |
|     return Primary ? X86::EDX : X86::EAX;
 | |
|   return Primary ? X86::ECX : X86::EAX;
 | |
| }
 | |
| 
 | |
| // The stack limit in the TCB is set to this many bytes above the actual stack
 | |
| // limit.
 | |
| static const uint64_t kSplitStackAvailable = 256;
 | |
| 
 | |
| void X86FrameLowering::adjustForSegmentedStacks(
 | |
|     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   uint64_t StackSize;
 | |
|   unsigned TlsReg, TlsOffset;
 | |
|   DebugLoc DL;
 | |
| 
 | |
|   // To support shrink-wrapping we would need to insert the new blocks
 | |
|   // at the right place and update the branches to PrologueMBB.
 | |
|   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
 | |
| 
 | |
|   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
 | |
|   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
 | |
|          "Scratch register is live-in");
 | |
| 
 | |
|   if (MF.getFunction()->isVarArg())
 | |
|     report_fatal_error("Segmented stacks do not support vararg functions.");
 | |
|   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
 | |
|       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
 | |
|       !STI.isTargetDragonFly())
 | |
|     report_fatal_error("Segmented stacks not supported on this platform.");
 | |
| 
 | |
|   // Eventually StackSize will be calculated by a link-time pass; which will
 | |
|   // also decide whether checking code needs to be injected into this particular
 | |
|   // prologue.
 | |
|   StackSize = MFI.getStackSize();
 | |
| 
 | |
|   // Do not generate a prologue for functions with a stack of size zero
 | |
|   if (StackSize == 0)
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
 | |
|   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   bool IsNested = false;
 | |
| 
 | |
|   // We need to know if the function has a nest argument only in 64 bit mode.
 | |
|   if (Is64Bit)
 | |
|     IsNested = HasNestArgument(&MF);
 | |
| 
 | |
|   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
 | |
|   // allocMBB needs to be last (terminating) instruction.
 | |
| 
 | |
|   for (const auto &LI : PrologueMBB.liveins()) {
 | |
|     allocMBB->addLiveIn(LI);
 | |
|     checkMBB->addLiveIn(LI);
 | |
|   }
 | |
| 
 | |
|   if (IsNested)
 | |
|     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
 | |
| 
 | |
|   MF.push_front(allocMBB);
 | |
|   MF.push_front(checkMBB);
 | |
| 
 | |
|   // When the frame size is less than 256 we just compare the stack
 | |
|   // boundary directly to the value of the stack pointer, per gcc.
 | |
|   bool CompareStackPointer = StackSize < kSplitStackAvailable;
 | |
| 
 | |
|   // Read the limit off the current stacklet off the stack_guard location.
 | |
|   if (Is64Bit) {
 | |
|     if (STI.isTargetLinux()) {
 | |
|       TlsReg = X86::FS;
 | |
|       TlsOffset = IsLP64 ? 0x70 : 0x40;
 | |
|     } else if (STI.isTargetDarwin()) {
 | |
|       TlsReg = X86::GS;
 | |
|       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
 | |
|     } else if (STI.isTargetWin64()) {
 | |
|       TlsReg = X86::GS;
 | |
|       TlsOffset = 0x28; // pvArbitrary, reserved for application use
 | |
|     } else if (STI.isTargetFreeBSD()) {
 | |
|       TlsReg = X86::FS;
 | |
|       TlsOffset = 0x18;
 | |
|     } else if (STI.isTargetDragonFly()) {
 | |
|       TlsReg = X86::FS;
 | |
|       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
 | |
|     } else {
 | |
|       report_fatal_error("Segmented stacks not supported on this platform.");
 | |
|     }
 | |
| 
 | |
|     if (CompareStackPointer)
 | |
|       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
 | |
|     else
 | |
|       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
 | |
|         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
 | |
| 
 | |
|     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
 | |
|       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
 | |
|   } else {
 | |
|     if (STI.isTargetLinux()) {
 | |
|       TlsReg = X86::GS;
 | |
|       TlsOffset = 0x30;
 | |
|     } else if (STI.isTargetDarwin()) {
 | |
|       TlsReg = X86::GS;
 | |
|       TlsOffset = 0x48 + 90*4;
 | |
|     } else if (STI.isTargetWin32()) {
 | |
|       TlsReg = X86::FS;
 | |
|       TlsOffset = 0x14; // pvArbitrary, reserved for application use
 | |
|     } else if (STI.isTargetDragonFly()) {
 | |
|       TlsReg = X86::FS;
 | |
|       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
 | |
|     } else if (STI.isTargetFreeBSD()) {
 | |
|       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
 | |
|     } else {
 | |
|       report_fatal_error("Segmented stacks not supported on this platform.");
 | |
|     }
 | |
| 
 | |
|     if (CompareStackPointer)
 | |
|       ScratchReg = X86::ESP;
 | |
|     else
 | |
|       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
 | |
|         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
 | |
| 
 | |
|     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
 | |
|         STI.isTargetDragonFly()) {
 | |
|       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
 | |
|         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
 | |
|     } else if (STI.isTargetDarwin()) {
 | |
| 
 | |
|       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
 | |
|       unsigned ScratchReg2;
 | |
|       bool SaveScratch2;
 | |
|       if (CompareStackPointer) {
 | |
|         // The primary scratch register is available for holding the TLS offset.
