363 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file
 | 
						|
/// This file provides a LoopVectorizationPlanner class.
 | 
						|
/// InnerLoopVectorizer vectorizes loops which contain only one basic
 | 
						|
/// LoopVectorizationPlanner - drives the vectorization process after having
 | 
						|
/// passed Legality checks.
 | 
						|
/// The planner builds and optimizes the Vectorization Plans which record the
 | 
						|
/// decisions how to vectorize the given loop. In particular, represent the
 | 
						|
/// control-flow of the vectorized version, the replication of instructions that
 | 
						|
/// are to be scalarized, and interleave access groups.
 | 
						|
///
 | 
						|
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
 | 
						|
/// It provides an instruction-level API for generating VPInstructions while
 | 
						|
/// abstracting away the Recipe manipulation details.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
 | 
						|
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
 | 
						|
 | 
						|
#include "VPlan.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class LoopInfo;
 | 
						|
class LoopVectorizationLegality;
 | 
						|
class LoopVectorizationCostModel;
 | 
						|
class PredicatedScalarEvolution;
 | 
						|
class LoopVectorizationRequirements;
 | 
						|
class LoopVectorizeHints;
 | 
						|
class OptimizationRemarkEmitter;
 | 
						|
class TargetTransformInfo;
 | 
						|
class TargetLibraryInfo;
 | 
						|
class VPRecipeBuilder;
 | 
						|
 | 
						|
/// VPlan-based builder utility analogous to IRBuilder.
 | 
						|
class VPBuilder {
 | 
						|
  VPBasicBlock *BB = nullptr;
 | 
						|
  VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
 | 
						|
 | 
						|
  VPInstruction *createInstruction(unsigned Opcode,
 | 
						|
                                   ArrayRef<VPValue *> Operands, DebugLoc DL) {
 | 
						|
    VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL);
 | 
						|
    if (BB)
 | 
						|
      BB->insert(Instr, InsertPt);
 | 
						|
    return Instr;
 | 
						|
  }
 | 
						|
 | 
						|
  VPInstruction *createInstruction(unsigned Opcode,
 | 
						|
                                   std::initializer_list<VPValue *> Operands,
 | 
						|
                                   DebugLoc DL) {
 | 
						|
    return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  VPBuilder() {}
 | 
						|
 | 
						|
  /// Clear the insertion point: created instructions will not be inserted into
 | 
						|
  /// a block.
 | 
						|
  void clearInsertionPoint() {
 | 
						|
    BB = nullptr;
 | 
						|
    InsertPt = VPBasicBlock::iterator();
 | 
						|
  }
 | 
						|
 | 
						|
  VPBasicBlock *getInsertBlock() const { return BB; }
 | 
						|
  VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
 | 
						|
 | 
						|
  /// InsertPoint - A saved insertion point.
 | 
						|
  class VPInsertPoint {
 | 
						|
    VPBasicBlock *Block = nullptr;
 | 
						|
    VPBasicBlock::iterator Point;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Creates a new insertion point which doesn't point to anything.
 | 
						|
    VPInsertPoint() = default;
 | 
						|
 | 
						|
    /// Creates a new insertion point at the given location.
 | 
						|
    VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
 | 
						|
        : Block(InsertBlock), Point(InsertPoint) {}
 | 
						|
 | 
						|
    /// Returns true if this insert point is set.
 | 
						|
    bool isSet() const { return Block != nullptr; }
 | 
						|
 | 
						|
    VPBasicBlock *getBlock() const { return Block; }
 | 
						|
    VPBasicBlock::iterator getPoint() const { return Point; }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Sets the current insert point to a previously-saved location.
 | 
						|
  void restoreIP(VPInsertPoint IP) {
 | 
						|
    if (IP.isSet())
 | 
						|
      setInsertPoint(IP.getBlock(), IP.getPoint());
 | 
						|
    else
 | 
						|
      clearInsertionPoint();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This specifies that created VPInstructions should be appended to the end
 | 
						|
  /// of the specified block.
 | 
						|
  void setInsertPoint(VPBasicBlock *TheBB) {
 | 
						|
    assert(TheBB && "Attempting to set a null insert point");
 | 
						|
    BB = TheBB;
 | 
						|
    InsertPt = BB->end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This specifies that created instructions should be inserted at the
 | 
						|
  /// specified point.
 | 
						|
  void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
 | 
						|
    BB = TheBB;
 | 
						|
    InsertPt = IP;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Insert and return the specified instruction.
 | 
						|
  VPInstruction *insert(VPInstruction *I) const {
 | 
						|
    BB->insert(I, InsertPt);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
 | 
						|
  /// its underlying Instruction.
 | 
						|
  VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
 | 
						|
                        Instruction *Inst = nullptr) {
 | 
						|
    DebugLoc DL;
 | 
						|
    if (Inst)
 | 
						|
      DL = Inst->getDebugLoc();
 | 
						|
    VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL);
 | 
						|
    NewVPInst->setUnderlyingValue(Inst);
 | 
						|
    return NewVPInst;
 | 
						|
  }
 | 
						|
  VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
 | 
						|
                        DebugLoc DL) {
 | 
						|
    return createInstruction(Opcode, Operands, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  VPValue *createNot(VPValue *Operand, DebugLoc DL) {
 | 
						|
    return createInstruction(VPInstruction::Not, {Operand}, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
 | 
						|
    return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
 | 
						|
    return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
 | 
						|
                        DebugLoc DL) {
 | 
						|
    return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // RAII helpers.
