1873 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1873 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  Created by Greg Clayton on 6/25/07.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #if defined (__arm__)
 | |
| 
 | |
| #include "MacOSX/arm/DNBArchImpl.h"
 | |
| #include "MacOSX/MachProcess.h"
 | |
| #include "MacOSX/MachThread.h"
 | |
| #include "DNBBreakpoint.h"
 | |
| #include "DNBLog.h"
 | |
| #include "DNBRegisterInfo.h"
 | |
| #include "DNB.h"
 | |
| #include "ARM_GCC_Registers.h"
 | |
| #include "ARM_DWARF_Registers.h"
 | |
| 
 | |
| #include <sys/sysctl.h>
 | |
| 
 | |
| // BCR address match type
 | |
| #define BCR_M_IMVA_MATCH        ((uint32_t)(0u << 21))
 | |
| #define BCR_M_CONTEXT_ID_MATCH  ((uint32_t)(1u << 21))
 | |
| #define BCR_M_IMVA_MISMATCH     ((uint32_t)(2u << 21))
 | |
| #define BCR_M_RESERVED          ((uint32_t)(3u << 21))
 | |
| 
 | |
| // Link a BVR/BCR or WVR/WCR pair to another
 | |
| #define E_ENABLE_LINKING        ((uint32_t)(1u << 20))
 | |
| 
 | |
| // Byte Address Select
 | |
| #define BAS_IMVA_PLUS_0         ((uint32_t)(1u << 5))
 | |
| #define BAS_IMVA_PLUS_1         ((uint32_t)(1u << 6))
 | |
| #define BAS_IMVA_PLUS_2         ((uint32_t)(1u << 7))
 | |
| #define BAS_IMVA_PLUS_3         ((uint32_t)(1u << 8))
 | |
| #define BAS_IMVA_0_1            ((uint32_t)(3u << 5))
 | |
| #define BAS_IMVA_2_3            ((uint32_t)(3u << 7))
 | |
| #define BAS_IMVA_ALL            ((uint32_t)(0xfu << 5))
 | |
| 
 | |
| // Break only in priveleged or user mode
 | |
| #define S_RSVD                  ((uint32_t)(0u << 1))
 | |
| #define S_PRIV                  ((uint32_t)(1u << 1))
 | |
| #define S_USER                  ((uint32_t)(2u << 1))
 | |
| #define S_PRIV_USER             ((S_PRIV) | (S_USER))
 | |
| 
 | |
| #define BCR_ENABLE              ((uint32_t)(1u))
 | |
| #define WCR_ENABLE              ((uint32_t)(1u))
 | |
| 
 | |
| // Watchpoint load/store
 | |
| #define WCR_LOAD                ((uint32_t)(1u << 3))
 | |
| #define WCR_STORE               ((uint32_t)(1u << 4))
 | |
| 
 | |
| // Definitions for the Debug Status and Control Register fields:
 | |
| // [5:2] => Method of debug entry
 | |
| //#define WATCHPOINT_OCCURRED     ((uint32_t)(2u))
 | |
| // I'm seeing this, instead.
 | |
| #define WATCHPOINT_OCCURRED     ((uint32_t)(10u))
 | |
| 
 | |
| static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
 | |
| static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
 | |
| 
 | |
| // ARM constants used during decoding
 | |
| #define REG_RD          0
 | |
| #define LDM_REGLIST     1
 | |
| #define PC_REG          15
 | |
| #define PC_REGLIST_BIT  0x8000
 | |
| 
 | |
| // ARM conditions
 | |
| #define COND_EQ     0x0
 | |
| #define COND_NE     0x1
 | |
| #define COND_CS     0x2
 | |
| #define COND_HS     0x2
 | |
| #define COND_CC     0x3
 | |
| #define COND_LO     0x3
 | |
| #define COND_MI     0x4
 | |
| #define COND_PL     0x5
 | |
| #define COND_VS     0x6
 | |
| #define COND_VC     0x7
 | |
| #define COND_HI     0x8
 | |
| #define COND_LS     0x9
 | |
| #define COND_GE     0xA
 | |
| #define COND_LT     0xB
 | |
| #define COND_GT     0xC
 | |
| #define COND_LE     0xD
 | |
| #define COND_AL     0xE
 | |
| #define COND_UNCOND 0xF
 | |
| 
 | |
| #define MASK_CPSR_T (1u << 5)
 | |
| #define MASK_CPSR_J (1u << 24)
 | |
| 
 | |
| #define MNEMONIC_STRING_SIZE 32
 | |
| #define OPERAND_STRING_SIZE 128
 | |
| 
 | |
| 
 | |
| void
 | |
| DNBArchMachARM::Initialize()
 | |
| {
 | |
|     DNBArchPluginInfo arch_plugin_info = 
 | |
|     {
 | |
|         CPU_TYPE_ARM, 
 | |
|         DNBArchMachARM::Create, 
 | |
|         DNBArchMachARM::GetRegisterSetInfo,
 | |
|         DNBArchMachARM::SoftwareBreakpointOpcode
 | |
|     };
 | |
|     
 | |
|     // Register this arch plug-in with the main protocol class
 | |
|     DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
 | |
| }
 | |
| 
 | |
| 
 | |
| DNBArchProtocol *
 | |
| DNBArchMachARM::Create (MachThread *thread)
 | |
| {
 | |
|     DNBArchMachARM *obj = new DNBArchMachARM (thread);
 | |
| 
 | |
|     // When new thread comes along, it tries to inherit from the global debug state, if it is valid.
 | |
|     if (Valid_Global_Debug_State)
 | |
|     {
 | |
|         obj->m_state.dbg = Global_Debug_State;
 | |
|         kern_return_t kret = obj->SetDBGState();
 | |
|         DNBLogThreadedIf(LOG_WATCHPOINTS,
 | |
|                          "DNBArchMachARM::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
 | |
|     }
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| const uint8_t * const
 | |
| DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
 | |
| {
 | |
|     switch (byte_size)
 | |
|     {
 | |
|     case 2: return g_thumb_breakpooint_opcode;
 | |
|     case 4: return g_arm_breakpoint_opcode;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| uint32_t
 | |
| DNBArchMachARM::GetCPUType()
 | |
| {
 | |
|     return CPU_TYPE_ARM;
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| DNBArchMachARM::GetPC(uint64_t failValue)
 | |
| {
 | |
|     // Get program counter
 | |
|     if (GetGPRState(false) == KERN_SUCCESS)
 | |
|         return m_state.context.gpr.__pc;
 | |
|     return failValue;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::SetPC(uint64_t value)
 | |
| {
 | |
|     // Get program counter
 | |
|     kern_return_t err = GetGPRState(false);
 | |
|     if (err == KERN_SUCCESS)
 | |
|     {
 | |
|         m_state.context.gpr.__pc = value;
 | |
|         err = SetGPRState();
 | |
|     }
 | |
|     return err == KERN_SUCCESS;
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| DNBArchMachARM::GetSP(uint64_t failValue)
 | |
| {
 | |
|     // Get stack pointer
 | |
|     if (GetGPRState(false) == KERN_SUCCESS)
 | |
|         return m_state.context.gpr.__sp;
 | |
|     return failValue;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::GetGPRState(bool force)
 | |
| {
 | |
|     int set = e_regSetGPR;
 | |
|     // Check if we have valid cached registers
 | |
|     if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | |
|         return KERN_SUCCESS;
 | |
| 
 | |
|     // Read the registers from our thread
 | |
|     mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
 | |
|     kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
 | |
|     uint32_t *r = &m_state.context.gpr.__r[0];
 | |
|     DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x", 
 | |
|                      m_thread->MachPortNumber(), 
 | |
|                      ARM_THREAD_STATE, 
 | |
|                      ARM_THREAD_STATE_COUNT, 
 | |
|                      kret,
 | |
|                      count,
 | |
|                      r[0], 
 | |
|                      r[1], 
 | |
|                      r[2], 
 | |
|                      r[3], 
 | |
|                      r[4], 
 | |
|                      r[5], 
 | |
|                      r[6], 
 | |
|                      r[7], 
 | |
|                      r[8], 
 | |
|                      r[9], 
 | |
|                      r[10], 
 | |
|                      r[11], 
 | |
|                      r[12], 
 | |
|                      r[13], 
 | |
|                      r[14], 
 | |
|                      r[15], 
 | |
|                      r[16]);
 | |
|     m_state.SetError(set, Read, kret);
 | |
|     return kret;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::GetVFPState(bool force)
 | |
| {
 | |
|     int set = e_regSetVFP;
 | |
|     // Check if we have valid cached registers
 | |
|     if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | |
|         return KERN_SUCCESS;
 | |
| 
 | |
|     // Read the registers from our thread
 | |
|     mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
 | |
|     kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
 | |
|     if (DNBLogEnabledForAny (LOG_THREAD))
 | |
|     {
 | |
|         uint32_t *r = &m_state.context.vfp.__r[0];
 | |
|         DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
 | |
|                         m_thread->MachPortNumber(), 
 | |
|                         ARM_THREAD_STATE, 
 | |
|                         ARM_THREAD_STATE_COUNT, 
 | |
|                         kret,
 | |
|                         count);
 | |
|         DNBLogThreaded("   s0=%8.8x  s1=%8.8x  s2=%8.8x  s3=%8.8x  s4=%8.8x  s5=%8.8x  s6=%8.8x  s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
 | |
|         DNBLogThreaded("   s8=%8.8x  s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
 | |
|         DNBLogThreaded("  s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
 | |
|         DNBLogThreaded("  s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
 | |
|         DNBLogThreaded("  s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
 | |
|         DNBLogThreaded("  s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
 | |
|         DNBLogThreaded("  s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
 | |
|         DNBLogThreaded("  s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
 | |
|     }
 | |
|     m_state.SetError(set, Read, kret);
 | |
|     return kret;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::GetEXCState(bool force)
 | |
| {
 | |
|     int set = e_regSetEXC;
 | |
|     // Check if we have valid cached registers
 | |
|     if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | |
|         return KERN_SUCCESS;
 | |
| 
 | |
