1738 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1738 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains code to lower X86 MachineInstrs to their corresponding
 | |
| // MCInst records.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86AsmPrinter.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86ShuffleDecodeConstantPool.h"
 | |
| #include "InstPrinter/X86ATTInstPrinter.h"
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "Utils/X86ShuffleDecode.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfoImpls.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Mangler.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCCodeEmitter.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCFixup.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/MC/MCInstBuilder.h"
 | |
| #include "llvm/MC/MCSection.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/MC/MCSymbolELF.h"
 | |
| #include "llvm/MC/MCSectionELF.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/ELF.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
 | |
| class X86MCInstLower {
 | |
|   MCContext &Ctx;
 | |
|   const MachineFunction &MF;
 | |
|   const TargetMachine &TM;
 | |
|   const MCAsmInfo &MAI;
 | |
|   X86AsmPrinter &AsmPrinter;
 | |
| public:
 | |
|   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
 | |
| 
 | |
|   Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
 | |
|                                           const MachineOperand &MO) const;
 | |
|   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
 | |
| 
 | |
|   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
 | |
|   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
 | |
| 
 | |
| private:
 | |
|   MachineModuleInfoMachO &getMachOMMI() const;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Emit a minimal sequence of nops spanning NumBytes bytes.
 | |
| static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
 | |
|                      const MCSubtargetInfo &STI);
 | |
| 
 | |
| void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
 | |
|                                                  const MCSubtargetInfo &STI,
 | |
|                                                  MCCodeEmitter *CodeEmitter) {
 | |
|   if (InShadow) {
 | |
|     SmallString<256> Code;
 | |
|     SmallVector<MCFixup, 4> Fixups;
 | |
|     raw_svector_ostream VecOS(Code);
 | |
|     CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
 | |
|     CurrentShadowSize += Code.size();
 | |
|     if (CurrentShadowSize >= RequiredShadowSize)
 | |
|       InShadow = false; // The shadow is big enough. Stop counting.
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
 | |
|     MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
 | |
|   if (InShadow && CurrentShadowSize < RequiredShadowSize) {
 | |
|     InShadow = false;
 | |
|     EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
 | |
|              MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
 | |
|   OutStreamer->EmitInstruction(Inst, getSubtargetInfo());
 | |
|   SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
 | |
| }
 | |
| 
 | |
| X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
 | |
|                                X86AsmPrinter &asmprinter)
 | |
|     : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
 | |
|       AsmPrinter(asmprinter) {}
 | |
| 
 | |
| MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
 | |
|   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
 | |
| /// operand to an MCSymbol.
 | |
| MCSymbol *X86MCInstLower::
 | |
| GetSymbolFromOperand(const MachineOperand &MO) const {
 | |
|   const DataLayout &DL = MF.getDataLayout();
 | |
|   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
 | |
| 
 | |
|   MCSymbol *Sym = nullptr;
 | |
|   SmallString<128> Name;
 | |
|   StringRef Suffix;
 | |
| 
 | |
|   switch (MO.getTargetFlags()) {
 | |
|   case X86II::MO_DLLIMPORT:
 | |
|     // Handle dllimport linkage.
 | |
|     Name += "__imp_";
 | |
|     break;
 | |
|   case X86II::MO_DARWIN_NONLAZY:
 | |
|   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
 | |
|     Suffix = "$non_lazy_ptr";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!Suffix.empty())
 | |
|     Name += DL.getPrivateGlobalPrefix();
 | |
| 
 | |
|   if (MO.isGlobal()) {
 | |
|     const GlobalValue *GV = MO.getGlobal();
 | |
|     AsmPrinter.getNameWithPrefix(Name, GV);
 | |
|   } else if (MO.isSymbol()) {
 | |
|     Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
 | |
|   } else if (MO.isMBB()) {
 | |
|     assert(Suffix.empty());
 | |
|     Sym = MO.getMBB()->getSymbol();
 | |
|   }
 | |
| 
 | |
|   Name += Suffix;
 | |
|   if (!Sym)
 | |
|     Sym = Ctx.getOrCreateSymbol(Name);
 | |
| 
 | |
|   // If the target flags on the operand changes the name of the symbol, do that
 | |
|   // before we return the symbol.
 | |
|   switch (MO.getTargetFlags()) {
 | |
|   default: break;
 | |
|   case X86II::MO_DARWIN_NONLAZY:
 | |
|   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
 | |
|     MachineModuleInfoImpl::StubValueTy &StubSym =
 | |
|       getMachOMMI().getGVStubEntry(Sym);
 | |
|     if (!StubSym.getPointer()) {
 | |
|       assert(MO.isGlobal() && "Extern symbol not handled yet");
 | |
|       StubSym =
 | |
|         MachineModuleInfoImpl::
 | |
|         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
 | |
|                     !MO.getGlobal()->hasInternalLinkage());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return Sym;
 | |
| }
 | |
| 
 | |
| MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
 | |
|                                              MCSymbol *Sym) const {
 | |
|   // FIXME: We would like an efficient form for this, so we don't have to do a
 | |
|   // lot of extra uniquing.
 | |
|   const MCExpr *Expr = nullptr;
 | |
|   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
 | |
| 
 | |
|   switch (MO.getTargetFlags()) {
 | |
|   default: llvm_unreachable("Unknown target flag on GV operand");
 | |
|   case X86II::MO_NO_FLAG:    // No flag.
 | |
|   // These affect the name of the symbol, not any suffix.
 | |
|   case X86II::MO_DARWIN_NONLAZY:
 | |
|   case X86II::MO_DLLIMPORT:
 | |
|     break;
 | |
| 
 | |
|   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
 | |
|   case X86II::MO_TLVP_PIC_BASE:
 | |
|     Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
 | |
|     // Subtract the pic base.
 | |
|     Expr = MCBinaryExpr::createSub(Expr,
 | |
|                                   MCSymbolRefExpr::create(MF.getPICBaseSymbol(),
 | |
|                                                            Ctx),
 | |
|                                    Ctx);
 | |
|     break;
 | |
|   case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
 | |
|   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
 | |
|   case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
 | |
|   case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
 | |
|   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
 | |
|   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
 | |
|   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
 | |
|   case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
 | |
|   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
 | |
|   case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
 | |
|   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
 | |
|   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
 | |
|   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
 | |
|   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
 | |
|   case X86II::MO_PIC_BASE_OFFSET:
 | |
|   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
 | |
|     Expr = MCSymbolRefExpr::create(Sym, Ctx);
 | |
|     // Subtract the pic base.
 | |
|     Expr = MCBinaryExpr::createSub(Expr,
 | |
|                             MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx),
 | |
|                                    Ctx);
 | |
|     if (MO.isJTI()) {
 | |
|       assert(MAI.doesSetDirectiveSuppressReloc());
 | |
|       // If .set directive is supported, use it to reduce the number of
 | |
|       // relocations the assembler will generate for differences between
 | |
|       // local labels. This is only safe when the symbols are in the same
 | |
|       // section so we are restricting it to jumptable references.
 | |
|       MCSymbol *Label = Ctx.createTempSymbol();
 | |
|       AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
 | |
|       Expr = MCSymbolRefExpr::create(Label, Ctx);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!Expr)
 | |
|     Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
 | |
| 
 | |
|   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
 | |
|     Expr = MCBinaryExpr::createAdd(Expr,
 | |
|                                    MCConstantExpr::create(MO.getOffset(), Ctx),
 | |
|                                    Ctx);
 | |
|   return MCOperand::createExpr(Expr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
 | |
| /// a short fixed-register form.
 | |
| static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
 | |
|   unsigned ImmOp = Inst.getNumOperands() - 1;
 | |
|   assert(Inst.getOperand(0).isReg() &&
 | |
|          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
 | |
|          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
 | |
|            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
 | |
|           Inst.getNumOperands() == 2) && "Unexpected instruction!");
 | |
| 
 | |
|   // Check whether the destination register can be fixed.
 | |
|   unsigned Reg = Inst.getOperand(0).getReg();
 | |
|   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
 | |
|     return;
 | |
| 
 | |
|   // If so, rewrite the instruction.
 | |
|   MCOperand Saved = Inst.getOperand(ImmOp);
 | |
|   Inst = MCInst();
 | |
|   Inst.setOpcode(Opcode);
 | |
|   Inst.addOperand(Saved);
 | |
| }
 | |
| 
 | |
| /// \brief If a movsx instruction has a shorter encoding for the used register
 | |
| /// simplify the instruction to use it instead.
