660 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			660 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- ExprClassification.cpp - Expression AST Node Implementation ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements Expr::classify.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| using namespace clang;
 | |
| 
 | |
| typedef Expr::Classification Cl;
 | |
| 
 | |
| static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E);
 | |
| static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D);
 | |
| static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T);
 | |
| static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E);
 | |
| static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E);
 | |
| static Cl::Kinds ClassifyConditional(ASTContext &Ctx,
 | |
|                                      const Expr *trueExpr,
 | |
|                                      const Expr *falseExpr);
 | |
| static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
 | |
|                                        Cl::Kinds Kind, SourceLocation &Loc);
 | |
| 
 | |
| Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const {
 | |
|   assert(!TR->isReferenceType() && "Expressions can't have reference type.");
 | |
| 
 | |
|   Cl::Kinds kind = ClassifyInternal(Ctx, this);
 | |
|   // C99 6.3.2.1: An lvalue is an expression with an object type or an
 | |
|   //   incomplete type other than void.
 | |
|   if (!Ctx.getLangOpts().CPlusPlus) {
 | |
|     // Thus, no functions.
 | |
|     if (TR->isFunctionType() || TR == Ctx.OverloadTy)
 | |
|       kind = Cl::CL_Function;
 | |
|     // No void either, but qualified void is OK because it is "other than void".
 | |
|     // Void "lvalues" are classified as addressable void values, which are void
 | |
|     // expressions whose address can be taken.
 | |
|     else if (TR->isVoidType() && !TR.hasQualifiers())
 | |
|       kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void);
 | |
|   }
 | |
| 
 | |
|   // Enable this assertion for testing.
 | |
|   switch (kind) {
 | |
|   case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break;
 | |
|   case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break;
 | |
|   case Cl::CL_Function:
 | |
|   case Cl::CL_Void:
 | |
|   case Cl::CL_AddressableVoid:
 | |
|   case Cl::CL_DuplicateVectorComponents:
 | |
|   case Cl::CL_MemberFunction:
 | |
|   case Cl::CL_SubObjCPropertySetting:
 | |
|   case Cl::CL_ClassTemporary:
 | |
|   case Cl::CL_ArrayTemporary:
 | |
|   case Cl::CL_ObjCMessageRValue:
 | |
|   case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break;
 | |
|   }
 | |
| 
 | |
|   Cl::ModifiableType modifiable = Cl::CM_Untested;
 | |
|   if (Loc)
 | |
|     modifiable = IsModifiable(Ctx, this, kind, *Loc);
 | |
|   return Classification(kind, modifiable);
 | |
| }
 | |
| 
 | |
| /// Classify an expression which creates a temporary, based on its type.
 | |
| static Cl::Kinds ClassifyTemporary(QualType T) {
 | |
|   if (T->isRecordType())
 | |
|     return Cl::CL_ClassTemporary;
 | |
|   if (T->isArrayType())
 | |
|     return Cl::CL_ArrayTemporary;
 | |
| 
 | |
|   // No special classification: these don't behave differently from normal
 | |
|   // prvalues.
 | |
|   return Cl::CL_PRValue;
 | |
| }
 | |
| 
 | |
| static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang,
 | |
|                                        const Expr *E,
 | |
|                                        ExprValueKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case VK_RValue:
 | |
|     return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue;
 | |
|   case VK_LValue:
 | |
|     return Cl::CL_LValue;
 | |
|   case VK_XValue:
 | |
|     return Cl::CL_XValue;
 | |
|   }
 | |
|   llvm_unreachable("Invalid value category of implicit cast.");
 | |
| }
 | |
| 
 | |
| static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) {
 | |
|   // This function takes the first stab at classifying expressions.
 | |
|   const LangOptions &Lang = Ctx.getLangOpts();
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::NoStmtClass:
 | |
| #define ABSTRACT_STMT(Kind)
 | |
| #define STMT(Kind, Base) case Expr::Kind##Class:
 | |
| #define EXPR(Kind, Base)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|     llvm_unreachable("cannot classify a statement");
 | |
| 
 | |
|     // First come the expressions that are always lvalues, unconditionally.
