1458 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1458 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file implements the WebAssemblyTargetLowering class.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "WebAssemblyISelLowering.h"
 | |
| #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
 | |
| #include "WebAssemblyMachineFunctionInfo.h"
 | |
| #include "WebAssemblySubtarget.h"
 | |
| #include "WebAssemblyTargetMachine.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/WasmEHFuncInfo.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/DiagnosticPrinter.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "wasm-lower"
 | |
| 
 | |
| WebAssemblyTargetLowering::WebAssemblyTargetLowering(
 | |
|     const TargetMachine &TM, const WebAssemblySubtarget &STI)
 | |
|     : TargetLowering(TM), Subtarget(&STI) {
 | |
|   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
 | |
| 
 | |
|   // Booleans always contain 0 or 1.
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   // Except in SIMD vectors
 | |
|   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
|   // We don't know the microarchitecture here, so just reduce register pressure.
 | |
|   setSchedulingPreference(Sched::RegPressure);
 | |
|   // Tell ISel that we have a stack pointer.
 | |
|   setStackPointerRegisterToSaveRestore(
 | |
|       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
 | |
|   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
 | |
|   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
 | |
|   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
 | |
|   if (Subtarget->hasSIMD128()) {
 | |
|     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
 | |
|     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
 | |
|     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
 | |
|     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
 | |
|   }
 | |
|   if (Subtarget->hasUnimplementedSIMD128()) {
 | |
|     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
 | |
|     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
 | |
|   }
 | |
|   // Compute derived properties from the register classes.
 | |
|   computeRegisterProperties(Subtarget->getRegisterInfo());
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
 | |
|   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
 | |
|   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
 | |
|   setOperationAction(ISD::BRIND, MVT::Other, Custom);
 | |
| 
 | |
|   // Take the default expansion for va_arg, va_copy, and va_end. There is no
 | |
|   // default action for va_start, so we do that custom.
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | |
| 
 | |
|   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
 | |
|     // Don't expand the floating-point types to constant pools.
 | |
|     setOperationAction(ISD::ConstantFP, T, Legal);
 | |
|     // Expand floating-point comparisons.
 | |
|     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
 | |
|                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
 | |
|       setCondCodeAction(CC, T, Expand);
 | |
|     // Expand floating-point library function operators.
 | |
|     for (auto Op :
 | |
|          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
 | |
|       setOperationAction(Op, T, Expand);
 | |
|     // Note supported floating-point library function operators that otherwise
 | |
|     // default to expand.
 | |
|     for (auto Op :
 | |
|          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
 | |
|       setOperationAction(Op, T, Legal);
 | |
|     // Support minimum and maximum, which otherwise default to expand.
 | |
|     setOperationAction(ISD::FMINIMUM, T, Legal);
 | |
|     setOperationAction(ISD::FMAXIMUM, T, Legal);
 | |
|     // WebAssembly currently has no builtin f16 support.
 | |
|     setOperationAction(ISD::FP16_TO_FP, T, Expand);
 | |
|     setOperationAction(ISD::FP_TO_FP16, T, Expand);
 | |
|     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
 | |
|     setTruncStoreAction(T, MVT::f16, Expand);
 | |
|   }
 | |
| 
 | |
|   // Expand unavailable integer operations.
 | |
|   for (auto Op :
 | |
|        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
 | |
|         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
 | |
|         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
 | |
|     for (auto T : {MVT::i32, MVT::i64})
 | |
|       setOperationAction(Op, T, Expand);
 | |
|     if (Subtarget->hasSIMD128())
 | |
|       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
 | |
|         setOperationAction(Op, T, Expand);
 | |
|     if (Subtarget->hasUnimplementedSIMD128())
 | |
|       setOperationAction(Op, MVT::v2i64, Expand);
 | |
|   }
 | |
| 
 | |
|   // SIMD-specific configuration
 | |
|   if (Subtarget->hasSIMD128()) {
 | |
|     // Support saturating add for i8x16 and i16x8
 | |
|     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
 | |
|       for (auto T : {MVT::v16i8, MVT::v8i16})
 | |
|         setOperationAction(Op, T, Legal);
 | |
| 
 | |
|     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
 | |
|     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
 | |
|       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
 | |
|     if (Subtarget->hasUnimplementedSIMD128())
 | |
|       for (auto T : {MVT::v2i64, MVT::v2f64})
 | |
|         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
 | |
| 
 | |
|     // We have custom shuffle lowering to expose the shuffle mask
 | |
|     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
 | |
|     if (Subtarget->hasUnimplementedSIMD128())
 | |
|       for (auto T: {MVT::v2i64, MVT::v2f64})
 | |
|         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
 | |
| 
 | |
|     // Custom lowering since wasm shifts must have a scalar shift amount
 | |
|     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
 | |
|       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
 | |
|         setOperationAction(Op, T, Custom);
 | |
|       if (Subtarget->hasUnimplementedSIMD128())
 | |
|         setOperationAction(Op, MVT::v2i64, Custom);
 | |
|     }
 | |
| 
 | |
|     // Custom lower lane accesses to expand out variable indices
 | |
|     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
 | |
|       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
 | |
|         setOperationAction(Op, T, Custom);
 | |
|       if (Subtarget->hasUnimplementedSIMD128())
 | |
|         for (auto T : {MVT::v2i64, MVT::v2f64})
 | |
|           setOperationAction(Op, T, Custom);
 | |
|     }
 | |
| 
 | |
|     // There is no i64x2.mul instruction
 | |
|     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
 | |
| 
 | |
|     // There are no vector select instructions
 | |
|     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
 | |
|       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
 | |
|         setOperationAction(Op, T, Expand);
 | |
|       if (Subtarget->hasUnimplementedSIMD128())
 | |
|         for (auto T : {MVT::v2i64, MVT::v2f64})
 | |
|           setOperationAction(Op, T, Expand);
 | |
|     }
 | |
| 
 | |
|     // Expand integer operations supported for scalars but not SIMD
 | |
|     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
 | |
|                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
 | |
|       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
 | |
|         setOperationAction(Op, T, Expand);
 | |
|       if (Subtarget->hasUnimplementedSIMD128())
 | |
|         setOperationAction(Op, MVT::v2i64, Expand);
 | |
|     }
 | |
| 
 | |
|     // Expand float operations supported for scalars but not SIMD
 | |
|     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
 | |
|                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
 | |
|                     ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
 | |
|       setOperationAction(Op, MVT::v4f32, Expand);
 | |
|       if (Subtarget->hasUnimplementedSIMD128())
 | |
|         setOperationAction(Op, MVT::v2f64, Expand);
 | |
|     }
 | |
| 
 | |
|     // Expand additional SIMD ops that V8 hasn't implemented yet
 | |
|     if (!Subtarget->hasUnimplementedSIMD128()) {
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // As a special case, these operators use the type to mean the type to
 | |
|   // sign-extend from.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
|   if (!Subtarget->hasSignExt()) {
 | |
|     // Sign extends are legal only when extending a vector extract
 | |
|     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
 | |
|     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
 | |
|   }
 | |
|   for (auto T : MVT::integer_vector_valuetypes())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
 | |
| 
 | |
|   // Dynamic stack allocation: use the default expansion.
