334 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the X86 specific subclass of TargetMachine.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86TargetMachine.h"
 | |
| #include "X86.h"
 | |
| #include "X86TargetObjectFile.h"
 | |
| #include "X86TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
 | |
|                                cl::desc("Enable the machine combiner pass"),
 | |
|                                cl::init(true), cl::Hidden);
 | |
| 
 | |
| namespace llvm {
 | |
| void initializeWinEHStatePassPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| extern "C" void LLVMInitializeX86Target() {
 | |
|   // Register the target.
 | |
|   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
 | |
|   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
 | |
| 
 | |
|   PassRegistry &PR = *PassRegistry::getPassRegistry();
 | |
|   initializeWinEHStatePassPass(PR);
 | |
|   initializeFixupBWInstPassPass(PR);
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
 | |
|   if (TT.isOSBinFormatMachO()) {
 | |
|     if (TT.getArch() == Triple::x86_64)
 | |
|       return make_unique<X86_64MachoTargetObjectFile>();
 | |
|     return make_unique<TargetLoweringObjectFileMachO>();
 | |
|   }
 | |
| 
 | |
|   if (TT.isOSFreeBSD())
 | |
|     return make_unique<X86FreeBSDTargetObjectFile>();
 | |
|   if (TT.isOSLinux() || TT.isOSNaCl())
 | |
|     return make_unique<X86LinuxNaClTargetObjectFile>();
 | |
|   if (TT.isOSFuchsia())
 | |
|     return make_unique<X86FuchsiaTargetObjectFile>();
 | |
|   if (TT.isOSBinFormatELF())
 | |
|     return make_unique<X86ELFTargetObjectFile>();
 | |
|   if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment())
 | |
|     return make_unique<X86WindowsTargetObjectFile>();
 | |
|   if (TT.isOSBinFormatCOFF())
 | |
|     return make_unique<TargetLoweringObjectFileCOFF>();
 | |
|   llvm_unreachable("unknown subtarget type");
 | |
| }
 | |
| 
 | |
| static std::string computeDataLayout(const Triple &TT) {
 | |
|   // X86 is little endian
 | |
|   std::string Ret = "e";
 | |
| 
 | |
|   Ret += DataLayout::getManglingComponent(TT);
 | |
|   // X86 and x32 have 32 bit pointers.
 | |
|   if ((TT.isArch64Bit() &&
 | |
|        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
 | |
|       !TT.isArch64Bit())
 | |
|     Ret += "-p:32:32";
 | |
| 
 | |
|   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
 | |
|   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
 | |
|     Ret += "-i64:64";
 | |
|   else if (TT.isOSIAMCU())
 | |
|     Ret += "-i64:32-f64:32";
 | |
|   else
 | |
|     Ret += "-f64:32:64";
 | |
| 
 | |
|   // Some ABIs align long double to 128 bits, others to 32.
 | |
|   if (TT.isOSNaCl() || TT.isOSIAMCU())
 | |
|     ; // No f80
 | |
|   else if (TT.isArch64Bit() || TT.isOSDarwin())
 | |
|     Ret += "-f80:128";
 | |
|   else
 | |
|     Ret += "-f80:32";
 | |
| 
 | |
|   if (TT.isOSIAMCU())
 | |
|     Ret += "-f128:32";
 | |
| 
 | |
|   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
 | |
|   if (TT.isArch64Bit())
 | |
|     Ret += "-n8:16:32:64";
 | |
|   else
 | |
|     Ret += "-n8:16:32";
 | |
| 
 | |
|   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
 | |
|   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
 | |
|     Ret += "-a:0:32-S32";
 | |
|   else
 | |
|     Ret += "-S128";
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static Reloc::Model getEffectiveRelocModel(const Triple &TT,
 | |
|                                            Optional<Reloc::Model> RM) {
 | |
|   bool is64Bit = TT.getArch() == Triple::x86_64;
 | |
|   if (!RM.hasValue()) {
 | |
|     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
 | |
|     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
 | |
|     // use static relocation model by default.