 | |
|   case Expr::ObjCIsaExprClass:
 | |
|     // C++ [expr.prim.general]p1: A string literal is an lvalue.
 | |
|   case Expr::StringLiteralClass:
 | |
|     // @encode is equivalent to its string
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|     // __func__ and friends are too.
 | |
|   case Expr::PredefinedExprClass:
 | |
|     // Property references are lvalues
 | |
|   case Expr::ObjCSubscriptRefExprClass:
 | |
|   case Expr::ObjCPropertyRefExprClass:
 | |
|     // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of...
 | |
|   case Expr::CXXTypeidExprClass:
 | |
|     // Unresolved lookups get classified as lvalues.
 | |
|     // FIXME: Is this wise? Should they get their own kind?
 | |
|   case Expr::UnresolvedLookupExprClass:
 | |
|   case Expr::UnresolvedMemberExprClass:
 | |
|   case Expr::CXXDependentScopeMemberExprClass:
 | |
|   case Expr::DependentScopeDeclRefExprClass:
 | |
|     // ObjC instance variables are lvalues
 | |
|     // FIXME: ObjC++0x might have different rules
 | |
|   case Expr::ObjCIvarRefExprClass:
 | |
|   case Expr::FunctionParmPackExprClass:
 | |
|     return Cl::CL_LValue;
 | |
| 
 | |
|     // C99 6.5.2.5p5 says that compound literals are lvalues.
 | |
|     // In C++, they're prvalue temporaries.
 | |
|   case Expr::CompoundLiteralExprClass:
 | |
|     return Ctx.getLangOpts().CPlusPlus ? ClassifyTemporary(E->getType())
 | |
|                                        : Cl::CL_LValue;
 | |
| 
 | |
|     // Expressions that are prvalues.
 | |
|   case Expr::CXXBoolLiteralExprClass:
 | |
|   case Expr::CXXPseudoDestructorExprClass:
 | |
|   case Expr::UnaryExprOrTypeTraitExprClass:
 | |
|   case Expr::CXXNewExprClass:
 | |
|   case Expr::CXXThisExprClass:
 | |
|   case Expr::CXXNullPtrLiteralExprClass:
 | |
|   case Expr::ImaginaryLiteralClass:
 | |
|   case Expr::GNUNullExprClass:
 | |
|   case Expr::OffsetOfExprClass:
 | |
|   case Expr::CXXThrowExprClass:
 | |
|   case Expr::ShuffleVectorExprClass:
 | |
|   case Expr::IntegerLiteralClass:
 | |
|   case Expr::CharacterLiteralClass:
 | |
|   case Expr::AddrLabelExprClass:
 | |
|   case Expr::CXXDeleteExprClass:
 | |
|   case Expr::ImplicitValueInitExprClass:
 | |
|   case Expr::BlockExprClass:
 | |
|   case Expr::FloatingLiteralClass:
 | |
|   case Expr::CXXNoexceptExprClass:
 | |
|   case Expr::CXXScalarValueInitExprClass:
 | |
|   case Expr::UnaryTypeTraitExprClass:
 | |
|   case Expr::BinaryTypeTraitExprClass:
 | |
|   case Expr::TypeTraitExprClass:
 | |
|   case Expr::ArrayTypeTraitExprClass:
 | |
|   case Expr::ExpressionTraitExprClass:
 | |
|   case Expr::ObjCSelectorExprClass:
 | |
|   case Expr::ObjCProtocolExprClass:
 | |
|   case Expr::ObjCStringLiteralClass:
 | |
|   case Expr::ObjCBoxedExprClass:
 | |
|   case Expr::ObjCArrayLiteralClass:
 | |
|   case Expr::ObjCDictionaryLiteralClass:
 | |
|   case Expr::ObjCBoolLiteralExprClass:
 | |
|   case Expr::ParenListExprClass:
 | |
|   case Expr::SizeOfPackExprClass:
 | |
|   case Expr::SubstNonTypeTemplateParmPackExprClass:
 | |
|   case Expr::AsTypeExprClass:
 | |
|   case Expr::ObjCIndirectCopyRestoreExprClass:
 | |
|   case Expr::AtomicExprClass:
 | |
|     return Cl::CL_PRValue;
 | |
| 
 | |
|     // Next come the complicated cases.
