llvm-project/llvm/lib/Target/PowerPC/PPCInstrPrefix.td

503 lines
20 KiB
TableGen

// PC Relative flag (for instructions that use the address of the prefix for
// address computations).
class isPCRel { bit PCRel = 1; }
// Top-level class for prefixed instructions.
class PI<bits<6> pref, bits<6> opcode, dag OOL, dag IOL, string asmstr,
InstrItinClass itin> : Instruction {
field bits<64> Inst;
field bits<64> SoftFail = 0;
bit PCRel = 0; // Default value, set by isPCRel.
let Size = 8;
let Namespace = "PPC";
let OutOperandList = OOL;
let InOperandList = IOL;
let AsmString = asmstr;
let Itinerary = itin;
let Inst{0-5} = pref;
let Inst{32-37} = opcode;
bits<1> PPC970_First = 0;
bits<1> PPC970_Single = 0;
bits<1> PPC970_Cracked = 0;
bits<3> PPC970_Unit = 0;
/// These fields correspond to the fields in PPCInstrInfo.h. Any changes to
/// these must be reflected there! See comments there for what these are.
let TSFlags{0} = PPC970_First;
let TSFlags{1} = PPC970_Single;
let TSFlags{2} = PPC970_Cracked;
let TSFlags{5-3} = PPC970_Unit;
bits<1> Prefixed = 1; // This is a prefixed instruction.
let TSFlags{7} = Prefixed;
// For cases where multiple instruction definitions really represent the
// same underlying instruction but with one definition for 64-bit arguments
// and one for 32-bit arguments, this bit breaks the degeneracy between
// the two forms and allows TableGen to generate mapping tables.
bit Interpretation64Bit = 0;
// Fields used for relation models.
string BaseName = "";
}
class MLS_DForm_R_SI34_RTA5_MEM<bits<6> opcode, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: PI<1, opcode, OOL, IOL, asmstr, itin> {
bits<5> FRS;
bits<39> D_RA;
let Pattern = pattern;
// The prefix.
let Inst{6-7} = 2;
let Inst{8-10} = 0;
let Inst{11} = PCRel;
let Inst{12-13} = 0;
let Inst{14-31} = D_RA{33-16}; // d0
// The instruction.
let Inst{38-42} = FRS{4-0};
let Inst{43-47} = D_RA{38-34}; // RA
let Inst{48-63} = D_RA{15-0}; // d1
}
class MLS_DForm_R_SI34_RTA5<bits<6> opcode, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: PI<1, opcode, OOL, IOL, asmstr, itin> {
bits<5> RT;
bits<5> RA;
bits<34> SI;
let Pattern = pattern;
// The prefix.
let Inst{6-7} = 2;
let Inst{8-10} = 0;
let Inst{11} = PCRel;
let Inst{12-13} = 0;
let Inst{14-31} = SI{33-16};
// The instruction.
let Inst{38-42} = RT;
let Inst{43-47} = RA;
let Inst{48-63} = SI{15-0};
}
class MLS_DForm_SI34_RT5<bits<6> opcode, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: PI<1, opcode, OOL, IOL, asmstr, itin> {
bits<5> RT;
bits<34> SI;
let Pattern = pattern;
// The prefix.
let Inst{6-7} = 2;
let Inst{8-10} = 0;
let Inst{11} = 0;
let Inst{12-13} = 0;
let Inst{14-31} = SI{33-16};
// The instruction.
let Inst{38-42} = RT;
let Inst{43-47} = 0;
let Inst{48-63} = SI{15-0};
}
multiclass MLS_DForm_R_SI34_RTA5_p<bits<6> opcode, dag OOL, dag IOL,
dag PCRel_IOL, string asmstr,
InstrItinClass itin> {
def NAME : MLS_DForm_R_SI34_RTA5<opcode, OOL, IOL,
!strconcat(asmstr, ", 0"), itin, []>;
def pc : MLS_DForm_R_SI34_RTA5<opcode, OOL, PCRel_IOL,
!strconcat(asmstr, ", 1"), itin, []>, isPCRel;
}
class 8LS_DForm_R_SI34_RTA5<bits<6> opcode, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: PI<1, opcode, OOL, IOL, asmstr, itin> {
bits<5> RT;
bits<39> D_RA;
let Pattern = pattern;
// The prefix.