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  /// RAII object that stores the current insertion point and restores it when
 | 
						|
  /// the object is destroyed.
 | 
						|
  class InsertPointGuard {
 | 
						|
    VPBuilder &Builder;
 | 
						|
    VPBasicBlock *Block;
 | 
						|
    VPBasicBlock::iterator Point;
 | 
						|
 | 
						|
  public:
 | 
						|
    InsertPointGuard(VPBuilder &B)
 | 
						|
        : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
 | 
						|
 | 
						|
    InsertPointGuard(const InsertPointGuard &) = delete;
 | 
						|
    InsertPointGuard &operator=(const InsertPointGuard &) = delete;
 | 
						|
 | 
						|
    ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
 | 
						|
  };
 | 
						|
};
 | 
						|
 | 
						|
/// TODO: The following VectorizationFactor was pulled out of
 | 
						|
/// LoopVectorizationCostModel class. LV also deals with
 | 
						|
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
 | 
						|
/// We need to streamline them.
 | 
						|
 | 
						|
/// Information about vectorization costs.
 | 
						|
struct VectorizationFactor {
 | 
						|
  /// Vector width with best cost.
 | 
						|
  ElementCount Width;
 | 
						|
  /// Cost of the loop with that width.
 | 
						|
  InstructionCost Cost;
 | 
						|
 | 
						|
  VectorizationFactor(ElementCount Width, InstructionCost Cost)
 | 
						|
      : Width(Width), Cost(Cost) {}
 | 
						|
 | 
						|
  /// Width 1 means no vectorization, cost 0 means uncomputed cost.
 | 
						|
  static VectorizationFactor Disabled() {
 | 
						|
    return {ElementCount::getFixed(1), 0};
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const VectorizationFactor &rhs) const {
 | 
						|
    return Width == rhs.Width && Cost == rhs.Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const VectorizationFactor &rhs) const {
 | 
						|
    return !(*this == rhs);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// A class that represents two vectorization factors (initialized with 0 by
 | 
						|
/// default). One for fixed-width vectorization and one for scalable
 | 
						|
/// vectorization. This can be used by the vectorizer to choose from a range of
 | 
						|
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
 | 
						|
/// vectorize with.
 | 
						|
struct FixedScalableVFPair {
 | 
						|
  ElementCount FixedVF;
 | 
						|
  ElementCount ScalableVF;
 | 
						|
 | 
						|
  FixedScalableVFPair()
 | 
						|
      : FixedVF(ElementCount::getFixed(0)),
 | 
						|
        ScalableVF(ElementCount::getScalable(0)) {}
 | 
						|
  FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
 | 
						|
    *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
 | 
						|
  }
 | 
						|
  FixedScalableVFPair(const ElementCount &FixedVF,
 | 
						|
                      const ElementCount &ScalableVF)
 | 
						|
      : FixedVF(FixedVF), ScalableVF(ScalableVF) {
 | 
						|
    assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
 | 
						|
           "Invalid scalable properties");
 | 
						|
  }
 | 
						|
 | 
						|
  static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
 | 
						|
 | 
						|
  /// \return true if either fixed- or scalable VF is non-zero.
 | 
						|
  explicit operator bool() const { return FixedVF || ScalableVF; }
 | 
						|
 | 
						|
  /// \return true if either fixed- or scalable VF is a valid vector VF.
 | 
						|
  bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
 | 
						|
};
 | 
						|
 | 
						|
/// Planner drives the vectorization process after having passed
 | 
						|
/// Legality checks.
 | 
						|
class LoopVectorizationPlanner {
 | 
						|
  /// The loop that we evaluate.
 | 
						|
  Loop *OrigLoop;
 | 
						|
 | 
						|
  /// Loop Info analysis.
 | 
						|
  LoopInfo *LI;
 | 
						|
 | 
						|
  /// Target Library Info.
 | 
						|
  const TargetLibraryInfo *TLI;
 | 
						|
 | 
						|
  /// Target Transform Info.
 | 
						|
  const TargetTransformInfo *TTI;
 | 
						|
 | 
						|
  /// The legality analysis.
 | 
						|
  LoopVectorizationLegality *Legal;
 | 
						|
 | 
						|
  /// The profitability analysis.