 | |
|   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
 | |
| 
 | |
|   // Expand these forms; we pattern-match the forms that we can handle in isel.
 | |
|   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
 | |
|     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
 | |
|       setOperationAction(Op, T, Expand);
 | |
| 
 | |
|   // We have custom switch handling.
 | |
|   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
 | |
| 
 | |
|   // WebAssembly doesn't have:
 | |
|   //  - Floating-point extending loads.
 | |
|   //  - Floating-point truncating stores.
 | |
|   //  - i1 extending loads.
 | |
|   //  - extending/truncating SIMD loads/stores
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   for (auto T : MVT::integer_valuetypes())
 | |
|     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
 | |
|       setLoadExtAction(Ext, T, MVT::i1, Promote);
 | |
|   if (Subtarget->hasSIMD128()) {
 | |
|     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
 | |
|                    MVT::v2f64}) {
 | |
|       for (auto MemT : MVT::vector_valuetypes()) {
 | |
|         if (MVT(T) != MemT) {
 | |
|           setTruncStoreAction(T, MemT, Expand);
 | |
|           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
 | |
|             setLoadExtAction(Ext, T, MemT, Expand);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't do anything clever with build_pairs
 | |
|   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
| 
 | |
|   // Trap lowers to wasm unreachable
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // Exception handling intrinsics
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | |
| 
 | |
|   setMaxAtomicSizeInBitsSupported(64);
 | |
| 
 | |
|   if (Subtarget->hasBulkMemory()) {
 | |
|     // Use memory.copy and friends over multiple loads and stores
 | |
|     MaxStoresPerMemcpy = 1;
 | |
|     MaxStoresPerMemcpyOptSize = 1;
 | |
|     MaxStoresPerMemmove = 1;
 | |
|     MaxStoresPerMemmoveOptSize = 1;
 | |
|     MaxStoresPerMemset = 1;
 | |
|     MaxStoresPerMemsetOptSize = 1;
 | |
|   }
 | |
| 
 | |
|   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
 | |
|   // consistent with the f64 and f128 names.
 | |
|   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
 | |
|   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
 | |
| 
 | |
|   // Define the emscripten name for return address helper.
 | |
|   // TODO: when implementing other WASM backends, make this generic or only do
 | |
|   // this on emscripten depending on what they end up doing.
 | |
|   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
 | |
| 
 | |
|   // Always convert switches to br_tables unless there is only one case, which
 | |
|   // is equivalent to a simple branch. This reduces code size for wasm, and we
 | |
|   // defer possible jump table optimizations to the VM.
 | |
|   setMinimumJumpTableEntries(2);
 | |
| }
 | |
| 
 | |
| TargetLowering::AtomicExpansionKind
 | |
| WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
 | |
|   // We have wasm instructions for these
 | |
|   switch (AI->getOperation()) {
 | |
|   case AtomicRMWInst::Add:
 | |
|   case AtomicRMWInst::Sub:
 | |
|   case AtomicRMWInst::And:
 | |
|   case AtomicRMWInst::Or:
 | |
|   case AtomicRMWInst::Xor:
 | |
|   case AtomicRMWInst::Xchg:
 | |
|     return AtomicExpansionKind::None;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return AtomicExpansionKind::CmpXChg;
 | |
| }
 | |
| 
 | |
| FastISel *WebAssemblyTargetLowering::createFastISel(
 | |
|     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
 | |
|   return WebAssembly::createFastISel(FuncInfo, LibInfo);
 | |
| }
 | |
| 
 | |
| MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
 | |
|                                                       EVT VT) const {
 | |
|   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
 | |
|   if (BitWidth > 1 && BitWidth < 8)
 | |
|     BitWidth = 8;
 | |
| 
 | |
|   if (BitWidth > 64) {
 | |
|     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
 | |
|     // the count to be an i32.
 | |
|     BitWidth = 32;
 | |
|     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
 | |
|            "32-bit shift counts ought to be enough for anyone");
 | |
|   }
 | |
| 
 | |
|   MVT Result = MVT::getIntegerVT(BitWidth);
 | |
|   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
 | |
|          "Unable to represent scalar shift amount type");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
 | |
| // undefined result on invalid/overflow, to the WebAssembly opcode, which
 | |
| // traps on invalid/overflow.