let Inst{6-10} = 0;
let Inst{11} = PCRel;
let Inst{12-13} = 0;
let Inst{14-31} = D_RA{33-16}; // d0
// The instruction.
let Inst{38-42} = RT{4-0};
let Inst{43-47} = D_RA{38-34}; // RA
let Inst{48-63} = D_RA{15-0}; // d1
}
// 8LS:D-Form: [ 1 0 0 // R // d0
// PO TX T RA d1 ]
class 8LS_DForm_R_SI34_XT6_RA5<bits<5> opcode, dag OOL, dag IOL, string asmstr,
InstrItinClass itin, list<dag> pattern>
: PI<1, { opcode, ? }, OOL, IOL, asmstr, itin> {
bits<6> XT;
bits<39> D_RA;
let Pattern = pattern;
// The prefix.
let Inst{6-7} = 0;
let Inst{8} = 0;
let Inst{9-10} = 0; // reserved
let Inst{11} = PCRel;
let Inst{12-13} = 0; // reserved
let Inst{14-31} = D_RA{33-16}; // d0
// The instruction.
let Inst{37} = XT{5};
let Inst{38-42} = XT{4-0};
let Inst{43-47} = D_RA{38-34}; // RA
let Inst{48-63} = D_RA{15-0}; // d1
}
multiclass MLS_DForm_R_SI34_RTA5_MEM_p<bits<6> opcode, dag OOL, dag IOL,
dag PCRel_IOL, string asmstr,
InstrItinClass itin> {
def NAME : MLS_DForm_R_SI34_RTA5_MEM<opcode, OOL, IOL,
!strconcat(asmstr, ", 0"), itin, []>;
def pc : MLS_DForm_R_SI34_RTA5_MEM<opcode, OOL, PCRel_IOL,
!strconcat(asmstr, ", 1"), itin, []>,
isPCRel;
}
multiclass 8LS_DForm_R_SI34_RTA5_p<bits<6> opcode, dag OOL, dag IOL,
dag PCRel_IOL, string asmstr,
InstrItinClass itin> {
def NAME : 8LS_DForm_R_SI34_RTA5<opcode, OOL, IOL,
!strconcat(asmstr, ", 0"), itin, []>;
def pc : 8LS_DForm_R_SI34_RTA5<opcode, OOL, PCRel_IOL,
!strconcat(asmstr, ", 1"), itin, []>, isPCRel;
}
multiclass 8LS_DForm_R_SI34_XT6_RA5_p<bits<5> opcode, dag OOL, dag IOL,
dag PCRel_IOL, string asmstr,
InstrItinClass itin> {
def NAME : 8LS_DForm_R_SI34_XT6_RA5<opcode, OOL, IOL,
!strconcat(asmstr, ", 0"), itin, []>;
def pc : 8LS_DForm_R_SI34_XT6_RA5<opcode, OOL, PCRel_IOL,
!strconcat(asmstr, ", 1"), itin, []>,
isPCRel;
}
def PrefixInstrs : Predicate<"PPCSubTarget->hasPrefixInstrs()">;
let Predicates = [PrefixInstrs] in {
let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
defm PADDI8 :
MLS_DForm_R_SI34_RTA5_p<14, (outs g8rc:$RT), (ins g8rc:$RA, s34imm:$SI),
(ins immZero:$RA, s34imm:$SI),
"paddi $RT, $RA, $SI", IIC_LdStLFD>;
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def PLI8 : MLS_DForm_SI34_RT5<14, (outs g8rc:$RT),
(ins s34imm:$SI),
"pli $RT, $SI", IIC_IntSimple, []>;
}
}
defm PADDI :
MLS_DForm_R_SI34_RTA5_p<14, (outs gprc:$RT), (ins gprc:$RA, s34imm:$SI),
(ins immZero:$RA, s34imm:$SI),
"paddi $RT, $RA, $SI", IIC_LdStLFD>;
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def PLI : MLS_DForm_SI34_RT5<14, (outs gprc:$RT),
