345 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			345 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ConstantReader.cpp - Code to constants and types ====---------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements functionality to deserialize constants and types from
 | 
						|
// bytecode files.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ReaderInternals.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
const Type *BytecodeParser::parseTypeConstant(const unsigned char *&Buf,
 | 
						|
					      const unsigned char *EndBuf) {
 | 
						|
  unsigned PrimType = read_vbr_uint(Buf, EndBuf);
 | 
						|
 | 
						|
  const Type *Val = 0;
 | 
						|
  if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
 | 
						|
    return Val;
 | 
						|
  
 | 
						|
  switch (PrimType) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const Type *RetType = getType(read_vbr_uint(Buf, EndBuf));
 | 
						|
 | 
						|
    unsigned NumParams = read_vbr_uint(Buf, EndBuf);
 | 
						|
 | 
						|
    std::vector<const Type*> Params;
 | 
						|
    while (NumParams--)
 | 
						|
      Params.push_back(getType(read_vbr_uint(Buf, EndBuf)));
 | 
						|
 | 
						|
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | 
						|
    if (isVarArg) Params.pop_back();
 | 
						|
 | 
						|
    return FunctionType::get(RetType, Params, isVarArg);
 | 
						|
  }
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
 | 
						|
    const Type *ElementType = getType(ElTyp);
 | 
						|
 | 
						|
    unsigned NumElements = read_vbr_uint(Buf, EndBuf);
 | 
						|
 | 
						|
    BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" 
 | 
						|
              << NumElements << "\n");
 | 
						|
    return ArrayType::get(ElementType, NumElements);
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    std::vector<const Type*> Elements;
 | 
						|
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
 | 
						|
    while (Typ) {         // List is terminated by void/0 typeid
 | 
						|
      Elements.push_back(getType(Typ));
 | 
						|
      Typ = read_vbr_uint(Buf, EndBuf);
 | 
						|
    }
 | 
						|
 | 
						|
    return StructType::get(Elements);
 | 
						|
  }
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
 | 
						|
    BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
 | 
						|
    return PointerType::get(getType(ElTyp));
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::OpaqueTyID: {
 | 
						|
    return OpaqueType::get();
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    std::cerr << __FILE__ << ":" << __LINE__
 | 
						|
              << ": Don't know how to deserialize"
 | 
						|
              << " primitive Type " << PrimType << "\n";
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// parseTypeConstants - We have to use this weird code to handle recursive
 | 
						|
// types.  We know that recursive types will only reference the current slab of
 | 
						|
// values in the type plane, but they can forward reference types before they
 | 
						|
// have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
 | 
						|
// be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
 | 
						|
// this ugly problem, we pessimistically insert an opaque type for each type we
 | 
						|
// are about to read.  This means that forward references will resolve to
 | 
						|
// something and when we reread the type later, we can replace the opaque type
 | 
						|
// with a new resolved concrete type.
 | 
						|
//
 | 
						|
void BytecodeParser::parseTypeConstants(const unsigned char *&Buf,
 | 
						|
                                        const unsigned char *EndBuf,
 | 
						|
					TypeValuesListTy &Tab,
 | 
						|
					unsigned NumEntries) {
 | 
						|
  assert(Tab.size() == 0 && "should not have read type constants in before!");
 | 
						|
 | 
						|
  // Insert a bunch of opaque types to be resolved later...
 | 
						|
  Tab.reserve(NumEntries);
 | 
						|
  for (unsigned i = 0; i != NumEntries; ++i)
 | 
						|
    Tab.push_back(OpaqueType::get());
 | 
						|
 | 
						|
  // Loop through reading all of the types.  Forward types will make use of the
 | 
						|
  // opaque types just inserted.
 | 
						|
  //
 | 
						|
  for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
    const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
 | 
						|
    if (NewTy == 0) throw std::string("Couldn't parse type!");
 | 
						|
    BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
 | 
						|
              "' Replacing: " << OldTy << "\n");
 | 
						|
 | 
						|
    // Don't insertValue the new type... instead we want to replace the opaque
 | 
						|
    // type with the new concrete value...
 | 
						|
    //
 | 
						|
 | 
						|
    // Refine the abstract type to the new type.  This causes all uses of the
 | 
						|
    // abstract type to use NewTy.  This also will cause the opaque type to be
 | 
						|
    // deleted...
 | 
						|
    //
 | 
						|
    cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
 | 
						|
 | 
						|
    // This should have replace the old opaque type with the new type in the
 | 
						|
    // value table... or with a preexisting type that was already in the system
 | 
						|
    assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
 | 
						|
  }
 | 
						|
 | 
						|
  BCR_TRACE(5, "Resulting types:\n");
 | 
						|
  for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
    BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant *BytecodeParser::parseConstantValue(const unsigned char *&Buf,
 | 
						|
                                             const unsigned char *EndBuf,
 | 
						|
                                             unsigned TypeID) {
 | 
						|
 | 
						|
  // We must check for a ConstantExpr before switching by type because
 | 
						|
  // a ConstantExpr can be of any type, and has no explicit value.
 | 
						|
  // 
 | 
						|
  // 0 if not expr; numArgs if is expr
 | 
						|
  unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf);
 | 
						|
  