 | |
| static void SimplifyMOVSX(MCInst &Inst) {
 | |
|   unsigned NewOpcode = 0;
 | |
|   unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
 | |
|   switch (Inst.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected instruction!");
 | |
|   case X86::MOVSX16rr8:  // movsbw %al, %ax   --> cbtw
 | |
|     if (Op0 == X86::AX && Op1 == X86::AL)
 | |
|       NewOpcode = X86::CBW;
 | |
|     break;
 | |
|   case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
 | |
|     if (Op0 == X86::EAX && Op1 == X86::AX)
 | |
|       NewOpcode = X86::CWDE;
 | |
|     break;
 | |
|   case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
 | |
|     if (Op0 == X86::RAX && Op1 == X86::EAX)
 | |
|       NewOpcode = X86::CDQE;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (NewOpcode != 0) {
 | |
|     Inst = MCInst();
 | |
|     Inst.setOpcode(NewOpcode);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Simplify things like MOV32rm to MOV32o32a.
 | |
| static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
 | |
|                                   unsigned Opcode) {
 | |
|   // Don't make these simplifications in 64-bit mode; other assemblers don't
 | |
|   // perform them because they make the code larger.
 | |
|   if (Printer.getSubtarget().is64Bit())
 | |
|     return;
 | |
| 
 | |
|   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
 | |
|   unsigned AddrBase = IsStore;
 | |
|   unsigned RegOp = IsStore ? 0 : 5;
 | |
|   unsigned AddrOp = AddrBase + 3;
 | |
|   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
 | |
|          Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
 | |
|          Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
 | |
|          Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
 | |
|          Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
 | |
|          (Inst.getOperand(AddrOp).isExpr() ||
 | |
|           Inst.getOperand(AddrOp).isImm()) &&
 | |
|          "Unexpected instruction!");
 | |
| 
 | |
|   // Check whether the destination register can be fixed.
 | |
|   unsigned Reg = Inst.getOperand(RegOp).getReg();
 | |
|   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
 | |
|     return;
 | |
| 
 | |
|   // Check whether this is an absolute address.
 | |
|   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
 | |
|   // to do this here.
 | |
|   bool Absolute = true;
 | |
|   if (Inst.getOperand(AddrOp).isExpr()) {
 | |
|     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
 | |
|     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
 | |
|       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
 | |
|         Absolute = false;
 | |
|   }
 | |
| 
 | |
|   if (Absolute &&
 | |
|       (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
 | |
|        Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
 | |
|        Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
 | |
|     return;
 | |
| 
 | |
|   // If so, rewrite the instruction.
 | |
|   MCOperand Saved = Inst.getOperand(AddrOp);
 | |
|   MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
 | |
|   Inst = MCInst();
 | |
|   Inst.setOpcode(Opcode);
 | |
|   Inst.addOperand(Saved);
 | |
|   Inst.addOperand(Seg);
 | |
| }
 | |
| 
 | |
| static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
 | |
|   return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
 | |
| }
 | |
| 
 | |
| Optional<MCOperand>
 | |
| X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
 | |
|                                     const MachineOperand &MO) const {
 | |
|   switch (MO.getType()) {
 | |
|   default:
 | |
|     MI->dump();
 | |
|     llvm_unreachable("unknown operand type");
 | |
|   case MachineOperand::MO_Register:
 | |
|     // Ignore all implicit register operands.
 | |
|     if (MO.isImplicit())
 | |
|       return None;
 | |
|     return MCOperand::createReg(MO.getReg());
 | |
|   case MachineOperand::MO_Immediate:
 | |
|     return MCOperand::createImm(MO.getImm());
 | |
|   case MachineOperand::MO_MachineBasicBlock:
 | |
|   case MachineOperand::MO_GlobalAddress:
 | |
|   case MachineOperand::MO_ExternalSymbol:
 | |
|     return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
 | |
|   case MachineOperand::MO_MCSymbol:
 | |
|     return LowerSymbolOperand(MO, MO.getMCSymbol());
 | |
|   case MachineOperand::MO_JumpTableIndex:
 | |
|     return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
 | |
|   case MachineOperand::MO_ConstantPoolIndex:
 | |
|     return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
 | |
|   case MachineOperand::MO_BlockAddress:
 | |
|     return LowerSymbolOperand(
 | |
|         MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
 | |
|   case MachineOperand::MO_RegisterMask:
 | |
|     // Ignore call clobbers.
 | |
|     return None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
 | |
|   OutMI.setOpcode(MI->getOpcode());
 | |
| 
 | |
|   for (const MachineOperand &MO : MI->operands())
 | |
|     if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
 | |
|       OutMI.addOperand(MaybeMCOp.getValue());
 | |
| 
 | |
|   // Handle a few special cases to eliminate operand modifiers.
 | |
| ReSimplify:
 | |
|   switch (OutMI.getOpcode()) {
 | |
|   case X86::LEA64_32r:
 | |
|   case X86::LEA64r:
 | |
|   case X86::LEA16r:
 | |
|   case X86::LEA32r:
 | |
|     // LEA should have a segment register, but it must be empty.
 | |
|     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
 | |
|            "Unexpected # of LEA operands");
 | |
|     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
 | |
|            "LEA has segment specified!");
 | |
|     break;
 | |
| 
 | |
|   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
 | |
|   // if one of the registers is extended, but other isn't.
 | |
|   case X86::VMOVZPQILo2PQIrr:
 | |
|   case X86::VMOVAPDrr:
 | |
|   case X86::VMOVAPDYrr:
 | |
|   case X86::VMOVAPSrr:
 | |
|   case X86::VMOVAPSYrr:
 | |
|   case X86::VMOVDQArr:
 | |
|   case X86::VMOVDQAYrr:
 | |
|   case X86::VMOVDQUrr:
 | |
|   case X86::VMOVDQUYrr:
 | |
|   case X86::VMOVUPDrr:
 | |
|   case X86::VMOVUPDYrr:
 | |
|   case X86::VMOVUPSrr:
 | |
|   case X86::VMOVUPSYrr: {
 | |
|     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
 | |
|         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
 | |
|       unsigned NewOpc;
 | |
|       switch (OutMI.getOpcode()) {
 | |
|       default: llvm_unreachable("Invalid opcode");
 | |
|       case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break;
 | |
|       case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break;
 | |
|       case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break;
 | |
|       case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break;
 | |
|       case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break;
 | |
|       case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break;
 | |
|       case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break;
 | |
|       case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break;
 | |
|       case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break;
 | |
|       case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break;
 | |
|       case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break;
 | |
|       case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break;
 | |
|       case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break;
 | |
|       }
 | |
|       OutMI.setOpcode(NewOpc);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case X86::VMOVSDrr:
 | |
|   case X86::VMOVSSrr: {
 | |
|     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
 | |
|         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
 | |
|       unsigned NewOpc;
 | |
|       switch (OutMI.getOpcode()) {
 | |
|       default: llvm_unreachable("Invalid opcode");
 | |
|       case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
 | |
|       case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
 | |
|       }
 | |
|       OutMI.setOpcode(NewOpc);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
 | |
|   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
 | |
|   // off all but the first operand (the callee).  FIXME: Change isel.
 | |
|   case X86::TAILJMPr64:
 | |
|   case X86::TAILJMPr64_REX:
 | |
|   case X86::CALL64r:
 | |
|   case X86::CALL64pcrel32: {
 | |
|     unsigned Opcode = OutMI.getOpcode();
 | |
|     MCOperand Saved = OutMI.getOperand(0);
 | |
|     OutMI = MCInst();
 | |
|     OutMI.setOpcode(Opcode);
 | |
|     OutMI.addOperand(Saved);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::EH_RETURN:
 | |
|   case X86::EH_RETURN64: {
 | |
|     OutMI = MCInst();
 | |
|     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::CLEANUPRET: {
 | |
|     // Replace CATCHRET with the appropriate RET.
 | |
|     OutMI = MCInst();
 | |
|     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::CATCHRET: {
 | |
|     // Replace CATCHRET with the appropriate RET.
 | |
|     const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
 | |
|     unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
 | |
|     OutMI = MCInst();
 | |
|     OutMI.setOpcode(getRetOpcode(Subtarget));
 | |
|     OutMI.addOperand(MCOperand::createReg(ReturnReg));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump instruction.
