1709 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1709 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements a TargetTransformInfo analysis pass specific to the
 | |
| /// X86 target machine. It uses the target's detailed information to provide
 | |
| /// more precise answers to certain TTI queries, while letting the target
 | |
| /// independent and default TTI implementations handle the rest.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// About Cost Model numbers used below it's necessary to say the following:
 | |
| /// the numbers correspond to some "generic" X86 CPU instead of usage of
 | |
| /// concrete CPU model. Usually the numbers correspond to CPU where the feature
 | |
| /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
 | |
| /// the lookups below the cost is based on Nehalem as that was the first CPU
 | |
| /// to support that feature level and thus has most likely the worst case cost.
 | |
| /// Some examples of other technologies/CPUs:
 | |
| ///   SSE 3   - Pentium4 / Athlon64
 | |
| ///   SSE 4.1 - Penryn
 | |
| ///   SSE 4.2 - Nehalem
 | |
| ///   AVX     - Sandy Bridge
 | |
| ///   AVX2    - Haswell
 | |
| ///   AVX-512 - Xeon Phi / Skylake
 | |
| /// And some examples of instruction target dependent costs (latency)
 | |
| ///                   divss     sqrtss          rsqrtss
 | |
| ///   AMD K7            11-16     19              3
 | |
| ///   Piledriver        9-24      13-15           5
 | |
| ///   Jaguar            14        16              2
 | |
| ///   Pentium II,III    18        30              2
 | |
| ///   Nehalem           7-14      7-18            3
 | |
| ///   Haswell           10-13     11              5
 | |
| /// TODO: Develop and implement  the target dependent cost model and
 | |
| /// specialize cost numbers for different Cost Model Targets such as throughput,
 | |
| /// code size, latency and uop count.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/BasicTTIImpl.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/CostTable.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86tti"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // X86 cost model.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetTransformInfo::PopcntSupportKind
 | |
| X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
 | |
|   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | |
|   // TODO: Currently the __builtin_popcount() implementation using SSE3
 | |
|   //   instructions is inefficient. Once the problem is fixed, we should
 | |
|   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
 | |
|   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
 | |
|   if (Vector && !ST->hasSSE1())
 | |
|     return 0;
 | |
| 
 | |
|   if (ST->is64Bit()) {
 | |
|     if (Vector && ST->hasAVX512())
 | |
|       return 32;
 | |
|     return 16;
 | |
|   }
 | |
|   return 8;
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
 | |
|   if (Vector) {
 | |
|     if (ST->hasAVX512()) return 512;
 | |
|     if (ST->hasAVX()) return 256;
 | |
|     if (ST->hasSSE1()) return 128;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (ST->is64Bit())
 | |
|     return 64;
 | |
| 
 | |
|   return 32;
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
 | |
|   // If the loop will not be vectorized, don't interleave the loop.
 | |
|   // Let regular unroll to unroll the loop, which saves the overflow
 | |
|   // check and memory check cost.
 | |
|   if (VF == 1)
 | |
|     return 1;
 | |
| 
 | |
|   if (ST->isAtom())
 | |
|     return 1;
 | |
| 
 | |
|   // Sandybridge and Haswell have multiple execution ports and pipelined
 | |
|   // vector units.
 | |
|   if (ST->hasAVX())
 | |
|     return 4;
 | |
| 
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getArithmeticInstrCost(
 | |
|     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
 | |
|     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
 | |
|     TTI::OperandValueProperties Opd2PropInfo) {
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   if (ISD == ISD::SDIV &&
 | |
|       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
 | |
|     // On X86, vector signed division by constants power-of-two are
 | |
|     // normally expanded to the sequence SRA + SRL + ADD + SRA.
 | |
|     // The OperandValue properties many not be same as that of previous
 | |
|     // operation;conservatively assume OP_None.
 | |
|     int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
 | |
|                                           Op2Info, TargetTransformInfo::OP_None,
 | |
|                                           TargetTransformInfo::OP_None);
 | |
|     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
 | |
|                                    TargetTransformInfo::OP_None,
 | |
|                                    TargetTransformInfo::OP_None);
 | |
|     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
 | |
|                                    TargetTransformInfo::OP_None,
 | |
|                                    TargetTransformInfo::OP_None);
 | |
| 
 | |
|     return Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX2UniformConstCostTable[] = {
 | |
|     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
 | |
| 
 | |
|     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
 | |
|     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
 | |
|     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
 | |
|     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
 | |
|   };
 | |
| 
 | |
|   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       ST->hasAVX2()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512CostTable[] = {
 | |
|     { ISD::SHL,     MVT::v16i32,    1 },
 | |
|     { ISD::SRL,     MVT::v16i32,    1 },
 | |
|     { ISD::SRA,     MVT::v16i32,    1 },
 | |
|     { ISD::SHL,     MVT::v8i64,    1 },
 | |
|     { ISD::SRL,     MVT::v8i64,    1 },
 | |
|     { ISD::SRA,     MVT::v8i64,    1 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX512()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX2CostTable[] = {
 | |
|     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
 | |
|     // customize them to detect the cases where shift amount is a scalar one.
 | |
|     { ISD::SHL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRA,     MVT::v4i32,    1 },
 | |
|     { ISD::SHL,     MVT::v8i32,    1 },
 | |
|     { ISD::SRL,     MVT::v8i32,    1 },
 | |
|     { ISD::SRA,     MVT::v8i32,    1 },
 | |
|     { ISD::SHL,     MVT::v2i64,    1 },
 | |
|     { ISD::SRL,     MVT::v2i64,    1 },
 | |
|     { ISD::SHL,     MVT::v4i64,    1 },
 | |
|     { ISD::SRL,     MVT::v4i64,    1 },
 | |
|   };
 | |
| 
 | |
|   // Look for AVX2 lowering tricks.
 | |
|   if (ST->hasAVX2()) {
 | |
|     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
 | |
|         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
 | |
|       // On AVX2, a packed v16i16 shift left by a constant build_vector
 | |
|       // is lowered into a vector multiply (vpmullw).