|     // Read the registers from our thread
 | |
|     mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
 | |
|     kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
 | |
|     m_state.SetError(set, Read, kret);
 | |
|     return kret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| DumpDBGState(const DNBArchMachARM::DBG& dbg)
 | |
| {
 | |
|     uint32_t i = 0;
 | |
|     for (i=0; i<16; i++) {
 | |
|         DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
 | |
|             i, i, dbg.__bvr[i], dbg.__bcr[i],
 | |
|             i, i, dbg.__wvr[i], dbg.__wcr[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::GetDBGState(bool force)
 | |
| {
 | |
|     int set = e_regSetDBG;
 | |
| 
 | |
|     // Check if we have valid cached registers
 | |
|     if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
 | |
|         return KERN_SUCCESS;
 | |
| 
 | |
|     // Read the registers from our thread
 | |
|     mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
 | |
|     kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
 | |
|     m_state.SetError(set, Read, kret);
 | |
|     return kret;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::SetGPRState()
 | |
| {
 | |
|     int set = e_regSetGPR;
 | |
|     kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
 | |
|     m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | |
|     m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | |
|     return kret;                                // Return the error code
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::SetVFPState()
 | |
| {
 | |
|     int set = e_regSetVFP;
 | |
|     kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
 | |
|     m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | |
|     m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | |
|     return kret;                                // Return the error code
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::SetEXCState()
 | |
| {
 | |
|     int set = e_regSetEXC;
 | |
|     kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
 | |
|     m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | |
|     m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | |
|     return kret;                                // Return the error code
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::SetDBGState()
 | |
| {
 | |
|     int set = e_regSetDBG;
 | |
|     kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
 | |
|     m_state.SetError(set, Write, kret);         // Set the current write error for this register set
 | |
|     m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
 | |
|     return kret;                                // Return the error code
 | |
| }
 | |
| 
 | |
| void
 | |
| DNBArchMachARM::ThreadWillResume()
 | |
| {
 | |
|     // Do we need to step this thread? If so, let the mach thread tell us so.
 | |
|     if (m_thread->IsStepping())
 | |
|     {
 | |
|         // This is the primary thread, let the arch do anything it needs
 | |
|         if (NumSupportedHardwareBreakpoints() > 0)
 | |
|         {
 | |
|             if (EnableHardwareSingleStep(true) != KERN_SUCCESS)
 | |
|             {
 | |
|                 DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Disable the triggered watchpoint temporarily before we resume.
 | |
|     // Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
 | |
|     if (m_watchpoint_did_occur)
 | |
|     {
 | |
|         if (m_watchpoint_hw_index >= 0)
 | |
|         {
 | |
|             kern_return_t kret = GetDBGState(false);
 | |
|             if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
 | |
|                 // The watchpoint might have been disabled by the user.  We don't need to do anything at all
 | |
|                 // to enable hardware single stepping.
 | |
|                 m_watchpoint_did_occur = false;
 | |
|                 m_watchpoint_hw_index = -1;
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             DisableHardwareWatchpoint0(m_watchpoint_hw_index, true);
 | |
|             DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
 | |
|                              m_watchpoint_hw_index);
 | |
| 
 | |
|             // Enable hardware single step to move past the watchpoint-triggering instruction.
 | |
|             m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
 | |
| 
 | |
|             // If we are not able to enable single step to move past the watchpoint-triggering instruction,
 | |
|             // at least we should reset the two watchpoint member variables so that the next time around
 | |
|             // this callback function is invoked, the enclosing logical branch is skipped.
 | |
|             if (!m_watchpoint_resume_single_step_enabled) {
 | |
|                 // Reset the two watchpoint member variables.
 | |
|                 m_watchpoint_did_occur = false;
 | |
|                 m_watchpoint_hw_index = -1;
 | |
|                 DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
 | |
|             }
 | |
|             else
 | |
|                 DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::ThreadDidStop()
 | |
| {
 | |
|     bool success = true;
 | |
| 
 | |
|     m_state.InvalidateRegisterSetState (e_regSetALL);
 | |
| 
 | |
|     if (m_watchpoint_resume_single_step_enabled)
 | |
|     {
 | |
|         // Great!  We now disable the hardware single step as well as re-enable the hardware watchpoint.
 | |
|         // See also ThreadWillResume().
 | |
|         if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
 | |
|         {
 | |
|             if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
 | |
|             {
 | |
|                 EnableHardwareWatchpoint0(m_watchpoint_hw_index, true);
 | |
|                 m_watchpoint_resume_single_step_enabled = false;
 | |
|                 m_watchpoint_did_occur = false;
 | |
|                 m_watchpoint_hw_index = -1;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Are we stepping a single instruction?
 | |
|     if (GetGPRState(true) == KERN_SUCCESS)
 | |
|     {
 | |
|         // We are single stepping, was this the primary thread?
 | |
|         if (m_thread->IsStepping())
 | |
|         {
 | |
|             // Are we software single stepping?
 | |
|             if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
 | |
|             {
 | |
|                 // Remove any software single stepping breakpoints that we have set
 | |
| 
 | |
|                 // Do we have a normal software single step breakpoint?
 | |
|                 if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
 | |
|                 {
 | |
|                     DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
 | |
|                     success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
 | |
|                     m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
 | |
|                 }
 | |
| 
 | |
|                 // Do we have any Thumb IT breakpoints?
 | |
|                 if (m_sw_single_step_itblock_break_count > 0)
 | |
|                 {
 | |
|                     // See if we hit one of our Thumb IT breakpoints?
 | |
|                     DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.context.gpr.__pc);
 | |
| 
 | |
|                     if (step_bp)
 | |
|                     {
 | |
|                         // We did hit our breakpoint, tell the breakpoint it was
 | |
|                         // hit so that it can run its callback routine and fixup
 | |
|                         // the PC.
 | |
|                         DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
 | |
|                         step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
 | |
|                     }
 | |
| 
 | |
|                     // Remove all Thumb IT breakpoints
 | |
|                     for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
 | |
|                     {
 | |
|                         if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
 | |
|                         {
 | |
|                             DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
 | |
|                             success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
 | |
|                             m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
 | |
|                         }
 | |
|                     }
 | |
|                     m_sw_single_step_itblock_break_count = 0;
 | |
| 
 | |
|                 }
 | |
| 
 | |
|             }
 | |
|             else
 | |
|                 success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // The MachThread will automatically restore the suspend count
 | |
|             // in ThreadDidStop(), so we don't need to do anything here if
 | |
|             // we weren't the primary thread the last time
 | |
|         }
 | |
|     }
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::NotifyException(MachException::Data& exc)
 | |
| {
 | |
|     switch (exc.exc_type)
 | |
|     {
 | |
|         default:
 | |
|             break;
 | |
|         case EXC_BREAKPOINT:
 | |
|             if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
 | |
|             {
 | |
|                 // exc_code = EXC_ARM_DA_DEBUG
 | |
|                 //
 | |
|                 // Check whether this corresponds to a watchpoint hit event.
