646 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			646 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass that performs some optimizations with LEA
 | |
| // instructions in order to improve performance and code size.
 | |
| // Currently, it does two things:
 | |
| // 1) If there are two LEA instructions calculating addresses which only differ
 | |
| //    by displacement inside a basic block, one of them is removed.
 | |
| // 2) Address calculations in load and store instructions are replaced by
 | |
| //    existing LEA def registers where possible.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-optimize-LEAs"
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
 | |
|                      cl::desc("X86: Disable LEA optimizations."),
 | |
|                      cl::init(false));
 | |
| 
 | |
| STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
 | |
| STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
 | |
| 
 | |
| /// \brief Returns true if two machine operands are identical and they are not
 | |
| /// physical registers.
 | |
| static inline bool isIdenticalOp(const MachineOperand &MO1,
 | |
|                                  const MachineOperand &MO2);
 | |
| 
 | |
| /// \brief Returns true if two address displacement operands are of the same
 | |
| /// type and use the same symbol/index/address regardless of the offset.
 | |
| static bool isSimilarDispOp(const MachineOperand &MO1,
 | |
|                             const MachineOperand &MO2);
 | |
| 
 | |
| /// \brief Returns true if the instruction is LEA.
 | |
| static inline bool isLEA(const MachineInstr &MI);
 | |
| 
 | |
| namespace {
 | |
| /// A key based on instruction's memory operands.
 | |
| class MemOpKey {
 | |
| public:
 | |
|   MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
 | |
|            const MachineOperand *Index, const MachineOperand *Segment,
 | |
|            const MachineOperand *Disp)
 | |
|       : Disp(Disp) {
 | |
|     Operands[0] = Base;
 | |
|     Operands[1] = Scale;
 | |
|     Operands[2] = Index;
 | |
|     Operands[3] = Segment;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const MemOpKey &Other) const {
 | |
|     // Addresses' bases, scales, indices and segments must be identical.
 | |
|     for (int i = 0; i < 4; ++i)
 | |
|       if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
 | |
|         return false;
 | |
| 
 | |
|     // Addresses' displacements don't have to be exactly the same. It only
 | |
|     // matters that they use the same symbol/index/address. Immediates' or
 | |
|     // offsets' differences will be taken care of during instruction
 | |
|     // substitution.
 | |
|     return isSimilarDispOp(*Disp, *Other.Disp);
 | |
|   }
 | |
| 
 | |
|   // Address' base, scale, index and segment operands.
 | |
|   const MachineOperand *Operands[4];
 | |
| 
 | |
|   // Address' displacement operand.
 | |
|   const MachineOperand *Disp;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Provide DenseMapInfo for MemOpKey.
 | |
| namespace llvm {
 | |
| template <> struct DenseMapInfo<MemOpKey> {
 | |
|   typedef DenseMapInfo<const MachineOperand *> PtrInfo;
 | |
| 
 | |
|   static inline MemOpKey getEmptyKey() {
 | |
|     return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
 | |
|                     PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
 | |
|                     PtrInfo::getEmptyKey());
 | |
|   }
 | |
| 
 | |
|   static inline MemOpKey getTombstoneKey() {
 | |
|     return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
 | |
|                     PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
 | |
|                     PtrInfo::getTombstoneKey());
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const MemOpKey &Val) {
 | |
|     // Checking any field of MemOpKey is enough to determine if the key is
 | |
|     // empty or tombstone.
 | |
|     assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
 | |
|     assert(Val.Disp != PtrInfo::getTombstoneKey() &&
 | |
|            "Cannot hash the tombstone key");
 | |
| 
 | |
|     hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
 | |
|                                   *Val.Operands[2], *Val.Operands[3]);
 | |
| 
 | |
|     // If the address displacement is an immediate, it should not affect the
 | |
|     // hash so that memory operands which differ only be immediate displacement
 | |
|     // would have the same hash. If the address displacement is something else,
 | |
|     // we should reflect symbol/index/address in the hash.