 | |
|     if (TT.isOSDarwin()) {
 | |
|       if (is64Bit)
 | |
|         return Reloc::PIC_;
 | |
|       return Reloc::DynamicNoPIC;
 | |
|     }
 | |
|     if (TT.isOSWindows() && is64Bit)
 | |
|       return Reloc::PIC_;
 | |
|     return Reloc::Static;
 | |
|   }
 | |
| 
 | |
|   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
 | |
|   // is defined as a model for code which may be used in static or dynamic
 | |
|   // executables but not necessarily a shared library. On X86-32 we just
 | |
|   // compile in -static mode, in x86-64 we use PIC.
 | |
|   if (*RM == Reloc::DynamicNoPIC) {
 | |
|     if (is64Bit)
 | |
|       return Reloc::PIC_;
 | |
|     if (!TT.isOSDarwin())
 | |
|       return Reloc::Static;
 | |
|   }
 | |
| 
 | |
|   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
 | |
|   // the Mach-O file format doesn't support it.
 | |
|   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
 | |
|     return Reloc::PIC_;
 | |
| 
 | |
|   return *RM;
 | |
| }
 | |
| 
 | |
| /// Create an X86 target.
 | |
| ///
 | |
| X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
 | |
|                                    StringRef CPU, StringRef FS,
 | |
|                                    const TargetOptions &Options,
 | |
|                                    Optional<Reloc::Model> RM,
 | |
|                                    CodeModel::Model CM, CodeGenOpt::Level OL)
 | |
|     : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
 | |
|                         getEffectiveRelocModel(TT, RM), CM, OL),
 | |
|       TLOF(createTLOF(getTargetTriple())) {
 | |
|   // Windows stack unwinder gets confused when execution flow "falls through"
 | |
|   // after a call to 'noreturn' function.
 | |
|   // To prevent that, we emit a trap for 'unreachable' IR instructions.
 | |
|   // (which on X86, happens to be the 'ud2' instruction)
 | |
|   // On PS4, the "return address" of a 'noreturn' call must still be within
 | |
|   // the calling function, and TrapUnreachable is an easy way to get that.
 | |
|   // The check here for 64-bit windows is a bit icky, but as we're unlikely
 | |
|   // to ever want to mix 32 and 64-bit windows code in a single module
 | |
|   // this should be fine.
 | |
|   if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4())
 | |
|     this->Options.TrapUnreachable = true;
 | |
| 
 | |
|   initAsmInfo();
 | |
| }
 | |
| 
 | |
| X86TargetMachine::~X86TargetMachine() {}
 | |
| 
 | |
| const X86Subtarget *
 | |
| X86TargetMachine::getSubtargetImpl(const Function &F) const {
 | |
|   Attribute CPUAttr = F.getFnAttribute("target-cpu");
 | |
|   Attribute FSAttr = F.getFnAttribute("target-features");
 | |
| 
 | |
|   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
 | |
|                       ? CPUAttr.getValueAsString()
 | |
|                       : (StringRef)TargetCPU;
 | |
|   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
 | |
|                      ? FSAttr.getValueAsString()
 | |
|                      : (StringRef)TargetFS;
 | |
| 
 | |
|   SmallString<512> Key;
 | |
|   Key.reserve(CPU.size() + FS.size());
 | |
|   Key += CPU;
 | |
|   Key += FS;
 | |
| 
 | |
|   // FIXME: This is related to the code below to reset the target options,
 | |
|   // we need to know whether or not the soft float flag is set on the
 | |
|   // function before we can generate a subtarget. We also need to use
 | |
|   // it as a key for the subtarget since that can be the only difference
 | |
|   // between two functions.
 | |
|   bool SoftFloat =
 | |
|       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
 | |
|   // If the soft float attribute is set on the function turn on the soft float
 | |
|   // subtarget feature.