 | |
|       return LT.first;
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry XOPCostTable[] = {
 | |
|     // 128bit shifts take 1cy, but right shifts require negation beforehand.
 | |
|     { ISD::SHL,     MVT::v16i8,    1 },
 | |
|     { ISD::SRL,     MVT::v16i8,    2 },
 | |
|     { ISD::SRA,     MVT::v16i8,    2 },
 | |
|     { ISD::SHL,     MVT::v8i16,    1 },
 | |
|     { ISD::SRL,     MVT::v8i16,    2 },
 | |
|     { ISD::SRA,     MVT::v8i16,    2 },
 | |
|     { ISD::SHL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRL,     MVT::v4i32,    2 },
 | |
|     { ISD::SRA,     MVT::v4i32,    2 },
 | |
|     { ISD::SHL,     MVT::v2i64,    1 },
 | |
|     { ISD::SRL,     MVT::v2i64,    2 },
 | |
|     { ISD::SRA,     MVT::v2i64,    2 },
 | |
|     // 256bit shifts require splitting if AVX2 didn't catch them above.
 | |
|     { ISD::SHL,     MVT::v32i8,    2 },
 | |
|     { ISD::SRL,     MVT::v32i8,    4 },
 | |
|     { ISD::SRA,     MVT::v32i8,    4 },
 | |
|     { ISD::SHL,     MVT::v16i16,   2 },
 | |
|     { ISD::SRL,     MVT::v16i16,   4 },
 | |
|     { ISD::SRA,     MVT::v16i16,   4 },
 | |
|     { ISD::SHL,     MVT::v8i32,    2 },
 | |
|     { ISD::SRL,     MVT::v8i32,    4 },
 | |
|     { ISD::SRA,     MVT::v8i32,    4 },
 | |
|     { ISD::SHL,     MVT::v4i64,    2 },
 | |
|     { ISD::SRL,     MVT::v4i64,    4 },
 | |
|     { ISD::SRA,     MVT::v4i64,    4 },
 | |
|   };
 | |
| 
 | |
|   // Look for XOP lowering tricks.
 | |
|   if (ST->hasXOP()) {
 | |
|     if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX2CustomCostTable[] = {
 | |
|     { ISD::SHL,  MVT::v32i8,      11 }, // vpblendvb sequence.
 | |
|     { ISD::SHL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v32i8,      11 }, // vpblendvb sequence.
 | |
|     { ISD::SRL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v32i8,      24 }, // vpblendvb sequence.
 | |
|     { ISD::SRA,  MVT::v16i16,     10 }, // extend/vpsravd/pack sequence.
 | |
|     { ISD::SRA,  MVT::v2i64,       4 }, // srl/xor/sub sequence.
 | |
|     { ISD::SRA,  MVT::v4i64,       4 }, // srl/xor/sub sequence.
 | |
| 
 | |
|     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
 | |
|     { ISD::SDIV,  MVT::v32i8,  32*20 },
 | |
|     { ISD::SDIV,  MVT::v16i16, 16*20 },
 | |
|     { ISD::SDIV,  MVT::v8i32,  8*20 },
 | |
|     { ISD::SDIV,  MVT::v4i64,  4*20 },
 | |
|     { ISD::UDIV,  MVT::v32i8,  32*20 },
 | |
|     { ISD::UDIV,  MVT::v16i16, 16*20 },
 | |
|     { ISD::UDIV,  MVT::v8i32,  8*20 },
 | |
|     { ISD::UDIV,  MVT::v4i64,  4*20 },
 | |
|   };
 | |
| 
 | |
|   // Look for AVX2 lowering tricks for custom cases.
 | |
|   if (ST->hasAVX2()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry
 | |
|   SSE2UniformConstCostTable[] = {
 | |
|     // Constant splats are cheaper for the following instructions.
 | |
|     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
 | |
|     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
 | |
|     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
 | |
|     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry
 | |
|   SSE2UniformCostTable[] = {
 | |
|     // Uniform splats are cheaper for the following instructions.
 | |
|     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v32i8,  2 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v16i16, 2 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
 | |
|     { ISD::SHL,  MVT::v8i32,  2 }, // pslld
 | |
|     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
 | |
|     { ISD::SHL,  MVT::v4i64,  2 }, // psllq.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v32i8,  2 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v16i16, 2 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
 | |
|     { ISD::SRL,  MVT::v8i32,  2 }, // psrld.
 | |
|     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
 | |
|     { ISD::SRL,  MVT::v4i64,  2 }, // psrlq.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
 | |
|     { ISD::SRA,  MVT::v32i8,  8 }, // psrlw, pand, pxor, psubb.
 | |
|     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
 | |
|     { ISD::SRA,  MVT::v16i16, 2 }, // psraw.
 | |
|     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
 | |
|     { ISD::SRA,  MVT::v8i32,  2 }, // psrad.
 | |
|     { ISD::SRA,  MVT::v2i64,  4 }, // 2 x psrad + shuffle.
 | |
|     { ISD::SRA,  MVT::v4i64,  8 }, // 2 x psrad + shuffle.