 | |
|   { unsigned Opcode;
 | |
|   case X86::TAILJMPr:   Opcode = X86::JMP32r; goto SetTailJmpOpcode;
 | |
|   case X86::TAILJMPd:
 | |
|   case X86::TAILJMPd64: Opcode = X86::JMP_1;  goto SetTailJmpOpcode;
 | |
|   case X86::TAILJMPd_CC:
 | |
|   case X86::TAILJMPd64_CC:
 | |
|     Opcode = X86::GetCondBranchFromCond(
 | |
|         static_cast<X86::CondCode>(MI->getOperand(1).getImm()));
 | |
|     goto SetTailJmpOpcode;
 | |
| 
 | |
|   SetTailJmpOpcode:
 | |
|     MCOperand Saved = OutMI.getOperand(0);
 | |
|     OutMI = MCInst();
 | |
|     OutMI.setOpcode(Opcode);
 | |
|     OutMI.addOperand(Saved);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::DEC16r:
 | |
|   case X86::DEC32r:
 | |
|   case X86::INC16r:
 | |
|   case X86::INC32r:
 | |
|     // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
 | |
|     if (!AsmPrinter.getSubtarget().is64Bit()) {
 | |
|       unsigned Opcode;
 | |
|       switch (OutMI.getOpcode()) {
 | |
|       default: llvm_unreachable("Invalid opcode");
 | |
|       case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
 | |
|       case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
 | |
|       case X86::INC16r: Opcode = X86::INC16r_alt; break;
 | |
|       case X86::INC32r: Opcode = X86::INC32r_alt; break;
 | |
|       }
 | |
|       OutMI.setOpcode(Opcode);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
 | |
|   // this with an ugly goto in case the resultant OR uses EAX and needs the
 | |
|   // short form.
 | |
|   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
 | |
|   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
 | |
|   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
 | |
|   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
 | |
|   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
 | |
|   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
 | |
|   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
 | |
|   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
 | |
|   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
 | |
| 
 | |
|   // Atomic load and store require a separate pseudo-inst because Acquire
 | |
|   // implies mayStore and Release implies mayLoad; fix these to regular MOV
 | |
|   // instructions here
 | |
|   case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
 | |
|   case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
 | |
|   case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
 | |
|   case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
 | |
|   case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
 | |
|   case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
 | |
|   case X86::RELEASE_ADD8mr:    OutMI.setOpcode(X86::ADD8mr); goto ReSimplify;
 | |
|   case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
 | |
|   case X86::RELEASE_ADD32mr:   OutMI.setOpcode(X86::ADD32mr); goto ReSimplify;
 | |
|   case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
 | |
|   case X86::RELEASE_ADD64mr:   OutMI.setOpcode(X86::ADD64mr); goto ReSimplify;
 | |
|   case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
 | |
|   case X86::RELEASE_AND8mr:    OutMI.setOpcode(X86::AND8mr); goto ReSimplify;
 | |
|   case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
 | |
|   case X86::RELEASE_AND32mr:   OutMI.setOpcode(X86::AND32mr); goto ReSimplify;
 | |
|   case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
 | |
|   case X86::RELEASE_AND64mr:   OutMI.setOpcode(X86::AND64mr); goto ReSimplify;
 | |
|   case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
 | |
|   case X86::RELEASE_OR8mr:     OutMI.setOpcode(X86::OR8mr); goto ReSimplify;
 | |
|   case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
 | |
|   case X86::RELEASE_OR32mr:    OutMI.setOpcode(X86::OR32mr); goto ReSimplify;
 | |
|   case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
 | |
|   case X86::RELEASE_OR64mr:    OutMI.setOpcode(X86::OR64mr); goto ReSimplify;
 | |
|   case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
 | |
|   case X86::RELEASE_XOR8mr:    OutMI.setOpcode(X86::XOR8mr); goto ReSimplify;
 | |
|   case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
 | |
|   case X86::RELEASE_XOR32mr:   OutMI.setOpcode(X86::XOR32mr); goto ReSimplify;
 | |
|   case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
 | |
|   case X86::RELEASE_XOR64mr:   OutMI.setOpcode(X86::XOR64mr); goto ReSimplify;
 | |
|   case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m); goto ReSimplify;
 | |
|   case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m); goto ReSimplify;
 | |
|   case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m); goto ReSimplify;
 | |
|   case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m); goto ReSimplify;
 | |
|   case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
 | |
|   case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
 | |
|   case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
 | |
|   case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
 | |
| 
 | |
|   // We don't currently select the correct instruction form for instructions
 | |
|   // which have a short %eax, etc. form. Handle this by custom lowering, for
 | |
|   // now.
 | |
|   //
 | |
|   // Note, we are currently not handling the following instructions:
 | |
|   // MOV64ao8, MOV64o8a
 | |
|   // XCHG16ar, XCHG32ar, XCHG64ar
 | |
|   case X86::MOV8mr_NOREX:
 | |
|   case X86::MOV8mr:
 | |
|   case X86::MOV8rm_NOREX:
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16mr:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32mr:
 | |
|   case X86::MOV32rm: {
 | |
|     unsigned NewOpc;
 | |
|     switch (OutMI.getOpcode()) {
 | |
|     default: llvm_unreachable("Invalid opcode");
 | |
|     case X86::MOV8mr_NOREX:
 | |
|     case X86::MOV8mr:     NewOpc = X86::MOV8o32a; break;
 | |
|     case X86::MOV8rm_NOREX:
 | |
|     case X86::MOV8rm:     NewOpc = X86::MOV8ao32; break;
 | |
|     case X86::MOV16mr:    NewOpc = X86::MOV16o32a; break;
 | |
|     case X86::MOV16rm:    NewOpc = X86::MOV16ao32; break;
 | |
|     case X86::MOV32mr:    NewOpc = X86::MOV32o32a; break;
 | |
|     case X86::MOV32rm:    NewOpc = X86::MOV32ao32; break;
 | |
|     }
 | |
|     SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
 | |
|   case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
 | |
|   case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
 | |
|   case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
 | |
|   case X86::OR8ri:  case X86::OR16ri:  case X86::OR32ri:  case X86::OR64ri32:
 | |
|   case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
 | |
|   case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
 | |
|   case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
 | |
|   case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
 | |
|     unsigned NewOpc;
 | |
|     switch (OutMI.getOpcode()) {
 | |
|     default: llvm_unreachable("Invalid opcode");
 | |
|     case X86::ADC8ri:     NewOpc = X86::ADC8i8;    break;
 | |
|     case X86::ADC16ri:    NewOpc = X86::ADC16i16;  break;
 | |
|     case X86::ADC32ri:    NewOpc = X86::ADC32i32;  break;
 | |
|     case X86::ADC64ri32:  NewOpc = X86::ADC64i32;  break;
 | |
|     case X86::ADD8ri:     NewOpc = X86::ADD8i8;    break;
 | |
|     case X86::ADD16ri:    NewOpc = X86::ADD16i16;  break;
 | |
|     case X86::ADD32ri:    NewOpc = X86::ADD32i32;  break;
 | |
|     case X86::ADD64ri32:  NewOpc = X86::ADD64i32;  break;
 | |
|     case X86::AND8ri:     NewOpc = X86::AND8i8;    break;
 | |
|     case X86::AND16ri:    NewOpc = X86::AND16i16;  break;
 | |
|     case X86::AND32ri:    NewOpc = X86::AND32i32;  break;
 | |
|     case X86::AND64ri32:  NewOpc = X86::AND64i32;  break;
 | |
|     case X86::CMP8ri:     NewOpc = X86::CMP8i8;    break;
 | |
|     case X86::CMP16ri:    NewOpc = X86::CMP16i16;  break;
 | |
|     case X86::CMP32ri:    NewOpc = X86::CMP32i32;  break;
 | |
|     case X86::CMP64ri32:  NewOpc = X86::CMP64i32;  break;
 | |
|     case X86::OR8ri:      NewOpc = X86::OR8i8;     break;
 | |
|     case X86::OR16ri:     NewOpc = X86::OR16i16;   break;
 | |
|     case X86::OR32ri:     NewOpc = X86::OR32i32;   break;
 | |
|     case X86::OR64ri32:   NewOpc = X86::OR64i32;   break;
 | |
|     case X86::SBB8ri:     NewOpc = X86::SBB8i8;    break;
 | |
|     case X86::SBB16ri:    NewOpc = X86::SBB16i16;  break;
 | |
|     case X86::SBB32ri:    NewOpc = X86::SBB32i32;  break;
 | |
|     case X86::SBB64ri32:  NewOpc = X86::SBB64i32;  break;
 | |
|     case X86::SUB8ri:     NewOpc = X86::SUB8i8;    break;
 | |
|     case X86::SUB16ri:    NewOpc = X86::SUB16i16;  break;
 | |
|     case X86::SUB32ri:    NewOpc = X86::SUB32i32;  break;
 | |
|     case X86::SUB64ri32:  NewOpc = X86::SUB64i32;  break;
 | |
|     case X86::TEST8ri:    NewOpc = X86::TEST8i8;   break;
 | |
|     case X86::TEST16ri:   NewOpc = X86::TEST16i16; break;
 | |
|     case X86::TEST32ri:   NewOpc = X86::TEST32i32; break;
 | |
|     case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
 | |
|     case X86::XOR8ri:     NewOpc = X86::XOR8i8;    break;
 | |
|     case X86::XOR16ri:    NewOpc = X86::XOR16i16;  break;
 | |
|     case X86::XOR32ri:    NewOpc = X86::XOR32i32;  break;
 | |
|     case X86::XOR64ri32:  NewOpc = X86::XOR64i32;  break;
 | |
|     }
 | |
|     SimplifyShortImmForm(OutMI, NewOpc);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Try to shrink some forms of movsx.