 | |
|   case Expr::SubstNonTypeTemplateParmExprClass:
 | |
|     return ClassifyInternal(Ctx,
 | |
|                  cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
 | |
| 
 | |
|     // C++ [expr.sub]p1: The result is an lvalue of type "T".
 | |
|     // However, subscripting vector types is more like member access.
 | |
|   case Expr::ArraySubscriptExprClass:
 | |
|     if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType())
 | |
|       return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase());
 | |
|     return Cl::CL_LValue;
 | |
| 
 | |
|     // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a
 | |
|     //   function or variable and a prvalue otherwise.
 | |
|   case Expr::DeclRefExprClass:
 | |
|     if (E->getType() == Ctx.UnknownAnyTy)
 | |
|       return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl())
 | |
|                ? Cl::CL_PRValue : Cl::CL_LValue;
 | |
|     return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl());
 | |
| 
 | |
|     // Member access is complex.
 | |
|   case Expr::MemberExprClass:
 | |
|     return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E));
 | |
| 
 | |
|   case Expr::UnaryOperatorClass:
 | |
|     switch (cast<UnaryOperator>(E)->getOpcode()) {
 | |
|       // C++ [expr.unary.op]p1: The unary * operator performs indirection:
 | |
|       //   [...] the result is an lvalue referring to the object or function
 | |
|       //   to which the expression points.
 | |
|     case UO_Deref:
 | |
|       return Cl::CL_LValue;
 | |
| 
 | |
|       // GNU extensions, simply look through them.
 | |
|     case UO_Extension:
 | |
|       return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr());
 | |
| 
 | |
|     // Treat _Real and _Imag basically as if they were member
 | |
|     // expressions:  l-value only if the operand is a true l-value.
 | |
|     case UO_Real:
 | |
|     case UO_Imag: {
 | |
|       const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
 | |
|       Cl::Kinds K = ClassifyInternal(Ctx, Op);
 | |
|       if (K != Cl::CL_LValue) return K;
 | |
| 
 | |
|       if (isa<ObjCPropertyRefExpr>(Op))
 | |
|         return Cl::CL_SubObjCPropertySetting;
 | |
|       return Cl::CL_LValue;
 | |
|     }
 | |
| 
 | |
|       // C++ [expr.pre.incr]p1: The result is the updated operand; it is an
 | |
|       //   lvalue, [...]
 | |
|       // Not so in C.
 | |
|     case UO_PreInc:
 | |
|     case UO_PreDec:
 | |
|       return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue;
 | |
| 
 | |
|     default:
 | |
|       return Cl::CL_PRValue;
 | |
|     }
 | |
| 
 | |
|   case Expr::OpaqueValueExprClass:
 | |
|     return ClassifyExprValueKind(Lang, E, E->getValueKind());
 | |
| 
 | |
|     // Pseudo-object expressions can produce l-values with reference magic.
 | |
|   case Expr::PseudoObjectExprClass:
 | |
|     return ClassifyExprValueKind(Lang, E,
 | |
|                                  cast<PseudoObjectExpr>(E)->getValueKind());
 | |
| 
 | |
|     // Implicit casts are lvalues if they're lvalue casts. Other than that, we
 | |
|     // only specifically record class temporaries.
 | |
|   case Expr::ImplicitCastExprClass:
 | |
|     return ClassifyExprValueKind(Lang, E, E->getValueKind());
 | |
| 
 | |
|     // C++ [expr.prim.general]p4: The presence of parentheses does not affect
 | |
|     //   whether the expression is an lvalue.