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2() &&
 | |
|       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
 | |
|        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
 | |
|     if (Op2Info == TargetTransformInfo::OK_UniformConstantValue) {
 | |
|       // pmuldq sequence.
 | |
|       if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
 | |
|         return LT.first * 15;
 | |
|       if (const auto *Entry =
 | |
|               CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
 | |
|         return LT.first * Entry->Cost;
 | |
|     }
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   if (ISD == ISD::SHL &&
 | |
|       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
 | |
|     MVT VT = LT.second;
 | |
|     // Vector shift left by non uniform constant can be lowered
 | |
|     // into vector multiply (pmullw/pmulld).
 | |
|     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
 | |
|         (VT == MVT::v4i32 && ST->hasSSE41()))
 | |
|       return LT.first;
 | |
| 
 | |
|     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
 | |
|     // sequence of extract + two vector multiply + insert.
 | |
|     if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
 | |
|        (ST->hasAVX() && !ST->hasAVX2()))
 | |
|       ISD = ISD::MUL;
 | |
| 
 | |
|     // A vector shift left by non uniform constant is converted
 | |
|     // into a vector multiply; the new multiply is eventually
 | |
|     // lowered into a sequence of shuffles and 2 x pmuludq.
 | |
|     if (VT == MVT::v4i32 && ST->hasSSE2())
 | |
|       ISD = ISD::MUL;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTable[] = {
 | |
|     // We don't correctly identify costs of casts because they are marked as
 | |
|     // custom.
 | |
|     { ISD::SHL,  MVT::v16i8,    26 }, // cmpgtb sequence.
 | |
|     { ISD::SHL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
 | |
|     { ISD::SHL,  MVT::v8i16,    32 }, // cmpgtb sequence.
 | |
|     { ISD::SHL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
 | |
|     { ISD::SHL,  MVT::v4i32,   2*5 }, // We optimized this using mul.
 | |
|     { ISD::SHL,  MVT::v8i32, 2*2*5 }, // We optimized this using mul.
 | |
|     { ISD::SHL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
 | |
|     { ISD::SHL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i8,    26 }, // cmpgtb sequence.
 | |
|     { ISD::SRL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
 | |
|     { ISD::SRL,  MVT::v8i16,    32 }, // cmpgtb sequence.
 | |
|     { ISD::SRL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
 | |
|     { ISD::SRL,  MVT::v4i32,    16 }, // Shift each lane + blend.
 | |
|     { ISD::SRL,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
 | |
|     { ISD::SRL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
 | |
|     { ISD::SRL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i8,    54 }, // unpacked cmpgtb sequence.
 | |
|     { ISD::SRA,  MVT::v32i8,  2*54 }, // unpacked cmpgtb sequence.
 | |
|     { ISD::SRA,  MVT::v8i16,    32 }, // cmpgtb sequence.
 | |
|     { ISD::SRA,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
 | |
|     { ISD::SRA,  MVT::v4i32,    16 }, // Shift each lane + blend.
 | |
|     { ISD::SRA,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
 | |
|     { ISD::SRA,  MVT::v2i64,    12 }, // srl/xor/sub sequence.
 | |
|     { ISD::SRA,  MVT::v4i64,  2*12 }, // srl/xor/sub sequence.
 | |
| 
 | |
|     // It is not a good idea to vectorize division. We have to scalarize it and
 | |
|     // in the process we will often end up having to spilling regular
 | |
|     // registers. The overhead of division is going to dominate most kernels
 | |
|     // anyways so try hard to prevent vectorization of division - it is
 | |
|     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
 | |
|     // to hide "20 cycles" for each lane.
 | |
|     { ISD::SDIV,  MVT::v16i8,  16*20 },
 | |
|     { ISD::SDIV,  MVT::v8i16,  8*20 },
 | |
|     { ISD::SDIV,  MVT::v4i32,  4*20 },
 | |
|     { ISD::SDIV,  MVT::v2i64,  2*20 },
 | |
|     { ISD::UDIV,  MVT::v16i8,  16*20 },
 | |
|     { ISD::UDIV,  MVT::v8i16,  8*20 },
 | |
|     { ISD::UDIV,  MVT::v4i32,  4*20 },
 | |
|     { ISD::UDIV,  MVT::v2i64,  2*20 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2()) {
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTable[] = {
 | |
|     // We don't have to scalarize unsupported ops. We can issue two half-sized
 | |
|     // operations and we only need to extract the upper YMM half.
 | |
|     // Two ops + 1 extract + 1 insert = 4.
 | |
|     { ISD::MUL,     MVT::v16i16,   4 },
 | |
|     { ISD::MUL,     MVT::v8i32,    4 },
 | |
|     { ISD::SUB,     MVT::v8i32,    4 },
 | |
|     { ISD::ADD,     MVT::v8i32,    4 },
 | |
|     { ISD::SUB,     MVT::v4i64,    4 },
 | |
|     { ISD::ADD,     MVT::v4i64,    4 },
 | |
|     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
 | |
|     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
 | |
|     // Because we believe v4i64 to be a legal type, we must also include the
 | |
|     // split factor of two in the cost table. Therefore, the cost here is 18
 | |
|     // instead of 9.
 | |
|     { ISD::MUL,     MVT::v4i64,    18 },
 | |
|   };
 | |
| 
 | |
|   // Look for AVX1 lowering tricks.
 | |
|   if (ST->hasAVX() && !ST->hasAVX2()) {
 | |
|     MVT VT = LT.second;
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   // Custom lowering of vectors.
 | |
|   static const CostTblEntry CustomLowered[] = {
 | |
|     // A v2i64/v4i64 and multiply is custom lowered as a series of long
 | |
|     // multiplies(3), shifts(4) and adds(2).
 | |
|     { ISD::MUL,     MVT::v2i64,    9 },
 | |
|     { ISD::MUL,     MVT::v4i64,    9 },
 | |
|   };
 | |
|   if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
 | |
|     return LT.first * Entry->Cost;
 | |
| 
 | |
|   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
 | |
|   // 2x pmuludq, 2x shuffle.
 | |
|   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
 | |
|       !ST->hasSSE41())
 | |
|     return LT.first * 6;
 | |
| 
 | |
|   // Fallback to the default implementation.
 | |
|   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
 | |
|                                Type *SubTp) {
 | |
|   // We only estimate the cost of reverse and alternate shuffles.
 | |
|   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
 | |
|     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| 
 | |
|   if (Kind == TTI::SK_Reverse) {
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | |
|     int Cost = 1;
 | |
|     if (LT.second.getSizeInBits() > 128)
 | |
|       Cost = 3; // Extract + insert + copy.
 | |
| 
 | |
|     // Multiple by the number of parts.