 | 
						|
  if (isExprNumArgs) {
 | 
						|
    // FIXME: Encoding of constant exprs could be much more compact!
 | 
						|
    std::vector<Constant*> ArgVec;
 | 
						|
    ArgVec.reserve(isExprNumArgs);
 | 
						|
    unsigned Opcode = read_vbr_uint(Buf, EndBuf);
 | 
						|
    
 | 
						|
    // Read the slot number and types of each of the arguments
 | 
						|
    for (unsigned i = 0; i != isExprNumArgs; ++i) {
 | 
						|
      unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf);
 | 
						|
      unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf);
 | 
						|
      BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
 | 
						|
                << "'  slot: " << ArgValSlot << "\n");
 | 
						|
      
 | 
						|
      // Get the arg value from its slot if it exists, otherwise a placeholder
 | 
						|
      ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Construct a ConstantExpr of the appropriate kind
 | 
						|
    if (isExprNumArgs == 1) {           // All one-operand expressions
 | 
						|
      assert(Opcode == Instruction::Cast);
 | 
						|
      return ConstantExpr::getCast(ArgVec[0], getType(TypeID));
 | 
						|
    } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
 | 
						|
      std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
 | 
						|
      return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
 | 
						|
    } else {                            // All other 2-operand expressions
 | 
						|
      return ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Ok, not an ConstantExpr.  We now know how to read the given type...
 | 
						|
  const Type *Ty = getType(TypeID);
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID: {
 | 
						|
    unsigned Val = read_vbr_uint(Buf, EndBuf);
 | 
						|
    if (Val != 0 && Val != 1) throw std::string("Invalid boolean value read.");
 | 
						|
    return ConstantBool::get(Val == 1);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::UByteTyID:   // Unsigned integer types...
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID: {
 | 
						|
    unsigned Val = read_vbr_uint(Buf, EndBuf);
 | 
						|
    if (!ConstantUInt::isValueValidForType(Ty, Val)) 
 | 
						|
      throw std::string("Invalid unsigned byte/short/int read.");
 | 
						|
    return ConstantUInt::get(Ty, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ULongTyID: {
 | 
						|
    return ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf));
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::SByteTyID:   // Signed integer types...
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID: {
 | 
						|
  case Type::LongTyID:
 | 
						|
    int64_t Val = read_vbr_int64(Buf, EndBuf);
 | 
						|
    if (!ConstantSInt::isValueValidForType(Ty, Val)) 
 | 
						|
      throw std::string("Invalid signed byte/short/int/long read.");
 | 
						|
    return ConstantSInt::get(Ty, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::FloatTyID: {
 | 
						|
    float F;
 | 
						|
    input_data(Buf, EndBuf, &F, &F+1);
 | 
						|
    return ConstantFP::get(Ty, F);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    double Val;
 | 
						|
    input_data(Buf, EndBuf, &Val, &Val+1);
 | 
						|
    return ConstantFP::get(Ty, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::TypeTyID:
 | 
						|
    throw std::string("Type constants shouldn't live in constant table!");
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *AT = cast<ArrayType>(Ty);
 | 
						|
    unsigned NumElements = AT->getNumElements();
 | 
						|
    unsigned TypeSlot = getTypeSlot(AT->getElementType());
 | 
						|
    std::vector<Constant*> Elements;
 | 
						|
    Elements.reserve(NumElements);
 | 
						|
    while (NumElements--)     // Read all of the elements of the constant.
 | 
						|
      Elements.push_back(getConstantValue(TypeSlot,
 | 
						|
                                          read_vbr_uint(Buf, EndBuf)));
 | 
						|
    return ConstantArray::get(AT, Elements);
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *ST = cast<StructType>(Ty);
 | 
						|
 | 
						|
    std::vector<Constant *> Elements;
 | 
						|
    Elements.reserve(ST->getNumElements());
 | 
						|
    for (unsigned i = 0; i != ST->getNumElements(); ++i)
 | 
						|
      Elements.push_back(getConstantValue(ST->getElementType(i),
 | 
						|
                                          read_vbr_uint(Buf, EndBuf)));
 | 
						|
 | 
						|
    return ConstantStruct::get(ST, Elements);
 | 
						|
  }    
 | 
						|
 | 
						|
  case Type::PointerTyID: {  // ConstantPointerRef value...
 | 
						|
    const PointerType *PT = cast<PointerType>(Ty);
 | 
						|
    unsigned Slot = read_vbr_uint(Buf, EndBuf);
 | 
						|
    BCR_TRACE(4, "CPR: Type: '" << Ty << "'  slot: " << Slot << "\n");
 | 
						|
    