 | |
|         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
 | |
|         SaveScratch2 = false;
 | |
|       } else {
 | |
|         // Need to use a second register to hold the TLS offset
 | |
|         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
 | |
| 
 | |
|         // Unfortunately, with fastcc the second scratch register may hold an
 | |
|         // argument.
 | |
|         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
 | |
|       }
 | |
| 
 | |
|       // If Scratch2 is live-in then it needs to be saved.
 | |
|       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
 | |
|              "Scratch register is live-in and not saved");
 | |
| 
 | |
|       if (SaveScratch2)
 | |
|         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
 | |
|           .addReg(ScratchReg2, RegState::Kill);
 | |
| 
 | |
|       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
 | |
|         .addImm(TlsOffset);
 | |
|       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
 | |
|         .addReg(ScratchReg)
 | |
|         .addReg(ScratchReg2).addImm(1).addReg(0)
 | |
|         .addImm(0)
 | |
|         .addReg(TlsReg);
 | |
| 
 | |
|       if (SaveScratch2)
 | |
|         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
 | |
|   // It jumps to normal execution of the function body.
 | |
|   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
 | |
| 
 | |
|   // On 32 bit we first push the arguments size and then the frame size. On 64
 | |
|   // bit, we pass the stack frame size in r10 and the argument size in r11.
 | |
|   if (Is64Bit) {
 | |
|     // Functions with nested arguments use R10, so it needs to be saved across
 | |
|     // the call to _morestack
 | |
| 
 | |
|     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
 | |
|     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
 | |
|     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
 | |
|     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
 | |
|     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
 | |
| 
 | |
|     if (IsNested)
 | |
|       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
 | |
| 
 | |
|     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
 | |
|       .addImm(StackSize);
 | |
|     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
 | |
|       .addImm(X86FI->getArgumentStackSize());
 | |
|   } else {
 | |
|     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
 | |
|       .addImm(X86FI->getArgumentStackSize());
 | |
|     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
 | |
|       .addImm(StackSize);
 | |
|   }
 | |
| 
 | |
|   // __morestack is in libgcc
 | |
|   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
 | |
|     // Under the large code model, we cannot assume that __morestack lives
 | |
|     // within 2^31 bytes of the call site, so we cannot use pc-relative
 | |
|     // addressing. We cannot perform the call via a temporary register,
 | |
|     // as the rax register may be used to store the static chain, and all
 | |
|     // other suitable registers may be either callee-save or used for
 | |
|     // parameter passing. We cannot use the stack at this point either
 | |
|     // because __morestack manipulates the stack directly.
 | |
|     //
 | |
|     // To avoid these issues, perform an indirect call via a read-only memory
 | |
|     // location containing the address.
 | |
|     //
 | |
|     // This solution is not perfect, as it assumes that the .rodata section
 | |
|     // is laid out within 2^31 bytes of each function body, but this seems
 | |
|     // to be sufficient for JIT.
 | |
|     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
 | |
|         .addReg(X86::RIP)
 | |
|         .addImm(0)
 | |
|         .addReg(0)
 | |
|         .addExternalSymbol("__morestack_addr")
 | |
|         .addReg(0);
 | |
|     MF.getMMI().setUsesMorestackAddr(true);
 | |
|   } else {
 | |
|     if (Is64Bit)
 | |
|       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
 | |
|         .addExternalSymbol("__morestack");
 | |
|     else
 | |
|       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
 | |
|         .addExternalSymbol("__morestack");
 | |
|   }
 | |
| 
 | |
|   if (IsNested)
 | |
|     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
 | |
|   else
 | |
|     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
 | |
| 
 | |
|   allocMBB->addSuccessor(&PrologueMBB);
 | |
| 
 | |
|   checkMBB->addSuccessor(allocMBB);
 | |
|   checkMBB->addSuccessor(&PrologueMBB);
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   MF.verify();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
 | |
| /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
 | |
| /// to fields it needs, through a named metadata node "hipe.literals" containing
 | |
| /// name-value pairs.