 | |
|     return Cost * LT.first;
 | |
|   }
 | |
| 
 | |
|   if (Kind == TTI::SK_Alternate) {
 | |
|     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
 | |
|     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | |
| 
 | |
|     // The backend knows how to generate a single VEX.256 version of
 | |
|     // instruction VPBLENDW if the target supports AVX2.
 | |
|     if (ST->hasAVX2() && LT.second == MVT::v16i16)
 | |
|       return LT.first;
 | |
| 
 | |
|     static const CostTblEntry AVXAltShuffleTbl[] = {
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
 | |
| 
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
 | |
| 
 | |
|       // This shuffle is custom lowered into a sequence of:
 | |
|       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
 | |
| 
 | |
|       // This shuffle is custom lowered into a long sequence of:
 | |
|       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
 | |
|     };
 | |
| 
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl,
 | |
|                                               ISD::VECTOR_SHUFFLE, LT.second))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     static const CostTblEntry SSE41AltShuffleTbl[] = {
 | |
|       // These are lowered into movsd.
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | |
| 
 | |
|       // packed float vectors with four elements are lowered into BLENDI dag
 | |
|       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
 | |
| 
 | |
|       // This shuffle generates a single pshufw.
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
 | |
| 
 | |
|       // There is no instruction that matches a v16i8 alternate shuffle.
 | |
|       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
 | |
|     };
 | |
| 
 | |
|     if (ST->hasSSE41())
 | |
|       if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE,
 | |
|                                               LT.second))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     static const CostTblEntry SSSE3AltShuffleTbl[] = {
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
 | |
| 
 | |
|       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
 | |
|       // the sequence 'shufps + pshufd'
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | |
| 
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
 | |
|     };
 | |
| 
 | |
|     if (ST->hasSSSE3())
 | |
|       if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl,
 | |
|                                               ISD::VECTOR_SHUFFLE, LT.second))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     static const CostTblEntry SSEAltShuffleTbl[] = {
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
 | |
| 
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
 | |
| 
 | |
|       // This is expanded into a long sequence of four extract + four insert.
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
 | |
| 
 | |
|       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
 | |
|       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
 | |
|     };
 | |
| 
 | |
|     // Fall-back (SSE3 and SSE2).
 | |
|     if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl,
 | |
|                                             ISD::VECTOR_SHUFFLE, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
|   }
 | |
| 
 | |
|   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // FIXME: Need a better design of the cost table to handle non-simple types of
 | |
|   // potential massive combinations (elem_num x src_type x dst_type).
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f32, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f32, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f64, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f64, 1 },
 | |
|   };
 | |
| 
 | |
|   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
 | |
|   // 256-bit wide vectors.
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
 | |
|     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
 | |
|     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
 | |
|     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
 | |
| 
 | |
|     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
 | |
|     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
 | |
|     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
 | |
|     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
 | |
| 
 | |
|     // v16i1 -> v16i32 - load + broadcast
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 12 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
 | |
| 
 | |
|     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
 | |
|     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
 | |
|     // The generic code to compute the scalar overhead is currently broken.
 | |
|     // Workaround this limitation by estimating the scalarization overhead
 | |
|     // here. We have roughly 10 instructions per scalar element.
 | |
|     // Multiply that by the vector width.
 | |
|     // FIXME: remove that when PR19268 is fixed.
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 10 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 20 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
 | |
|     // This node is expanded into scalarized operations but BasicTTI is overly
 | |
|     // optimistic estimating its cost.  It computes 3 per element (one
 | |
|     // vector-extract, one scalar conversion and one vector-insert).  The
 | |
|     // problem is that the inserts form a read-modify-write chain so latency
 | |
|     // should be factored in too.  Inflating the cost per element by 1.
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
 | |
| 
 | |
|     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
 | |
|     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
 | |
| 
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
 | |
| 
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
 | |
|     // These are somewhat magic numbers justified by looking at the output of
 | |
|     // Intel's IACA, running some kernels and making sure when we take
 | |
|     // legalization into account the throughput will be overestimated.
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | |
| 
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
 | |
|   };
 | |
| 
 | |
|   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
 | |
|   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
 | |
| 
 | |
|   if (ST->hasSSE2() && !ST->hasAVX()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
 | |
|                                                    LTDest.second, LTSrc.second))
 | |
|       return LTSrc.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(DL, Src);
 | |
|   EVT DstTy = TLI->getValueType(DL, Dst);
 | |
| 
 | |
|   // The function getSimpleVT only handles simple value types.
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   if (ST->hasDQI())
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX2()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   if (ST->hasAVX()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   if (ST->hasSSE41()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   if (ST->hasSSE2()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v2i64,   8 },
 | |
|     { ISD::SETCC,   MVT::v4i32,   1 },
 | |
|     { ISD::SETCC,   MVT::v8i16,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i8,   1 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE42CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v2f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v4f32,   1 },
 | |
|     { ISD::SETCC,   MVT::v2i64,   1 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v8f32,   1 },
 | |
|     // AVX1 does not support 8-wide integer compare.