 | |
|   case Expr::ParenExprClass:
 | |
|     return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr());
 | |
| 
 | |
|     // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator,
 | |
|     // or a void expression if its result expression is, respectively, an
 | |
|     // lvalue, a function designator, or a void expression.
 | |
|   case Expr::GenericSelectionExprClass:
 | |
|     if (cast<GenericSelectionExpr>(E)->isResultDependent())
 | |
|       return Cl::CL_PRValue;
 | |
|     return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr());
 | |
| 
 | |
|   case Expr::BinaryOperatorClass:
 | |
|   case Expr::CompoundAssignOperatorClass:
 | |
|     // C doesn't have any binary expressions that are lvalues.
 | |
|     if (Lang.CPlusPlus)
 | |
|       return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E));
 | |
|     return Cl::CL_PRValue;
 | |
| 
 | |
|   case Expr::CallExprClass:
 | |
|   case Expr::CXXOperatorCallExprClass:
 | |
|   case Expr::CXXMemberCallExprClass:
 | |
|   case Expr::UserDefinedLiteralClass:
 | |
|   case Expr::CUDAKernelCallExprClass:
 | |
|     return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType());
 | |
| 
 | |
|     // __builtin_choose_expr is equivalent to the chosen expression.
 | |
|   case Expr::ChooseExprClass:
 | |
|     return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr(Ctx));
 | |
| 
 | |
|     // Extended vector element access is an lvalue unless there are duplicates
 | |
|     // in the shuffle expression.
 | |
|   case Expr::ExtVectorElementExprClass:
 | |
|     return cast<ExtVectorElementExpr>(E)->containsDuplicateElements() ?
 | |
|       Cl::CL_DuplicateVectorComponents : Cl::CL_LValue;
 | |
| 
 | |
|     // Simply look at the actual default argument.
 | |
|   case Expr::CXXDefaultArgExprClass:
 | |
|     return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr());
 | |
| 
 | |
|     // Same idea for temporary binding.
 | |
|   case Expr::CXXBindTemporaryExprClass:
 | |
|     return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr());
 | |
| 
 | |
|     // And the cleanups guard.
 | |
|   case Expr::ExprWithCleanupsClass:
 | |
|     return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr());
 | |
| 
 | |
|     // Casts depend completely on the target type. All casts work the same.
 | |
|   case Expr::CStyleCastExprClass:
 | |
|   case Expr::CXXFunctionalCastExprClass:
 | |
|   case Expr::CXXStaticCastExprClass:
 | |
|   case Expr::CXXDynamicCastExprClass:
 | |
|   case Expr::CXXReinterpretCastExprClass:
 | |
|   case Expr::CXXConstCastExprClass:
 | |
|   case Expr::ObjCBridgedCastExprClass:
 | |
|     // Only in C++ can casts be interesting at all.
 | |
|     if (!Lang.CPlusPlus) return Cl::CL_PRValue;
 | |
|     return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten());
 | |
| 
 | |
|   case Expr::CXXUnresolvedConstructExprClass:
 | |
|     return ClassifyUnnamed(Ctx, 
 | |
|                       cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten());
 | |
|       
 | |
|   case Expr::BinaryConditionalOperatorClass: {
 | |
|     if (!Lang.CPlusPlus) return Cl::CL_PRValue;
 | |
|     const BinaryConditionalOperator *co = cast<BinaryConditionalOperator>(E);
 | |
|     return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
 | |
|   }
 | |
| 
 | |
|   case Expr::ConditionalOperatorClass: {
 | |
|     // Once again, only C++ is interesting.
 | |
|     if (!Lang.CPlusPlus) return Cl::CL_PRValue;
 | |
|     const ConditionalOperator *co = cast<ConditionalOperator>(E);
 | |
|     return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
 | |
|   }
 | |
| 
 | |
|     // ObjC message sends are effectively function calls, if the target function
 | |
|     // is known.