 | |
| static unsigned getHiPELiteral(
 | |
|     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
 | |
|   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
 | |
|     MDNode *Node = HiPELiteralsMD->getOperand(i);
 | |
|     if (Node->getNumOperands() != 2) continue;
 | |
|     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
 | |
|     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
 | |
|     if (!NodeName || !NodeVal) continue;
 | |
|     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
 | |
|     if (ValConst && NodeName->getString() == LiteralName) {
 | |
|       return ValConst->getZExtValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   report_fatal_error("HiPE literal " + LiteralName
 | |
|                      + " required but not provided");
 | |
| }
 | |
| 
 | |
| /// Erlang programs may need a special prologue to handle the stack size they
 | |
| /// might need at runtime. That is because Erlang/OTP does not implement a C
 | |
| /// stack but uses a custom implementation of hybrid stack/heap architecture.
 | |
| /// (for more information see Eric Stenman's Ph.D. thesis:
 | |
| /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
 | |
| ///
 | |
| /// CheckStack:
 | |
| ///       temp0 = sp - MaxStack
 | |
| ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
 | |
| /// OldStart:
 | |
| ///       ...
 | |
| /// IncStack:
 | |
| ///       call inc_stack   # doubles the stack space
 | |
| ///       temp0 = sp - MaxStack
 | |
| ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
 | |
| void X86FrameLowering::adjustForHiPEPrologue(
 | |
|     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   DebugLoc DL;
 | |
| 
 | |
|   // To support shrink-wrapping we would need to insert the new blocks
 | |
|   // at the right place and update the branches to PrologueMBB.
 | |
|   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
 | |
| 
 | |
|   // HiPE-specific values
 | |
|   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
 | |
|     ->getNamedMetadata("hipe.literals");
 | |
|   if (!HiPELiteralsMD)
 | |
|     report_fatal_error(
 | |
|         "Can't generate HiPE prologue without runtime parameters");
 | |
|   const unsigned HipeLeafWords
 | |
|     = getHiPELiteral(HiPELiteralsMD,
 | |
|                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
 | |
|   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
 | |
|   const unsigned Guaranteed = HipeLeafWords * SlotSize;
 | |
|   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
 | |
|                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
 | |
|   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
 | |
| 
 | |
|   assert(STI.isTargetLinux() &&
 | |
|          "HiPE prologue is only supported on Linux operating systems.");
 | |
| 
 | |
|   // Compute the largest caller's frame that is needed to fit the callees'
 | |
|   // frames. This 'MaxStack' is computed from:
 | |
|   //
 | |
|   // a) the fixed frame size, which is the space needed for all spilled temps,
 | |
|   // b) outgoing on-stack parameter areas, and
 | |
|   // c) the minimum stack space this function needs to make available for the
 | |
|   //    functions it calls (a tunable ABI property).
 | |
|   if (MFI.hasCalls()) {
 | |
|     unsigned MoreStackForCalls = 0;
 | |
| 
 | |
|     for (auto &MBB : MF) {
 | |
|       for (auto &MI : MBB) {
 | |
|         if (!MI.isCall())
 | |
|           continue;
 | |
| 
 | |
|         // Get callee operand.
 | |
|         const MachineOperand &MO = MI.getOperand(0);
 | |
| 
 | |
|         // Only take account of global function calls (no closures etc.).
 | |
|         if (!MO.isGlobal())
 | |
|           continue;
 | |
| 
 | |
|         const Function *F = dyn_cast<Function>(MO.getGlobal());
 | |
|         if (!F)
 | |
|           continue;
 | |
| 
 | |
|         // Do not update 'MaxStack' for primitive and built-in functions
 | |
|         // (encoded with names either starting with "erlang."/"bif_" or not
 | |
|         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
 | |
|         // "_", such as the BIF "suspend_0") as they are executed on another
 | |
|         // stack.