 | |
|     { ISD::SETCC,   MVT::v4i64,   4 },
 | |
|     { ISD::SETCC,   MVT::v8i32,   4 },
 | |
|     { ISD::SETCC,   MVT::v16i16,  4 },
 | |
|     { ISD::SETCC,   MVT::v32i8,   4 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX2CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4i64,   1 },
 | |
|     { ISD::SETCC,   MVT::v8i32,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i16,  1 },
 | |
|     { ISD::SETCC,   MVT::v32i8,   1 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX512CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v8i64,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i32,  1 },
 | |
|     { ISD::SETCC,   MVT::v8f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v16f32,  1 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX2())
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE42())
 | |
|     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
 | |
|                                       ArrayRef<Type *> Tys, FastMathFlags FMF) {
 | |
|   // Costs should match the codegen from:
 | |
|   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
 | |
|   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
 | |
|   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
 | |
|   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
 | |
|   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
 | |
|   static const CostTblEntry XOPCostTbl[] = {
 | |
|     { ISD::BITREVERSE, MVT::v4i64,   4 },
 | |
|     { ISD::BITREVERSE, MVT::v8i32,   4 },
 | |
|     { ISD::BITREVERSE, MVT::v16i16,  4 },
 | |
|     { ISD::BITREVERSE, MVT::v32i8,   4 },
 | |
|     { ISD::BITREVERSE, MVT::v2i64,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v4i32,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v8i16,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v16i8,   1 },
 | |
|     { ISD::BITREVERSE, MVT::i64,     3 },
 | |
|     { ISD::BITREVERSE, MVT::i32,     3 },
 | |
|     { ISD::BITREVERSE, MVT::i16,     3 },
 | |
|     { ISD::BITREVERSE, MVT::i8,      3 }
 | |
|   };
 | |
|   static const CostTblEntry AVX2CostTbl[] = {
 | |
|     { ISD::BITREVERSE, MVT::v4i64,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v8i32,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v16i16,  5 },
 | |
|     { ISD::BITREVERSE, MVT::v32i8,   5 },
 | |
|     { ISD::BSWAP,      MVT::v4i64,   1 },
 | |
|     { ISD::BSWAP,      MVT::v8i32,   1 },
 | |
|     { ISD::BSWAP,      MVT::v16i16,  1 },
 | |
|     { ISD::CTLZ,       MVT::v4i64,  23 },
 | |
|     { ISD::CTLZ,       MVT::v8i32,  18 },
 | |
|     { ISD::CTLZ,       MVT::v16i16, 14 },
 | |
|     { ISD::CTLZ,       MVT::v32i8,   9 },
 | |
|     { ISD::CTPOP,      MVT::v4i64,   7 },
 | |
|     { ISD::CTPOP,      MVT::v8i32,  11 },
 | |
|     { ISD::CTPOP,      MVT::v16i16,  9 },
 | |
|     { ISD::CTPOP,      MVT::v32i8,   6 },
 | |
|     { ISD::CTTZ,       MVT::v4i64,  10 },
 | |
|     { ISD::CTTZ,       MVT::v8i32,  14 },
 | |
|     { ISD::CTTZ,       MVT::v16i16, 12 },
 | |
|     { ISD::CTTZ,       MVT::v32i8,   9 }
 | |
|   };
 | |
|   static const CostTblEntry AVX1CostTbl[] = {
 | |
|     { ISD::BITREVERSE, MVT::v4i64,  10 },
 | |
|     { ISD::BITREVERSE, MVT::v8i32,  10 },
 | |
|     { ISD::BITREVERSE, MVT::v16i16, 10 },
 | |
|     { ISD::BITREVERSE, MVT::v32i8,  10 },
 | |
|     { ISD::BSWAP,      MVT::v4i64,   4 },
 | |
|     { ISD::BSWAP,      MVT::v8i32,   4 },
 | |
|     { ISD::BSWAP,      MVT::v16i16,  4 },
 | |
|     { ISD::CTLZ,       MVT::v4i64,  46 },
 | |
|     { ISD::CTLZ,       MVT::v8i32,  36 },
 | |
|     { ISD::CTLZ,       MVT::v16i16, 28 },
 | |
|     { ISD::CTLZ,       MVT::v32i8,  18 },
 | |
|     { ISD::CTPOP,      MVT::v4i64,  14 },
 | |
|     { ISD::CTPOP,      MVT::v8i32,  22 },
 | |
|     { ISD::CTPOP,      MVT::v16i16, 18 },
 | |
|     { ISD::CTPOP,      MVT::v32i8,  12 },
 | |
|     { ISD::CTTZ,       MVT::v4i64,  20 },
 | |
|     { ISD::CTTZ,       MVT::v8i32,  28 },
 | |
|     { ISD::CTTZ,       MVT::v16i16, 24 },
 | |
|     { ISD::CTTZ,       MVT::v32i8,  18 },
 | |
|   };
 | |
|   static const CostTblEntry SSSE3CostTbl[] = {
 | |
|     { ISD::BITREVERSE, MVT::v2i64,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v4i32,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v8i16,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v16i8,   5 },
 | |
|     { ISD::BSWAP,      MVT::v2i64,   1 },
 | |
|     { ISD::BSWAP,      MVT::v4i32,   1 },
 | |
|     { ISD::BSWAP,      MVT::v8i16,   1 },
 | |
|     { ISD::CTLZ,       MVT::v2i64,  23 },
 | |
|     { ISD::CTLZ,       MVT::v4i32,  18 },
 | |
|     { ISD::CTLZ,       MVT::v8i16,  14 },
 | |
|     { ISD::CTLZ,       MVT::v16i8,   9 },
 | |
|     { ISD::CTPOP,      MVT::v2i64,   7 },
 | |
|     { ISD::CTPOP,      MVT::v4i32,  11 },
 | |
|     { ISD::CTPOP,      MVT::v8i16,   9 },
 | |
|     { ISD::CTPOP,      MVT::v16i8,   6 },
 | |
|     { ISD::CTTZ,       MVT::v2i64,  10 },
 | |
|     { ISD::CTTZ,       MVT::v4i32,  14 },
 | |
|     { ISD::CTTZ,       MVT::v8i16,  12 },
 | |
|     { ISD::CTTZ,       MVT::v16i8,   9 }
 | |
|   };
 | |
|   static const CostTblEntry SSE2CostTbl[] = {
 | |
|     { ISD::BSWAP,      MVT::v2i64,   7 },
 | |
|     { ISD::BSWAP,      MVT::v4i32,   7 },
 | |
|     { ISD::BSWAP,      MVT::v8i16,   7 },
 | |
|     /* ISD::CTLZ - currently scalarized pre-SSSE3 */
 | |
|     { ISD::CTPOP,      MVT::v2i64,  12 },
 | |
|     { ISD::CTPOP,      MVT::v4i32,  15 },
 | |
|     { ISD::CTPOP,      MVT::v8i16,  13 },
 | |
|     { ISD::CTPOP,      MVT::v16i8,  10 },
 | |
|     { ISD::CTTZ,       MVT::v2i64,  14 },
 | |
|     { ISD::CTTZ,       MVT::v4i32,  18 },
 | |
|     { ISD::CTTZ,       MVT::v8i16,  16 },
 | |
|     { ISD::CTTZ,       MVT::v16i8,  13 }
 | |
|   };
 | |
| 
 | |
|   unsigned ISD = ISD::DELETED_NODE;
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::bitreverse:
 | |
|     ISD = ISD::BITREVERSE;
 | |
|     break;
 | |
|   case Intrinsic::bswap:
 | |
|     ISD = ISD::BSWAP;
 | |
|     break;
 | |
|   case Intrinsic::ctlz:
 | |
|     ISD = ISD::CTLZ;
 | |
|     break;
 | |
|   case Intrinsic::ctpop:
 | |
|     ISD = ISD::CTPOP;
 | |
|     break;
 | |
|   case Intrinsic::cttz:
 | |
|     ISD = ISD::CTTZ;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   // Attempt to lookup cost.