 | |
|                 // If yes, retrieve the exc_sub_code as the data break address.
 | |
|                 if (!HasWatchpointOccurred())
 | |
|                     break;
 | |
| 
 | |
|                 // The data break address is passed as exc_data[1].
 | |
|                 nub_addr_t addr = exc.exc_data[1];
 | |
|                 // Find the hardware index with the side effect of possibly massaging the
 | |
|                 // addr to return the starting address as seen from the debugger side.
 | |
|                 uint32_t hw_index = GetHardwareWatchpointHit(addr);
 | |
|                 if (hw_index != INVALID_NUB_HW_INDEX)
 | |
|                 {
 | |
|                     m_watchpoint_did_occur = true;
 | |
|                     m_watchpoint_hw_index = hw_index;
 | |
|                     exc.exc_data[1] = addr;
 | |
|                     // Piggyback the hw_index in the exc.data.
 | |
|                     exc.exc_data.push_back(hw_index);
 | |
|                 }
 | |
| 
 | |
|                 return true;
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::StepNotComplete ()
 | |
| {
 | |
|     if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
 | |
|     {
 | |
|         kern_return_t kret = KERN_INVALID_ARGUMENT;
 | |
|         kret = GetGPRState(false);
 | |
|         if (kret == KERN_SUCCESS)
 | |
|         {
 | |
|             if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
 | |
|             {
 | |
|                 DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Set the single step bit in the processor status register.
 | |
| kern_return_t
 | |
| DNBArchMachARM::EnableHardwareSingleStep (bool enable)
 | |
| {
 | |
|     DNBError err;
 | |
|     DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
 | |
| 
 | |
|     err = GetGPRState(false);
 | |
| 
 | |
|     if (err.Fail())
 | |
|     {
 | |
|         err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
 | |
|         return err.Error();
 | |
|     }
 | |
| 
 | |
|     err = GetDBGState(false);
 | |
| 
 | |
|     if (err.Fail())
 | |
|     {
 | |
|         err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
 | |
|         return err.Error();
 | |
|     }
 | |
| 
 | |
|     const uint32_t i = 0;
 | |
|     if (enable)
 | |
|     {
 | |
|         m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
 | |
| 
 | |
|         // Save our previous state
 | |
|         m_dbg_save = m_state.dbg;
 | |
|         // Set a breakpoint that will stop when the PC doesn't match the current one!
 | |
|         m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu;      // Set the current PC as the breakpoint address
 | |
|         m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH |    // Stop on address mismatch
 | |
|                                S_USER |                 // Stop only in user mode
 | |
|                                BCR_ENABLE;              // Enable this breakpoint
 | |
|         if (m_state.context.gpr.__cpsr & 0x20)
 | |
|         {
 | |
|             // Thumb breakpoint
 | |
|             if (m_state.context.gpr.__pc & 2)
 | |
|                 m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
 | |
|             else
 | |
|                 m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
 | |
| 
 | |
|             uint16_t opcode;
 | |
|             if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
 | |
|             {
 | |
|                 if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
 | |
|                 {
 | |
|                     // 32 bit thumb opcode...
 | |
|                     if (m_state.context.gpr.__pc & 2)
 | |
|                     {
 | |
|                         // We can't take care of a 32 bit thumb instruction single step
 | |
|                         // with just IVA mismatching. We will need to chain an extra
 | |
|                         // hardware single step in order to complete this single step...
 | |
|                         m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Extend the number of bits to ignore for the mismatch
 | |
|                         m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // ARM breakpoint
 | |
|             m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
 | |
|         }
 | |
| 
 | |
|         DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
 | |
| 
 | |
|         for (uint32_t j=i+1; j<16; ++j)
 | |
|         {
 | |
|             // Disable all others
 | |
|             m_state.dbg.__bvr[j] = 0;
 | |
|             m_state.dbg.__bcr[j] = 0;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Just restore the state we had before we did single stepping
 | |
|         m_state.dbg = m_dbg_save;
 | |
|     }
 | |
| 
 | |
|     return SetDBGState();
 | |
| }
 | |
| 
 | |
| // return 1 if bit "BIT" is set in "value"
 | |
| static inline uint32_t bit(uint32_t value, uint32_t bit)
 | |
| {
 | |
|     return (value >> bit) & 1u;
 | |
| }
 | |
| 
 | |
| // return the bitfield "value[msbit:lsbit]".
 | |
| static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
 | |
| {
 | |
|     assert(msbit >= lsbit);
 | |
|     uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
 | |
|     value <<= shift_left;           // shift anything above the msbit off of the unsigned edge
 | |
|     value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
 | |
|     return value;                   // return our result
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
 | |
| {
 | |
|     uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
 | |
|     uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
 | |
|     uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
 | |
|     uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
 | |
| 
 | |
|     switch (condition) {
 | |
|         case COND_EQ: // (0x0)
 | |
|             if (cpsr_z == 1) return true;
 | |
|             break;
 | |
|         case COND_NE: // (0x1)
 | |
|             if (cpsr_z == 0) return true;
 | |
|             break;
 | |
|         case COND_CS: // (0x2)
 | |
|             if (cpsr_c == 1) return true;
 | |
|             break;
 | |
|         case COND_CC: // (0x3)
 | |
|             if (cpsr_c == 0) return true;
 | |
|             break;
 | |
|         case COND_MI: // (0x4)
 | |
|             if (cpsr_n == 1) return true;
 | |
|             break;
 | |
|         case COND_PL: // (0x5)
 | |
|             if (cpsr_n == 0) return true;
 | |
|             break;
 | |
|         case COND_VS: // (0x6)
 | |
|             if (cpsr_v == 1) return true;
 | |
|             break;
 | |
|         case COND_VC: // (0x7)
 | |
|             if (cpsr_v == 0) return true;
 | |
|             break;
 | |
|         case COND_HI: // (0x8)
 | |
|             if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
 | |
|             break;
 | |
|         case COND_LS: // (0x9)
 | |
|             if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
 | |
|             break;
 | |
|         case COND_GE: // (0xA)
 | |
|             if (cpsr_n == cpsr_v) return true;
 | |
|             break;
 | |
|         case COND_LT: // (0xB)
 | |
|             if (cpsr_n != cpsr_v) return true;
 | |
|             break;
 | |
|         case COND_GT: // (0xC)
 | |
|             if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
 | |
|             break;
 | |
|         case COND_LE: // (0xD)
 | |
|             if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
 | |
|             break;
 | |
|         default:
 | |
|             return true;
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| nub_bool_t
 | |
| DNBArchMachARM::BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
 | |
| {
 | |
|     nub_addr_t bkpt_pc = (nub_addr_t)baton;
 | |
|     DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
 | |
|     
 | |
|     DNBRegisterValue pc_value;
 | |
|     DNBThreadGetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
 | |
|     pc_value.value.uint32 = bkpt_pc;
 | |
|     return DNBThreadSetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
 | |
| }
 | |
| 
 | |
| uint32_t
 | |
| DNBArchMachARM::NumSupportedHardwareBreakpoints()
 | |
| {
 | |
|     // Set the init value to something that will let us know that we need to
 | |
|     // autodetect how many breakpoints are supported dynamically...
 | |
|     static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
 | |
|     if (g_num_supported_hw_breakpoints == UINT_MAX)
 | |
|     {
 | |
|         // Set this to zero in case we can't tell if there are any HW breakpoints
 | |
|         g_num_supported_hw_breakpoints = 0;
 | |
| 
 | |
|         size_t len;
 | |
|         uint32_t n = 0;
 | |
|         len = sizeof (n);
 | |
|         if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
 | |
|         {
 | |
|             g_num_supported_hw_breakpoints = n;
 | |
|             DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Read the DBGDIDR to get the number of available hardware breakpoints
 | |
|             // However, in some of our current armv7 processors, hardware
 | |
|             // breakpoints/watchpoints were not properly connected. So detect those
 | |
|             // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
 | |
|             // field to distinguish CPU architectures. This is a hack until we can
 | |
|             // get <rdar://problem/6372672> fixed, at which point we will switch to
 | |
|             // using a different sysctl string that will tell us how many BRPs
 | |
|             // are available to us directly without having to read DBGDIDR.