 | |
|         if (F->getName().find("erlang.") != StringRef::npos ||
 | |
|             F->getName().find("bif_") != StringRef::npos ||
 | |
|             F->getName().find_first_of("._") == StringRef::npos)
 | |
|           continue;
 | |
| 
 | |
|         unsigned CalleeStkArity =
 | |
|           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
 | |
|         if (HipeLeafWords - 1 > CalleeStkArity)
 | |
|           MoreStackForCalls = std::max(MoreStackForCalls,
 | |
|                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
 | |
|       }
 | |
|     }
 | |
|     MaxStack += MoreStackForCalls;
 | |
|   }
 | |
| 
 | |
|   // If the stack frame needed is larger than the guaranteed then runtime checks
 | |
|   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
 | |
|   if (MaxStack > Guaranteed) {
 | |
|     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
 | |
|     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
 | |
| 
 | |
|     for (const auto &LI : PrologueMBB.liveins()) {
 | |
|       stackCheckMBB->addLiveIn(LI);
 | |
|       incStackMBB->addLiveIn(LI);
 | |
|     }
 | |
| 
 | |
|     MF.push_front(incStackMBB);
 | |
|     MF.push_front(stackCheckMBB);
 | |
| 
 | |
|     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
 | |
|     unsigned LEAop, CMPop, CALLop;
 | |
|     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
 | |
|     if (Is64Bit) {
 | |
|       SPReg = X86::RSP;
 | |
|       PReg  = X86::RBP;
 | |
|       LEAop = X86::LEA64r;
 | |
|       CMPop = X86::CMP64rm;
 | |
|       CALLop = X86::CALL64pcrel32;
 | |
|     } else {
 | |
|       SPReg = X86::ESP;
 | |
|       PReg  = X86::EBP;
 | |
|       LEAop = X86::LEA32r;
 | |
|       CMPop = X86::CMP32rm;
 | |
|       CALLop = X86::CALLpcrel32;
 | |
|     }
 | |
| 
 | |
|     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
 | |
|     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
 | |
|            "HiPE prologue scratch register is live-in");
 | |
| 
 | |
|     // Create new MBB for StackCheck:
 | |
|     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
 | |
|                  SPReg, false, -MaxStack);
 | |
|     // SPLimitOffset is in a fixed heap location (pointed by BP).
 | |
|     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
 | |
|                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
 | |
|     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
 | |
| 
 | |
|     // Create new MBB for IncStack:
 | |
|     BuildMI(incStackMBB, DL, TII.get(CALLop)).
 | |
|       addExternalSymbol("inc_stack_0");
 | |
|     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
 | |
|                  SPReg, false, -MaxStack);
 | |
|     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
 | |
|                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
 | |
|     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
 | |
| 
 | |
|     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
 | |
|     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
 | |
|     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
 | |
|     incStackMBB->addSuccessor(incStackMBB, {1, 100});
 | |
|   }
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   MF.verify();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
 | |
|                                            MachineBasicBlock::iterator MBBI,
 | |
|                                            const DebugLoc &DL,
 | |
|                                            int Offset) const {
 | |
| 
 | |
|   if (Offset <= 0)
 | |
|     return false;
 | |
| 
 | |
|   if (Offset % SlotSize)
 | |
|     return false;
 | |
| 
 | |
|   int NumPops = Offset / SlotSize;
 | |
|   // This is only worth it if we have at most 2 pops.
 | |
|   if (NumPops != 1 && NumPops != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Handle only the trivial case where the adjustment directly follows
 | |
|   // a call. This is the most common one, anyway.
 | |
|   if (MBBI == MBB.begin())
 | |
|     return false;
 | |
|   MachineBasicBlock::iterator Prev = std::prev(MBBI);
 | |
|   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Regs[2];
 | |
|   unsigned FoundRegs = 0;
 | |
| 
 | |
|   auto RegMask = Prev->getOperand(1);
 | |
| 
 | |
|   auto &RegClass =
 | |
|       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
 | |
|   // Try to find up to NumPops free registers.
 | |
|   for (auto Candidate : RegClass) {
 | |
| 
 | |
|     // Poor man's liveness:
 | |
|     // Since we're immediately after a call, any register that is clobbered
 | |
|     // by the call and not defined by it can be considered dead.
 | |
|     if (!RegMask.clobbersPhysReg(Candidate))
 | |
|       continue;
 | |
| 
 | |
|     bool IsDef = false;
 | |
|     for (const MachineOperand &MO : Prev->implicit_operands()) {
 | |
|       if (MO.isReg() && MO.isDef() &&
 | |
|           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
 | |
|         IsDef = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (IsDef)
 | |
|       continue;
 | |
| 
 | |
|     Regs[FoundRegs++] = Candidate;
 | |
|     if (FoundRegs == (unsigned)NumPops)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (FoundRegs == 0)
 | |
|     return false;
 | |
| 
 | |
|   // If we found only one free register, but need two, reuse the same one twice.