 | |
| static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
 | |
|                                        MachineBasicBlock *BB,
 | |
|                                        const TargetInstrInfo &TII,
 | |
|                                        bool IsUnsigned, bool Int64,
 | |
|                                        bool Float64, unsigned LoweredOpcode) {
 | |
|   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | |
| 
 | |
|   unsigned OutReg = MI.getOperand(0).getReg();
 | |
|   unsigned InReg = MI.getOperand(1).getReg();
 | |
| 
 | |
|   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
 | |
|   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
 | |
|   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
 | |
|   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
 | |
|   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
 | |
|   unsigned Eqz = WebAssembly::EQZ_I32;
 | |
|   unsigned And = WebAssembly::AND_I32;
 | |
|   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
 | |
|   int64_t Substitute = IsUnsigned ? 0 : Limit;
 | |
|   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
 | |
|   auto &Context = BB->getParent()->getFunction().getContext();
 | |
|   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
 | |
| 
 | |
|   const BasicBlock *LLVMBB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
 | |
|   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
 | |
|   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
 | |
| 
 | |
|   MachineFunction::iterator It = ++BB->getIterator();
 | |
|   F->insert(It, FalseMBB);
 | |
|   F->insert(It, TrueMBB);
 | |
|   F->insert(It, DoneMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to DoneMBB.
 | |
|   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
 | |
|   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   BB->addSuccessor(TrueMBB);
 | |
|   BB->addSuccessor(FalseMBB);
 | |
|   TrueMBB->addSuccessor(DoneMBB);
 | |
|   FalseMBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
 | |
|   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
 | |
|   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
 | |
|   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
 | |
|   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
 | |
|   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
 | |
|   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   // For signed numbers, we can do a single comparison to determine whether
 | |
|   // fabs(x) is within range.
 | |
|   if (IsUnsigned) {
 | |
|     Tmp0 = InReg;
 | |
|   } else {
 | |
|     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
 | |
|   }
 | |
|   BuildMI(BB, DL, TII.get(FConst), Tmp1)
 | |
|       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
 | |
|   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
 | |
| 
 | |
|   // For unsigned numbers, we have to do a separate comparison with zero.
 | |
|   if (IsUnsigned) {
 | |
|     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
 | |
|     unsigned SecondCmpReg =
 | |
|         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
 | |
|     unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
 | |
|     BuildMI(BB, DL, TII.get(FConst), Tmp1)
 | |
|         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
 | |
|     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
 | |
|     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
 | |
|     CmpReg = AndReg;
 | |
|   }
 | |
| 
 | |
|   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
 | |
| 
 | |
|   // Create the CFG diamond to select between doing the conversion or using
 | |
|   // the substitute value.
 | |
|   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
 | |
|   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
 | |
|   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
 | |
|   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
 | |
|   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
 | |
|       .addReg(FalseReg)
 | |
|       .addMBB(FalseMBB)
 | |
|       .addReg(TrueReg)
 | |
|       .addMBB(TrueMBB);
 | |
| 
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
 | |
|     MachineInstr &MI, MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   case WebAssembly::FP_TO_SINT_I32_F32:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
 | |
|                         WebAssembly::I32_TRUNC_S_F32);
 | |
|   case WebAssembly::FP_TO_UINT_I32_F32:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
 | |
|                         WebAssembly::I32_TRUNC_U_F32);
 | |
|   case WebAssembly::FP_TO_SINT_I64_F32:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
 | |
|                         WebAssembly::I64_TRUNC_S_F32);
 | |
|   case WebAssembly::FP_TO_UINT_I64_F32:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
 | |
|                         WebAssembly::I64_TRUNC_U_F32);
 | |
|   case WebAssembly::FP_TO_SINT_I32_F64:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
 | |
|                         WebAssembly::I32_TRUNC_S_F64);
 | |
|   case WebAssembly::FP_TO_UINT_I32_F64:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
 | |
|                         WebAssembly::I32_TRUNC_U_F64);
 | |
|   case WebAssembly::FP_TO_SINT_I64_F64:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
 | |
|                         WebAssembly::I64_TRUNC_S_F64);
 | |
|   case WebAssembly::FP_TO_UINT_I64_F64:
 | |
|     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
 | |
|                         WebAssembly::I64_TRUNC_U_F64);
 | |
|     llvm_unreachable("Unexpected instruction to emit with custom inserter");
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *
 | |
| WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
 | |
|   case WebAssemblyISD::FIRST_NUMBER:
 | |
|     break;
 | |
| #define HANDLE_NODETYPE(NODE)                                                  \
 | |
|   case WebAssemblyISD::NODE:                                                   \
 | |
|     return "WebAssemblyISD::" #NODE;
 | |
| #include "WebAssemblyISD.def"
 | |
| #undef HANDLE_NODETYPE
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
 | |
|     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
 | |
|   // First, see if this is a constraint that directly corresponds to a
 | |
|   // WebAssembly register class.
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'r':
 | |
|       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
 | |
|       if (Subtarget->hasSIMD128() && VT.isVector()) {
 | |
|         if (VT.getSizeInBits() == 128)
 | |
|           return std::make_pair(0U, &WebAssembly::V128RegClass);
 | |
|       }
 | |
|       if (VT.isInteger() && !VT.isVector()) {
 | |
|         if (VT.getSizeInBits() <= 32)
 | |
|           return std::make_pair(0U, &WebAssembly::I32RegClass);
 | |
|         if (VT.getSizeInBits() <= 64)
 | |
|           return std::make_pair(0U, &WebAssembly::I64RegClass);
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
 | |
|   // Assume ctz is a relatively cheap operation.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
 | |
|   // Assume clz is a relatively cheap operation.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                                       const AddrMode &AM,
 | |
|                                                       Type *Ty, unsigned AS,
 | |
|                                                       Instruction *I) const {
 | |
|   // WebAssembly offsets are added as unsigned without wrapping. The
 | |
|   // isLegalAddressingMode gives us no way to determine if wrapping could be
 | |
|   // happening, so we approximate this by accepting only non-negative offsets.
 | |
|   if (AM.BaseOffs < 0)
 | |
|     return false;
 | |
| 
 | |
|   // WebAssembly has no scale register operands.
 | |
|   if (AM.Scale != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Everything else is legal.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
 | |
|     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
 | |
|     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
 | |
|   // WebAssembly supports unaligned accesses, though it should be declared
 | |
|   // with the p2align attribute on loads and stores which do so, and there
 | |
|   // may be a performance impact. We tell LLVM they're "fast" because
 | |
|   // for the kinds of things that LLVM uses this for (merging adjacent stores
 | |
|   // of constants, etc.), WebAssembly implementations will either want the
 | |
|   // unaligned access or they'll split anyway.