 | |
|             uint32_t register_DBGDIDR;
 | |
| 
 | |
|             asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
 | |
|             uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
 | |
|             // Zero is reserved for the BRP count, so don't increment it if it is zero
 | |
|             if (numBRPs > 0)
 | |
|                 numBRPs++;
 | |
|             DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
 | |
| 
 | |
|             if (numBRPs > 0)
 | |
|             {
 | |
|                 uint32_t cpusubtype;
 | |
|                 len = sizeof(cpusubtype);
 | |
|                 // TODO: remove this hack and change to using hw.optional.xx when implmented
 | |
|                 if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
 | |
|                 {
 | |
|                     DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
 | |
|                     if (cpusubtype == CPU_SUBTYPE_ARM_V7)
 | |
|                         DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
 | |
|                     else
 | |
|                         g_num_supported_hw_breakpoints = numBRPs;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return g_num_supported_hw_breakpoints;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint32_t
 | |
| DNBArchMachARM::NumSupportedHardwareWatchpoints()
 | |
| {
 | |
|     // Set the init value to something that will let us know that we need to
 | |
|     // autodetect how many watchpoints are supported dynamically...
 | |
|     static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
 | |
|     if (g_num_supported_hw_watchpoints == UINT_MAX)
 | |
|     {
 | |
|         // Set this to zero in case we can't tell if there are any HW breakpoints
 | |
|         g_num_supported_hw_watchpoints = 0;
 | |
|         
 | |
|         
 | |
|         size_t len;
 | |
|         uint32_t n = 0;
 | |
|         len = sizeof (n);
 | |
|         if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
 | |
|         {
 | |
|             g_num_supported_hw_watchpoints = n;
 | |
|             DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Read the DBGDIDR to get the number of available hardware breakpoints
 | |
|             // However, in some of our current armv7 processors, hardware
 | |
|             // breakpoints/watchpoints were not properly connected. So detect those
 | |
|             // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
 | |
|             // field to distinguish CPU architectures. This is a hack until we can
 | |
|             // get <rdar://problem/6372672> fixed, at which point we will switch to
 | |
|             // using a different sysctl string that will tell us how many WRPs
 | |
|             // are available to us directly without having to read DBGDIDR.
 | |
| 
 | |
|             uint32_t register_DBGDIDR;
 | |
|             asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
 | |
|             uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
 | |
|             DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
 | |
| 
 | |
|             if (numWRPs > 0)
 | |
|             {
 | |
|                 uint32_t cpusubtype;
 | |
|                 size_t len;
 | |
|                 len = sizeof(cpusubtype);
 | |
|                 // TODO: remove this hack and change to using hw.optional.xx when implmented
 | |
|                 if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
 | |
|                 {
 | |
|                     DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
 | |
| 
 | |
|                     if (cpusubtype == CPU_SUBTYPE_ARM_V7)
 | |
|                         DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
 | |
|                     else
 | |
|                         g_num_supported_hw_watchpoints = numWRPs;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return g_num_supported_hw_watchpoints;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint32_t
 | |
| DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
 | |
| {
 | |
|     // Make sure our address isn't bogus
 | |
|     if (addr & 1)
 | |
|         return INVALID_NUB_HW_INDEX;
 | |
| 
 | |
|     kern_return_t kret = GetDBGState(false);
 | |
| 
 | |
|     if (kret == KERN_SUCCESS)
 | |
|     {
 | |
|         const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
 | |
|         uint32_t i;
 | |
|         for (i=0; i<num_hw_breakpoints; ++i)
 | |
|         {
 | |
|             if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
 | |
|                 break; // We found an available hw breakpoint slot (in i)
 | |
|         }
 | |
| 
 | |
|         // See if we found an available hw breakpoint slot above
 | |
|         if (i < num_hw_breakpoints)
 | |
|         {
 | |
|             // Make sure bits 1:0 are clear in our address
 | |
|             m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
 | |
| 
 | |
|             if (size == 2 || addr & 2)
 | |
|             {
 | |
|                 uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
 | |
| 
 | |
|                 // We have a thumb breakpoint
 | |
|                 // We have an ARM breakpoint
 | |
|                 m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
 | |
|                                         byte_addr_select |  // Set the correct byte address select so we only trigger on the correct opcode
 | |
|                                         S_USER |            // Which modes should this breakpoint stop in?
 | |
|                                         BCR_ENABLE;         // Enable this hardware breakpoint
 | |
|                 DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
 | |
|                                   (uint64_t)addr,
 | |
|                                   (uint64_t)size,
 | |
|                                   i,
 | |
|                                   i,
 | |
|                                   m_state.dbg.__bvr[i],
 | |
|                                   m_state.dbg.__bcr[i]);
 | |
|             }
 | |
|             else if (size == 4)
 | |
|             {
 | |
|                 // We have an ARM breakpoint
 | |
|                 m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
 | |
|                                         BAS_IMVA_ALL |      // Stop on any of the four bytes following the IMVA
 | |
|                                         S_USER |            // Which modes should this breakpoint stop in?
 | |
|                                         BCR_ENABLE;         // Enable this hardware breakpoint
 | |
|                 DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
 | |
|                                   (uint64_t)addr,
 | |
|                                   (uint64_t)size,
 | |
|                                   i,
 | |
|                                   i,
 | |
|                                   m_state.dbg.__bvr[i],
 | |
|                                   m_state.dbg.__bcr[i]);
 | |
|             }
 | |
| 
 | |
|             kret = SetDBGState();
 | |
|             DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
 | |
| 
 | |
|             if (kret == KERN_SUCCESS)
 | |
|                 return i;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return INVALID_NUB_HW_INDEX;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
 | |
| {
 | |
|     kern_return_t kret = GetDBGState(false);
 | |
| 
 | |
|     const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
 | |
|     if (kret == KERN_SUCCESS)
 | |
|     {
 | |
|         if (hw_index < num_hw_points)
 | |
|         {
 | |
|             m_state.dbg.__bcr[hw_index] = 0;
 | |
|             DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x  BCR%u = 0x%8.8x",
 | |
|                     hw_index,
 | |
|                     hw_index,
 | |
|                     m_state.dbg.__bvr[hw_index],
 | |
|                     hw_index,
 | |
|                     m_state.dbg.__bcr[hw_index]);
 | |
| 
 | |
|             kret = SetDBGState();
 | |
| 
 | |
|             if (kret == KERN_SUCCESS)
 | |
|                 return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // This stores the lo->hi mappings.  It's safe to initialize to all 0's
 | |
| // since hi > lo and therefore LoHi[i] cannot be 0.
 | |
| static uint32_t LoHi[16] = { 0 };
 | |
| 
 | |
| uint32_t
 | |
| DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
 | |
| {
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %llu, read = %u, write = %u)", (uint64_t)addr, (uint64_t)size, read, write);
 | |
| 
 | |
|     const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
 | |
| 
 | |
|     // Can't watch zero bytes
 | |
|     if (size == 0)
 | |
|         return INVALID_NUB_HW_INDEX;
 | |
| 
 | |
|     // We must watch for either read or write
 | |
|     if (read == false && write == false)
 | |
|         return INVALID_NUB_HW_INDEX;
 | |
| 
 | |
|     // Divide-and-conquer for size == 8.
 | |
|     if (size == 8)
 | |
|     {
 | |
|         uint32_t lo = EnableHardwareWatchpoint(addr, 4, read, write);
 | |
|         if (lo == INVALID_NUB_HW_INDEX)
 | |
|             return INVALID_NUB_HW_INDEX;
 | |
|         uint32_t hi = EnableHardwareWatchpoint(addr+4, 4, read, write);
 | |
|         if (hi == INVALID_NUB_HW_INDEX)
 | |
|         {
 | |
|             DisableHardwareWatchpoint(lo);
 | |
|             return INVALID_NUB_HW_INDEX;
 | |
|         }
 | |
|         // Tag this lo->hi mapping in our database.
 | |
|         LoHi[lo] = hi;
 | |
|         return lo;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, can't watch more than 4 bytes per WVR/WCR pair
 | |
|     if (size > 4)
 | |
|         return INVALID_NUB_HW_INDEX;
 | |
| 
 | |
|     // We can only watch up to four bytes that follow a 4 byte aligned address
 | |
|     // per watchpoint register pair. Since we can only watch until the next 4
 | |
|     // byte boundary, we need to make sure we can properly encode this.