 | |
|   while (FoundRegs < (unsigned)NumPops)
 | |
|     Regs[FoundRegs++] = Regs[0];
 | |
| 
 | |
|   for (int i = 0; i < NumPops; ++i)
 | |
|     BuildMI(MBB, MBBI, DL, 
 | |
|             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator X86FrameLowering::
 | |
| eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
 | |
|                               MachineBasicBlock::iterator I) const {
 | |
|   bool reserveCallFrame = hasReservedCallFrame(MF);
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
 | |
|   DebugLoc DL = I->getDebugLoc();
 | |
|   uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
 | |
|   uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
 | |
|   I = MBB.erase(I);
 | |
| 
 | |
|   if (!reserveCallFrame) {
 | |
|     // If the stack pointer can be changed after prologue, turn the
 | |
|     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
 | |
|     // adjcallstackdown instruction into 'add ESP, <amt>'
 | |
| 
 | |
|     // We need to keep the stack aligned properly.  To do this, we round the
 | |
|     // amount of space needed for the outgoing arguments up to the next
 | |
|     // alignment boundary.
 | |
|     unsigned StackAlign = getStackAlignment();
 | |
|     Amount = alignTo(Amount, StackAlign);
 | |
| 
 | |
|     MachineModuleInfo &MMI = MF.getMMI();
 | |
|     const Function *Fn = MF.getFunction();
 | |
|     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | |
|     bool DwarfCFI = !WindowsCFI && 
 | |
|                     (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
 | |
| 
 | |
|     // If we have any exception handlers in this function, and we adjust
 | |
|     // the SP before calls, we may need to indicate this to the unwinder
 | |
|     // using GNU_ARGS_SIZE. Note that this may be necessary even when
 | |
|     // Amount == 0, because the preceding function may have set a non-0
 | |
|     // GNU_ARGS_SIZE.
 | |
|     // TODO: We don't need to reset this between subsequent functions,
 | |
|     // if it didn't change.
 | |
|     bool HasDwarfEHHandlers = !WindowsCFI &&
 | |
|                               !MF.getMMI().getLandingPads().empty();
 | |
| 
 | |
|     if (HasDwarfEHHandlers && !isDestroy &&
 | |
|         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
 | |
|       BuildCFI(MBB, I, DL,
 | |
|                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
 | |
| 
 | |
|     if (Amount == 0)
 | |
|       return I;
 | |
| 
 | |
|     // Factor out the amount that gets handled inside the sequence
 | |
|     // (Pushes of argument for frame setup, callee pops for frame destroy)
 | |
|     Amount -= InternalAmt;
 | |
| 
 | |
|     // TODO: This is needed only if we require precise CFA.
 | |
|     // If this is a callee-pop calling convention, emit a CFA adjust for
 | |
|     // the amount the callee popped.
 | |
|     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
 | |
|       BuildCFI(MBB, I, DL, 
 | |
|                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
 | |
| 
 | |
|     // Add Amount to SP to destroy a frame, or subtract to setup.
 | |
|     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
 | |
|     int64_t CfaAdjustment = -StackAdjustment;
 | |
| 
 | |
|     if (StackAdjustment) {
 | |
|       // Merge with any previous or following adjustment instruction. Note: the
 | |
|       // instructions merged with here do not have CFI, so their stack
 | |
|       // adjustments do not feed into CfaAdjustment.
 | |
|       StackAdjustment += mergeSPUpdates(MBB, I, true);
 | |
|       StackAdjustment += mergeSPUpdates(MBB, I, false);
 | |
| 
 | |
|       if (StackAdjustment) {
 | |
|         if (!(Fn->optForMinSize() &&
 | |
|               adjustStackWithPops(MBB, I, DL, StackAdjustment)))
 | |
|           BuildStackAdjustment(MBB, I, DL, StackAdjustment,
 | |
|                                /*InEpilogue=*/false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (DwarfCFI && !hasFP(MF)) {
 | |
|       // If we don't have FP, but need to generate unwind information,
 | |
|       // we need to set the correct CFA offset after the stack adjustment.
 | |
|       // How much we adjust the CFA offset depends on whether we're emitting
 | |
|       // CFI only for EH purposes or for debugging. EH only requires the CFA
 | |
|       // offset to be correct at each call site, while for debugging we want
 | |
|       // it to be more precise.