 | |
|   if (Fast)
 | |
|     *Fast = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
 | |
|                                               AttributeList Attr) const {
 | |
|   // The current thinking is that wasm engines will perform this optimization,
 | |
|   // so we can save on code size.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
 | |
|                                                   LLVMContext &C,
 | |
|                                                   EVT VT) const {
 | |
|   if (VT.isVector())
 | |
|     return VT.changeVectorElementTypeToInteger();
 | |
| 
 | |
|   return TargetLowering::getSetCCResultType(DL, C, VT);
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | |
|                                                    const CallInst &I,
 | |
|                                                    MachineFunction &MF,
 | |
|                                                    unsigned Intrinsic) const {
 | |
|   switch (Intrinsic) {
 | |
|   case Intrinsic::wasm_atomic_notify:
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i32;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 4;
 | |
|     // atomic.notify instruction does not really load the memory specified with
 | |
|     // this argument, but MachineMemOperand should either be load or store, so
 | |
|     // we set this to a load.
 | |
|     // FIXME Volatile isn't really correct, but currently all LLVM atomic
 | |
|     // instructions are treated as volatiles in the backend, so we should be
 | |
|     // consistent. The same applies for wasm_atomic_wait intrinsics too.
 | |
|     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   case Intrinsic::wasm_atomic_wait_i32:
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i32;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 4;
 | |
|     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   case Intrinsic::wasm_atomic_wait_i64:
 | |
|     Info.opc = ISD::INTRINSIC_W_CHAIN;
 | |
|     Info.memVT = MVT::i64;
 | |
|     Info.ptrVal = I.getArgOperand(0);
 | |
|     Info.offset = 0;
 | |
|     Info.align = 8;
 | |
|     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // WebAssembly Lowering private implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   DAG.getContext()->diagnose(
 | |
|       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
 | |
| }
 | |
| 
 | |
| // Test whether the given calling convention is supported.
 | |
| static bool callingConvSupported(CallingConv::ID CallConv) {
 | |
|   // We currently support the language-independent target-independent
 | |
|   // conventions. We don't yet have a way to annotate calls with properties like
 | |
|   // "cold", and we don't have any call-clobbered registers, so these are mostly
 | |
|   // all handled the same.
 | |
|   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
 | |
|          CallConv == CallingConv::Cold ||
 | |
|          CallConv == CallingConv::PreserveMost ||
 | |
|          CallConv == CallingConv::PreserveAll ||
 | |
|          CallConv == CallingConv::CXX_FAST_TLS;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
 | |
|                                      SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG = CLI.DAG;
 | |
|   SDLoc DL = CLI.DL;
 | |
|   SDValue Chain = CLI.Chain;
 | |
|   SDValue Callee = CLI.Callee;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   auto Layout = MF.getDataLayout();
 | |
| 
 | |
|   CallingConv::ID CallConv = CLI.CallConv;
 | |
|   if (!callingConvSupported(CallConv))
 | |
|     fail(DL, DAG,
 | |
|          "WebAssembly doesn't support language-specific or target-specific "
 | |
|          "calling conventions yet");
 | |
|   if (CLI.IsPatchPoint)
 | |
|     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
 | |
| 
 | |
|   // Fail if tail calls are required but not enabled
 | |
|   if (!Subtarget->hasTailCall()) {
 | |
|     if ((CallConv == CallingConv::Fast && CLI.IsTailCall &&
 | |
|          MF.getTarget().Options.GuaranteedTailCallOpt) ||
 | |
|         (CLI.CS && CLI.CS.isMustTailCall()))
 | |
|       fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled");
 | |
|     CLI.IsTailCall = false;
 | |
|   }
 | |
| 
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
 | |
|   if (Ins.size() > 1)
 | |
|     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
 | |
| 
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
 | |
|   unsigned NumFixedArgs = 0;
 | |
|   for (unsigned I = 0; I < Outs.size(); ++I) {
 | |
|     const ISD::OutputArg &Out = Outs[I];
 | |
|     SDValue &OutVal = OutVals[I];
 | |
|     if (Out.Flags.isNest())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
 | |
|     if (Out.Flags.isInAlloca())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
 | |
|     if (Out.Flags.isInConsecutiveRegs())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
 | |
|     if (Out.Flags.isInConsecutiveRegsLast())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
 | |
|     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
 | |
|       auto &MFI = MF.getFrameInfo();
 | |
|       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
 | |
|                                      Out.Flags.getByValAlign(),
 | |
|                                      /*isSS=*/false);
 | |
|       SDValue SizeNode =
 | |
|           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
 | |
|       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
 | |
|       Chain = DAG.getMemcpy(
 | |
|           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
 | |
|           /*isVolatile*/ false, /*AlwaysInline=*/false,
 | |
|           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
 | |
|       OutVal = FINode;
 | |
|     }
 | |
|     // Count the number of fixed args *after* legalization.
 | |
|     NumFixedArgs += Out.IsFixed;
 | |
|   }
 | |
| 
 | |
|   bool IsVarArg = CLI.IsVarArg;
 | |
|   auto PtrVT = getPointerTy(Layout);
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   if (IsVarArg) {
 | |
|     // Outgoing non-fixed arguments are placed in a buffer. First
 | |
|     // compute their offsets and the total amount of buffer space needed.
 | |
|     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
 | |
|       const ISD::OutputArg &Out = Outs[I];
 | |
|       SDValue &Arg = OutVals[I];
 | |
|       EVT VT = Arg.getValueType();
 | |
|       assert(VT != MVT::iPTR && "Legalized args should be concrete");
 | |
|       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
 | |
|       unsigned Align = std::max(Out.Flags.getOrigAlign(),
 | |
|                                 Layout.getABITypeAlignment(Ty));
 | |
|       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
 | |
|                                              Align);
 | |
|       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
 | |
|                                         Offset, VT.getSimpleVT(),
 | |
|                                         CCValAssign::Full));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
 | |
| 
 | |
|   SDValue FINode;
 | |
|   if (IsVarArg && NumBytes) {
 | |
|     // For non-fixed arguments, next emit stores to store the argument values
 | |
|     // to the stack buffer at the offsets computed above.