 | |
|   case X86::MOVSX16rr8:
 | |
|   case X86::MOVSX32rr16:
 | |
|   case X86::MOVSX64rr32:
 | |
|     SimplifyMOVSX(OutMI);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
 | |
|                                  const MachineInstr &MI) {
 | |
| 
 | |
|   bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
 | |
|                   MI.getOpcode() == X86::TLS_base_addr64;
 | |
| 
 | |
|   bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
 | |
| 
 | |
|   MCContext &context = OutStreamer->getContext();
 | |
| 
 | |
|   if (needsPadding)
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
 | |
| 
 | |
|   MCSymbolRefExpr::VariantKind SRVK;
 | |
|   switch (MI.getOpcode()) {
 | |
|     case X86::TLS_addr32:
 | |
|     case X86::TLS_addr64:
 | |
|       SRVK = MCSymbolRefExpr::VK_TLSGD;
 | |
|       break;
 | |
|     case X86::TLS_base_addr32:
 | |
|       SRVK = MCSymbolRefExpr::VK_TLSLDM;
 | |
|       break;
 | |
|     case X86::TLS_base_addr64:
 | |
|       SRVK = MCSymbolRefExpr::VK_TLSLD;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("unexpected opcode");
 | |
|   }
 | |
| 
 | |
|   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
 | |
|   const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context);
 | |
| 
 | |
|   MCInst LEA;
 | |
|   if (is64Bits) {
 | |
|     LEA.setOpcode(X86::LEA64r);
 | |
|     LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest
 | |
|     LEA.addOperand(MCOperand::createReg(X86::RIP)); // base
 | |
|     LEA.addOperand(MCOperand::createImm(1));        // scale
 | |
|     LEA.addOperand(MCOperand::createReg(0));        // index
 | |
|     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
 | |
|     LEA.addOperand(MCOperand::createReg(0));        // seg
 | |
|   } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
 | |
|     LEA.setOpcode(X86::LEA32r);
 | |
|     LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
 | |
|     LEA.addOperand(MCOperand::createReg(X86::EBX)); // base
 | |
|     LEA.addOperand(MCOperand::createImm(1));        // scale
 | |
|     LEA.addOperand(MCOperand::createReg(0));        // index
 | |
|     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
 | |
|     LEA.addOperand(MCOperand::createReg(0));        // seg
 | |
|   } else {
 | |
|     LEA.setOpcode(X86::LEA32r);
 | |
|     LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
 | |
|     LEA.addOperand(MCOperand::createReg(0));        // base
 | |
|     LEA.addOperand(MCOperand::createImm(1));        // scale
 | |
|     LEA.addOperand(MCOperand::createReg(X86::EBX)); // index
 | |
|     LEA.addOperand(MCOperand::createExpr(symRef));  // disp
 | |
|     LEA.addOperand(MCOperand::createReg(0));        // seg
 | |
|   }
 | |
|   EmitAndCountInstruction(LEA);
 | |
| 
 | |
|   if (needsPadding) {
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
 | |
|   }
 | |
| 
 | |
|   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
 | |
|   MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name);
 | |
|   const MCSymbolRefExpr *tlsRef =
 | |
|     MCSymbolRefExpr::create(tlsGetAddr,
 | |
|                             MCSymbolRefExpr::VK_PLT,
 | |
|                             context);
 | |
| 
 | |
|   EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
 | |
|                                                  : X86::CALLpcrel32)
 | |
|                             .addExpr(tlsRef));
 | |
| }
 | |
| 
 | |
| /// \brief Emit the largest nop instruction smaller than or equal to \p NumBytes
 | |
| /// bytes.  Return the size of nop emitted.
 | |
| static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
 | |
|                         const MCSubtargetInfo &STI) {
 | |
|   // This works only for 64bit. For 32bit we have to do additional checking if
 | |
|   // the CPU supports multi-byte nops.
 | |
|   assert(Is64Bit && "EmitNops only supports X86-64");
 | |
| 
 | |
|   unsigned NopSize;
 | |
|   unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
 | |
|   Opc = IndexReg = Displacement = SegmentReg = 0;
 | |
|   BaseReg = X86::RAX;
 | |
|   ScaleVal = 1;
 | |
|   switch (NumBytes) {
 | |
|   case  0: llvm_unreachable("Zero nops?"); break;
 | |
|   case  1: NopSize = 1; Opc = X86::NOOP; break;
 | |
|   case  2: NopSize = 2; Opc = X86::XCHG16ar; break;
 | |
|   case  3: NopSize = 3; Opc = X86::NOOPL; break;
 | |
|   case  4: NopSize = 4; Opc = X86::NOOPL; Displacement = 8; break;
 | |
|   case  5: NopSize = 5; Opc = X86::NOOPL; Displacement = 8;
 | |
|            IndexReg = X86::RAX; break;
 | |
|   case  6: NopSize = 6; Opc = X86::NOOPW; Displacement = 8;
 | |
|            IndexReg = X86::RAX; break;
 | |
|   case  7: NopSize = 7; Opc = X86::NOOPL; Displacement = 512; break;
 | |
|   case  8: NopSize = 8; Opc = X86::NOOPL; Displacement = 512;
 | |
|            IndexReg = X86::RAX; break;
 | |
|   case  9: NopSize = 9; Opc = X86::NOOPW; Displacement = 512;
 | |
|            IndexReg = X86::RAX; break;
 | |
|   default: NopSize = 10; Opc = X86::NOOPW; Displacement = 512;
 | |
|            IndexReg = X86::RAX; SegmentReg = X86::CS; break;
 | |
|   }
 | |
| 
 | |
|   unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
 | |
|   NopSize += NumPrefixes;
 | |
|   for (unsigned i = 0; i != NumPrefixes; ++i)
 | |
|     OS.EmitBytes("\x66");
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode");
 | |
|     break;
 | |
|   case X86::NOOP:
 | |
|     OS.EmitInstruction(MCInstBuilder(Opc), STI);
 | |
|     break;
 | |
|   case X86::XCHG16ar:
 | |
|     OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
 | |
|     break;
 | |
|   case X86::NOOPL:
 | |
|   case X86::NOOPW:
 | |
|     OS.EmitInstruction(MCInstBuilder(Opc)
 | |
|                            .addReg(BaseReg)
 | |
|                            .addImm(ScaleVal)
 | |
|                            .addReg(IndexReg)
 | |
|                            .addImm(Displacement)
 | |
|                            .addReg(SegmentReg),
 | |
|                        STI);
 | |
|     break;
 | |
|   }
 | |
|   assert(NopSize <= NumBytes && "We overemitted?");
 | |
|   return NopSize;
 | |
| }
 | |
| 
 | |
| /// \brief Emit the optimal amount of multi-byte nops on X86.
 | |
| static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
 | |
|                      const MCSubtargetInfo &STI) {
 | |
|   unsigned NopsToEmit = NumBytes;
 | |
|   (void)NopsToEmit;
 | |
|   while (NumBytes) {
 | |
|     NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
 | |
|     assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
 | |
|                                     X86MCInstLower &MCIL) {
 | |
|   assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
 | |
| 
 | |
|   StatepointOpers SOpers(&MI);
 | |
|   if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
 | |
|     EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
 | |
|              getSubtargetInfo());
 | |
|   } else {
 | |
|     // Lower call target and choose correct opcode
 | |
|     const MachineOperand &CallTarget = SOpers.getCallTarget();
 | |
|     MCOperand CallTargetMCOp;
 | |
|     unsigned CallOpcode;
 | |
|     switch (CallTarget.getType()) {
 | |
|     case MachineOperand::MO_GlobalAddress:
 | |
|     case MachineOperand::MO_ExternalSymbol:
 | |
|       CallTargetMCOp = MCIL.LowerSymbolOperand(
 | |
|           CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
 | |
|       CallOpcode = X86::CALL64pcrel32;
 | |
|       // Currently, we only support relative addressing with statepoints.
 | |
|       // Otherwise, we'll need a scratch register to hold the target
 | |
|       // address.  You'll fail asserts during load & relocation if this
 | |
|       // symbol is to far away. (TODO: support non-relative addressing)
 | |
|       break;
 | |
|     case MachineOperand::MO_Immediate:
 | |
|       CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
 | |
|       CallOpcode = X86::CALL64pcrel32;
 | |
|       // Currently, we only support relative addressing with statepoints.