 | |
|     switch (Val.Disp->getType()) {
 | |
|     case MachineOperand::MO_Immediate:
 | |
|       break;
 | |
|     case MachineOperand::MO_ConstantPoolIndex:
 | |
|     case MachineOperand::MO_JumpTableIndex:
 | |
|       Hash = hash_combine(Hash, Val.Disp->getIndex());
 | |
|       break;
 | |
|     case MachineOperand::MO_ExternalSymbol:
 | |
|       Hash = hash_combine(Hash, Val.Disp->getSymbolName());
 | |
|       break;
 | |
|     case MachineOperand::MO_GlobalAddress:
 | |
|       Hash = hash_combine(Hash, Val.Disp->getGlobal());
 | |
|       break;
 | |
|     case MachineOperand::MO_BlockAddress:
 | |
|       Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
 | |
|       break;
 | |
|     case MachineOperand::MO_MCSymbol:
 | |
|       Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
 | |
|       break;
 | |
|     case MachineOperand::MO_MachineBasicBlock:
 | |
|       Hash = hash_combine(Hash, Val.Disp->getMBB());
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Invalid address displacement operand");
 | |
|     }
 | |
| 
 | |
|     return (unsigned)Hash;
 | |
|   }
 | |
| 
 | |
|   static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
 | |
|     // Checking any field of MemOpKey is enough to determine if the key is
 | |
|     // empty or tombstone.
 | |
|     if (RHS.Disp == PtrInfo::getEmptyKey())
 | |
|       return LHS.Disp == PtrInfo::getEmptyKey();
 | |
|     if (RHS.Disp == PtrInfo::getTombstoneKey())
 | |
|       return LHS.Disp == PtrInfo::getTombstoneKey();
 | |
|     return LHS == RHS;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Returns a hash table key based on memory operands of \p MI. The
 | |
| /// number of the first memory operand of \p MI is specified through \p N.
 | |
| static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
 | |
|   assert((isLEA(MI) || MI.mayLoadOrStore()) &&
 | |
|          "The instruction must be a LEA, a load or a store");
 | |
|   return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
 | |
|                   &MI.getOperand(N + X86::AddrScaleAmt),
 | |
|                   &MI.getOperand(N + X86::AddrIndexReg),
 | |
|                   &MI.getOperand(N + X86::AddrSegmentReg),
 | |
|                   &MI.getOperand(N + X86::AddrDisp));
 | |
| }
 | |
| 
 | |
| static inline bool isIdenticalOp(const MachineOperand &MO1,
 | |
|                                  const MachineOperand &MO2) {
 | |
|   return MO1.isIdenticalTo(MO2) &&
 | |
|          (!MO1.isReg() ||
 | |
|           !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool isValidDispOp(const MachineOperand &MO) {
 | |
|   return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
 | |
|          MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool isSimilarDispOp(const MachineOperand &MO1,
 | |
|                             const MachineOperand &MO2) {
 | |
|   assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
 | |
|          "Address displacement operand is not valid");
 | |
|   return (MO1.isImm() && MO2.isImm()) ||
 | |
|          (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
 | |
|          (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
 | |
|          (MO1.isSymbol() && MO2.isSymbol() &&
 | |
|           MO1.getSymbolName() == MO2.getSymbolName()) ||
 | |
|          (MO1.isGlobal() && MO2.isGlobal() &&
 | |
|           MO1.getGlobal() == MO2.getGlobal()) ||
 | |
|          (MO1.isBlockAddress() && MO2.isBlockAddress() &&
 | |
|           MO1.getBlockAddress() == MO2.getBlockAddress()) ||
 | |
|          (MO1.isMCSymbol() && MO2.isMCSymbol() &&
 | |
|           MO1.getMCSymbol() == MO2.getMCSymbol()) ||
 | |
|          (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
 | |
| }
 | |
| 
 | |
| static inline bool isLEA(const MachineInstr &MI) {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
 | |
|          Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class OptimizeLEAPass : public MachineFunctionPass {
 | |
| public:
 | |
|   OptimizeLEAPass() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|   StringRef getPassName() const override { return "X86 LEA Optimize"; }
 | |
| 
 | |
|   /// \brief Loop over all of the basic blocks, replacing address
 | |
|   /// calculations in load and store instructions, if it's already
 | |
|   /// been calculated by LEA. Also, remove redundant LEAs.