 | |
|   if (SoftFloat)
 | |
|     Key += FS.empty() ? "+soft-float" : ",+soft-float";
 | |
| 
 | |
|   FS = Key.substr(CPU.size());
 | |
| 
 | |
|   auto &I = SubtargetMap[Key];
 | |
|   if (!I) {
 | |
|     // This needs to be done before we create a new subtarget since any
 | |
|     // creation will depend on the TM and the code generation flags on the
 | |
|     // function that reside in TargetOptions.
 | |
|     resetTargetOptions(F);
 | |
|     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
 | |
|                                         Options.StackAlignmentOverride);
 | |
|   }
 | |
|   return I.get();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Command line options for x86
 | |
| //===----------------------------------------------------------------------===//
 | |
| static cl::opt<bool>
 | |
| UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
 | |
|   cl::desc("Minimize AVX to SSE transition penalty"),
 | |
|   cl::init(true));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86 TTI query.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
 | |
|   return TargetIRAnalysis([this](const Function &F) {
 | |
|     return TargetTransformInfo(X86TTIImpl(this, F));
 | |
|   });
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pass Pipeline Configuration
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// X86 Code Generator Pass Configuration Options.
 | |
| class X86PassConfig : public TargetPassConfig {
 | |
| public:
 | |
|   X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
 | |
|     : TargetPassConfig(TM, PM) {}
 | |
| 
 | |
|   X86TargetMachine &getX86TargetMachine() const {
 | |
|     return getTM<X86TargetMachine>();
 | |
|   }
 | |
| 
 | |
|   void addIRPasses() override;
 | |
|   bool addInstSelector() override;
 | |
|   bool addILPOpts() override;
 | |
|   bool addPreISel() override;
 | |
|   void addPreRegAlloc() override;
 | |
|   void addPostRegAlloc() override;
 | |
|   void addPreEmitPass() override;
 | |
|   void addPreSched2() override;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
 | |
|   return new X86PassConfig(this, PM);
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addIRPasses() {
 | |
|   addPass(createAtomicExpandPass(&getX86TargetMachine()));
 | |
| 
 | |
|   TargetPassConfig::addIRPasses();
 | |
| 
 | |
|   if (TM->getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createInterleavedAccessPass(TM));
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addInstSelector() {
 | |
|   // Install an instruction selector.
 | |
|   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
 | |
| 
 | |
|   // For ELF, cleanup any local-dynamic TLS accesses.
 | |
|   if (TM->getTargetTriple().isOSBinFormatELF() &&
 | |
|       getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createCleanupLocalDynamicTLSPass());
 | |
| 
 | |
|   addPass(createX86GlobalBaseRegPass());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addILPOpts() {
 | |
|   addPass(&EarlyIfConverterID);
 | |
|   if (EnableMachineCombinerPass)
 | |
|     addPass(&MachineCombinerID);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addPreISel() {
 | |
|   // Only add this pass for 32-bit x86 Windows.
 | |
|   const Triple &TT = TM->getTargetTriple();
 | |
|   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
 | |
|     addPass(createX86WinEHStatePass());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPreRegAlloc() {
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createX86FixupSetCC());
 | |
|     addPass(createX86OptimizeLEAs());
 | |
|     addPass(createX86CallFrameOptimization());
 | |
|   }
 | |
| 
 | |
|   addPass(createX86WinAllocaExpander());
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPostRegAlloc() {
 | |
|   addPass(createX86FloatingPointStackifierPass());
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
 | |
| 
 | |
| void X86PassConfig::addPreEmitPass() {
 | |
|   if (getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createExecutionDependencyFixPass(&X86::VR128XRegClass));
 | |
| 
 | |
|   if (UseVZeroUpper)
 | |
|     addPass(createX86IssueVZeroUpperPass());
 | |
| 
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createX86FixupBWInsts());
 | |
|     addPass(createX86PadShortFunctions());
 | |
|     addPass(createX86FixupLEAs());
 | |
|   }
 | |
| }
 |