 | |
| 
 | |
|       // TODO: When not using precise CFA, we also need to adjust for the
 | |
|       // InternalAmt here.
 | |
|       if (CfaAdjustment) {
 | |
|         BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(
 | |
|                                  nullptr, CfaAdjustment));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   if (isDestroy && InternalAmt) {
 | |
|     // If we are performing frame pointer elimination and if the callee pops
 | |
|     // something off the stack pointer, add it back.  We do this until we have
 | |
|     // more advanced stack pointer tracking ability.
 | |
|     // We are not tracking the stack pointer adjustment by the callee, so make
 | |
|     // sure we restore the stack pointer immediately after the call, there may
 | |
|     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
 | |
|     MachineBasicBlock::iterator CI = I;
 | |
|     MachineBasicBlock::iterator B = MBB.begin();
 | |
|     while (CI != B && !std::prev(CI)->isCall())
 | |
|       --CI;
 | |
|     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
 | |
|   }
 | |
| 
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
 | |
|   assert(MBB.getParent() && "Block is not attached to a function!");
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
 | |
|   assert(MBB.getParent() && "Block is not attached to a function!");
 | |
| 
 | |
|   // Win64 has strict requirements in terms of epilogue and we are
 | |
|   // not taking a chance at messing with them.
 | |
|   // I.e., unless this block is already an exit block, we can't use
 | |
|   // it as an epilogue.
 | |
|   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
 | |
|     return false;
 | |
| 
 | |
|   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
 | |
|     return true;
 | |
| 
 | |
|   // If we cannot use LEA to adjust SP, we may need to use ADD, which
 | |
|   // clobbers the EFLAGS. Check that we do not need to preserve it,
 | |
|   // otherwise, conservatively assume this is not
 | |
|   // safe to insert the epilogue here.
 | |
|   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
 | |
| }
 | |
| 
 | |
| bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
 | |
|   // If we may need to emit frameless compact unwind information, give
 | |
|   // up as this is currently broken: PR25614.
 | |
|   return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
 | |
|          // The lowering of segmented stack and HiPE only support entry blocks
 | |
|          // as prologue blocks: PR26107.
 | |
|          // This limitation may be lifted if we fix:
 | |
|          // - adjustForSegmentedStacks
 | |
|          // - adjustForHiPEPrologue
 | |
|          MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
 | |
|          !MF.shouldSplitStack();
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
 | |
|     const DebugLoc &DL, bool RestoreSP) const {
 | |
|   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
 | |
|   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
 | |
|   assert(STI.is32Bit() && !Uses64BitFramePtr &&
 | |
|          "restoring EBP/ESI on non-32-bit target");
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned FramePtr = TRI->getFrameRegister(MF);
 | |
|   unsigned BasePtr = TRI->getBaseRegister();
 | |
|   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
 | |
|   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   // FIXME: Don't set FrameSetup flag in catchret case.
 | |
| 
 | |
|   int FI = FuncInfo.EHRegNodeFrameIndex;
 | |
|   int EHRegSize = MFI.getObjectSize(FI);
 | |
| 
 | |
|   if (RestoreSP) {
 | |
|     // MOV32rm -EHRegSize(%ebp), %esp
 | |
|     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
 | |
|                  X86::EBP, true, -EHRegSize)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|   }
 | |
| 
 | |
|   unsigned UsedReg;
 | |
|   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
 | |
|   int EndOffset = -EHRegOffset - EHRegSize;
 | |
|   FuncInfo.EHRegNodeEndOffset = EndOffset;
 | |
| 
 | |
|   if (UsedReg == FramePtr) {
 | |
|     // ADD $offset, %ebp
 | |
|     unsigned ADDri = getADDriOpcode(false, EndOffset);
 | |
|     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
 | |
|         .addReg(FramePtr)
 | |
|         .addImm(EndOffset)
 | |
|         .setMIFlag(MachineInstr::FrameSetup)
 | |
|         ->getOperand(3)
 | |
|         .setIsDead();
 | |
|     assert(EndOffset >= 0 &&
 | |
|            "end of registration object above normal EBP position!");
 | |
|   } else if (UsedReg == BasePtr) {
 | |
|     // LEA offset(%ebp), %esi
 | |
|     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
 | |
|                  FramePtr, false, EndOffset)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|     // MOV32rm SavedEBPOffset(%esi), %ebp
 | |
|     assert(X86FI->getHasSEHFramePtrSave());
 | |
|     int Offset =
 | |
|         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
 | |
|     assert(UsedReg == BasePtr);
 | |
|     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
 | |
|                  UsedReg, true, Offset)
 | |
|         .setMIFlag(MachineInstr::FrameSetup);
 | |
|   } else {
 | |
|     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
 | |
|   }
 | |
|   return MBBI;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Struct used by orderFrameObjects to help sort the stack objects.