 | |
|       // Otherwise, we'll need a scratch register to hold the target
 | |
|       // immediate.  You'll fail asserts during load & relocation if this
 | |
|       // address is to far away. (TODO: support non-relative addressing)
 | |
|       break;
 | |
|     case MachineOperand::MO_Register:
 | |
|       CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
 | |
|       CallOpcode = X86::CALL64r;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Unsupported operand type in statepoint call target");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Emit call
 | |
|     MCInst CallInst;
 | |
|     CallInst.setOpcode(CallOpcode);
 | |
|     CallInst.addOperand(CallTargetMCOp);
 | |
|     OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
 | |
|   }
 | |
| 
 | |
|   // Record our statepoint node in the same section used by STACKMAP
 | |
|   // and PATCHPOINT
 | |
|   SM.recordStatepoint(MI);
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerFAULTING_LOAD_OP(const MachineInstr &MI,
 | |
|                                        X86MCInstLower &MCIL) {
 | |
|   // FAULTING_LOAD_OP <def>, <MBB handler>, <load opcode>, <load operands>
 | |
| 
 | |
|   unsigned LoadDefRegister = MI.getOperand(0).getReg();
 | |
|   MCSymbol *HandlerLabel = MI.getOperand(1).getMBB()->getSymbol();
 | |
|   unsigned LoadOpcode = MI.getOperand(2).getImm();
 | |
|   unsigned LoadOperandsBeginIdx = 3;
 | |
| 
 | |
|   FM.recordFaultingOp(FaultMaps::FaultingLoad, HandlerLabel);
 | |
| 
 | |
|   MCInst LoadMI;
 | |
|   LoadMI.setOpcode(LoadOpcode);
 | |
| 
 | |
|   if (LoadDefRegister != X86::NoRegister)
 | |
|     LoadMI.addOperand(MCOperand::createReg(LoadDefRegister));
 | |
| 
 | |
|   for (auto I = MI.operands_begin() + LoadOperandsBeginIdx,
 | |
|             E = MI.operands_end();
 | |
|        I != E; ++I)
 | |
|     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, *I))
 | |
|       LoadMI.addOperand(MaybeOperand.getValue());
 | |
| 
 | |
|   OutStreamer->EmitInstruction(LoadMI, getSubtargetInfo());
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
 | |
|                                       X86MCInstLower &MCIL) {
 | |
|   // PATCHABLE_OP minsize, opcode, operands
 | |
| 
 | |
|   unsigned MinSize = MI.getOperand(0).getImm();
 | |
|   unsigned Opcode = MI.getOperand(1).getImm();
 | |
| 
 | |
|   MCInst MCI;
 | |
|   MCI.setOpcode(Opcode);
 | |
|   for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
 | |
|     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
 | |
|       MCI.addOperand(MaybeOperand.getValue());
 | |
| 
 | |
|   SmallString<256> Code;
 | |
|   SmallVector<MCFixup, 4> Fixups;
 | |
|   raw_svector_ostream VecOS(Code);
 | |
|   CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
 | |
| 
 | |
|   if (Code.size() < MinSize) {
 | |
|     if (MinSize == 2 && Opcode == X86::PUSH64r) {
 | |
|       // This is an optimization that lets us get away without emitting a nop in
 | |
|       // many cases.
 | |
|       //
 | |
|       // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %R9) takes two
 | |
|       // bytes too, so the check on MinSize is important.
 | |
|       MCI.setOpcode(X86::PUSH64rmr);
 | |
|     } else {
 | |
|       unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
 | |
|                                  getSubtargetInfo());
 | |
|       assert(NopSize == MinSize && "Could not implement MinSize!");
 | |
|       (void) NopSize;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
 | |
| }
 | |
| 
 | |
| // Lower a stackmap of the form:
 | |
| // <id>, <shadowBytes>, ...
 | |
| void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
 | |
|   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
 | |
|   SM.recordStackMap(MI);
 | |
|   unsigned NumShadowBytes = MI.getOperand(1).getImm();
 | |
|   SMShadowTracker.reset(NumShadowBytes);
 | |
| }
 | |
| 
 | |
| // Lower a patchpoint of the form:
 | |
| // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
 | |
| void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
 | |
|                                     X86MCInstLower &MCIL) {
 | |
|   assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
 | |
| 
 | |
|   SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
 | |
| 
 | |
|   SM.recordPatchPoint(MI);
 | |
| 
 | |
|   PatchPointOpers opers(&MI);
 | |
|   unsigned ScratchIdx = opers.getNextScratchIdx();
 | |
|   unsigned EncodedBytes = 0;
 | |
|   const MachineOperand &CalleeMO = opers.getCallTarget();
 | |
| 
 | |
|   // Check for null target. If target is non-null (i.e. is non-zero or is
 | |
|   // symbolic) then emit a call.
 | |
|   if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
 | |
|     MCOperand CalleeMCOp;
 | |
|     switch (CalleeMO.getType()) {
 | |
|     default:
 | |
|       /// FIXME: Add a verifier check for bad callee types.
 | |
|       llvm_unreachable("Unrecognized callee operand type.");
 | |
|     case MachineOperand::MO_Immediate:
 | |
|       if (CalleeMO.getImm())
 | |
|         CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
 | |
|       break;
 | |
|     case MachineOperand::MO_ExternalSymbol:
 | |
|     case MachineOperand::MO_GlobalAddress:
 | |
|       CalleeMCOp =
 | |
|         MCIL.LowerSymbolOperand(CalleeMO,
 | |
|                                 MCIL.GetSymbolFromOperand(CalleeMO));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Emit MOV to materialize the target address and the CALL to target.
 | |
|     // This is encoded with 12-13 bytes, depending on which register is used.
 | |
|     unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
 | |
|     if (X86II::isX86_64ExtendedReg(ScratchReg))
 | |
|       EncodedBytes = 13;
 | |
|     else
 | |
|       EncodedBytes = 12;
 | |
| 
 | |
|     EmitAndCountInstruction(
 | |
|         MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
 | |
|   }
 | |
| 
 | |
|   // Emit padding.
 | |
|   unsigned NumBytes = opers.getNumPatchBytes();
 | |
|   assert(NumBytes >= EncodedBytes &&
 | |
|          "Patchpoint can't request size less than the length of a call.");
 | |
| 
 | |
|   EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
 | |
|            getSubtargetInfo());
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
 | |
|                                                   X86MCInstLower &MCIL) {
 | |
|   // We want to emit the following pattern:
 | |
|   //
 | |
|   //   .p2align 1, ...
 | |
|   // .Lxray_sled_N:
 | |
|   //   jmp .tmpN
 | |
|   //   # 9 bytes worth of noops
 | |
|   // .tmpN
 | |
|   //
 | |
|   // We need the 9 bytes because at runtime, we'd be patching over the full 11
 | |
|   // bytes with the following pattern:
 | |
|   //
 | |
|   //   mov %r10, <function id, 32-bit>   // 6 bytes
 | |
|   //   call <relative offset, 32-bits>   // 5 bytes
 | |
|   //
 | |
|   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
 | |
|   OutStreamer->EmitCodeAlignment(2);
 | |
|   OutStreamer->EmitLabel(CurSled);
 | |
|   auto Target = OutContext.createTempSymbol();
 | |
| 
 | |
|   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
 | |
|   // an operand (computed as an offset from the jmp instruction).
 | |
|   // FIXME: Find another less hacky way do force the relative jump.
 | |
|   OutStreamer->EmitBytes("\xeb\x09");
 | |
|   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
 | |
|   OutStreamer->EmitLabel(Target);
 | |
|   recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
 | |
|                                        X86MCInstLower &MCIL) {
 | |
|   // Since PATCHABLE_RET takes the opcode of the return statement as an
 | |
|   // argument, we use that to emit the correct form of the RET that we want.
 | |
|   // i.e. when we see this:
 | |
|   //
 | |
|   //   PATCHABLE_RET X86::RET ...
 | |
|   //
 | |
|   // We should emit the RET followed by sleds.
 | |
|   //
 | |
|   //   .p2align 1, ...
 | |
|   // .Lxray_sled_N:
 | |
|   //   ret  # or equivalent instruction
 | |
|   //   # 10 bytes worth of noops
 | |
|   //
 | |
|   // This just makes sure that the alignment for the next instruction is 2.
 | |
|   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
 | |
|   OutStreamer->EmitCodeAlignment(2);
 | |
|   OutStreamer->EmitLabel(CurSled);
 | |
|   unsigned OpCode = MI.getOperand(0).getImm();
 | |
|   MCInst Ret;
 | |
|   Ret.setOpcode(OpCode);
 | |
|   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
 | |
|     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
 | |
|       Ret.addOperand(MaybeOperand.getValue());
 | |
|   OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
 | |
|   EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
 | |
|   recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, X86MCInstLower &MCIL) {
 | |
|   // Like PATCHABLE_RET, we have the actual instruction in the operands to this
 | |
|   // instruction so we lower that particular instruction and its operands.
 | |
|   // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
 | |
|   // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
 | |
|   // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
 | |
|   // tail call much like how we have it in PATCHABLE_RET.