 | |
|   case Expr::ObjCMessageExprClass:
 | |
|     if (const ObjCMethodDecl *Method =
 | |
|           cast<ObjCMessageExpr>(E)->getMethodDecl()) {
 | |
|       Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getResultType());
 | |
|       return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind;
 | |
|     }
 | |
|     return Cl::CL_PRValue;
 | |
|       
 | |
|     // Some C++ expressions are always class temporaries.
 | |
|   case Expr::CXXConstructExprClass:
 | |
|   case Expr::CXXTemporaryObjectExprClass:
 | |
|   case Expr::LambdaExprClass:
 | |
|     return Cl::CL_ClassTemporary;
 | |
| 
 | |
|   case Expr::VAArgExprClass:
 | |
|     return ClassifyUnnamed(Ctx, E->getType());
 | |
| 
 | |
|   case Expr::DesignatedInitExprClass:
 | |
|     return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit());
 | |
| 
 | |
|   case Expr::StmtExprClass: {
 | |
|     const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt();
 | |
|     if (const Expr *LastExpr = dyn_cast_or_null<Expr>(S->body_back()))
 | |
|       return ClassifyUnnamed(Ctx, LastExpr->getType());
 | |
|     return Cl::CL_PRValue;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXUuidofExprClass:
 | |
|     return Cl::CL_LValue;
 | |
| 
 | |
|   case Expr::PackExpansionExprClass:
 | |
|     return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern());
 | |
| 
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|     return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference()
 | |
|               ? Cl::CL_LValue 
 | |
|               : Cl::CL_XValue;
 | |
| 
 | |
|   case Expr::InitListExprClass:
 | |
|     // An init list can be an lvalue if it is bound to a reference and
 | |
|     // contains only one element. In that case, we look at that element
 | |
|     // for an exact classification. Init list creation takes care of the
 | |
|     // value kind for us, so we only need to fine-tune.
 | |
|     if (E->isRValue())
 | |
|       return ClassifyExprValueKind(Lang, E, E->getValueKind());
 | |
|     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
 | |
|            "Only 1-element init lists can be glvalues.");
 | |
|     return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0));
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unhandled expression kind in classification");
 | |
| }
 | |
| 
 | |
| /// ClassifyDecl - Return the classification of an expression referencing the
 | |
| /// given declaration.
 | |
| static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) {
 | |
|   // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a
 | |
|   //   function, variable, or data member and a prvalue otherwise.
 | |
|   // In C, functions are not lvalues.
 | |
|   // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an
 | |
|   // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to
 | |
|   // special-case this.
 | |
| 
 | |
|   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
 | |
|     return Cl::CL_MemberFunction;
 | |
| 
 | |
|   bool islvalue;
 | |
|   if (const NonTypeTemplateParmDecl *NTTParm =
 | |
|         dyn_cast<NonTypeTemplateParmDecl>(D))
 | |
|     islvalue = NTTParm->getType()->isReferenceType();
 | |
|   else
 | |
|     islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) ||
 | |
| 	  isa<IndirectFieldDecl>(D) ||
 | |
|       (Ctx.getLangOpts().CPlusPlus &&
 | |
|         (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)));
 | |
| 
 | |
|   return islvalue ? Cl::CL_LValue : Cl::CL_PRValue;
 | |
| }
 | |
| 
 | |
| /// ClassifyUnnamed - Return the classification of an expression yielding an
 | |
| /// unnamed value of the given type. This applies in particular to function
 | |
| /// calls and casts.
 | |
| static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) {
 | |
|   // In C, function calls are always rvalues.
 | |
|   if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue;
 | |
| 
 | |
|   // C++ [expr.call]p10: A function call is an lvalue if the result type is an
 | |
|   //   lvalue reference type or an rvalue reference to function type, an xvalue
 | |
|   //   if the result type is an rvalue reference to object type, and a prvalue
 | |
|   //   otherwise.