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
| private:
 | |
|   typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap;
 | |
| 
 | |
|   /// \brief Returns a distance between two instructions inside one basic block.
 | |
|   /// Negative result means, that instructions occur in reverse order.
 | |
|   int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
 | |
| 
 | |
|   /// \brief Choose the best \p LEA instruction from the \p List to replace
 | |
|   /// address calculation in \p MI instruction. Return the address displacement
 | |
|   /// and the distance between \p MI and the choosen \p BestLEA in
 | |
|   /// \p AddrDispShift and \p Dist.
 | |
|   bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
 | |
|                      const MachineInstr &MI, MachineInstr *&BestLEA,
 | |
|                      int64_t &AddrDispShift, int &Dist);
 | |
| 
 | |
|   /// \brief Returns the difference between addresses' displacements of \p MI1
 | |
|   /// and \p MI2. The numbers of the first memory operands for the instructions
 | |
|   /// are specified through \p N1 and \p N2.
 | |
|   int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
 | |
|                            const MachineInstr &MI2, unsigned N2) const;
 | |
| 
 | |
|   /// \brief Returns true if the \p Last LEA instruction can be replaced by the
 | |
|   /// \p First. The difference between displacements of the addresses calculated
 | |
|   /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
 | |
|   /// replacement of the \p Last LEA's uses with the \p First's def register.
 | |
|   bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
 | |
|                      int64_t &AddrDispShift) const;
 | |
| 
 | |
|   /// \brief Find all LEA instructions in the basic block. Also, assign position
 | |
|   /// numbers to all instructions in the basic block to speed up calculation of
 | |
|   /// distance between them.
 | |
|   void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
 | |
| 
 | |
|   /// \brief Removes redundant address calculations.
 | |
|   bool removeRedundantAddrCalc(MemOpMap &LEAs);
 | |
| 
 | |
|   /// \brief Removes LEAs which calculate similar addresses.
 | |
|   bool removeRedundantLEAs(MemOpMap &LEAs);
 | |
| 
 | |
|   DenseMap<const MachineInstr *, unsigned> InstrPos;
 | |
| 
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const X86InstrInfo *TII;
 | |
|   const X86RegisterInfo *TRI;
 | |
| 
 | |
|   static char ID;
 | |
| };
 | |
| char OptimizeLEAPass::ID = 0;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
 | |
| 
 | |
| int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
 | |
|                                    const MachineInstr &Last) {
 | |
|   // Both instructions must be in the same basic block and they must be
 | |
|   // presented in InstrPos.
 | |
|   assert(Last.getParent() == First.getParent() &&
 | |
|          "Instructions are in different basic blocks");
 | |
|   assert(InstrPos.find(&First) != InstrPos.end() &&
 | |
|          InstrPos.find(&Last) != InstrPos.end() &&
 | |
|          "Instructions' positions are undefined");
 | |
| 
 | |
|   return InstrPos[&Last] - InstrPos[&First];
 | |
| }
 | |
| 
 | |
| // Find the best LEA instruction in the List to replace address recalculation in
 | |
| // MI. Such LEA must meet these requirements:
 | |
| // 1) The address calculated by the LEA differs only by the displacement from
 | |
| //    the address used in MI.
 | |
| // 2) The register class of the definition of the LEA is compatible with the
 | |
| //    register class of the address base register of MI.
 | |
| // 3) Displacement of the new memory operand should fit in 1 byte if possible.
 | |
| // 4) The LEA should be as close to MI as possible, and prior to it if
 | |
| //    possible.
 | |
| bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
 | |
|                                     const MachineInstr &MI,
 | |
|                                     MachineInstr *&BestLEA,
 | |
|                                     int64_t &AddrDispShift, int &Dist) {
 | |
|   const MachineFunction *MF = MI.getParent()->getParent();
 | |
|   const MCInstrDesc &Desc = MI.getDesc();
 | |
|   int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
 | |
|                 X86II::getOperandBias(Desc);
 | |
| 
 | |
|   BestLEA = nullptr;
 | |
| 
 | |
|   // Loop over all LEA instructions.
 | |
|   for (auto DefMI : List) {
 | |
|     // Get new address displacement.
 | |
|     int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
 | |
| 
 | |
|     // Make sure address displacement fits 4 bytes.