 | |
| 
 | |
|     // addr_word_offset = addr % 4, i.e, is in set([0, 1, 2, 3])
 | |
|     //
 | |
|     //     +---+---+---+---+
 | |
|     //     | 0 | 1 | 2 | 3 |
 | |
|     //     +---+---+---+---+
 | |
|     //     ^
 | |
|     //     |
 | |
|     // word address (4-byte aligned) = addr & 0xFFFFFFFC => goes into WVR
 | |
|     //
 | |
|     // examples:
 | |
|     // 1. addr_word_offset = 1, size = 1 to watch a uint_8 => byte_mask = (0b0001 << 1) = 0b0010
 | |
|     // 2. addr_word_offset = 2, size = 2 to watch a uint_16 => byte_mask = (0b0011 << 2) = 0b1100
 | |
|     //
 | |
|     // where byte_mask goes into WCR[8:5]
 | |
| 
 | |
|     uint32_t addr_word_offset = addr % 4;
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
 | |
| 
 | |
|     uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
 | |
|     if (byte_mask > 0xfu)
 | |
|         return INVALID_NUB_HW_INDEX;
 | |
| 
 | |
|     // Read the debug state
 | |
|     kern_return_t kret = GetDBGState(false);
 | |
| 
 | |
|     if (kret == KERN_SUCCESS)
 | |
|     {
 | |
|         // Check to make sure we have the needed hardware support
 | |
|         uint32_t i = 0;
 | |
| 
 | |
|         for (i=0; i<num_hw_watchpoints; ++i)
 | |
|         {
 | |
|             if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
 | |
|                 break; // We found an available hw watchpoint slot (in i)
 | |
|         }
 | |
| 
 | |
|         // See if we found an available hw watchpoint slot above
 | |
|         if (i < num_hw_watchpoints)
 | |
|         {
 | |
|             //DumpDBGState(m_state.dbg);
 | |
| 
 | |
|             // Make the byte_mask into a valid Byte Address Select mask
 | |
|             uint32_t byte_address_select = byte_mask << 5;
 | |
|             // Make sure bits 1:0 are clear in our address
 | |
|             m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);     // DVA (Data Virtual Address)
 | |
|             m_state.dbg.__wcr[i] =  byte_address_select |       // Which bytes that follow the DVA that we will watch
 | |
|                                     S_USER |                    // Stop only in user mode
 | |
|                                     (read ? WCR_LOAD : 0) |     // Stop on read access?
 | |
|                                     (write ? WCR_STORE : 0) |   // Stop on write access?
 | |
|                                     WCR_ENABLE;                 // Enable this watchpoint;
 | |
| 
 | |
|             DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
 | |
| 
 | |
|             kret = SetDBGState();
 | |
|             //DumpDBGState(m_state.dbg);
 | |
| 
 | |
|             DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
 | |
| 
 | |
|             if (kret == KERN_SUCCESS)
 | |
|                 return i;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
 | |
|         }
 | |
|     }
 | |
|     return INVALID_NUB_HW_INDEX;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::EnableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
 | |
| {
 | |
|     kern_return_t kret = GetDBGState(false);
 | |
|     if (kret != KERN_SUCCESS)
 | |
|         return false;
 | |
| 
 | |
|     const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
 | |
|     if (hw_index >= num_hw_points)
 | |
|         return false;
 | |
| 
 | |
|     if (Delegate && LoHi[hw_index]) {
 | |
|         // Enable lo and hi watchpoint hardware indexes.
 | |
|         return EnableHardwareWatchpoint0(hw_index, false) &&
 | |
|             EnableHardwareWatchpoint0(LoHi[hw_index], false);
 | |
|     }
 | |
| 
 | |
|     m_state.dbg.__wcr[hw_index] |= (nub_addr_t)WCR_ENABLE;
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
 | |
|                      hw_index,
 | |
|                      hw_index,
 | |
|                      m_state.dbg.__wvr[hw_index],
 | |
|                      hw_index,
 | |
|                      m_state.dbg.__wcr[hw_index]);
 | |
| 
 | |
|     kret = SetDBGState();
 | |
| 
 | |
|     return (kret == KERN_SUCCESS);
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
 | |
| {
 | |
|     return DisableHardwareWatchpoint0(hw_index, true);
 | |
| }
 | |
| bool
 | |
| DNBArchMachARM::DisableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
 | |
| {
 | |
|     kern_return_t kret = GetDBGState(false);
 | |
|     if (kret != KERN_SUCCESS)
 | |
|         return false;
 | |
| 
 | |
|     const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
 | |
|     if (hw_index >= num_hw_points)
 | |
|         return false;
 | |
| 
 | |
|     if (Delegate && LoHi[hw_index]) {
 | |
|         // Disable lo and hi watchpoint hardware indexes.
 | |
|         return DisableHardwareWatchpoint0(hw_index, false) &&
 | |
|             DisableHardwareWatchpoint0(LoHi[hw_index], false);
 | |
|     }
 | |
| 
 | |
|     m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
 | |
|                      hw_index,
 | |
|                      hw_index,
 | |
|                      m_state.dbg.__wvr[hw_index],
 | |
|                      hw_index,
 | |
|                      m_state.dbg.__wcr[hw_index]);
 | |
| 
 | |
|     kret = SetDBGState();
 | |
| 
 | |
|     return (kret == KERN_SUCCESS);
 | |
| }
 | |
| 
 | |
| // {0} -> __bvr[16], {0} -> __bcr[16], {0} --> __wvr[16], {0} -> __wcr{16}
 | |
| DNBArchMachARM::DBG DNBArchMachARM::Global_Debug_State = {{0},{0},{0},{0}};
 | |
| bool DNBArchMachARM::Valid_Global_Debug_State = false;
 | |
| 
 | |
| // Use this callback from MachThread, which in turn was called from MachThreadList, to update
 | |
| // the global view of the hardware watchpoint state, so that when new thread comes along, they
 | |
| // get to inherit the existing hardware watchpoint state.
 | |
| void
 | |
| DNBArchMachARM::HardwareWatchpointStateChanged ()
 | |
| {
 | |
|     Global_Debug_State = m_state.dbg;
 | |
|     Valid_Global_Debug_State = true;
 | |
| }
 | |
| 
 | |
| // Returns -1 if the trailing bit patterns are not one of:
 | |
| // { 0b???1, 0b??10, 0b?100, 0b1000 }.
 | |
| static inline
 | |
| int32_t
 | |
| LowestBitSet(uint32_t val)
 | |
| {
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|         if (bit(val, i))
 | |
|             return i;
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| // Iterate through the debug registers; return the index of the first watchpoint whose address matches.
 | |
| // As a side effect, the starting address as understood by the debugger is returned which could be
 | |
| // different from 'addr' passed as an in/out argument.
 | |
| uint32_t
 | |
| DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
 | |
| {
 | |
|     // Read the debug state
 | |
|     kern_return_t kret = GetDBGState(true);
 | |
|     //DumpDBGState(m_state.dbg);
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
 | |
|     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
 | |
| 
 | |
|     // This is the watchpoint value to match against, i.e., word address.
 | |
|     nub_addr_t wp_val = addr & ~((nub_addr_t)3);
 | |
|     if (kret == KERN_SUCCESS)
 | |
|     {
 | |
|         DBG &debug_state = m_state.dbg;
 | |
|         uint32_t i, num = NumSupportedHardwareWatchpoints();
 | |
|         for (i = 0; i < num; ++i)
 | |
|         {
 | |
|             nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
 | |
|             DNBLogThreadedIf(LOG_WATCHPOINTS,
 | |
|                              "DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
 | |
|                              i, (uint64_t)wp_addr);
 | |
|             if (wp_val == wp_addr) {
 | |
|                 uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
 | |
| 
 | |
|                 // Sanity check the byte_mask, first.
 | |
|                 if (LowestBitSet(byte_mask) < 0)
 | |
|                     continue;
 | |
| 
 | |
|                 // Compute the starting address (from the point of view of the debugger).
 | |
|                 addr = wp_addr + LowestBitSet(byte_mask);
 | |
|                 return i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return INVALID_NUB_HW_INDEX;
 | |
| }
 | |
| 
 | |
| // ThreadWillResume() calls this to clear bits[5:2] (Method of entry bits) of
 | |
| // the Debug Status and Control Register (DSCR).
 | |
| // 
 | |
| // b0010 = a watchpoint occurred
 | |
| // b0000 is the reset value
 | |
| void
 | |
| DNBArchMachARM::ClearWatchpointOccurred()
 | |
| {
 | |
|     uint32_t register_DBGDSCR;
 | |
|     asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
 | |
|     if (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED)
 | |
|     {
 | |
|         uint32_t mask = ~(0xF << 2);
 | |
|         register_DBGDSCR &= mask;
 | |
|         asm("mcr p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| // NotifyException() calls this to double check that a watchpoint has occurred
 | |
| // by inspecting the bits[5:2] field of the Debug Status and Control Register
 | |
| // (DSCR).