(ins s34imm:$SI),
"pli $RT, $SI", IIC_IntSimple, []>;
}
let mayLoad = 1, mayStore = 0 in {
defm PLXV :
8LS_DForm_R_SI34_XT6_RA5_p<25, (outs vsrc:$XT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plxv $XT, $D_RA",
IIC_LdStLFD>;
defm PLFS :
MLS_DForm_R_SI34_RTA5_MEM_p<48, (outs f4rc:$FRT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plfs $FRT, $D_RA",
IIC_LdStLFD>;
defm PLFD :
MLS_DForm_R_SI34_RTA5_MEM_p<50, (outs f8rc:$FRT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plfd $FRT, $D_RA",
IIC_LdStLFD>;
defm PLXSSP :
8LS_DForm_R_SI34_RTA5_p<43, (outs vfrc:$VRT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plxssp $VRT, $D_RA",
IIC_LdStLFD>;
defm PLXSD :
8LS_DForm_R_SI34_RTA5_p<42, (outs vfrc:$VRT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plxsd $VRT, $D_RA",
IIC_LdStLFD>;
let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
defm PLBZ8 :
MLS_DForm_R_SI34_RTA5_MEM_p<34, (outs g8rc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plbz $RT, $D_RA",
IIC_LdStLFD>;
defm PLHZ8 :
MLS_DForm_R_SI34_RTA5_MEM_p<40, (outs g8rc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plhz $RT, $D_RA",
IIC_LdStLFD>;
defm PLHA8 :
MLS_DForm_R_SI34_RTA5_MEM_p<42, (outs g8rc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plha $RT, $D_RA",
IIC_LdStLFD>;
defm PLWA8 :
8LS_DForm_R_SI34_RTA5_p<41, (outs g8rc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plwa $RT, $D_RA",
IIC_LdStLFD>;
defm PLWZ8 :
MLS_DForm_R_SI34_RTA5_MEM_p<32, (outs g8rc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plwz $RT, $D_RA",
IIC_LdStLFD>;
}
defm PLBZ :
MLS_DForm_R_SI34_RTA5_MEM_p<34, (outs gprc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plbz $RT, $D_RA",
IIC_LdStLFD>;
defm PLHZ :
MLS_DForm_R_SI34_RTA5_MEM_p<40, (outs gprc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plhz $RT, $D_RA",
IIC_LdStLFD>;
defm PLHA :
MLS_DForm_R_SI34_RTA5_MEM_p<42, (outs gprc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plha $RT, $D_RA",
IIC_LdStLFD>;
defm PLWZ :
MLS_DForm_R_SI34_RTA5_MEM_p<32, (outs gprc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plwz $RT, $D_RA",
IIC_LdStLFD>;
defm PLWA :
8LS_DForm_R_SI34_RTA5_p<41, (outs gprc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "plwa $RT, $D_RA",
IIC_LdStLFD>;
defm PLD :
8LS_DForm_R_SI34_RTA5_p<57, (outs g8rc:$RT), (ins memri34:$D_RA),
(ins memri34_pcrel:$D_RA), "pld $RT, $D_RA",
IIC_LdStLFD>;
}
let mayStore = 1, mayLoad = 0 in {
defm PSTXV :
8LS_DForm_R_SI34_XT6_RA5_p<27, (outs), (ins vsrc:$XS, memri34:$D_RA),