 | |
|     if (!isInt<32>(AddrDispShiftTemp))
 | |
|       continue;
 | |
| 
 | |
|     // Check that LEA def register can be used as MI address base. Some
 | |
|     // instructions can use a limited set of registers as address base, for
 | |
|     // example MOV8mr_NOREX. We could constrain the register class of the LEA
 | |
|     // def to suit MI, however since this case is very rare and hard to
 | |
|     // reproduce in a test it's just more reliable to skip the LEA.
 | |
|     if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
 | |
|         MRI->getRegClass(DefMI->getOperand(0).getReg()))
 | |
|       continue;
 | |
| 
 | |
|     // Choose the closest LEA instruction from the list, prior to MI if
 | |
|     // possible. Note that we took into account resulting address displacement
 | |
|     // as well. Also note that the list is sorted by the order in which the LEAs
 | |
|     // occur, so the break condition is pretty simple.
 | |
|     int DistTemp = calcInstrDist(*DefMI, MI);
 | |
|     assert(DistTemp != 0 &&
 | |
|            "The distance between two different instructions cannot be zero");
 | |
|     if (DistTemp > 0 || BestLEA == nullptr) {
 | |
|       // Do not update return LEA, if the current one provides a displacement
 | |
|       // which fits in 1 byte, while the new candidate does not.
 | |
|       if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
 | |
|           isInt<8>(AddrDispShift))
 | |
|         continue;
 | |
| 
 | |
|       BestLEA = DefMI;
 | |
|       AddrDispShift = AddrDispShiftTemp;
 | |
|       Dist = DistTemp;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Maybe we should not always stop at the first LEA after MI.
 | |
|     if (DistTemp < 0)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return BestLEA != nullptr;
 | |
| }
 | |
| 
 | |
| // Get the difference between the addresses' displacements of the two
 | |
| // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
 | |
| // passed through \p N1 and \p N2.
 | |
| int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
 | |
|                                           const MachineInstr &MI2,
 | |
|                                           unsigned N2) const {
 | |
|   const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
 | |
|   const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
 | |
| 
 | |
|   assert(isSimilarDispOp(Op1, Op2) &&
 | |
|          "Address displacement operands are not compatible");
 | |
| 
 | |
|   // After the assert above we can be sure that both operands are of the same
 | |
|   // valid type and use the same symbol/index/address, thus displacement shift
 | |
|   // calculation is rather simple.
 | |
|   if (Op1.isJTI())
 | |
|     return 0;
 | |
|   return Op1.isImm() ? Op1.getImm() - Op2.getImm()
 | |
|                      : Op1.getOffset() - Op2.getOffset();
 | |
| }
 | |
| 
 | |
| // Check that the Last LEA can be replaced by the First LEA. To be so,
 | |
| // these requirements must be met:
 | |
| // 1) Addresses calculated by LEAs differ only by displacement.
 | |
| // 2) Def registers of LEAs belong to the same class.
 | |
| // 3) All uses of the Last LEA def register are replaceable, thus the
 | |
| //    register is used only as address base.
 | |
| bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
 | |
|                                     const MachineInstr &Last,
 | |
|                                     int64_t &AddrDispShift) const {
 | |
|   assert(isLEA(First) && isLEA(Last) &&
 | |
|          "The function works only with LEA instructions");
 | |
| 
 | |
|   // Get new address displacement.
 | |
|   AddrDispShift = getAddrDispShift(Last, 1, First, 1);
 | |
| 
 | |
|   // Make sure that LEA def registers belong to the same class. There may be
 | |
|   // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
 | |
|   // be used as their operands, so we must be sure that replacing one LEA
 | |
|   // with another won't lead to putting a wrong register in the instruction.
 | |
|   if (MRI->getRegClass(First.getOperand(0).getReg()) !=
 | |
|       MRI->getRegClass(Last.getOperand(0).getReg()))
 | |
|     return false;
 | |
| 
 | |
|   // Loop over all uses of the Last LEA to check that its def register is
 | |
|   // used only as address base for memory accesses. If so, it can be
 | |
|   // replaced, otherwise - no.
 | |
|   for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) {
 | |
|     MachineInstr &MI = *MO.getParent();
 | |
| 
 | |
|     // Get the number of the first memory operand.