 | |
|   if (ST->hasXOP())
 | |
|     if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX2())
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSSE3())
 | |
|     if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
 | |
|                                       ArrayRef<Value *> Args, FastMathFlags FMF) {
 | |
|   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
 | |
|   assert(Val->isVectorTy() && "This must be a vector type");
 | |
| 
 | |
|   Type *ScalarType = Val->getScalarType();
 | |
| 
 | |
|   if (Index != -1U) {
 | |
|     // Legalize the type.
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
 | |
| 
 | |
|     // This type is legalized to a scalar type.
 | |
|     if (!LT.second.isVector())
 | |
|       return 0;
 | |
| 
 | |
|     // The type may be split. Normalize the index to the new type.
 | |
|     unsigned Width = LT.second.getVectorNumElements();
 | |
|     Index = Index % Width;
 | |
| 
 | |
|     // Floating point scalars are already located in index #0.
 | |
|     if (ScalarType->isFloatingPointTy() && Index == 0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Add to the base cost if we know that the extracted element of a vector is
 | |
|   // destined to be moved to and used in the integer register file.
 | |
|   int RegisterFileMoveCost = 0;
 | |
|   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
 | |
|     RegisterFileMoveCost = 1;
 | |
| 
 | |
|   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
 | |
|   assert (Ty->isVectorTy() && "Can only scalarize vectors");
 | |
|   int Cost = 0;
 | |
| 
 | |
|   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | |
|     if (Insert)
 | |
|       Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|     if (Extract)
 | |
|       Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                                 unsigned AddressSpace) {
 | |
|   // Handle non-power-of-two vectors such as <3 x float>
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
 | |
|     unsigned NumElem = VTy->getVectorNumElements();
 | |
| 
 | |
|     // Handle a few common cases:
 | |
|     // <3 x float>
 | |
|     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
 | |
|       // Cost = 64 bit store + extract + 32 bit store.
 | |
|       return 3;
 | |
| 
 | |
|     // <3 x double>
 | |
|     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
 | |
|       // Cost = 128 bit store + unpack + 64 bit store.
 | |
|       return 3;
 | |
| 
 | |
|     // Assume that all other non-power-of-two numbers are scalarized.
 | |
|     if (!isPowerOf2_32(NumElem)) {
 | |
|       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
 | |
|                                         AddressSpace);
 | |
|       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
 | |
|                                                Opcode == Instruction::Store);
 | |
|       return NumElem * Cost + SplitCost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | |
|   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | |
|          "Invalid Opcode");
 | |
| 
 | |
|   // Each load/store unit costs 1.
 | |
|   int Cost = LT.first * 1;
 | |
| 
 | |
|   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
 | |
|   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
 | |
|   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
 | |
|     Cost *= 2;
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
 | |
|                                       unsigned Alignment,
 | |
|                                       unsigned AddressSpace) {
 | |
|   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
 | |
|   if (!SrcVTy)
 | |
|     // To calculate scalar take the regular cost, without mask
 | |
|     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
 | |
| 
 | |
|   unsigned NumElem = SrcVTy->getVectorNumElements();
 | |
|   VectorType *MaskTy =
 | |
|     VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
 | |
|   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
 | |
|       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
 | |
|       !isPowerOf2_32(NumElem)) {
 | |
|     // Scalarization
 | |
|     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
 | |
|     int ScalarCompareCost = getCmpSelInstrCost(
 | |
|         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
 | |
|     int BranchCost = getCFInstrCost(Instruction::Br);
 | |
|     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
 | |
| 
 | |
|     int ValueSplitCost = getScalarizationOverhead(
 | |
|         SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
 | |
|     int MemopCost =
 | |
|         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | |
|                                          Alignment, AddressSpace);
 | |
|     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
 | |
|   }
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
 | |
|   auto VT = TLI->getValueType(DL, SrcVTy);
 | |
|   int Cost = 0;
 | |
|   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
 | |
|       LT.second.getVectorNumElements() == NumElem)
 | |
|     // Promotion requires expand/truncate for data and a shuffle for mask.
 | |
|     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
 | |
|             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
 | |
| 
 | |
|   else if (LT.second.getVectorNumElements() > NumElem) {
 | |
|     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
 | |
|                                             LT.second.getVectorNumElements());
 | |
|     // Expanding requires fill mask with zeroes
 | |
|     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
 | |
|   }
 | |
|   if (!ST->hasAVX512())
 | |
|     return Cost + LT.first*4; // Each maskmov costs 4
 | |
| 
 | |
|   // AVX-512 masked load/store is cheapper
 | |
|   return Cost+LT.first;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   if (Ty->isVectorTy() && IsComplex)
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   return BaseT::getAddressComputationCost(Ty, IsComplex);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
 | |
|                                  bool IsPairwise) {
 | |
| 
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
 | |
|   // and make it as the cost.