 | |
|     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
 | |
|                                                  Layout.getStackAlignment(),
 | |
|                                                  /*isSS=*/false);
 | |
|     unsigned ValNo = 0;
 | |
|     SmallVector<SDValue, 8> Chains;
 | |
|     for (SDValue Arg :
 | |
|          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
 | |
|       assert(ArgLocs[ValNo].getValNo() == ValNo &&
 | |
|              "ArgLocs should remain in order and only hold varargs args");
 | |
|       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
 | |
|       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
 | |
|       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
 | |
|                                 DAG.getConstant(Offset, DL, PtrVT));
 | |
|       Chains.push_back(
 | |
|           DAG.getStore(Chain, DL, Arg, Add,
 | |
|                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
 | |
|     }
 | |
|     if (!Chains.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
 | |
|   } else if (IsVarArg) {
 | |
|     FINode = DAG.getIntPtrConstant(0, DL);
 | |
|   }
 | |
| 
 | |
|   if (Callee->getOpcode() == ISD::GlobalAddress) {
 | |
|     // If the callee is a GlobalAddress node (quite common, every direct call
 | |
|     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
 | |
|     // doesn't at MO_GOT which is not needed for direct calls.
 | |
|     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
 | |
|     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
 | |
|                                         getPointerTy(DAG.getDataLayout()),
 | |
|                                         GA->getOffset());
 | |
|     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
 | |
|                          getPointerTy(DAG.getDataLayout()), Callee);
 | |
|   }
 | |
| 
 | |
|   // Compute the operands for the CALLn node.
 | |
|   SmallVector<SDValue, 16> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
 | |
|   // isn't reliable.
 | |
|   Ops.append(OutVals.begin(),
 | |
|              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
 | |
|   // Add a pointer to the vararg buffer.
 | |
|   if (IsVarArg)
 | |
|     Ops.push_back(FINode);
 | |
| 
 | |
|   SmallVector<EVT, 8> InTys;
 | |
|   for (const auto &In : Ins) {
 | |
|     assert(!In.Flags.isByVal() && "byval is not valid for return values");
 | |
|     assert(!In.Flags.isNest() && "nest is not valid for return values");
 | |
|     if (In.Flags.isInAlloca())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
 | |
|     if (In.Flags.isInConsecutiveRegs())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
 | |
|     if (In.Flags.isInConsecutiveRegsLast())
 | |
|       fail(DL, DAG,
 | |
|            "WebAssembly hasn't implemented cons regs last return values");
 | |
|     // Ignore In.getOrigAlign() because all our arguments are passed in
 | |
|     // registers.
 | |
|     InTys.push_back(In.VT);
 | |
|   }
 | |
| 
 | |
|   if (CLI.IsTailCall) {
 | |
|     // ret_calls do not return values to the current frame
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
 | |
|   }
 | |
| 
 | |
|   InTys.push_back(MVT::Other);
 | |
|   SDVTList InTyList = DAG.getVTList(InTys);
 | |
|   SDValue Res =
 | |
|       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
 | |
|                   DL, InTyList, Ops);
 | |
|   if (Ins.empty()) {
 | |
|     Chain = Res;
 | |
|   } else {
 | |
|     InVals.push_back(Res);
 | |
|     Chain = Res.getValue(1);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| bool WebAssemblyTargetLowering::CanLowerReturn(
 | |
|     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|     LLVMContext & /*Context*/) const {
 | |
|   // WebAssembly can't currently handle returning tuples.
 | |
|   return Outs.size() <= 1;
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerReturn(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
 | |
|     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
 | |
|     SelectionDAG &DAG) const {
 | |
|   assert(Outs.size() <= 1 && "WebAssembly can only return up to one value");
 | |
|   if (!callingConvSupported(CallConv))
 | |
|     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
 | |
| 
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
|   RetOps.append(OutVals.begin(), OutVals.end());
 | |
|   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
 | |
| 
 | |
|   // Record the number and types of the return values.
 | |
|   for (const ISD::OutputArg &Out : Outs) {
 | |
|     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
 | |
|     assert(!Out.Flags.isNest() && "nest is not valid for return values");
 | |
|     assert(Out.IsFixed && "non-fixed return value is not valid");
 | |
|     if (Out.Flags.isInAlloca())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
 | |
|     if (Out.Flags.isInConsecutiveRegs())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
 | |
|     if (Out.Flags.isInConsecutiveRegsLast())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   if (!callingConvSupported(CallConv))
 | |
|     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
 | |
| 
 | |
|   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
 | |
|   // of the incoming values before they're represented by virtual registers.
 | |
|   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
 | |
| 
 | |
|   for (const ISD::InputArg &In : Ins) {
 | |
|     if (In.Flags.isInAlloca())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
 | |
|     if (In.Flags.isNest())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
 | |
|     if (In.Flags.isInConsecutiveRegs())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
 | |
|     if (In.Flags.isInConsecutiveRegsLast())
 | |
|       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
 | |
|     // Ignore In.getOrigAlign() because all our arguments are passed in
 | |
|     // registers.
 | |
|     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
 | |
|                                            DAG.getTargetConstant(InVals.size(),
 | |
|                                                                  DL, MVT::i32))
 | |
|                              : DAG.getUNDEF(In.VT));
 | |
| 
 | |
|     // Record the number and types of arguments.
 | |
|     MFI->addParam(In.VT);
 | |
|   }
 | |
| 
 | |
|   // Varargs are copied into a buffer allocated by the caller, and a pointer to
 | |
|   // the buffer is passed as an argument.