(ins vsrc:$XS, memri34_pcrel:$D_RA),
"pstxv $XS, $D_RA", IIC_LdStLFD>;
defm PSTFS :
MLS_DForm_R_SI34_RTA5_MEM_p<52, (outs), (ins f4rc:$FRS, memri34:$D_RA),
(ins f4rc:$FRS, memri34_pcrel:$D_RA),
"pstfs $FRS, $D_RA", IIC_LdStLFD>;
defm PSTFD :
MLS_DForm_R_SI34_RTA5_MEM_p<54, (outs), (ins f8rc:$FRS, memri34:$D_RA),
(ins f8rc:$FRS, memri34_pcrel:$D_RA),
"pstfd $FRS, $D_RA", IIC_LdStLFD>;
defm PSTXSSP :
8LS_DForm_R_SI34_RTA5_p<47, (outs), (ins vfrc:$VRS, memri34:$D_RA),
(ins vfrc:$VRS, memri34_pcrel:$D_RA),
"pstxssp $VRS, $D_RA", IIC_LdStLFD>;
defm PSTXSD :
8LS_DForm_R_SI34_RTA5_p<46, (outs), (ins vfrc:$VRS, memri34:$D_RA),
(ins vfrc:$VRS, memri34_pcrel:$D_RA),
"pstxsd $VRS, $D_RA", IIC_LdStLFD>;
let Interpretation64Bit = 1, isCodeGenOnly = 1 in {
defm PSTB8 :
MLS_DForm_R_SI34_RTA5_MEM_p<38, (outs), (ins g8rc:$RS, memri34:$D_RA),
(ins g8rc:$RS, memri34_pcrel:$D_RA),
"pstb $RS, $D_RA", IIC_LdStLFD>;
defm PSTH8 :
MLS_DForm_R_SI34_RTA5_MEM_p<44, (outs), (ins g8rc:$RS, memri34:$D_RA),
(ins g8rc:$RS, memri34_pcrel:$D_RA),
"psth $RS, $D_RA", IIC_LdStLFD>;
defm PSTW8 :
MLS_DForm_R_SI34_RTA5_MEM_p<36, (outs), (ins g8rc:$RS, memri34:$D_RA),
(ins g8rc:$RS, memri34_pcrel:$D_RA),
"pstw $RS, $D_RA", IIC_LdStLFD>;
}
defm PSTB :
MLS_DForm_R_SI34_RTA5_MEM_p<38, (outs), (ins gprc:$RS, memri34:$D_RA),
(ins gprc:$RS, memri34_pcrel:$D_RA),
"pstb $RS, $D_RA", IIC_LdStLFD>;
defm PSTH :
MLS_DForm_R_SI34_RTA5_MEM_p<44, (outs), (ins gprc:$RS, memri34:$D_RA),
(ins gprc:$RS, memri34_pcrel:$D_RA),
"psth $RS, $D_RA", IIC_LdStLFD>;
defm PSTW :
MLS_DForm_R_SI34_RTA5_MEM_p<36, (outs), (ins gprc:$RS, memri34:$D_RA),
(ins gprc:$RS, memri34_pcrel:$D_RA),
"pstw $RS, $D_RA", IIC_LdStLFD>;
defm PSTD :
8LS_DForm_R_SI34_RTA5_p<61, (outs), (ins g8rc:$RS, memri34:$D_RA),
(ins g8rc:$RS, memri34_pcrel:$D_RA),
"pstd $RS, $D_RA", IIC_LdStLFD>;
}
}
// TODO: We have an added complexity of 500 here. This is only a temporary
// solution to have tablegen consider these patterns first. The way we do
// addressing for PowerPC is complex depending on available D form, X form, or
// aligned D form loads/stores like DS and DQ forms. The prefixed
// instructions in this file also add additional PC Relative loads/stores
// and D form loads/stores with 34 bit immediates. It is very difficult to force
// instruction selection to consistently pick these first without the current
// added complexity. Once pc-relative implementation is complete, a set of
// follow-up patches will address this refactoring and the AddedComplexity will
// be removed.