 | |
| 
 | |
|   static const CostTblEntry SSE42CostTblPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v2f64,   2 },
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | |
|     { ISD::ADD,   MVT::v8i16,   5 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTblPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::FADD,  MVT::v4f64,   5 },
 | |
|     { ISD::FADD,  MVT::v8f32,   7 },
 | |
|     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | |
|     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
 | |
|     { ISD::ADD,   MVT::v8i16,   5 },
 | |
|     { ISD::ADD,   MVT::v8i32,   5 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE42CostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v2f64,   2 },
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
 | |
|     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v4f32,   3 },
 | |
|     { ISD::FADD,  MVT::v4f64,   3 },
 | |
|     { ISD::FADD,  MVT::v8f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
 | |
|     { ISD::ADD,   MVT::v4i64,   3 },
 | |
|     { ISD::ADD,   MVT::v8i16,   4 },
 | |
|     { ISD::ADD,   MVT::v8i32,   5 },
 | |
|   };
 | |
| 
 | |
|   if (IsPairwise) {
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     if (ST->hasSSE42())
 | |
|       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
|   } else {
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     if (ST->hasSSE42())
 | |
|       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
 | |
| }
 | |
| 
 | |
| /// \brief Calculate the cost of materializing a 64-bit value. This helper
 | |
| /// method might only calculate a fraction of a larger immediate. Therefore it
 | |
| /// is valid to return a cost of ZERO.
 | |
| int X86TTIImpl::getIntImmCost(int64_t Val) {
 | |
|   if (Val == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   if (isInt<32>(Val))
 | |
|     return TTI::TCC_Basic;
 | |
| 
 | |
|   return 2 * TTI::TCC_Basic;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0)
 | |
|     return ~0U;
 | |
| 
 | |
|   // Never hoist constants larger than 128bit, because this might lead to
 | |
|   // incorrect code generation or assertions in codegen.
 | |
|   // Fixme: Create a cost model for types larger than i128 once the codegen
 | |
|   // issues have been fixed.
 | |
|   if (BitSize > 128)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   if (Imm == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   // Sign-extend all constants to a multiple of 64-bit.
 | |
|   APInt ImmVal = Imm;
 | |
|   if (BitSize & 0x3f)
 | |
|     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
 | |
| 
 | |
|   // Split the constant into 64-bit chunks and calculate the cost for each
 | |
|   // chunk.
 | |
|   int Cost = 0;
 | |
|   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
 | |
|     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
 | |
|     int64_t Val = Tmp.getSExtValue();
 | |
|     Cost += getIntImmCost(Val);
 | |
|   }
 | |
|   // We need at least one instruction to materialize the constant.
 | |
|   return std::max(1, Cost);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
 | |
|                               Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   unsigned ImmIdx = ~0U;
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // Always hoist the base address of a GetElementPtr. This prevents the
 | |
|     // creation of new constants for every base constant that gets constant
 | |
|     // folded with the offset.
 | |
|     if (Idx == 0)
 | |
|       return 2 * TTI::TCC_Basic;
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::Store:
 | |
|     ImmIdx = 0;
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     // This is an imperfect hack to prevent constant hoisting of
 | |
|     // compares that might be trying to check if a 64-bit value fits in
 | |
|     // 32-bits. The backend can optimize these cases using a right shift by 32.
 | |
|     // Ideally we would check the compare predicate here. There also other
 | |
|     // similar immediates the backend can use shifts for.
 | |
|     if (Idx == 1 && Imm.getBitWidth() == 64) {
 | |
|       uint64_t ImmVal = Imm.getZExtValue();
 | |
|       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
 | |
|         return TTI::TCC_Free;
 | |
|     }
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
 | |
|     // by using a 32-bit operation with implicit zero extension. Detect such
 | |
|     // immediates here as the normal path expects bit 31 to be sign extended.
 | |
|     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
 | |
|       return TTI::TCC_Free;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   // Always return TCC_Free for the shift value of a shift instruction.
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     if (Idx == 1)
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::Load:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Idx == ImmIdx) {
 | |
|     int NumConstants = (BitSize + 63) / 64;
 | |
|     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
 | |
|     return (Cost <= NumConstants * TTI::TCC_Basic)
 | |
|                ? static_cast<int>(TTI::TCC_Free)
 | |
|                : Cost;
 | |
|   }
 | |
| 
 | |
|   return X86TTIImpl::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
 | |
|                               Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_stackmap:
 | |
|     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   }
 | |
|   return X86TTIImpl::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| // Return an average cost of Gather / Scatter instruction, maybe improved later
 | |
| int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
 | |
|                                 unsigned Alignment, unsigned AddressSpace) {
 | |
| 
 | |
|   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
 | |
|   unsigned VF = SrcVTy->getVectorNumElements();
 | |
| 
 | |
|   // Try to reduce index size from 64 bit (default for GEP)
 | |
|   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
 | |
|   // operation will use 16 x 64 indices which do not fit in a zmm and needs
 | |
|   // to split. Also check that the base pointer is the same for all lanes,
 | |
|   // and that there's at most one variable index.
 | |
|   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
 | |
|     unsigned IndexSize = DL.getPointerSizeInBits();
 | |
|     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|     if (IndexSize < 64 || !GEP)
 | |
|       return IndexSize;
 | |
| 
 | |
|     unsigned NumOfVarIndices = 0;
 | |
|     Value *Ptrs = GEP->getPointerOperand();
 | |
|     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
 | |
|       return IndexSize;
 | |
|     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
 | |
|       if (isa<Constant>(GEP->getOperand(i)))
 | |
|         continue;
 | |
|       Type *IndxTy = GEP->getOperand(i)->getType();
 | |
|       if (IndxTy->isVectorTy())
 | |
|         IndxTy = IndxTy->getVectorElementType();
 | |
|       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
 | |
|           !isa<SExtInst>(GEP->getOperand(i))) ||
 | |
|          ++NumOfVarIndices > 1)
 | |
|         return IndexSize; // 64
 | |
|     }
 | |
|     return (unsigned)32;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // Trying to reduce IndexSize to 32 bits for vector 16.