 | |
|   auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
 | |
|   OutStreamer->EmitCodeAlignment(2);
 | |
|   OutStreamer->EmitLabel(CurSled);
 | |
|   auto Target = OutContext.createTempSymbol();
 | |
| 
 | |
|   // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
 | |
|   // an operand (computed as an offset from the jmp instruction).
 | |
|   // FIXME: Find another less hacky way do force the relative jump.
 | |
|   OutStreamer->EmitBytes("\xeb\x09");
 | |
|   EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
 | |
|   OutStreamer->EmitLabel(Target);
 | |
|   recordSled(CurSled, MI, SledKind::TAIL_CALL);
 | |
| 
 | |
|   unsigned OpCode = MI.getOperand(0).getImm();
 | |
|   MCInst TC;
 | |
|   TC.setOpcode(OpCode);
 | |
| 
 | |
|   // Before emitting the instruction, add a comment to indicate that this is
 | |
|   // indeed a tail call.
 | |
|   OutStreamer->AddComment("TAILCALL");
 | |
|   for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
 | |
|     if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
 | |
|       TC.addOperand(MaybeOperand.getValue());
 | |
|   OutStreamer->EmitInstruction(TC, getSubtargetInfo());
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::EmitXRayTable() {
 | |
|   if (Sleds.empty())
 | |
|     return;
 | |
|   if (Subtarget->isTargetELF()) {
 | |
|     auto PrevSection = OutStreamer->getCurrentSectionOnly();
 | |
|     auto Fn = MF->getFunction();
 | |
|     MCSection *Section = nullptr;
 | |
|     if (Fn->hasComdat()) {
 | |
|       Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
 | |
|                                          ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
 | |
|                                          Fn->getComdat()->getName());
 | |
|     } else {
 | |
|       Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
 | |
|                                          ELF::SHF_ALLOC);
 | |
|     }
 | |
| 
 | |
|     // Before we switch over, we force a reference to a label inside the
 | |
|     // xray_instr_map section. Since EmitXRayTable() is always called just
 | |
|     // before the function's end, we assume that this is happening after the
 | |
|     // last return instruction.
 | |
|     //
 | |
|     // We then align the reference to 16 byte boundaries, which we determined
 | |
|     // experimentally to be beneficial to avoid causing decoder stalls.
 | |
|     MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true);
 | |
|     OutStreamer->EmitCodeAlignment(16);
 | |
|     OutStreamer->EmitSymbolValue(Tmp, 8, false);
 | |
|     OutStreamer->SwitchSection(Section);
 | |
|     OutStreamer->EmitLabel(Tmp);
 | |
|     for (const auto &Sled : Sleds) {
 | |
|       OutStreamer->EmitSymbolValue(Sled.Sled, 8);
 | |
|       OutStreamer->EmitSymbolValue(CurrentFnSym, 8);
 | |
|       auto Kind = static_cast<uint8_t>(Sled.Kind);
 | |
|       OutStreamer->EmitBytes(
 | |
|           StringRef(reinterpret_cast<const char *>(&Kind), 1));
 | |
|       OutStreamer->EmitBytes(
 | |
|           StringRef(reinterpret_cast<const char *>(&Sled.AlwaysInstrument), 1));
 | |
|       OutStreamer->EmitZeros(14);
 | |
|     }
 | |
|     OutStreamer->SwitchSection(PrevSection);
 | |
|   }
 | |
|   Sleds.clear();
 | |
| }
 | |
| 
 | |
| // Returns instruction preceding MBBI in MachineFunction.
 | |
| // If MBBI is the first instruction of the first basic block, returns null.
 | |
| static MachineBasicBlock::const_iterator
 | |
| PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
 | |
|   const MachineBasicBlock *MBB = MBBI->getParent();
 | |
|   while (MBBI == MBB->begin()) {
 | |
|     if (MBB == &MBB->getParent()->front())
 | |
|       return MachineBasicBlock::const_iterator();
 | |
|     MBB = MBB->getPrevNode();
 | |
|     MBBI = MBB->end();
 | |
|   }
 | |
|   return --MBBI;
 | |
| }
 | |
| 
 | |
| static const Constant *getConstantFromPool(const MachineInstr &MI,
 | |
|                                            const MachineOperand &Op) {
 | |
|   if (!Op.isCPI())
 | |
|     return nullptr;
 | |
| 
 | |
|   ArrayRef<MachineConstantPoolEntry> Constants =
 | |
|       MI.getParent()->getParent()->getConstantPool()->getConstants();
 | |
|   const MachineConstantPoolEntry &ConstantEntry =
 | |
|       Constants[Op.getIndex()];
 | |
| 
 | |
|   // Bail if this is a machine constant pool entry, we won't be able to dig out
 | |
|   // anything useful.
 | |
|   if (ConstantEntry.isMachineConstantPoolEntry())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
 | |
|   assert((!C || ConstantEntry.getType() == C->getType()) &&
 | |
|          "Expected a constant of the same type!");
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| static std::string getShuffleComment(const MachineOperand &DstOp,
 | |
|                                      const MachineOperand &SrcOp1,
 | |
|                                      const MachineOperand &SrcOp2,
 | |
|                                      ArrayRef<int> Mask) {
 | |
|   std::string Comment;
 | |
| 
 | |
|   // Compute the name for a register. This is really goofy because we have
 | |
|   // multiple instruction printers that could (in theory) use different
 | |
|   // names. Fortunately most people use the ATT style (outside of Windows)
 | |
|   // and they actually agree on register naming here. Ultimately, this is
 | |
|   // a comment, and so its OK if it isn't perfect.
 | |
|   auto GetRegisterName = [](unsigned RegNum) -> StringRef {
 | |
|     return X86ATTInstPrinter::getRegisterName(RegNum);
 | |
|   };
 | |
| 
 | |
|   // TODO: Add support for specifying an AVX512 style mask register in the comment.
 | |
|   StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
 | |
|   StringRef Src1Name =
 | |
|       SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
 | |
|   StringRef Src2Name =
 | |
|       SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
 | |
| 
 | |
|   // One source operand, fix the mask to print all elements in one span.
 | |
|   SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
 | |
|   if (Src1Name == Src2Name)
 | |
|     for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
 | |
|       if (ShuffleMask[i] >= e)
 | |
|         ShuffleMask[i] -= e;
 | |
| 
 | |
|   raw_string_ostream CS(Comment);
 | |
|   CS << DstName << " = ";
 | |
|   for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
 | |
|     if (i != 0)
 | |
|       CS << ",";
 | |
|     if (ShuffleMask[i] == SM_SentinelZero) {
 | |
|       CS << "zero";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, it must come from src1 or src2.  Print the span of elements
 | |
|     // that comes from this src.
 | |
|     bool isSrc1 = ShuffleMask[i] < (int)e;
 | |
|     CS << (isSrc1 ? Src1Name : Src2Name) << '[';
 | |
| 
 | |
|     bool IsFirst = true;
 | |
|     while (i != e && ShuffleMask[i] != SM_SentinelZero &&
 | |
|            (ShuffleMask[i] < (int)e) == isSrc1) {
 | |
|       if (!IsFirst)
 | |
|         CS << ',';
 | |
|       else
 | |
|         IsFirst = false;
 | |
|       if (ShuffleMask[i] == SM_SentinelUndef)
 | |
|         CS << "u";
 | |
|       else
 | |
|         CS << ShuffleMask[i] % (int)e;
 | |
|       ++i;
 | |
|     }
 | |
|     CS << ']';
 | |
|     --i; // For loop increments element #.
 | |
|   }
 | |
|   CS.flush();
 | |
| 
 | |
|   return Comment;
 | |
| }
 | |
| 
 | |
| void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
 | |
|   X86MCInstLower MCInstLowering(*MF, *this);
 | |
|   const X86RegisterInfo *RI = MF->getSubtarget<X86Subtarget>().getRegisterInfo();
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   case TargetOpcode::DBG_VALUE:
 | |
|     llvm_unreachable("Should be handled target independently");
 | |
| 
 | |
|   // Emit nothing here but a comment if we can.
 | |
|   case X86::Int_MemBarrier:
 | |
|     OutStreamer->emitRawComment("MEMBARRIER");
 | |
|     return;
 | |
| 
 | |
| 
 | |
|   case X86::EH_RETURN:
 | |
|   case X86::EH_RETURN64: {
 | |
|     // Lower these as normal, but add some comments.
 | |
|     unsigned Reg = MI->getOperand(0).getReg();
 | |
|     OutStreamer->AddComment(StringRef("eh_return, addr: %") +
 | |
|                             X86ATTInstPrinter::getRegisterName(Reg));
 | |
|     break;
 | |
|   }
 | |
|   case X86::CLEANUPRET: {
 | |
|     // Lower these as normal, but add some comments.