 | |
|     const MCInstrDesc &Desc = MI.getDesc();
 | |
|     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
 | |
| 
 | |
|     // If the use instruction has no memory operand - the LEA is not
 | |
|     // replaceable.
 | |
|     if (MemOpNo < 0)
 | |
|       return false;
 | |
| 
 | |
|     MemOpNo += X86II::getOperandBias(Desc);
 | |
| 
 | |
|     // If the address base of the use instruction is not the LEA def register -
 | |
|     // the LEA is not replaceable.
 | |
|     if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
 | |
|       return false;
 | |
| 
 | |
|     // If the LEA def register is used as any other operand of the use
 | |
|     // instruction - the LEA is not replaceable.
 | |
|     for (unsigned i = 0; i < MI.getNumOperands(); i++)
 | |
|       if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
 | |
|           isIdenticalOp(MI.getOperand(i), MO))
 | |
|         return false;
 | |
| 
 | |
|     // Check that the new address displacement will fit 4 bytes.
 | |
|     if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
 | |
|         !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
 | |
|                    AddrDispShift))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
 | |
|   unsigned Pos = 0;
 | |
|   for (auto &MI : MBB) {
 | |
|     // Assign the position number to the instruction. Note that we are going to
 | |
|     // move some instructions during the optimization however there will never
 | |
|     // be a need to move two instructions before any selected instruction. So to
 | |
|     // avoid multiple positions' updates during moves we just increase position
 | |
|     // counter by two leaving a free space for instructions which will be moved.
 | |
|     InstrPos[&MI] = Pos += 2;
 | |
| 
 | |
|     if (isLEA(MI))
 | |
|       LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Try to find load and store instructions which recalculate addresses already
 | |
| // calculated by some LEA and replace their memory operands with its def
 | |
| // register.
 | |
| bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   assert(!LEAs.empty());
 | |
|   MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
 | |
| 
 | |
|   // Process all instructions in basic block.
 | |
|   for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
 | |
|     MachineInstr &MI = *I++;
 | |
| 
 | |
|     // Instruction must be load or store.
 | |
|     if (!MI.mayLoadOrStore())
 | |
|       continue;
 | |
| 
 | |
|     // Get the number of the first memory operand.
 | |
|     const MCInstrDesc &Desc = MI.getDesc();
 | |
|     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
 | |
| 
 | |
|     // If instruction has no memory operand - skip it.
 | |
|     if (MemOpNo < 0)
 | |
|       continue;
 | |
| 
 | |
|     MemOpNo += X86II::getOperandBias(Desc);
 | |
| 
 | |
|     // Get the best LEA instruction to replace address calculation.
 | |
|     MachineInstr *DefMI;
 | |
|     int64_t AddrDispShift;
 | |
|     int Dist;
 | |
|     if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
 | |
|                        Dist))
 | |
|       continue;
 | |
| 
 | |
|     // If LEA occurs before current instruction, we can freely replace
 | |
|     // the instruction. If LEA occurs after, we can lift LEA above the
 | |
|     // instruction and this way to be able to replace it. Since LEA and the
 | |
|     // instruction have similar memory operands (thus, the same def
 | |
|     // instructions for these operands), we can always do that, without
 | |
|     // worries of using registers before their defs.
 | |
|     if (Dist < 0) {
 | |
|       DefMI->removeFromParent();
 | |
|       MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
 | |
|       InstrPos[DefMI] = InstrPos[&MI] - 1;
 | |
| 
 | |
|       // Make sure the instructions' position numbers are sane.
 | |
|       assert(((InstrPos[DefMI] == 1 &&
 | |
|                MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
 | |
|               InstrPos[DefMI] >
 | |
|                   InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
 | |
|              "Instruction positioning is broken");
 | |
|     }
 | |
| 
 | |
|     // Since we can possibly extend register lifetime, clear kill flags.
 | |
|     MRI->clearKillFlags(DefMI->getOperand(0).getReg());
 | |
| 
 | |
|     ++NumSubstLEAs;
 | |
|     DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
 | |
| 
 | |
|     // Change instruction operands.