 | |
| struct X86FrameSortingObject {
 | |
|   bool IsValid = false;         // true if we care about this Object.
 | |
|   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
 | |
|   unsigned ObjectSize = 0;      // Size of Object in bytes.
 | |
|   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
 | |
|   unsigned ObjectNumUses = 0;   // Object static number of uses.
 | |
| };
 | |
| 
 | |
| // The comparison function we use for std::sort to order our local
 | |
| // stack symbols. The current algorithm is to use an estimated
 | |
| // "density". This takes into consideration the size and number of
 | |
| // uses each object has in order to roughly minimize code size.
 | |
| // So, for example, an object of size 16B that is referenced 5 times
 | |
| // will get higher priority than 4 4B objects referenced 1 time each.
 | |
| // It's not perfect and we may be able to squeeze a few more bytes out of
 | |
| // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
 | |
| // fringe end can have special consideration, given their size is less
 | |
| // important, etc.), but the algorithmic complexity grows too much to be
 | |
| // worth the extra gains we get. This gets us pretty close.
 | |
| // The final order leaves us with objects with highest priority going
 | |
| // at the end of our list.
 | |
| struct X86FrameSortingComparator {
 | |
|   inline bool operator()(const X86FrameSortingObject &A,
 | |
|                          const X86FrameSortingObject &B) {
 | |
|     uint64_t DensityAScaled, DensityBScaled;
 | |
| 
 | |
|     // For consistency in our comparison, all invalid objects are placed
 | |
|     // at the end. This also allows us to stop walking when we hit the
 | |
|     // first invalid item after it's all sorted.
 | |
|     if (!A.IsValid)
 | |
|       return false;
 | |
|     if (!B.IsValid)
 | |
|       return true;
 | |
| 
 | |
|     // The density is calculated by doing :
 | |
|     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
 | |
|     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
 | |
|     // Since this approach may cause inconsistencies in
 | |
|     // the floating point <, >, == comparisons, depending on the floating
 | |
|     // point model with which the compiler was built, we're going
 | |
|     // to scale both sides by multiplying with
 | |
|     // A.ObjectSize * B.ObjectSize. This ends up factoring away
 | |
|     // the division and, with it, the need for any floating point
 | |
|     // arithmetic.
 | |
|     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
 | |
|       static_cast<uint64_t>(B.ObjectSize);
 | |
|     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
 | |
|       static_cast<uint64_t>(A.ObjectSize);
 | |
| 
 | |
|     // If the two densities are equal, prioritize highest alignment
 | |
|     // objects. This allows for similar alignment objects
 | |
|     // to be packed together (given the same density).
 | |
|     // There's room for improvement here, also, since we can pack
 | |
|     // similar alignment (different density) objects next to each
 | |
|     // other to save padding. This will also require further
 | |
|     // complexity/iterations, and the overall gain isn't worth it,
 | |
|     // in general. Something to keep in mind, though.
 | |
|     if (DensityAScaled == DensityBScaled)
 | |
|       return A.ObjectAlignment < B.ObjectAlignment;
 | |
|     
 | |
|     return DensityAScaled < DensityBScaled;
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| // Order the symbols in the local stack.
 | |
| // We want to place the local stack objects in some sort of sensible order.
 | |
| // The heuristic we use is to try and pack them according to static number
 | |
| // of uses and size of object in order to minimize code size.
 | |
| void X86FrameLowering::orderFrameObjects(
 | |
|     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
| 
 | |
|   // Don't waste time if there's nothing to do.
 | |
|   if (ObjectsToAllocate.empty())
 | |
|     return;
 | |
| 
 | |
|   // Create an array of all MFI objects. We won't need all of these
 | |
|   // objects, but we're going to create a full array of them to make
 | |
|   // it easier to index into when we're counting "uses" down below.
 | |
|   // We want to be able to easily/cheaply access an object by simply
 | |
|   // indexing into it, instead of having to search for it every time.
 | |
|   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
 | |
| 
 | |
|   // Walk the objects we care about and mark them as such in our working
 | |
|   // struct.