 | |
| // 
 | |
| // b0010 = a watchpoint occurred
 | |
| bool
 | |
| DNBArchMachARM::HasWatchpointOccurred()
 | |
| {
 | |
|     uint32_t register_DBGDSCR;
 | |
|     asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
 | |
|     return (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED);
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
 | |
| {
 | |
|     // Watchpoint Control Registers, bitfield definitions
 | |
|     // ...
 | |
|     // Bits    Value    Description
 | |
|     // [0]     0        Watchpoint disabled
 | |
|     //         1        Watchpoint enabled.
 | |
|     return (debug_state.__wcr[hw_index] & 1u);
 | |
| }
 | |
| 
 | |
| nub_addr_t
 | |
| DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
 | |
| {
 | |
|     // Watchpoint Value Registers, bitfield definitions
 | |
|     // Bits        Description
 | |
|     // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
 | |
|     // [1:0]       RAZ/SBZP
 | |
|     return bits(debug_state.__wvr[hw_index], 31, 0);
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // Register information defintions for 32 bit ARMV7.
 | |
| //----------------------------------------------------------------------
 | |
| enum gpr_regnums
 | |
| {
 | |
|     gpr_r0 = 0,
 | |
|     gpr_r1,
 | |
|     gpr_r2,
 | |
|     gpr_r3,
 | |
|     gpr_r4,
 | |
|     gpr_r5,
 | |
|     gpr_r6,
 | |
|     gpr_r7,
 | |
|     gpr_r8,
 | |
|     gpr_r9,
 | |
|     gpr_r10,
 | |
|     gpr_r11,
 | |
|     gpr_r12,
 | |
|     gpr_sp,
 | |
|     gpr_lr,
 | |
|     gpr_pc,
 | |
|     gpr_cpsr
 | |
| };
 | |
| 
 | |
| enum 
 | |
| {
 | |
|     vfp_s0 = 17, // match the g_gdb_register_map_arm table in RNBRemote.cpp
 | |
|     vfp_s1,
 | |
|     vfp_s2,
 | |
|     vfp_s3,
 | |
|     vfp_s4,
 | |
|     vfp_s5,
 | |
|     vfp_s6,
 | |
|     vfp_s7,
 | |
|     vfp_s8,
 | |
|     vfp_s9,
 | |
|     vfp_s10,
 | |
|     vfp_s11,
 | |
|     vfp_s12,
 | |
|     vfp_s13,
 | |
|     vfp_s14,
 | |
|     vfp_s15,
 | |
|     vfp_s16,
 | |
|     vfp_s17,
 | |
|     vfp_s18,
 | |
|     vfp_s19,
 | |
|     vfp_s20,
 | |
|     vfp_s21,
 | |
|     vfp_s22,
 | |
|     vfp_s23,
 | |
|     vfp_s24,
 | |
|     vfp_s25,
 | |
|     vfp_s26,
 | |
|     vfp_s27,
 | |
|     vfp_s28,
 | |
|     vfp_s29,
 | |
|     vfp_s30,
 | |
|     vfp_s31
 | |
| };
 | |
| 
 | |
| enum
 | |
| {
 | |
|     vfp_d0 = 49, // match the g_gdb_register_map_arm table in RNBRemote.cpp
 | |
|     vfp_d1,
 | |
|     vfp_d2,
 | |
|     vfp_d3,
 | |
|     vfp_d4,
 | |
|     vfp_d5,
 | |
|     vfp_d6,
 | |
|     vfp_d7,
 | |
|     vfp_d8,
 | |
|     vfp_d9,
 | |
|     vfp_d10,
 | |
|     vfp_d11,
 | |
|     vfp_d12,
 | |
|     vfp_d13,
 | |
|     vfp_d14,
 | |
|     vfp_d15,
 | |
|     vfp_d16,
 | |
|     vfp_d17,
 | |
|     vfp_d18,
 | |
|     vfp_d19,
 | |
|     vfp_d20,
 | |
|     vfp_d21,
 | |
|     vfp_d22,
 | |
|     vfp_d23,
 | |
|     vfp_d24,
 | |
|     vfp_d25,
 | |
|     vfp_d26,
 | |
|     vfp_d27,
 | |
|     vfp_d28,
 | |
|     vfp_d29,
 | |
|     vfp_d30,
 | |
|     vfp_d31
 | |
| };
 | |
| 
 | |
| enum
 | |
| {
 | |
|     vfp_q0 = 81, // match the g_gdb_register_map_arm table in RNBRemote.cpp
 | |
|     vfp_q1,
 | |
|     vfp_q2,
 | |
|     vfp_q3,
 | |
|     vfp_q4,
 | |
|     vfp_q5,
 | |
|     vfp_q6,
 | |
|     vfp_q7,
 | |
|     vfp_q8,
 | |
|     vfp_q9,
 | |
|     vfp_q10,
 | |
|     vfp_q11,
 | |
|     vfp_q12,
 | |
|     vfp_q13,
 | |
|     vfp_q14,
 | |
|     vfp_q15,
 | |
|     vfp_fpscr
 | |
| };
 | |
| 
 | |
| enum
 | |
| {
 | |
|     exc_exception,
 | |
|     exc_fsr,
 | |
|     exc_far,
 | |
| };
 | |
| 
 | |
| #define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
 | |
| #define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
 | |
| 
 | |
| #define EXC_OFFSET(reg)      (offsetof (DNBArchMachARM::EXC, __##reg)  + offsetof (DNBArchMachARM::Context, exc))
 | |
| 
 | |
| // These macros will auto define the register name, alt name, register size,
 | |
| // register offset, encoding, format and native register. This ensures that
 | |
| // the register state structures are defined correctly and have the correct
 | |
| // sizes and offsets.
 | |
| #define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL}
 | |
| #define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval}
 | |
| 
 | |
| // In case we are debugging to a debug target that the ability to
 | |
| // change into the protected modes with folded registers (ABT, IRQ,
 | |
| // FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
 | |
| // gets modified.
 | |
| 
 | |
| uint32_t g_invalidate_cpsr[] = {
 | |
|     gpr_r8,
 | |
|     gpr_r9,
 | |
|     gpr_r10,
 | |
|     gpr_r11,
 | |
|     gpr_r12,
 | |
|     gpr_sp,
 | |
|     gpr_lr,
 | |
|     INVALID_NUB_REGNUM };
 | |
| 
 | |
| // General purpose registers
 | |
| const DNBRegisterInfo
 | |
| DNBArchMachARM::g_gpr_registers[] =
 | |
| {
 | |
|     DEFINE_GPR_IDX ( 0,  r0,"arg1", GENERIC_REGNUM_ARG1  ),
 | |
|     DEFINE_GPR_IDX ( 1,  r1,"arg2", GENERIC_REGNUM_ARG2  ),
 | |
|     DEFINE_GPR_IDX ( 2,  r2,"arg3", GENERIC_REGNUM_ARG3  ),
 | |
|     DEFINE_GPR_IDX ( 3,  r3,"arg4", GENERIC_REGNUM_ARG4  ),
 | |
|     DEFINE_GPR_IDX ( 4,  r4,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX ( 5,  r5,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX ( 6,  r6,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX ( 7,  r7,  "fp", GENERIC_REGNUM_FP    ),
 | |
|     DEFINE_GPR_IDX ( 8,  r8,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX ( 9,  r9,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX (10, r10,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX (11, r11,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_IDX (12, r12,  NULL, INVALID_NUB_REGNUM   ),
 | |
|     DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL),
 | |
|     DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL),
 | |
|     DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL),
 | |
|     DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)
 | |
| };
 | |
| 
 | |
| uint32_t g_contained_q0[] {vfp_q0, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q1[] {vfp_q1, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q2[] {vfp_q2, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q3[] {vfp_q3, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q4[] {vfp_q4, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q5[] {vfp_q5, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q6[] {vfp_q6, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q7[] {vfp_q7, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q8[] {vfp_q8, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q9[] {vfp_q9, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q10[] {vfp_q10, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q11[] {vfp_q11, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q12[] {vfp_q12, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q13[] {vfp_q13, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q14[] {vfp_q14, INVALID_NUB_REGNUM };
 | |
| uint32_t g_contained_q15[] {vfp_q15, INVALID_NUB_REGNUM };
 | |
| 
 | |
| uint32_t g_invalidate_q0[]  {vfp_q0,   vfp_d0, vfp_d1,    vfp_s0, vfp_s1, vfp_s2, vfp_s3,        INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q1[]  {vfp_q1,   vfp_d2, vfp_d3,    vfp_s4, vfp_s5, vfp_s6, vfp_s7,        INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q2[]  {vfp_q2,   vfp_d4, vfp_d5,    vfp_s8, vfp_s9, vfp_s10, vfp_s11,      INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q3[]  {vfp_q3,   vfp_d6, vfp_d7,    vfp_s12, vfp_s13, vfp_s14, vfp_s15,    INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q4[]  {vfp_q4,   vfp_d8, vfp_d9,    vfp_s16, vfp_s17, vfp_s18, vfp_s19,    INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q5[]  {vfp_q5,   vfp_d10, vfp_d11,  vfp_s20, vfp_s21, vfp_s22, vfp_s23,    INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q6[]  {vfp_q6,   vfp_d12, vfp_d13,  vfp_s24, vfp_s25, vfp_s26, vfp_s27,    INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q7[]  {vfp_q7,   vfp_d14, vfp_d15,  vfp_s28, vfp_s29, vfp_s30, vfp_s31,    INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q8[]  {vfp_q8,   vfp_d16, vfp_d17,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q9[]  {vfp_q9,   vfp_d18, vfp_d19,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q10[] {vfp_q10,  vfp_d20, vfp_d21,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q11[] {vfp_q11,  vfp_d22, vfp_d23,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q12[] {vfp_q12,  vfp_d24, vfp_d25,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q13[] {vfp_q13,  vfp_d26, vfp_d27,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q14[] {vfp_q14,  vfp_d28, vfp_d29,  INVALID_NUB_REGNUM };
 | |
| uint32_t g_invalidate_q15[] {vfp_q15,  vfp_d30, vfp_d31,  INVALID_NUB_REGNUM };
 | |
| 
 | |
| #define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[(idx)]) + offsetof (DNBArchMachARM::Context, vfp))
 | |
| #define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 2))
 | |