 | |
|   if (IsVarArg) {
 | |
|     MVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
|     unsigned VarargVreg =
 | |
|         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
 | |
|     MFI->setVarargBufferVreg(VarargVreg);
 | |
|     Chain = DAG.getCopyToReg(
 | |
|         Chain, DL, VarargVreg,
 | |
|         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
 | |
|                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
 | |
|     MFI->addParam(PtrVT);
 | |
|   }
 | |
| 
 | |
|   // Record the number and types of arguments and results.
 | |
|   SmallVector<MVT, 4> Params;
 | |
|   SmallVector<MVT, 4> Results;
 | |
|   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
 | |
|                       DAG.getTarget(), Params, Results);
 | |
|   for (MVT VT : Results)
 | |
|     MFI->addResult(VT);
 | |
|   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
 | |
|   // the param logic here with ComputeSignatureVTs
 | |
|   assert(MFI->getParams().size() == Params.size() &&
 | |
|          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
 | |
|                     Params.begin()));
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| void WebAssemblyTargetLowering::ReplaceNodeResults(
 | |
|     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     // Do not add any results, signifying that N should not be custom lowered
 | |
|     // after all. This happens because simd128 turns on custom lowering for
 | |
|     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
 | |
|     // illegal type.
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable(
 | |
|         "ReplaceNodeResults not implemented for this op for WebAssembly!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Custom lowering hooks.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("unimplemented operation lowering");
 | |
|     return SDValue();
 | |
|   case ISD::FrameIndex:
 | |
|     return LowerFrameIndex(Op, DAG);
 | |
|   case ISD::GlobalAddress:
 | |
|     return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::ExternalSymbol:
 | |
|     return LowerExternalSymbol(Op, DAG);
 | |
|   case ISD::JumpTable:
 | |
|     return LowerJumpTable(Op, DAG);
 | |
|   case ISD::BR_JT:
 | |
|     return LowerBR_JT(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return LowerVASTART(Op, DAG);
 | |
|   case ISD::BlockAddress:
 | |
|   case ISD::BRIND:
 | |
|     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
 | |
|     return SDValue();
 | |
|   case ISD::RETURNADDR:
 | |
|     return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:
 | |
|     return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::CopyToReg:
 | |
|     return LowerCopyToReg(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|   case ISD::INSERT_VECTOR_ELT:
 | |
|     return LowerAccessVectorElement(Op, DAG);
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     return LowerIntrinsic(Op, DAG);
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     return LowerSIGN_EXTEND_INREG(Op, DAG);
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|     return LowerShift(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDValue Src = Op.getOperand(2);
 | |
|   if (isa<FrameIndexSDNode>(Src.getNode())) {
 | |
|     // CopyToReg nodes don't support FrameIndex operands. Other targets select
 | |
|     // the FI to some LEA-like instruction, but since we don't have that, we
 | |
|     // need to insert some kind of instruction that can take an FI operand and
 | |
|     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
 | |
|     // local.copy between Op and its FI operand.
 | |
|     SDValue Chain = Op.getOperand(0);
 | |
|     SDLoc DL(Op);
 | |
|     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
 | |
|     EVT VT = Src.getValueType();
 | |
|     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
 | |
|                                                    : WebAssembly::COPY_I64,
 | |
|                                     DL, VT, Src),
 | |
|                  0);
 | |
|     return Op.getNode()->getNumValues() == 1
 | |
|                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
 | |
|                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
 | |
|                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
 | |
|                                                            : SDValue());
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
 | |
|   return DAG.getTargetFrameIndex(FI, Op.getValueType());
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
 | |
|     fail(DL, DAG,
 | |
|          "Non-Emscripten WebAssembly hasn't implemented "
 | |
|          "__builtin_return_address");
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
 | |
|                      {DAG.getConstant(Depth, DL, MVT::i32)}, false, DL)
 | |
|       .first;
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   // Non-zero depths are not supported by WebAssembly currently. Use the
 | |
|   // legalizer's default expansion, which is to return 0 (what this function is
 | |
|   // documented to do).
 | |
|   if (Op.getConstantOperandVal(0) > 0)
 | |
|     return SDValue();
 | |
| 
 | |
|   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned FP =
 | |
|       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   const auto *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(GA->getTargetFlags() == 0 &&
 | |
|          "Unexpected target flags on generic GlobalAddressSDNode");
 | |
|   if (GA->getAddressSpace() != 0)
 | |
|     fail(DL, DAG, "WebAssembly only expects the 0 address space");
 | |
| 
 | |
|   unsigned OperandFlags = 0;
 | |
|   if (isPositionIndependent()) {
 | |
|     const GlobalValue *GV = GA->getGlobal();
 | |
|     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
|       MVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
|       const char *BaseName;
 | |
|       if (GV->getValueType()->isFunctionTy()) {
 | |
|         BaseName = MF.createExternalSymbolName("__table_base");
 | |
|         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
 | |
|       }
 | |
|       else {
 | |
|         BaseName = MF.createExternalSymbolName("__memory_base");
 | |
|         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
 | |
|       }
 | |
|       SDValue BaseAddr =
 | |
|           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
 | |
|                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
 | |
| 
 | |
|       SDValue SymAddr = DAG.getNode(
 | |
|           WebAssemblyISD::WrapperPIC, DL, VT,
 | |
|           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
 | |
|                                      OperandFlags));
 | |
| 
 | |
|       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
 | |
|     } else {
 | |
|       OperandFlags = WebAssemblyII::MO_GOT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
 | |
|                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
 | |
|                                                 GA->getOffset(), OperandFlags));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   const auto *ES = cast<ExternalSymbolSDNode>(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(ES->getTargetFlags() == 0 &&
 | |
|          "Unexpected target flags on generic ExternalSymbolSDNode");
 | |
|   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
 | |
|                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   // There's no need for a Wrapper node because we always incorporate a jump
 | |
|   // table operand into a BR_TABLE instruction, rather than ever
 | |
|   // materializing it in a register.