 | |
|   for (auto &Obj : ObjectsToAllocate) {
 | |
|     SortingObjects[Obj].IsValid = true;
 | |
|     SortingObjects[Obj].ObjectIndex = Obj;
 | |
|     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
 | |
|     // Set the size.
 | |
|     int ObjectSize = MFI.getObjectSize(Obj);
 | |
|     if (ObjectSize == 0)
 | |
|       // Variable size. Just use 4.
 | |
|       SortingObjects[Obj].ObjectSize = 4;
 | |
|     else      
 | |
|       SortingObjects[Obj].ObjectSize = ObjectSize;
 | |
|   }
 | |
| 
 | |
|   // Count the number of uses for each object.
 | |
|   for (auto &MBB : MF) {
 | |
|     for (auto &MI : MBB) {
 | |
|       if (MI.isDebugValue())
 | |
|         continue;
 | |
|       for (const MachineOperand &MO : MI.operands()) {
 | |
|         // Check to see if it's a local stack symbol.
 | |
|         if (!MO.isFI())
 | |
|           continue;
 | |
|         int Index = MO.getIndex();
 | |
|         // Check to see if it falls within our range, and is tagged
 | |
|         // to require ordering.
 | |
|         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
 | |
|             SortingObjects[Index].IsValid)
 | |
|           SortingObjects[Index].ObjectNumUses++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
 | |
|   // info).
 | |
|   std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
 | |
|                    X86FrameSortingComparator());
 | |
| 
 | |
|   // Now modify the original list to represent the final order that
 | |
|   // we want. The order will depend on whether we're going to access them
 | |
|   // from the stack pointer or the frame pointer. For SP, the list should
 | |
|   // end up with the END containing objects that we want with smaller offsets.
 | |
|   // For FP, it should be flipped.
 | |
|   int i = 0;
 | |
|   for (auto &Obj : SortingObjects) {
 | |
|     // All invalid items are sorted at the end, so it's safe to stop.
 | |
|     if (!Obj.IsValid)
 | |
|       break;
 | |
|     ObjectsToAllocate[i++] = Obj.ObjectIndex;
 | |
|   }
 | |
| 
 | |
|   // Flip it if we're accessing off of the FP.
 | |
|   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
 | |
|     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
 | |
|   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
 | |
|   unsigned Offset = 16;
 | |
|   // RBP is immediately pushed.
 | |
|   Offset += SlotSize;
 | |
|   // All callee-saved registers are then pushed.
 | |
|   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
 | |
|   // Every funclet allocates enough stack space for the largest outgoing call.
 | |
|   Offset += getWinEHFuncletFrameSize(MF);
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| void X86FrameLowering::processFunctionBeforeFrameFinalized(
 | |
|     MachineFunction &MF, RegScavenger *RS) const {
 | |
|   // If this function isn't doing Win64-style C++ EH, we don't need to do
 | |
|   // anything.
 | |
|   const Function *Fn = MF.getFunction();
 | |
|   if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
 | |
|       classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
 | |
|     return;
 | |
| 
 | |
|   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
 | |
|   // relative to RSP after the prologue.  Find the offset of the last fixed
 | |
|   // object, so that we can allocate a slot immediately following it. If there
 | |
|   // were no fixed objects, use offset -SlotSize, which is immediately after the
 | |
|   // return address. Fixed objects have negative frame indices.
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
 | |
|   int64_t MinFixedObjOffset = -SlotSize;
 | |
|   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
 | |
|     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
 | |
| 
 | |
|   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
 | |
|     for (WinEHHandlerType &H : TBME.HandlerArray) {
 | |
|       int FrameIndex = H.CatchObj.FrameIndex;
 | |
|       if (FrameIndex != INT_MAX) {
 | |
|         // Ensure alignment.
 | |
|         unsigned Align = MFI.getObjectAlignment(FrameIndex);
 | |
|         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
 | |
|         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
 | |
|         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ensure alignment.
 | |
|   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
 | |
|   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
 | |
|   int UnwindHelpFI =
 | |
|       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
 | |
|   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
 | |
| 
 | |
|   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
 | |
|   // other frame setup instructions.
 | |
|   MachineBasicBlock &MBB = MF.front();
 | |
|   auto MBBI = MBB.begin();
 | |
|   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
 | |
|     ++MBBI;
 | |
| 
 | |
|   DebugLoc DL = MBB.findDebugLoc(MBBI);
 | |
|   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
 | |
|                     UnwindHelpFI)
 | |
|       .addImm(-2);
 | |
| }
 |