 | |
|     OutStreamer->AddComment("CLEANUPRET");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::CATCHRET: {
 | |
|     // Lower these as normal, but add some comments.
 | |
|     OutStreamer->AddComment("CATCHRET");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::TAILJMPr:
 | |
|   case X86::TAILJMPm:
 | |
|   case X86::TAILJMPd:
 | |
|   case X86::TAILJMPd_CC:
 | |
|   case X86::TAILJMPr64:
 | |
|   case X86::TAILJMPm64:
 | |
|   case X86::TAILJMPd64:
 | |
|   case X86::TAILJMPd64_CC:
 | |
|   case X86::TAILJMPr64_REX:
 | |
|   case X86::TAILJMPm64_REX:
 | |
|     // Lower these as normal, but add some comments.
 | |
|     OutStreamer->AddComment("TAILCALL");
 | |
|     break;
 | |
| 
 | |
|   case X86::TLS_addr32:
 | |
|   case X86::TLS_addr64:
 | |
|   case X86::TLS_base_addr32:
 | |
|   case X86::TLS_base_addr64:
 | |
|     return LowerTlsAddr(MCInstLowering, *MI);
 | |
| 
 | |
|   case X86::MOVPC32r: {
 | |
|     // This is a pseudo op for a two instruction sequence with a label, which
 | |
|     // looks like:
 | |
|     //     call "L1$pb"
 | |
|     // "L1$pb":
 | |
|     //     popl %esi
 | |
| 
 | |
|     // Emit the call.
 | |
|     MCSymbol *PICBase = MF->getPICBaseSymbol();
 | |
|     // FIXME: We would like an efficient form for this, so we don't have to do a
 | |
|     // lot of extra uniquing.
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32)
 | |
|       .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
 | |
| 
 | |
|     const X86FrameLowering* FrameLowering =
 | |
|         MF->getSubtarget<X86Subtarget>().getFrameLowering();
 | |
|     bool hasFP = FrameLowering->hasFP(*MF);
 | |
|     
 | |
|     // TODO: This is needed only if we require precise CFA.
 | |
|     bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
 | |
|                                !OutStreamer->getDwarfFrameInfos().back().End;
 | |
| 
 | |
|     int stackGrowth = -RI->getSlotSize();
 | |
| 
 | |
|     if (HasActiveDwarfFrame && !hasFP) {
 | |
|       OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
 | |
|     }
 | |
| 
 | |
|     // Emit the label.
 | |
|     OutStreamer->EmitLabel(PICBase);
 | |
| 
 | |
|     // popl $reg
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::POP32r)
 | |
|                             .addReg(MI->getOperand(0).getReg()));
 | |
| 
 | |
|     if (HasActiveDwarfFrame && !hasFP) {
 | |
|       OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86::ADD32ri: {
 | |
|     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
 | |
|     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
 | |
|       break;
 | |
| 
 | |
|     // Okay, we have something like:
 | |
|     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
 | |
| 
 | |
|     // For this, we want to print something like:
 | |
|     //   MYGLOBAL + (. - PICBASE)
 | |
|     // However, we can't generate a ".", so just emit a new label here and refer
 | |
|     // to it.
 | |
|     MCSymbol *DotSym = OutContext.createTempSymbol();
 | |
|     OutStreamer->EmitLabel(DotSym);
 | |
| 
 | |
|     // Now that we have emitted the label, lower the complex operand expression.
 | |
|     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
 | |
| 
 | |
|     const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
 | |
|     const MCExpr *PICBase =
 | |
|       MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
 | |
|     DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
 | |
| 
 | |
|     DotExpr = MCBinaryExpr::createAdd(MCSymbolRefExpr::create(OpSym,OutContext),
 | |
|                                       DotExpr, OutContext);
 | |
| 
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
 | |
|       .addReg(MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(1).getReg())
 | |
|       .addExpr(DotExpr));
 | |
|     return;
 | |
|   }
 | |
|   case TargetOpcode::STATEPOINT:
 | |
|     return LowerSTATEPOINT(*MI, MCInstLowering);
 | |
| 
 | |
|   case TargetOpcode::FAULTING_LOAD_OP:
 | |
|     return LowerFAULTING_LOAD_OP(*MI, MCInstLowering);
 | |
| 
 | |
|   case TargetOpcode::PATCHABLE_OP:
 | |
|     return LowerPATCHABLE_OP(*MI, MCInstLowering);
 | |
| 
 | |
|   case TargetOpcode::STACKMAP:
 | |
|     return LowerSTACKMAP(*MI);
 | |
| 
 | |
|   case TargetOpcode::PATCHPOINT:
 | |
|     return LowerPATCHPOINT(*MI, MCInstLowering);
 | |
| 
 | |
|   case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
 | |
|     return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
 | |
| 
 | |
|   case TargetOpcode::PATCHABLE_RET:
 | |
|     return LowerPATCHABLE_RET(*MI, MCInstLowering);
 | |
| 
 | |
|   case TargetOpcode::PATCHABLE_TAIL_CALL:
 | |
|     return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
 | |
| 
 | |
|   case X86::MORESTACK_RET:
 | |
|     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
 | |
|     return;
 | |
| 
 | |
|   case X86::MORESTACK_RET_RESTORE_R10:
 | |
|     // Return, then restore R10.
 | |
|     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
 | |
|     EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr)
 | |
|                             .addReg(X86::R10)
 | |
|                             .addReg(X86::RAX));
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_PushReg:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_SaveReg:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
 | |
|                                    MI->getOperand(1).getImm());
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_SaveXMM:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
 | |
|                                    MI->getOperand(1).getImm());
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_StackAlloc:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_SetFrame:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
 | |
|                                     MI->getOperand(1).getImm());
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_PushFrame:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_EndPrologue:
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     OutStreamer->EmitWinCFIEndProlog();
 | |
|     return;
 | |
| 
 | |
|   case X86::SEH_Epilogue: {
 | |
|     assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
 | |
|     MachineBasicBlock::const_iterator MBBI(MI);
 | |
|     // Check if preceded by a call and emit nop if so.
 | |
|     for (MBBI = PrevCrossBBInst(MBBI);
 | |
|          MBBI != MachineBasicBlock::const_iterator();
 | |
|          MBBI = PrevCrossBBInst(MBBI)) {
 | |
|       // Conservatively assume that pseudo instructions don't emit code and keep
 | |
|       // looking for a call. We may emit an unnecessary nop in some cases.
 | |
|       if (!MBBI->isPseudo()) {
 | |
|         if (MBBI->isCall())
 | |
|           EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Lower PSHUFB and VPERMILP normally but add a comment if we can find
 | |
|   // a constant shuffle mask. We won't be able to do this at the MC layer
 | |
|   // because the mask isn't an immediate.