| #define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4))
 | |
| 
 | |
| #define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
 | |
| 
 | |
| #define FLOAT_FORMAT Float
 | |
| 
 | |
| #define DEFINE_VFP_S_IDX(idx)  e_regSetVFP, vfp_s##idx - vfp_s0, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
 | |
| #define DEFINE_VFP_D_IDX(idx)  e_regSetVFP, vfp_d##idx - vfp_s0, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
 | |
| #define DEFINE_VFP_Q_IDX(idx)  e_regSetVFP, vfp_q##idx - vfp_s0, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
 | |
| 
 | |
| // Floating point registers
 | |
| const DNBRegisterInfo
 | |
| DNBArchMachARM::g_vfp_registers[] =
 | |
| {
 | |
|     { DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 },
 | |
|     { DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 },
 | |
|     { DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 },
 | |
|     { DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 },
 | |
|     { DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 },
 | |
|     { DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 },
 | |
|     { DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 },
 | |
|     { DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 },
 | |
|     { DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 },
 | |
|     { DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 },
 | |
|     { DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 },
 | |
|     { DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 },
 | |
|     { DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 },
 | |
|     { DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 },
 | |
|     { DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 },
 | |
|     { DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 },
 | |
|     { DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 },
 | |
|     { DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 },
 | |
|     { DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 },
 | |
|     { DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 },
 | |
|     { DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 },
 | |
|     { DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 },
 | |
|     { DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 },
 | |
|     { DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 },
 | |
|     { DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 },
 | |
|     { DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 },
 | |
|     { DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 },
 | |
|     { DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 },
 | |
|     { DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 },
 | |
|     { DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 },
 | |
|     { DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 },
 | |
|     { DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 },
 | |
| 
 | |
|     { DEFINE_VFP_D_IDX (0),  g_contained_q0, g_invalidate_q0 },
 | |
|     { DEFINE_VFP_D_IDX (1),  g_contained_q0, g_invalidate_q0 },
 | |
|     { DEFINE_VFP_D_IDX (2),  g_contained_q1, g_invalidate_q1 },
 | |
|     { DEFINE_VFP_D_IDX (3),  g_contained_q1, g_invalidate_q1 },
 | |
|     { DEFINE_VFP_D_IDX (4),  g_contained_q2, g_invalidate_q2 },
 | |
|     { DEFINE_VFP_D_IDX (5),  g_contained_q2, g_invalidate_q2 },
 | |
|     { DEFINE_VFP_D_IDX (6),  g_contained_q3, g_invalidate_q3 },
 | |
|     { DEFINE_VFP_D_IDX (7),  g_contained_q3, g_invalidate_q3 },
 | |
|     { DEFINE_VFP_D_IDX (8),  g_contained_q4, g_invalidate_q4 },
 | |
|     { DEFINE_VFP_D_IDX (9),  g_contained_q4, g_invalidate_q4 },
 | |
|     { DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 },
 | |
|     { DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 },
 | |
|     { DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 },
 | |
|     { DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 },
 | |
|     { DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 },
 | |
|     { DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 },
 | |
|     { DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 },
 | |
|     { DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 },
 | |
|     { DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 },
 | |
|     { DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 },
 | |
|     { DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 },
 | |
|     { DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 },
 | |
|     { DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 },
 | |
|     { DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 },
 | |
|     { DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 },
 | |
|     { DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 },
 | |
|     { DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 },
 | |
|     { DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 },
 | |
|     { DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 },
 | |
|     { DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 },
 | |
|     { DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 },
 | |
|     { DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 },
 | |
| 
 | |
|     { DEFINE_VFP_Q_IDX (0),  NULL,            g_invalidate_q0 },
 | |
|     { DEFINE_VFP_Q_IDX (1),  NULL,            g_invalidate_q1 },
 | |
|     { DEFINE_VFP_Q_IDX (2),  NULL,            g_invalidate_q2 },
 | |
|     { DEFINE_VFP_Q_IDX (3),  NULL,            g_invalidate_q3 },
 | |
|     { DEFINE_VFP_Q_IDX (4),  NULL,            g_invalidate_q4 },
 | |
|     { DEFINE_VFP_Q_IDX (5),  NULL,            g_invalidate_q5 },
 | |
|     { DEFINE_VFP_Q_IDX (6),  NULL,            g_invalidate_q6 },
 | |
|     { DEFINE_VFP_Q_IDX (7),  NULL,            g_invalidate_q7 },
 | |
|     { DEFINE_VFP_Q_IDX (8),  NULL,            g_invalidate_q8 },
 | |
|     { DEFINE_VFP_Q_IDX (9),  NULL,            g_invalidate_q9 },
 | |
|     { DEFINE_VFP_Q_IDX (10),  NULL,           g_invalidate_q10 },
 | |
|     { DEFINE_VFP_Q_IDX (11),  NULL,           g_invalidate_q11 },
 | |
|     { DEFINE_VFP_Q_IDX (12),  NULL,           g_invalidate_q12 },
 | |
|     { DEFINE_VFP_Q_IDX (13),  NULL,           g_invalidate_q13 },
 | |
|     { DEFINE_VFP_Q_IDX (14),  NULL,           g_invalidate_q14 },
 | |
|     { DEFINE_VFP_Q_IDX (15),  NULL,           g_invalidate_q15 },
 | |
| 
 | |
|     { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
 | |
| };
 | |
| 
 | |
| // Exception registers
 | |
| 
 | |
| const DNBRegisterInfo
 | |
| DNBArchMachARM::g_exc_registers[] =
 | |
| {
 | |
|   { e_regSetVFP, exc_exception  , "exception"   , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
 | |
|   { e_regSetVFP, exc_fsr        , "fsr"         , NULL, Uint, Hex, 4, EXC_OFFSET(fsr)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
 | |
|   { e_regSetVFP, exc_far        , "far"         , NULL, Uint, Hex, 4, EXC_OFFSET(far)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
 | |
| };
 | |
| 
 | |
| // Number of registers in each register set
 | |
| const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
 | |
| const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
 | |
| const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
 | |
| const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // Register set definitions. The first definitions at register set index
 | |
| // of zero is for all registers, followed by other registers sets. The
 | |
| // register information for the all register set need not be filled in.
 | |
| //----------------------------------------------------------------------
 | |
| const DNBRegisterSetInfo
 | |
| DNBArchMachARM::g_reg_sets[] =
 | |
| {
 | |
|     { "ARM Registers",              NULL,               k_num_all_registers     },
 | |
|     { "General Purpose Registers",  g_gpr_registers,    k_num_gpr_registers     },
 | |
|     { "Floating Point Registers",   g_vfp_registers,    k_num_vfp_registers     },
 | |
|     { "Exception State Registers",  g_exc_registers,    k_num_exc_registers     }
 | |
| };
 | |
| // Total number of register sets for this architecture
 | |
| const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
 | |
| 
 | |
| 
 | |
| const DNBRegisterSetInfo *
 | |
| DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
 | |
| {
 | |
|     *num_reg_sets = k_num_register_sets;
 | |
|     return g_reg_sets;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
 | |
| {
 | |
|     if (set == REGISTER_SET_GENERIC)
 | |
|     {
 | |
|         switch (reg)
 | |
|         {
 | |
|         case GENERIC_REGNUM_PC:     // Program Counter
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_pc;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_SP:     // Stack Pointer
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_sp;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_FP:     // Frame Pointer
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_r7;   // is this the right reg?