 | 
						|
  LoopVectorizationCostModel &CM;
 | 
						|
 | 
						|
  /// The interleaved access analysis.
 | 
						|
  InterleavedAccessInfo &IAI;
 | 
						|
 | 
						|
  PredicatedScalarEvolution &PSE;
 | 
						|
 | 
						|
  const LoopVectorizeHints &Hints;
 | 
						|
 | 
						|
  LoopVectorizationRequirements &Requirements;
 | 
						|
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  SmallVector<VPlanPtr, 4> VPlans;
 | 
						|
 | 
						|
  /// A builder used to construct the current plan.
 | 
						|
  VPBuilder Builder;
 | 
						|
 | 
						|
public:
 | 
						|
  LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
 | 
						|
                           const TargetTransformInfo *TTI,
 | 
						|
                           LoopVectorizationLegality *Legal,
 | 
						|
                           LoopVectorizationCostModel &CM,
 | 
						|
                           InterleavedAccessInfo &IAI,
 | 
						|
                           PredicatedScalarEvolution &PSE,
 | 
						|
                           const LoopVectorizeHints &Hints,
 | 
						|
                           LoopVectorizationRequirements &Requirements,
 | 
						|
                           OptimizationRemarkEmitter *ORE)
 | 
						|
      : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
 | 
						|
        PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {}
 | 
						|
 | 
						|
  /// Plan how to best vectorize, return the best VF and its cost, or None if
 | 
						|
  /// vectorization and interleaving should be avoided up front.
 | 
						|
  Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
 | 
						|
 | 
						|
  /// Use the VPlan-native path to plan how to best vectorize, return the best
 | 
						|
  /// VF and its cost.
 | 
						|
  VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
 | 
						|
 | 
						|
  /// Return the best VPlan for \p VF.
 | 
						|
  VPlan &getBestPlanFor(ElementCount VF) const;
 | 
						|
 | 
						|
  /// Generate the IR code for the body of the vectorized loop according to the
 | 
						|
  /// best selected \p VF, \p UF and VPlan \p BestPlan.
 | 
						|
  void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
 | 
						|
                   InnerLoopVectorizer &LB, DominatorTree *DT);
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  void printPlans(raw_ostream &O);
 | 
						|
#endif
 | 
						|
 | 
						|
  /// Look through the existing plans and return true if we have one with all
 | 
						|
  /// the vectorization factors in question.
 | 
						|
  bool hasPlanWithVF(ElementCount VF) const {
 | 
						|
    return any_of(VPlans,
 | 
						|
                  [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
 | 
						|
  }
 | 
						|
 | 
						|
  /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
 | 
						|
  /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
 | 
						|
  /// returned value holds for the entire \p Range.
 | 
						|
  static bool
 | 
						|
  getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
 | 
						|
                           VFRange &Range);
 | 
						|
 | 
						|
protected:
 | 
						|
  /// Collect the instructions from the original loop that would be trivially
 | 
						|
  /// dead in the vectorized loop if generated.
 | 
						|
  void collectTriviallyDeadInstructions(
 | 
						|
      SmallPtrSetImpl<Instruction *> &DeadInstructions);
 | 
						|
 | 
						|
  /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
 | 
						|
  /// according to the information gathered by Legal when it checked if it is
 | 
						|
  /// legal to vectorize the loop.
 | 
						|
  void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
 | 
						|
 | 
						|
private:
 | 
						|
  /// Build a VPlan according to the information gathered by Legal. \return a
 | 
						|
  /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
 | 
						|
  /// exclusive, possibly decreasing \p Range.End.
 | 
						|
  VPlanPtr buildVPlan(VFRange &Range);
 | 
						|
 | 
						|
  /// Build a VPlan using VPRecipes according to the information gather by
 | 
						|
  /// Legal. This method is only used for the legacy inner loop vectorizer.
 | 
						|
  VPlanPtr buildVPlanWithVPRecipes(
 | 
						|
      VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
 | 
						|
      const MapVector<Instruction *, Instruction *> &SinkAfter);
 | 
						|
 | 
						|
  /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
 | 
						|
  /// according to the information gathered by Legal when it checked if it is
 | 
						|
  /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
 | 
						|
  void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
 | 
						|
 | 
						|
  // Adjust the recipes for reductions. For in-loop reductions the chain of
 | 
						|
  // instructions leading from the loop exit instr to the phi need to be
 | 
						|
  // converted to reductions, with one operand being vector and the other being
 | 
						|
  // the scalar reduction chain. For other reductions, a select is introduced
 | 
						|
  // between the phi and live-out recipes when folding the tail.
 | 
						|
  void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
 | 
						|
                                  VPRecipeBuilder &RecipeBuilder,
 | 
						|
                                  ElementCount MinVF);
 | 
						|
};
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
 |