 | |
|   case X86::PSHUFBrm:
 | |
|   case X86::VPSHUFBrm:
 | |
|   case X86::VPSHUFBYrm:
 | |
|   case X86::VPSHUFBZ128rm:
 | |
|   case X86::VPSHUFBZ128rmk:
 | |
|   case X86::VPSHUFBZ128rmkz:
 | |
|   case X86::VPSHUFBZ256rm:
 | |
|   case X86::VPSHUFBZ256rmk:
 | |
|   case X86::VPSHUFBZ256rmkz:
 | |
|   case X86::VPSHUFBZrm:
 | |
|   case X86::VPSHUFBZrmk:
 | |
|   case X86::VPSHUFBZrmkz: {
 | |
|     if (!OutStreamer->isVerboseAsm())
 | |
|       break;
 | |
|     unsigned SrcIdx, MaskIdx;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("Invalid opcode");
 | |
|     case X86::PSHUFBrm:
 | |
|     case X86::VPSHUFBrm:
 | |
|     case X86::VPSHUFBYrm:
 | |
|     case X86::VPSHUFBZ128rm:
 | |
|     case X86::VPSHUFBZ256rm:
 | |
|     case X86::VPSHUFBZrm:
 | |
|       SrcIdx = 1; MaskIdx = 5; break;
 | |
|     case X86::VPSHUFBZ128rmkz:
 | |
|     case X86::VPSHUFBZ256rmkz:
 | |
|     case X86::VPSHUFBZrmkz:
 | |
|       SrcIdx = 2; MaskIdx = 6; break;
 | |
|     case X86::VPSHUFBZ128rmk:
 | |
|     case X86::VPSHUFBZ256rmk:
 | |
|     case X86::VPSHUFBZrmk:
 | |
|       SrcIdx = 3; MaskIdx = 7; break;
 | |
|     }
 | |
| 
 | |
|     assert(MI->getNumOperands() >= 6 &&
 | |
|            "We should always have at least 6 operands!");
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &SrcOp = MI->getOperand(SrcIdx);
 | |
|     const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
 | |
| 
 | |
|     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
 | |
|       SmallVector<int, 16> Mask;
 | |
|       DecodePSHUFBMask(C, Mask);
 | |
|       if (!Mask.empty())
 | |
|         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, SrcOp, Mask));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::VPERMILPDrm:
 | |
|   case X86::VPERMILPDYrm:
 | |
|   case X86::VPERMILPDZ128rm:
 | |
|   case X86::VPERMILPDZ256rm:
 | |
|   case X86::VPERMILPDZrm: {
 | |
|     if (!OutStreamer->isVerboseAsm())
 | |
|       break;
 | |
|     assert(MI->getNumOperands() > 5 &&
 | |
|            "We should always have at least 5 operands!");
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &SrcOp = MI->getOperand(1);
 | |
|     const MachineOperand &MaskOp = MI->getOperand(5);
 | |
| 
 | |
|     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
 | |
|       SmallVector<int, 8> Mask;
 | |
|       DecodeVPERMILPMask(C, 64, Mask);
 | |
|       if (!Mask.empty())
 | |
|         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, SrcOp, Mask));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::VPERMILPSrm:
 | |
|   case X86::VPERMILPSYrm:
 | |
|   case X86::VPERMILPSZ128rm:
 | |
|   case X86::VPERMILPSZ256rm:
 | |
|   case X86::VPERMILPSZrm: {
 | |
|     if (!OutStreamer->isVerboseAsm())
 | |
|       break;
 | |
|     assert(MI->getNumOperands() > 5 &&
 | |
|            "We should always have at least 5 operands!");
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &SrcOp = MI->getOperand(1);
 | |
|     const MachineOperand &MaskOp = MI->getOperand(5);
 | |
| 
 | |
|     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
 | |
|       SmallVector<int, 16> Mask;
 | |
|       DecodeVPERMILPMask(C, 32, Mask);
 | |
|       if (!Mask.empty())
 | |
|         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, SrcOp, Mask));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::VPERMIL2PDrm:
 | |
|   case X86::VPERMIL2PSrm:
 | |
|   case X86::VPERMIL2PDrmY:
 | |
|   case X86::VPERMIL2PSrmY: {
 | |
|     if (!OutStreamer->isVerboseAsm())
 | |
|       break;
 | |
|     assert(MI->getNumOperands() > 7 &&
 | |
|       "We should always have at least 7 operands!");
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &SrcOp1 = MI->getOperand(1);
 | |
|     const MachineOperand &SrcOp2 = MI->getOperand(2);
 | |
|     const MachineOperand &MaskOp = MI->getOperand(6);
 | |
|     const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
 | |
| 
 | |
|     if (!CtrlOp.isImm())
 | |
|       break;
 | |
| 
 | |
|     unsigned ElSize;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("Invalid opcode");
 | |
|     case X86::VPERMIL2PSrm: case X86::VPERMIL2PSrmY: ElSize = 32; break;
 | |
|     case X86::VPERMIL2PDrm: case X86::VPERMIL2PDrmY: ElSize = 64; break;
 | |
|     }
 | |
| 
 | |
|     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
 | |
|       SmallVector<int, 16> Mask;
 | |
|       DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Mask);
 | |
|       if (!Mask.empty())
 | |
|         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp1, SrcOp2, Mask));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86::VPPERMrrm: {
 | |
|     if (!OutStreamer->isVerboseAsm())
 | |
|       break;
 | |
|     assert(MI->getNumOperands() > 6 &&
 | |
|            "We should always have at least 6 operands!");
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &SrcOp1 = MI->getOperand(1);
 | |
|     const MachineOperand &SrcOp2 = MI->getOperand(2);
 | |
|     const MachineOperand &MaskOp = MI->getOperand(6);
 | |
| 
 | |
|     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
 | |
|       SmallVector<int, 16> Mask;
 | |
|       DecodeVPPERMMask(C, Mask);
 | |
|       if (!Mask.empty())
 | |
|         OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp1, SrcOp2, Mask));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
| #define MOV_CASE(Prefix, Suffix)        \
 | |
|   case X86::Prefix##MOVAPD##Suffix##rm: \
 | |
|   case X86::Prefix##MOVAPS##Suffix##rm: \
 | |
|   case X86::Prefix##MOVUPD##Suffix##rm: \
 | |
|   case X86::Prefix##MOVUPS##Suffix##rm: \
 | |
|   case X86::Prefix##MOVDQA##Suffix##rm: \
 | |
|   case X86::Prefix##MOVDQU##Suffix##rm:
 | |
| 
 | |
| #define MOV_AVX512_CASE(Suffix)         \
 | |
|   case X86::VMOVDQA64##Suffix##rm:      \
 | |
|   case X86::VMOVDQA32##Suffix##rm:      \
 | |
|   case X86::VMOVDQU64##Suffix##rm:      \
 | |
|   case X86::VMOVDQU32##Suffix##rm:      \
 | |
|   case X86::VMOVDQU16##Suffix##rm:      \
 | |
|   case X86::VMOVDQU8##Suffix##rm:       \
 | |
|   case X86::VMOVAPS##Suffix##rm:        \
 | |
|   case X86::VMOVAPD##Suffix##rm:        \
 | |
|   case X86::VMOVUPS##Suffix##rm:        \
 | |
|   case X86::VMOVUPD##Suffix##rm:
 | |
| 
 | |
| #define CASE_ALL_MOV_RM()               \
 | |
|   MOV_CASE(, )   /* SSE */              \
 | |
|   MOV_CASE(V, )  /* AVX-128 */          \
 | |
|   MOV_CASE(V, Y) /* AVX-256 */          \
 | |
|   MOV_AVX512_CASE(Z)                    \
 | |
|   MOV_AVX512_CASE(Z256)                 \
 | |
|   MOV_AVX512_CASE(Z128)
 | |
| 
 | |
|   // For loads from a constant pool to a vector register, print the constant
 | |
|   // loaded.
 | |
|   CASE_ALL_MOV_RM()
 | |
|     if (!OutStreamer->isVerboseAsm())
 | |
|       break;
 | |
|     if (MI->getNumOperands() > 4)
 | |
|     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
 | |
|       std::string Comment;
 | |
|       raw_string_ostream CS(Comment);
 | |
|       const MachineOperand &DstOp = MI->getOperand(0);
 | |
|       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
 | |
|       if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
 | |
|         CS << "[";
 | |
|         for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) {
 | |
|           if (i != 0)
 | |
|             CS << ",";
 | |
|           if (CDS->getElementType()->isIntegerTy())
 | |
|             CS << CDS->getElementAsInteger(i);
 | |
|           else if (CDS->getElementType()->isFloatTy())
 | |
|             CS << CDS->getElementAsFloat(i);
 | |
|           else if (CDS->getElementType()->isDoubleTy())
 | |
|             CS << CDS->getElementAsDouble(i);
 | |
|           else
 | |
|             CS << "?";
 | |
|         }
 | |
|         CS << "]";
 | |
|         OutStreamer->AddComment(CS.str());
 | |
|       } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
 | |
|         CS << "<";
 | |
|         for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) {
 | |
|           if (i != 0)
 | |
|             CS << ",";
 | |
|           Constant *COp = CV->getOperand(i);
 | |
|           if (isa<UndefValue>(COp)) {
 | |
|             CS << "u";
 | |
|           } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
 | |
|             if (CI->getBitWidth() <= 64) {
 | |
|               CS << CI->getZExtValue();
 | |
|             } else {
 | |
|               // print multi-word constant as (w0,w1)
 | |
|               const auto &Val = CI->getValue();
 | |
|               CS << "(";
 | |
|               for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
 | |
|                 if (i > 0)
 | |
|                   CS << ",";
 | |
|                 CS << Val.getRawData()[i];
 | |
|               }
 | |
|               CS << ")";
 | |
|             }
 | |
|           } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
 | |
|             SmallString<32> Str;
 | |
|             CF->getValueAPF().toString(Str);
 | |
|             CS << Str;
 | |
|           } else {
 | |
|             CS << "?";
 | |
|           }
 | |
|         }
 | |
|         CS << ">";
 | |
|         OutStreamer->AddComment(CS.str());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MCInst TmpInst;
 | |
|   MCInstLowering.Lower(MI, TmpInst);
 | |
| 
 | |
|   // Stackmap shadows cannot include branch targets, so we can count the bytes
 | |
|   // in a call towards the shadow, but must ensure that the no thread returns
 | |
|   // in to the stackmap shadow.  The only way to achieve this is if the call
 | |
|   // is at the end of the shadow.
 | |
|   if (MI->isCall()) {
 | |
|     // Count then size of the call towards the shadow
 | |
|     SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
 | |
|     // Then flush the shadow so that we fill with nops before the call, not
 | |
|     // after it.
 | |
|     SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
 | |
|     // Then emit the call
 | |
|     OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   EmitAndCountInstruction(TmpInst);
 | |
| }
 |