 | |
|   if (T->isLValueReferenceType())
 | |
|     return Cl::CL_LValue;
 | |
|   const RValueReferenceType *RV = T->getAs<RValueReferenceType>();
 | |
|   if (!RV) // Could still be a class temporary, though.
 | |
|     return ClassifyTemporary(T);
 | |
| 
 | |
|   return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue;
 | |
| }
 | |
| 
 | |
| static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) {
 | |
|   if (E->getType() == Ctx.UnknownAnyTy)
 | |
|     return (isa<FunctionDecl>(E->getMemberDecl())
 | |
|               ? Cl::CL_PRValue : Cl::CL_LValue);
 | |
| 
 | |
|   // Handle C first, it's easier.
 | |
|   if (!Ctx.getLangOpts().CPlusPlus) {
 | |
|     // C99 6.5.2.3p3
 | |
|     // For dot access, the expression is an lvalue if the first part is. For
 | |
|     // arrow access, it always is an lvalue.
 | |
|     if (E->isArrow())
 | |
|       return Cl::CL_LValue;
 | |
|     // ObjC property accesses are not lvalues, but get special treatment.
 | |
|     Expr *Base = E->getBase()->IgnoreParens();
 | |
|     if (isa<ObjCPropertyRefExpr>(Base))
 | |
|       return Cl::CL_SubObjCPropertySetting;
 | |
|     return ClassifyInternal(Ctx, Base);
 | |
|   }
 | |
| 
 | |
|   NamedDecl *Member = E->getMemberDecl();
 | |
|   // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2.
 | |
|   // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then
 | |
|   //   E1.E2 is an lvalue.
 | |
|   if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
 | |
|     if (Value->getType()->isReferenceType())
 | |
|       return Cl::CL_LValue;
 | |
| 
 | |
|   //   Otherwise, one of the following rules applies.
 | |
|   //   -- If E2 is a static member [...] then E1.E2 is an lvalue.
 | |
|   if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
 | |
|     return Cl::CL_LValue;
 | |
| 
 | |
|   //   -- If E2 is a non-static data member [...]. If E1 is an lvalue, then
 | |
|   //      E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
 | |
|   //      otherwise, it is a prvalue.
 | |
|   if (isa<FieldDecl>(Member)) {
 | |
|     // *E1 is an lvalue
 | |
|     if (E->isArrow())
 | |
|       return Cl::CL_LValue;
 | |
|     Expr *Base = E->getBase()->IgnoreParenImpCasts();
 | |
|     if (isa<ObjCPropertyRefExpr>(Base))
 | |
|       return Cl::CL_SubObjCPropertySetting;
 | |
|     return ClassifyInternal(Ctx, E->getBase());
 | |
|   }
 | |
| 
 | |
|   //   -- If E2 is a [...] member function, [...]
 | |
|   //      -- If it refers to a static member function [...], then E1.E2 is an
 | |
|   //         lvalue; [...]
 | |
|   //      -- Otherwise [...] E1.E2 is a prvalue.
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
 | |
|     return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction;
 | |
| 
 | |
|   //   -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue.
 | |
|   // So is everything else we haven't handled yet.
 | |
|   return Cl::CL_PRValue;
 | |
| }
 | |
| 
 | |
| static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) {
 | |
|   assert(Ctx.getLangOpts().CPlusPlus &&
 | |
|          "This is only relevant for C++.");
 | |
|   // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand.
 | |
|   // Except we override this for writes to ObjC properties.
 | |
|   if (E->isAssignmentOp())
 | |
|     return (E->getLHS()->getObjectKind() == OK_ObjCProperty
 | |
|               ? Cl::CL_PRValue : Cl::CL_LValue);
 | |
| 
 | |
|   // C++ [expr.comma]p1: the result is of the same value category as its right
 | |
|   //   operand, [...].