 | |
|     MI.getOperand(MemOpNo + X86::AddrBaseReg)
 | |
|         .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
 | |
|     MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
 | |
|     MI.getOperand(MemOpNo + X86::AddrIndexReg)
 | |
|         .ChangeToRegister(X86::NoRegister, false);
 | |
|     MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
 | |
|     MI.getOperand(MemOpNo + X86::AddrSegmentReg)
 | |
|         .ChangeToRegister(X86::NoRegister, false);
 | |
| 
 | |
|     DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
 | |
| 
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Try to find similar LEAs in the list and replace one with another.
 | |
| bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Loop over all entries in the table.
 | |
|   for (auto &E : LEAs) {
 | |
|     auto &List = E.second;
 | |
| 
 | |
|     // Loop over all LEA pairs.
 | |
|     auto I1 = List.begin();
 | |
|     while (I1 != List.end()) {
 | |
|       MachineInstr &First = **I1;
 | |
|       auto I2 = std::next(I1);
 | |
|       while (I2 != List.end()) {
 | |
|         MachineInstr &Last = **I2;
 | |
|         int64_t AddrDispShift;
 | |
| 
 | |
|         // LEAs should be in occurence order in the list, so we can freely
 | |
|         // replace later LEAs with earlier ones.
 | |
|         assert(calcInstrDist(First, Last) > 0 &&
 | |
|                "LEAs must be in occurence order in the list");
 | |
| 
 | |
|         // Check that the Last LEA instruction can be replaced by the First.
 | |
|         if (!isReplaceable(First, Last, AddrDispShift)) {
 | |
|           ++I2;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Loop over all uses of the Last LEA and update their operands. Note
 | |
|         // that the correctness of this has already been checked in the
 | |
|         // isReplaceable function.
 | |
|         for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
 | |
|                   UE = MRI->use_end();
 | |
|              UI != UE;) {
 | |
|           MachineOperand &MO = *UI++;
 | |
|           MachineInstr &MI = *MO.getParent();
 | |
| 
 | |
|           // Get the number of the first memory operand.
 | |
|           const MCInstrDesc &Desc = MI.getDesc();
 | |
|           int MemOpNo =
 | |
|               X86II::getMemoryOperandNo(Desc.TSFlags) +
 | |
|               X86II::getOperandBias(Desc);
 | |
| 
 | |
|           // Update address base.
 | |
|           MO.setReg(First.getOperand(0).getReg());
 | |
| 
 | |
|           // Update address disp.
 | |
|           MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
 | |
|           if (Op.isImm())
 | |
|             Op.setImm(Op.getImm() + AddrDispShift);
 | |
|           else if (!Op.isJTI())
 | |
|             Op.setOffset(Op.getOffset() + AddrDispShift);
 | |
|         }
 | |
| 
 | |
|         // Since we can possibly extend register lifetime, clear kill flags.
 | |
|         MRI->clearKillFlags(First.getOperand(0).getReg());
 | |
| 
 | |
|         ++NumRedundantLEAs;
 | |
|         DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
 | |
| 
 | |
|         // By this moment, all of the Last LEA's uses must be replaced. So we
 | |
|         // can freely remove it.
 | |
|         assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
 | |
|                "The LEA's def register must have no uses");
 | |
|         Last.eraseFromParent();
 | |
| 
 | |
|         // Erase removed LEA from the list.
 | |
|         I2 = List.erase(I2);
 | |
| 
 | |
|         Changed = true;
 | |
|       }
 | |
|       ++I1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (DisableX86LEAOpt || skipFunction(*MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
 | |
|   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
 | |
| 
 | |
|   // Process all basic blocks.
 | |
|   for (auto &MBB : MF) {
 | |
|     MemOpMap LEAs;
 | |
|     InstrPos.clear();
 | |
| 
 | |
|     // Find all LEA instructions in basic block.
 | |
|     findLEAs(MBB, LEAs);
 | |
| 
 | |
|     // If current basic block has no LEAs, move on to the next one.
 | |
|     if (LEAs.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Remove redundant LEA instructions.
 | |
|     Changed |= removeRedundantLEAs(LEAs);
 | |
| 
 | |
|     // Remove redundant address calculations. Do it only for -Os/-Oz since only
 | |
|     // a code size gain is expected from this part of the pass.
 | |
|     if (MF.getFunction()->optForSize())
 | |
|       Changed |= removeRedundantAddrCalc(LEAs);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 |