 | |
|   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
|   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
 | |
|                                 JT->getTargetFlags());
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
 | |
|   SDValue Index = Op.getOperand(2);
 | |
|   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
 | |
| 
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Index);
 | |
| 
 | |
|   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
 | |
|   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
 | |
| 
 | |
|   // Add an operand for each case.
 | |
|   for (auto MBB : MBBs)
 | |
|     Ops.push_back(DAG.getBasicBlock(MBB));
 | |
| 
 | |
|   // TODO: For now, we just pick something arbitrary for a default case for now.
 | |
|   // We really want to sniff out the guard and put in the real default case (and
 | |
|   // delete the guard).
 | |
|   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
 | |
| 
 | |
|   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
 | |
| 
 | |
|   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
| 
 | |
|   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
 | |
|                                     MFI->getVarargBufferVreg(), PtrVT);
 | |
|   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
 | |
|                       MachinePointerInfo(SV), 0);
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   unsigned IntNo;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     break;
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid intrinsic");
 | |
|   }
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   switch (IntNo) {
 | |
|   default:
 | |
|     return SDValue(); // Don't custom lower most intrinsics.
 | |
| 
 | |
|   case Intrinsic::wasm_lsda: {
 | |
|     EVT VT = Op.getValueType();
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
 | |
|     auto &Context = MF.getMMI().getContext();
 | |
|     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
 | |
|                                             Twine(MF.getFunctionNumber()));
 | |
|     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
 | |
|                        DAG.getMCSymbol(S, PtrVT));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::wasm_throw: {
 | |
|     // We only support C++ exceptions for now
 | |
|     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
|     if (Tag != CPP_EXCEPTION)
 | |
|       llvm_unreachable("Invalid tag!");
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
 | |
|     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
 | |
|     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
 | |
|                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
 | |
|     return DAG.getNode(WebAssemblyISD::THROW, DL,
 | |
|                        MVT::Other, // outchain type
 | |
|                        {
 | |
|                            Op.getOperand(0), // inchain
 | |
|                            SymNode,          // exception symbol
 | |
|                            Op.getOperand(3)  // thrown value
 | |
|                        });
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   // If sign extension operations are disabled, allow sext_inreg only if operand
 | |
|   // is a vector extract. SIMD does not depend on sign extension operations, but
 | |
|   // allowing sext_inreg in this context lets us have simple patterns to select
 | |
|   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
 | |
|   // simpler in this file, but would necessitate large and brittle patterns to
 | |
|   // undo the expansion and select extract_lane_s instructions.
 | |
|   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
 | |
|   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|     const SDValue &Extract = Op.getOperand(0);
 | |
|     MVT VecT = Extract.getOperand(0).getSimpleValueType();
 | |
|     MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
 | |
|                              ->getVT()
 | |
|                              .getSimpleVT();
 | |
|     MVT ExtractedVecT =
 | |
|         MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
 | |
|     if (ExtractedVecT == VecT)
 | |
|       return Op;
 | |
|     // Bitcast vector to appropriate type to ensure ISel pattern coverage
 | |
|     const SDValue &Index = Extract.getOperand(1);
 | |
|     unsigned IndexVal =
 | |
|         static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
 | |
|     unsigned Scale =
 | |
|         ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
 | |
|     assert(Scale > 1);
 | |
|     SDValue NewIndex =
 | |
|         DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
 | |
|     SDValue NewExtract = DAG.getNode(
 | |
|         ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
 | |
|         DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
 | |
|                        NewExtract, Op.getOperand(1));
 | |
|   }
 | |
|   // Otherwise expand
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   const EVT VecT = Op.getValueType();
 | |
|   const EVT LaneT = Op.getOperand(0).getValueType();
 | |
|   const size_t Lanes = Op.getNumOperands();
 | |
|   auto IsConstant = [](const SDValue &V) {
 | |
|     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
 | |
|   };
 | |
| 
 | |
|   // Find the most common operand, which is approximately the best to splat
 | |
|   using Entry = std::pair<SDValue, size_t>;
 | |
|   SmallVector<Entry, 16> ValueCounts;
 | |
|   size_t NumConst = 0, NumDynamic = 0;
 | |
|   for (const SDValue &Lane : Op->op_values()) {
 | |
|     if (Lane.isUndef()) {
 | |
|       continue;
 | |
|     } else if (IsConstant(Lane)) {
 | |
|       NumConst++;
 | |
|     } else {
 | |
|       NumDynamic++;
 | |
|     }
 | |
|     auto CountIt = std::find_if(ValueCounts.begin(), ValueCounts.end(),
 | |
|                                 [&Lane](Entry A) { return A.first == Lane; });
 | |
|     if (CountIt == ValueCounts.end()) {
 | |
|       ValueCounts.emplace_back(Lane, 1);
 | |
|     } else {
 | |
|       CountIt->second++;
 | |
|     }
 | |
|   }
 | |
|   auto CommonIt =
 | |
|       std::max_element(ValueCounts.begin(), ValueCounts.end(),
 | |
|                        [](Entry A, Entry B) { return A.second < B.second; });
 | |
|   assert(CommonIt != ValueCounts.end() && "Unexpected all-undef build_vector");
 | |
|   SDValue SplatValue = CommonIt->first;
 | |
|   size_t NumCommon = CommonIt->second;
 | |
| 
 | |
|   // If v128.const is available, consider using it instead of a splat
 | |
|   if (Subtarget->hasUnimplementedSIMD128()) {
 | |
|     // {i32,i64,f32,f64}.const opcode, and value
 | |
|     const size_t ConstBytes = 1 + std::max(size_t(4), 16 / Lanes);
 | |
|     // SIMD prefix and opcode