let Predicates = [PCRelativeMemops], AddedComplexity = 500 in {
// Load i32
def : Pat<(i32 (zextloadi8 (PPCmatpcreladdr pcreladdr:$ga))),
(PLBZpc $ga, 0)>;
def : Pat<(i32 (extloadi8 (PPCmatpcreladdr pcreladdr:$ga))),
(PLBZpc $ga, 0)>;
def : Pat<(i32 (sextloadi16 (PPCmatpcreladdr pcreladdr:$ga))),
(PLHApc $ga, 0)>;
def : Pat<(i32 (zextloadi16 (PPCmatpcreladdr pcreladdr:$ga))),
(PLHZpc $ga, 0)>;
def : Pat<(i32 (extloadi16 (PPCmatpcreladdr pcreladdr:$ga))),
(PLHZpc $ga, 0)>;
def : Pat<(i32 (load (PPCmatpcreladdr pcreladdr:$ga))), (PLWZpc $ga, 0)>;
// Store i32
def : Pat<(truncstorei8 i32:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTBpc $RS, $ga, 0)>;
def : Pat<(truncstorei16 i32:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTHpc $RS, $ga, 0)>;
def : Pat<(store i32:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTWpc $RS, $ga, 0)>;
// Load i64
def : Pat<(i64 (zextloadi8 (PPCmatpcreladdr pcreladdr:$ga))),
(PLBZ8pc $ga, 0)>;
def : Pat<(i64 (extloadi8 (PPCmatpcreladdr pcreladdr:$ga))),
(PLBZ8pc $ga, 0)>;
def : Pat<(i64 (sextloadi16 (PPCmatpcreladdr pcreladdr:$ga))),
(PLHA8pc $ga, 0)>;
def : Pat<(i64 (zextloadi16 (PPCmatpcreladdr pcreladdr:$ga))),
(PLHZ8pc $ga, 0)>;
def : Pat<(i64 (extloadi16 (PPCmatpcreladdr pcreladdr:$ga))),
(PLHZ8pc $ga, 0)>;
def : Pat<(i64 (zextloadi32 (PPCmatpcreladdr pcreladdr:$ga))),
(PLWZ8pc $ga, 0)>;
def : Pat<(i64 (sextloadi32 (PPCmatpcreladdr pcreladdr:$ga))),
(PLWA8pc $ga, 0)>;
def : Pat<(i64 (extloadi32 (PPCmatpcreladdr pcreladdr:$ga))),
(PLWZ8pc $ga, 0)>;
def : Pat<(i64 (load (PPCmatpcreladdr pcreladdr:$ga))), (PLDpc $ga, 0)>;
// Store i64
def : Pat<(truncstorei8 i64:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTB8pc $RS, $ga, 0)>;
def : Pat<(truncstorei16 i64:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTH8pc $RS, $ga, 0)>;
def : Pat<(truncstorei32 i64:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTW8pc $RS, $ga, 0)>;
def : Pat<(store i64:$RS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTDpc $RS, $ga, 0)>;
// Load f32
def : Pat<(f32 (load (PPCmatpcreladdr pcreladdr:$addr))), (PLFSpc $addr, 0)>;
// Store f32
def : Pat<(store f32:$FRS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTFSpc $FRS, $ga, 0)>;
// Load f64
def : Pat<(f64 (extloadf32 (PPCmatpcreladdr pcreladdr:$addr))),
(COPY_TO_REGCLASS (PLFSpc $addr, 0), VSFRC)>;
def : Pat<(f64 (load (PPCmatpcreladdr pcreladdr:$addr))), (PLFDpc $addr, 0)>;
// Store f64
def : Pat<(store f64:$FRS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTFDpc $FRS, $ga, 0)>;
// Load f128
def : Pat<(f128 (load (PPCmatpcreladdr pcreladdr:$addr))),
(COPY_TO_REGCLASS (PLXVpc $addr, 0), VRRC)>;
// Store f128
def : Pat<(store f128:$XS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTXVpc (COPY_TO_REGCLASS $XS, VSRC), $ga, 0)>;