 | |
|   if (E->getOpcode() == BO_Comma)
 | |
|     return ClassifyInternal(Ctx, E->getRHS());
 | |
| 
 | |
|   // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand
 | |
|   //   is a pointer to a data member is of the same value category as its first
 | |
|   //   operand.
 | |
|   if (E->getOpcode() == BO_PtrMemD)
 | |
|     return (E->getType()->isFunctionType() ||
 | |
|             E->hasPlaceholderType(BuiltinType::BoundMember))
 | |
|              ? Cl::CL_MemberFunction 
 | |
|              : ClassifyInternal(Ctx, E->getLHS());
 | |
| 
 | |
|   // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its
 | |
|   //   second operand is a pointer to data member and a prvalue otherwise.
 | |
|   if (E->getOpcode() == BO_PtrMemI)
 | |
|     return (E->getType()->isFunctionType() ||
 | |
|             E->hasPlaceholderType(BuiltinType::BoundMember))
 | |
|              ? Cl::CL_MemberFunction 
 | |
|              : Cl::CL_LValue;
 | |
| 
 | |
|   // All other binary operations are prvalues.
 | |
|   return Cl::CL_PRValue;
 | |
| }
 | |
| 
 | |
| static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True,
 | |
|                                      const Expr *False) {
 | |
|   assert(Ctx.getLangOpts().CPlusPlus &&
 | |
|          "This is only relevant for C++.");
 | |
| 
 | |
|   // C++ [expr.cond]p2
 | |
|   //   If either the second or the third operand has type (cv) void, [...]
 | |
|   //   the result [...] is a prvalue.
 | |
|   if (True->getType()->isVoidType() || False->getType()->isVoidType())
 | |
|     return Cl::CL_PRValue;
 | |
| 
 | |
|   // Note that at this point, we have already performed all conversions
 | |
|   // according to [expr.cond]p3.
 | |
|   // C++ [expr.cond]p4: If the second and third operands are glvalues of the
 | |
|   //   same value category [...], the result is of that [...] value category.
 | |
|   // C++ [expr.cond]p5: Otherwise, the result is a prvalue.
 | |
|   Cl::Kinds LCl = ClassifyInternal(Ctx, True),
 | |
|             RCl = ClassifyInternal(Ctx, False);
 | |
|   return LCl == RCl ? LCl : Cl::CL_PRValue;
 | |
| }
 | |
| 
 | |
| static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
 | |
|                                        Cl::Kinds Kind, SourceLocation &Loc) {
 | |
|   // As a general rule, we only care about lvalues. But there are some rvalues
 | |
|   // for which we want to generate special results.
 | |
|   if (Kind == Cl::CL_PRValue) {
 | |
|     // For the sake of better diagnostics, we want to specifically recognize
 | |
|     // use of the GCC cast-as-lvalue extension.
 | |
|     if (const ExplicitCastExpr *CE =
 | |
|           dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) {
 | |
|       if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) {
 | |
|         Loc = CE->getExprLoc();
 | |
|         return Cl::CM_LValueCast;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (Kind != Cl::CL_LValue)
 | |
|     return Cl::CM_RValue;
 | |
| 
 | |
|   // This is the lvalue case.
 | |
|   // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6)
 | |
|   if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType())
 | |
|     return Cl::CM_Function;
 | |
| 
 | |
|   // Assignment to a property in ObjC is an implicit setter access. But a
 | |
|   // setter might not exist.
 | |
|   if (const ObjCPropertyRefExpr *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) {
 | |
|     if (Expr->isImplicitProperty() && Expr->getImplicitPropertySetter() == 0)
 | |
|       return Cl::CM_NoSetterProperty;
 | |
|   }
 | |
| 
 | |
|   CanQualType CT = Ctx.getCanonicalType(E->getType());
 | |
|   // Const stuff is obviously not modifiable.
 | |
|   if (CT.isConstQualified())
 | |
|     return Cl::CM_ConstQualified;
 | |
| 
 | |
|   // Arrays are not modifiable, only their elements are.