 | |
|     const size_t SplatBytes = 2;
 | |
|     const size_t SplatConstBytes = SplatBytes + ConstBytes;
 | |
|     // SIMD prefix, opcode, and lane index
 | |
|     const size_t ReplaceBytes = 3;
 | |
|     const size_t ReplaceConstBytes = ReplaceBytes + ConstBytes;
 | |
|     // SIMD prefix, v128.const opcode, and 128-bit value
 | |
|     const size_t VecConstBytes = 18;
 | |
|     // Initial v128.const and a replace_lane for each non-const operand
 | |
|     const size_t ConstInitBytes = VecConstBytes + NumDynamic * ReplaceBytes;
 | |
|     // Initial splat and all necessary replace_lanes
 | |
|     const size_t SplatInitBytes =
 | |
|         IsConstant(SplatValue)
 | |
|             // Initial constant splat
 | |
|             ? (SplatConstBytes +
 | |
|                // Constant replace_lanes
 | |
|                (NumConst - NumCommon) * ReplaceConstBytes +
 | |
|                // Dynamic replace_lanes
 | |
|                (NumDynamic * ReplaceBytes))
 | |
|             // Initial dynamic splat
 | |
|             : (SplatBytes +
 | |
|                // Constant replace_lanes
 | |
|                (NumConst * ReplaceConstBytes) +
 | |
|                // Dynamic replace_lanes
 | |
|                (NumDynamic - NumCommon) * ReplaceBytes);
 | |
|     if (ConstInitBytes < SplatInitBytes) {
 | |
|       // Create build_vector that will lower to initial v128.const
 | |
|       SmallVector<SDValue, 16> ConstLanes;
 | |
|       for (const SDValue &Lane : Op->op_values()) {
 | |
|         if (IsConstant(Lane)) {
 | |
|           ConstLanes.push_back(Lane);
 | |
|         } else if (LaneT.isFloatingPoint()) {
 | |
|           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
 | |
|         } else {
 | |
|           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
 | |
|         }
 | |
|       }
 | |
|       SDValue Result = DAG.getBuildVector(VecT, DL, ConstLanes);
 | |
|       // Add replace_lane instructions for non-const lanes
 | |
|       for (size_t I = 0; I < Lanes; ++I) {
 | |
|         const SDValue &Lane = Op->getOperand(I);
 | |
|         if (!Lane.isUndef() && !IsConstant(Lane))
 | |
|           Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
 | |
|                                DAG.getConstant(I, DL, MVT::i32));
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
|   // Use a splat for the initial vector
 | |
|   SDValue Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
 | |
|   // Add replace_lane instructions for other values
 | |
|   for (size_t I = 0; I < Lanes; ++I) {
 | |
|     const SDValue &Lane = Op->getOperand(I);
 | |
|     if (Lane != SplatValue)
 | |
|       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
 | |
|                            DAG.getConstant(I, DL, MVT::i32));
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
 | |
|   MVT VecType = Op.getOperand(0).getSimpleValueType();
 | |
|   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
 | |
|   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
 | |
| 
 | |
|   // Space for two vector args and sixteen mask indices
 | |
|   SDValue Ops[18];
 | |
|   size_t OpIdx = 0;
 | |
|   Ops[OpIdx++] = Op.getOperand(0);
 | |
|   Ops[OpIdx++] = Op.getOperand(1);
 | |
| 
 | |
|   // Expand mask indices to byte indices and materialize them as operands
 | |
|   for (int M : Mask) {
 | |
|     for (size_t J = 0; J < LaneBytes; ++J) {
 | |
|       // Lower undefs (represented by -1 in mask) to zero
 | |
|       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
 | |
|       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   // Allow constant lane indices, expand variable lane indices
 | |
|   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
 | |
|   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
 | |
|     return Op;
 | |
|   else
 | |
|     // Perform default expansion
 | |
|     return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
 | |
|   // 32-bit and 64-bit unrolled shifts will have proper semantics
 | |
|   if (LaneT.bitsGE(MVT::i32))
 | |
|     return DAG.UnrollVectorOp(Op.getNode());
 | |
|   // Otherwise mask the shift value to get proper semantics from 32-bit shift
 | |
|   SDLoc DL(Op);
 | |
|   SDValue ShiftVal = Op.getOperand(1);
 | |
|   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
 | |
|   SDValue MaskedShiftVal = DAG.getNode(
 | |
|       ISD::AND,                    // mask opcode
 | |
|       DL, ShiftVal.getValueType(), // masked value type
 | |
|       ShiftVal,                    // original shift value operand
 | |
|       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
 | |
|   );
 | |
| 
 | |
|   return DAG.UnrollVectorOp(
 | |
|       DAG.getNode(Op.getOpcode(),        // original shift opcode
 | |
|                   DL, Op.getValueType(), // original return type
 | |
|                   Op.getOperand(0),      // original vector operand,
 | |
|                   MaskedShiftVal         // new masked shift value operand
 | |
|                   )
 | |
|           .getNode());
 | |
| }
 | |
| 
 | |
| SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // Only manually lower vector shifts
 | |
|   assert(Op.getSimpleValueType().isVector());
 | |
| 
 | |
|   // Expand all vector shifts until V8 fixes its implementation
 | |
|   // TODO: remove this once V8 is fixed
 | |
|   if (!Subtarget->hasUnimplementedSIMD128())
 | |
|     return unrollVectorShift(Op, DAG);
 | |
| 
 | |
|   // Unroll non-splat vector shifts
 | |
|   BuildVectorSDNode *ShiftVec;
 | |
|   SDValue SplatVal;
 | |
|   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
 | |
|       !(SplatVal = ShiftVec->getSplatValue()))
 | |
|     return unrollVectorShift(Op, DAG);
 | |
| 
 | |
|   // All splats except i64x2 const splats are handled by patterns
 | |
|   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
 | |
|   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
 | |
|     return Op;
 | |
| 
 | |
|   // i64x2 const splats are custom lowered to avoid unnecessary wraps
 | |
|   unsigned Opcode;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::SHL:
 | |
|     Opcode = WebAssemblyISD::VEC_SHL;
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     Opcode = WebAssemblyISD::VEC_SHR_S;
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     Opcode = WebAssemblyISD::VEC_SHR_U;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("unexpected opcode");
 | |
|   }
 | |
|   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
 | |
|   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
 | |
|                      DAG.getConstant(Shift, DL, MVT::i32));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          WebAssembly Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 |