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_RA:     // Return Address
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_lr;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_FLAGS:  // Processor flags register
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_cpsr;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (GetRegisterState(set, false) != KERN_SUCCESS)
 | |
|         return false;
 | |
| 
 | |
|     const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
 | |
|     if (regInfo)
 | |
|     {
 | |
|         value->info = *regInfo;
 | |
|         switch (set)
 | |
|         {
 | |
|         case e_regSetGPR:
 | |
|             if (reg < k_num_gpr_registers)
 | |
|             {
 | |
|                 value->value.uint32 = m_state.context.gpr.__r[reg];
 | |
|                 return true;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case e_regSetVFP:
 | |
|             // "reg" is an index into the floating point register set at this point.
 | |
|             // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0 
 | |
|             // in the enumerated values for case statement below.
 | |
|             reg += vfp_s0;
 | |
|             if (reg >= vfp_s0 && reg <= vfp_s31)
 | |
|             {
 | |
|                 value->value.uint32 = m_state.context.vfp.__r[reg - vfp_s0];
 | |
|                 return true;
 | |
|             }
 | |
|             else if (reg >= vfp_d0 && reg <= vfp_d31)
 | |
|             {
 | |
|                 uint32_t d_reg_idx = reg - vfp_d0;
 | |
|                 uint32_t s_reg_idx = d_reg_idx * 2;
 | |
|                 value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
 | |
|                 value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
 | |
|                 return true;
 | |
|             }
 | |
|             else if (reg >= vfp_q0 && reg <= vfp_q15)
 | |
|             {
 | |
|                 uint32_t s_reg_idx = (reg - vfp_q0) * 4;
 | |
|                 memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16);
 | |
|                 return true;
 | |
|             }
 | |
| 
 | |
|             else if (reg == vfp_fpscr)
 | |
|             {
 | |
|                 value->value.uint32 = m_state.context.vfp.__fpscr;
 | |
|                 return true;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case e_regSetEXC:
 | |
|             if (reg < k_num_exc_registers)
 | |
|             {
 | |
|                 value->value.uint32 = (&m_state.context.exc.__exception)[reg];
 | |
|                 return true;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
 | |
| {
 | |
|     if (set == REGISTER_SET_GENERIC)
 | |
|     {
 | |
|         switch (reg)
 | |
|         {
 | |
|         case GENERIC_REGNUM_PC:     // Program Counter
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_pc;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_SP:     // Stack Pointer
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_sp;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_FP:     // Frame Pointer
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_r7;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_RA:     // Return Address
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_lr;
 | |
|             break;
 | |
| 
 | |
|         case GENERIC_REGNUM_FLAGS:  // Processor flags register
 | |
|             set = e_regSetGPR;
 | |
|             reg = gpr_cpsr;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (GetRegisterState(set, false) != KERN_SUCCESS)
 | |
|         return false;
 | |
| 
 | |
|     bool success = false;
 | |
|     const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
 | |
|     if (regInfo)
 | |
|     {
 | |
|         switch (set)
 | |
|         {
 | |
|         case e_regSetGPR:
 | |
|             if (reg < k_num_gpr_registers)
 | |
|             {
 | |
|                 m_state.context.gpr.__r[reg] = value->value.uint32;
 | |
|                 success = true;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case e_regSetVFP:
 | |
|             // "reg" is an index into the floating point register set at this point.
 | |
|             // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0 
 | |
|             // in the enumerated values for case statement below.
 | |
|             reg += vfp_s0;
 | |
| 
 | |
|             if (reg >= vfp_s0 && reg <= vfp_s31)
 | |
|             {
 | |
|                 m_state.context.vfp.__r[reg - vfp_s0] = value->value.uint32;
 | |
|                 success = true;
 | |
|             }
 | |
|             else if (reg >= vfp_d0 && reg <= vfp_d31)
 | |
|             {
 | |
|                 uint32_t d_reg_idx = reg - vfp_d0;
 | |
|                 uint32_t s_reg_idx = d_reg_idx * 2;
 | |
|                 m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
 | |
|                 m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
 | |
|                 success = true;
 | |
|             }
 | |
|             else if (reg >= vfp_q0 && reg <= vfp_q15)
 | |
|             {
 | |
|                 uint32_t s_reg_idx = (reg - vfp_q0) * 4;
 | |
|                 memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16);
 | |
|                 return true;
 | |
|             }
 | |
|             else if (reg == vfp_fpscr)
 | |
|             {
 | |
|                 m_state.context.vfp.__fpscr = value->value.uint32;
 | |
|                 success = true;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case e_regSetEXC:
 | |
|             if (reg < k_num_exc_registers)
 | |
|             {
 | |
|                 (&m_state.context.exc.__exception)[reg] = value->value.uint32;
 | |
|                 success = true;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     if (success)
 | |
|         return SetRegisterState(set) == KERN_SUCCESS;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::GetRegisterState(int set, bool force)
 | |
| {
 | |
|     switch (set)
 | |
|     {
 | |
|     case e_regSetALL:   return GetGPRState(force) |
 | |
|                                GetVFPState(force) |
 | |
|                                GetEXCState(force) |
 | |
|                                GetDBGState(force);
 | |
|     case e_regSetGPR:   return GetGPRState(force);
 | |
|     case e_regSetVFP:   return GetVFPState(force);
 | |
|     case e_regSetEXC:   return GetEXCState(force);
 | |
|     case e_regSetDBG:   return GetDBGState(force);
 | |
|     default: break;
 | |
|     }
 | |
|     return KERN_INVALID_ARGUMENT;
 | |
| }
 | |
| 
 | |
| kern_return_t
 | |
| DNBArchMachARM::SetRegisterState(int set)
 | |
| {
 | |
|     // Make sure we have a valid context to set.
 | |
|     kern_return_t err = GetRegisterState(set, false);
 | |
|     if (err != KERN_SUCCESS)
 | |
|         return err;
 | |
| 
 | |
|     switch (set)
 | |
|     {
 | |
|     case e_regSetALL:   return SetGPRState() |
 | |
|                                SetVFPState() |
 | |
|                                SetEXCState() |
 | |
|                                SetDBGState();
 | |
|     case e_regSetGPR:   return SetGPRState();
 | |
|     case e_regSetVFP:   return SetVFPState();
 | |
|     case e_regSetEXC:   return SetEXCState();
 | |
|     case e_regSetDBG:   return SetDBGState();
 | |
|     default: break;
 | |
|     }
 | |
|     return KERN_INVALID_ARGUMENT;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DNBArchMachARM::RegisterSetStateIsValid (int set) const
 | |
| {
 | |
|     return m_state.RegsAreValid(set);
 | |
| }
 | |
| 
 | |
| 
 | |
| nub_size_t
 | |
| DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
 | |
| {
 | |
|     nub_size_t size = sizeof (m_state.context);
 | |
|     
 | |
|     if (buf && buf_len)
 | |
|     {
 | |
|         if (size > buf_len)
 | |
|             size = buf_len;
 | |
| 
 | |
|         bool force = false;
 | |
|         if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
 | |
|             return 0;
 | |
|         ::memcpy (buf, &m_state.context, size);
 | |
|     }
 | |
|     DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
 | |
|     // Return the size of the register context even if NULL was passed in
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| nub_size_t
 | |
| DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
 | |
| {
 | |
|     nub_size_t size = sizeof (m_state.context);
 | |
|     if (buf == NULL || buf_len == 0)
 | |
|         size = 0;
 | |
|     
 | |
|     if (size)
 | |
|     {
 | |
|         if (size > buf_len)
 | |
|             size = buf_len;
 | |
| 
 | |
|         ::memcpy (&m_state.context, buf, size);
 | |
|         SetGPRState();
 | |
|         SetVFPState();
 | |
|         SetEXCState();
 | |
|     }
 | |
|     DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif    // #if defined (__arm__)
 | |
| 
 |