 | 
						|
    // Check to see if we have already read this global variable...
 | 
						|
    Value *Val = getValue(TypeID, Slot, false);
 | 
						|
    GlobalValue *GV;
 | 
						|
    if (Val) {
 | 
						|
      if (!(GV = dyn_cast<GlobalValue>(Val))) 
 | 
						|
        throw std::string("Value of ConstantPointerRef not in ValueTable!");
 | 
						|
      BCR_TRACE(5, "Value Found in ValueTable!\n");
 | 
						|
    } else {
 | 
						|
      throw std::string("Forward references are not allowed here.");
 | 
						|
    }
 | 
						|
    
 | 
						|
    return ConstantPointerRef::get(GV);
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    throw std::string("Don't know how to deserialize constant value of type '"+
 | 
						|
                      Ty->getDescription());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
 | 
						|
                                      const unsigned char *EndBuf) {
 | 
						|
  ValueTable T;
 | 
						|
  ParseConstantPool(Buf, EndBuf, T, ModuleTypeValues);
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::parseStringConstants(const unsigned char *&Buf,
 | 
						|
                                          const unsigned char *EndBuf,
 | 
						|
                                          unsigned NumEntries, ValueTable &Tab){
 | 
						|
  for (; NumEntries; --NumEntries) {
 | 
						|
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
 | 
						|
    const Type *Ty = getType(Typ);
 | 
						|
    if (!isa<ArrayType>(Ty))
 | 
						|
      throw std::string("String constant data invalid!");
 | 
						|
    
 | 
						|
    const ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    if (ATy->getElementType() != Type::SByteTy &&
 | 
						|
        ATy->getElementType() != Type::UByteTy)
 | 
						|
      throw std::string("String constant data invalid!");
 | 
						|
    
 | 
						|
    // Read character data.  The type tells us how long the string is.
 | 
						|
    char Data[ATy->getNumElements()];
 | 
						|
    input_data(Buf, EndBuf, Data, Data+ATy->getNumElements());
 | 
						|
 | 
						|
    std::vector<Constant*> Elements(ATy->getNumElements());
 | 
						|
    if (ATy->getElementType() == Type::SByteTy)
 | 
						|
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
        Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
 | 
						|
    else
 | 
						|
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
        Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
 | 
						|
 | 
						|
    // Create the constant, inserting it as needed.
 | 
						|
    Constant *C = ConstantArray::get(ATy, Elements);
 | 
						|
    unsigned Slot = insertValue(C, Typ, Tab);
 | 
						|
    ResolveReferencesToConstant(C, Slot);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BytecodeParser::ParseConstantPool(const unsigned char *&Buf,
 | 
						|
                                       const unsigned char *EndBuf,
 | 
						|
                                       ValueTable &Tab, 
 | 
						|
                                       TypeValuesListTy &TypeTab) {
 | 
						|
  while (Buf < EndBuf) {
 | 
						|
    unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
 | 
						|
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
 | 
						|
    if (Typ == Type::TypeTyID) {
 | 
						|
      BCR_TRACE(3, "Type: 'type'  NumEntries: " << NumEntries << "\n");
 | 
						|
      parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
 | 
						|
    } else if (Typ == Type::VoidTyID) {
 | 
						|
      assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
 | 
						|
      parseStringConstants(Buf, EndBuf, NumEntries, Tab);
 | 
						|
    } else {
 | 
						|
      BCR_TRACE(3, "Type: '" << *getType(Typ) << "'  NumEntries: "
 | 
						|
                << NumEntries << "\n");
 | 
						|
 | 
						|
      for (unsigned i = 0; i < NumEntries; ++i) {
 | 
						|
        Constant *C = parseConstantValue(Buf, EndBuf, Typ);
 | 
						|
        assert(C && "parseConstantValue returned NULL!");
 | 
						|
        BCR_TRACE(4, "Read Constant: '" << *C << "'\n");
 | 
						|
        unsigned Slot = insertValue(C, Typ, Tab);
 | 
						|
 | 
						|
        // If we are reading a function constant table, make sure that we adjust
 | 
						|
        // the slot number to be the real global constant number.
 | 
						|
        //
 | 
						|
        if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
 | 
						|
            ModuleValues[Typ])
 | 
						|
          Slot += ModuleValues[Typ]->size();
 | 
						|
        ResolveReferencesToConstant(C, Slot);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Buf > EndBuf) throw std::string("Read past end of buffer.");
 | 
						|
}
 |