 | |
|   // By default the IndexSize is equal to pointer size.
 | |
|   unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
 | |
|     DL.getPointerSizeInBits();
 | |
| 
 | |
|   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
 | |
|                                                     IndexSize), VF);
 | |
|   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
 | |
|   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
 | |
|   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
 | |
|   if (SplitFactor > 1) {
 | |
|     // Handle splitting of vector of pointers
 | |
|     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
 | |
|     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
 | |
|                                          AddressSpace);
 | |
|   }
 | |
| 
 | |
|   // The gather / scatter cost is given by Intel architects. It is a rough
 | |
|   // number since we are looking at one instruction in a time.
 | |
|   const int GSOverhead = 2;
 | |
|   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | |
|                                            Alignment, AddressSpace);
 | |
| }
 | |
| 
 | |
| /// Return the cost of full scalarization of gather / scatter operation.
 | |
| ///
 | |
| /// Opcode - Load or Store instruction.
 | |
| /// SrcVTy - The type of the data vector that should be gathered or scattered.
 | |
| /// VariableMask - The mask is non-constant at compile time.
 | |
| /// Alignment - Alignment for one element.
 | |
| /// AddressSpace - pointer[s] address space.
 | |
| ///
 | |
| int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
 | |
|                                 bool VariableMask, unsigned Alignment,
 | |
|                                 unsigned AddressSpace) {
 | |
|   unsigned VF = SrcVTy->getVectorNumElements();
 | |
| 
 | |
|   int MaskUnpackCost = 0;
 | |
|   if (VariableMask) {
 | |
|     VectorType *MaskTy =
 | |
|       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
 | |
|     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
 | |
|     int ScalarCompareCost =
 | |
|       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
 | |
|                          nullptr);
 | |
|     int BranchCost = getCFInstrCost(Instruction::Br);
 | |
|     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
 | |
|   }
 | |
| 
 | |
|   // The cost of the scalar loads/stores.
 | |
|   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | |
|                                           Alignment, AddressSpace);
 | |
| 
 | |
|   int InsertExtractCost = 0;
 | |
|   if (Opcode == Instruction::Load)
 | |
|     for (unsigned i = 0; i < VF; ++i)
 | |
|       // Add the cost of inserting each scalar load into the vector
 | |
|       InsertExtractCost +=
 | |
|         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
 | |
|   else
 | |
|     for (unsigned i = 0; i < VF; ++i)
 | |
|       // Add the cost of extracting each element out of the data vector
 | |
|       InsertExtractCost +=
 | |
|         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
 | |
| 
 | |
|   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
 | |
| }
 | |
| 
 | |
| /// Calculate the cost of Gather / Scatter operation
 | |
| int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
 | |
|                                        Value *Ptr, bool VariableMask,
 | |
|                                        unsigned Alignment) {
 | |
|   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
 | |
|   unsigned VF = SrcVTy->getVectorNumElements();
 | |
|   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | |
|   if (!PtrTy && Ptr->getType()->isVectorTy())
 | |
|     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
 | |
|   assert(PtrTy && "Unexpected type for Ptr argument");
 | |
|   unsigned AddressSpace = PtrTy->getAddressSpace();
 | |
| 
 | |
|   bool Scalarize = false;
 | |
|   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
 | |
|       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
 | |
|     Scalarize = true;
 | |
|   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
 | |
|   // Vector-4 of gather/scatter instruction does not exist on KNL.
 | |
|   // We can extend it to 8 elements, but zeroing upper bits of
 | |
|   // the mask vector will add more instructions. Right now we give the scalar
 | |
|   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction is
 | |
|   // better in the VariableMask case.
 | |
|   if (VF == 2 || (VF == 4 && !ST->hasVLX()))
 | |
|     Scalarize = true;
 | |
| 
 | |
|   if (Scalarize)
 | |
|     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, AddressSpace);
 | |
| 
 | |
|   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
 | |
|   Type *ScalarTy = DataTy->getScalarType();
 | |
|   int DataWidth = isa<PointerType>(ScalarTy) ?
 | |
|     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
 | |
|          ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
 | |
|   return isLegalMaskedLoad(DataType);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
 | |
|   // This function is called now in two cases: from the Loop Vectorizer
 | |
|   // and from the Scalarizer.
 | |
|   // When the Loop Vectorizer asks about legality of the feature,
 | |
|   // the vectorization factor is not calculated yet. The Loop Vectorizer
 | |
|   // sends a scalar type and the decision is based on the width of the
 | |
|   // scalar element.
 | |
|   // Later on, the cost model will estimate usage this intrinsic based on
 | |
|   // the vector type.
 | |
|   // The Scalarizer asks again about legality. It sends a vector type.
 | |
|   // In this case we can reject non-power-of-2 vectors.
 | |
|   if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
 | |
|     return false;
 | |
|   Type *ScalarTy = DataTy->getScalarType();
 | |
|   int DataWidth = isa<PointerType>(ScalarTy) ?
 | |
|     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // AVX-512 allows gather and scatter
 | |
|   return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
 | |
|   return isLegalMaskedGather(DataType);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::areInlineCompatible(const Function *Caller,
 | |
|                                      const Function *Callee) const {
 | |
|   const TargetMachine &TM = getTLI()->getTargetMachine();
 | |
| 
 | |
|   // Work this as a subsetting of subtarget features.
 | |
|   const FeatureBitset &CallerBits =
 | |
|       TM.getSubtargetImpl(*Caller)->getFeatureBits();
 | |
|   const FeatureBitset &CalleeBits =
 | |
|       TM.getSubtargetImpl(*Callee)->getFeatureBits();
 | |
| 
 | |
|   // FIXME: This is likely too limiting as it will include subtarget features
 | |
|   // that we might not care about for inlining, but it is conservatively
 | |
|   // correct.
 | |
|   return (CallerBits & CalleeBits) == CalleeBits;
 | |
| }
 |