// Load v4i32
def : Pat<(v4i32 (load (PPCmatpcreladdr pcreladdr:$addr))), (PLXVpc $addr, 0)>;
// Store v4i32
def : Pat<(store v4i32:$XS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTXVpc $XS, $ga, 0)>;
// Load v2i64
def : Pat<(v2i64 (load (PPCmatpcreladdr pcreladdr:$addr))), (PLXVpc $addr, 0)>;
// Store v2i64
def : Pat<(store v2i64:$XS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTXVpc $XS, $ga, 0)>;
// Load v4f32
def : Pat<(v4f32 (load (PPCmatpcreladdr pcreladdr:$addr))), (PLXVpc $addr, 0)>;
// Store v4f32
def : Pat<(store v4f32:$XS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTXVpc $XS, $ga, 0)>;
// Load v2f64
def : Pat<(v2f64 (load (PPCmatpcreladdr pcreladdr:$addr))), (PLXVpc $addr, 0)>;
// Store v2f64
def : Pat<(store v2f64:$XS, (PPCmatpcreladdr pcreladdr:$ga)),
(PSTXVpc $XS, $ga, 0)>;
// Atomic Load
def : Pat<(atomic_load_8 (PPCmatpcreladdr pcreladdr:$ga)),
(PLBZpc $ga, 0)>;
def : Pat<(atomic_load_16 (PPCmatpcreladdr pcreladdr:$ga)),
(PLHZpc $ga, 0)>;
def : Pat<(atomic_load_32 (PPCmatpcreladdr pcreladdr:$ga)),
(PLWZpc $ga, 0)>;
def : Pat<(atomic_load_64 (PPCmatpcreladdr pcreladdr:$ga)),
(PLDpc $ga, 0)>;
// Atomic Store
def : Pat<(atomic_store_8 (PPCmatpcreladdr pcreladdr:$ga), i32:$RS),
(PSTBpc $RS, $ga, 0)>;
def : Pat<(atomic_store_16 (PPCmatpcreladdr pcreladdr:$ga), i32:$RS),
(PSTHpc $RS, $ga, 0)>;
def : Pat<(atomic_store_32 (PPCmatpcreladdr pcreladdr:$ga), i32:$RS),
(PSTWpc $RS, $ga, 0)>;
def : Pat<(atomic_store_8 (PPCmatpcreladdr pcreladdr:$ga), i64:$RS),
(PSTB8pc $RS, $ga, 0)>;
def : Pat<(atomic_store_16 (PPCmatpcreladdr pcreladdr:$ga), i64:$RS),
(PSTH8pc $RS, $ga, 0)>;
def : Pat<(atomic_store_32 (PPCmatpcreladdr pcreladdr:$ga), i64:$RS),
(PSTW8pc $RS, $ga, 0)>;
def : Pat<(atomic_store_64 (PPCmatpcreladdr pcreladdr:$ga), i64:$RS),
(PSTDpc $RS, $ga, 0)>;
// Special Cases For PPCstore_scal_int_from_vsr
def : Pat<(PPCstore_scal_int_from_vsr
(f64 (PPCcv_fp_to_sint_in_vsr f64:$src)),
(PPCmatpcreladdr pcreladdr:$dst), 8),
(PSTXSDpc (XSCVDPSXDS f64:$src), $dst, 0)>;
def : Pat<(PPCstore_scal_int_from_vsr
(f64 (PPCcv_fp_to_sint_in_vsr f128:$src)),
(PPCmatpcreladdr pcreladdr:$dst), 8),
(PSTXSDpc (COPY_TO_REGCLASS (XSCVQPSDZ f128:$src), VFRC), $dst, 0)>;
def : Pat<(PPCstore_scal_int_from_vsr
(f64 (PPCcv_fp_to_uint_in_vsr f64:$src)),
(PPCmatpcreladdr pcreladdr:$dst), 8),
(PSTXSDpc (XSCVDPUXDS f64:$src), $dst, 0)>;
def : Pat<(PPCstore_scal_int_from_vsr
(f64 (PPCcv_fp_to_uint_in_vsr f128:$src)),
(PPCmatpcreladdr pcreladdr:$dst), 8),
(PSTXSDpc (COPY_TO_REGCLASS (XSCVQPUDZ f128:$src), VFRC), $dst, 0)>;
// If the PPCmatpcreladdr node is not caught by any other pattern it should be
// caught here and turned into a paddi instruction to materialize the address.
def : Pat<(PPCmatpcreladdr pcreladdr:$addr), (PADDI8pc 0, $addr)>;
}