 | |
|   if (CT->isArrayType())
 | |
|     return Cl::CM_ArrayType;
 | |
|   // Incomplete types are not modifiable.
 | |
|   if (CT->isIncompleteType())
 | |
|     return Cl::CM_IncompleteType;
 | |
| 
 | |
|   // Records with any const fields (recursively) are not modifiable.
 | |
|   if (const RecordType *R = CT->getAs<RecordType>()) {
 | |
|     assert((E->getObjectKind() == OK_ObjCProperty ||
 | |
|             !Ctx.getLangOpts().CPlusPlus) &&
 | |
|            "C++ struct assignment should be resolved by the "
 | |
|            "copy assignment operator.");
 | |
|     if (R->hasConstFields())
 | |
|       return Cl::CM_ConstQualified;
 | |
|   }
 | |
| 
 | |
|   return Cl::CM_Modifiable;
 | |
| }
 | |
| 
 | |
| Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const {
 | |
|   Classification VC = Classify(Ctx);
 | |
|   switch (VC.getKind()) {
 | |
|   case Cl::CL_LValue: return LV_Valid;
 | |
|   case Cl::CL_XValue: return LV_InvalidExpression;
 | |
|   case Cl::CL_Function: return LV_NotObjectType;
 | |
|   case Cl::CL_Void: return LV_InvalidExpression;
 | |
|   case Cl::CL_AddressableVoid: return LV_IncompleteVoidType;
 | |
|   case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents;
 | |
|   case Cl::CL_MemberFunction: return LV_MemberFunction;
 | |
|   case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting;
 | |
|   case Cl::CL_ClassTemporary: return LV_ClassTemporary;
 | |
|   case Cl::CL_ArrayTemporary: return LV_ArrayTemporary;
 | |
|   case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression;
 | |
|   case Cl::CL_PRValue: return LV_InvalidExpression;
 | |
|   }
 | |
|   llvm_unreachable("Unhandled kind");
 | |
| }
 | |
| 
 | |
| Expr::isModifiableLvalueResult
 | |
| Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
 | |
|   SourceLocation dummy;
 | |
|   Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy);
 | |
|   switch (VC.getKind()) {
 | |
|   case Cl::CL_LValue: break;
 | |
|   case Cl::CL_XValue: return MLV_InvalidExpression;
 | |
|   case Cl::CL_Function: return MLV_NotObjectType;
 | |
|   case Cl::CL_Void: return MLV_InvalidExpression;
 | |
|   case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType;
 | |
|   case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
 | |
|   case Cl::CL_MemberFunction: return MLV_MemberFunction;
 | |
|   case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
 | |
|   case Cl::CL_ClassTemporary: return MLV_ClassTemporary;
 | |
|   case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary;
 | |
|   case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression;
 | |
|   case Cl::CL_PRValue:
 | |
|     return VC.getModifiable() == Cl::CM_LValueCast ?
 | |
|       MLV_LValueCast : MLV_InvalidExpression;
 | |
|   }
 | |
|   assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind");
 | |
|   switch (VC.getModifiable()) {
 | |
|   case Cl::CM_Untested: llvm_unreachable("Did not test modifiability");
 | |
|   case Cl::CM_Modifiable: return MLV_Valid;
 | |
|   case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match");
 | |
|   case Cl::CM_Function: return MLV_NotObjectType;
 | |
|   case Cl::CM_LValueCast:
 | |
|     llvm_unreachable("CM_LValueCast and CL_LValue don't match");
 | |
|   case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty;
 | |
|   case Cl::CM_ConstQualified: return MLV_ConstQualified;
 | |
|   case Cl::CM_ArrayType: return MLV_ArrayType;
 | |
|   case Cl::CM_IncompleteType: return MLV_IncompleteType;
 | |
|   }
 | |
|   llvm_unreachable("Unhandled modifiable type");
 | |
| }
 |