938 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			938 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file implements a register stacking pass.
 | |
| ///
 | |
| /// This pass reorders instructions to put register uses and defs in an order
 | |
| /// such that they form single-use expression trees. Registers fitting this form
 | |
| /// are then marked as "stackified", meaning references to them are replaced by
 | |
| /// "push" and "pop" from the value stack.
 | |
| ///
 | |
| /// This is primarily a code size optimization, since temporary values on the
 | |
| /// value stack don't need to be named.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
 | |
| #include "WebAssembly.h"
 | |
| #include "WebAssemblyDebugValueManager.h"
 | |
| #include "WebAssemblyMachineFunctionInfo.h"
 | |
| #include "WebAssemblySubtarget.h"
 | |
| #include "WebAssemblyUtilities.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfoImpls.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "wasm-reg-stackify"
 | |
| 
 | |
| namespace {
 | |
| class WebAssemblyRegStackify final : public MachineFunctionPass {
 | |
|   StringRef getPassName() const override {
 | |
|     return "WebAssembly Register Stackify";
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<MachineDominatorTree>();
 | |
|     AU.addRequired<LiveIntervals>();
 | |
|     AU.addPreserved<MachineBlockFrequencyInfo>();
 | |
|     AU.addPreserved<SlotIndexes>();
 | |
|     AU.addPreserved<LiveIntervals>();
 | |
|     AU.addPreservedID(LiveVariablesID);
 | |
|     AU.addPreserved<MachineDominatorTree>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char WebAssemblyRegStackify::ID = 0;
 | |
| INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
 | |
|                 "Reorder instructions to use the WebAssembly value stack",
 | |
|                 false, false)
 | |
| 
 | |
| FunctionPass *llvm::createWebAssemblyRegStackify() {
 | |
|   return new WebAssemblyRegStackify();
 | |
| }
 | |
| 
 | |
| // Decorate the given instruction with implicit operands that enforce the
 | |
| // expression stack ordering constraints for an instruction which is on
 | |
| // the expression stack.
 | |
| static void imposeStackOrdering(MachineInstr *MI) {
 | |
|   // Write the opaque VALUE_STACK register.
 | |
|   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
 | |
|     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
 | |
|                                              /*isDef=*/true,
 | |
|                                              /*isImp=*/true));
 | |
| 
 | |
|   // Also read the opaque VALUE_STACK register.
 | |
|   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
 | |
|     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
 | |
|                                              /*isDef=*/false,
 | |
|                                              /*isImp=*/true));
 | |
| }
 | |
| 
 | |
| // Convert an IMPLICIT_DEF instruction into an instruction which defines
 | |
| // a constant zero value.
 | |
| static void convertImplicitDefToConstZero(MachineInstr *MI,
 | |
|                                           MachineRegisterInfo &MRI,
 | |
|                                           const TargetInstrInfo *TII,
 | |
|                                           MachineFunction &MF,
 | |
|                                           LiveIntervals &LIS) {
 | |
|   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
 | |
| 
 | |
|   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
 | |
|   if (RegClass == &WebAssembly::I32RegClass) {
 | |
|     MI->setDesc(TII->get(WebAssembly::CONST_I32));
 | |
|     MI->addOperand(MachineOperand::CreateImm(0));
 | |
|   } else if (RegClass == &WebAssembly::I64RegClass) {
 | |
|     MI->setDesc(TII->get(WebAssembly::CONST_I64));
 | |
|     MI->addOperand(MachineOperand::CreateImm(0));
 | |
|   } else if (RegClass == &WebAssembly::F32RegClass) {
 | |
|     MI->setDesc(TII->get(WebAssembly::CONST_F32));
 | |
|     auto *Val = cast<ConstantFP>(Constant::getNullValue(
 | |
|         Type::getFloatTy(MF.getFunction().getContext())));
 | |
|     MI->addOperand(MachineOperand::CreateFPImm(Val));
 | |
|   } else if (RegClass == &WebAssembly::F64RegClass) {
 | |
|     MI->setDesc(TII->get(WebAssembly::CONST_F64));
 | |
|     auto *Val = cast<ConstantFP>(Constant::getNullValue(
 | |
|         Type::getDoubleTy(MF.getFunction().getContext())));
 | |
|     MI->addOperand(MachineOperand::CreateFPImm(Val));
 | |
|   } else if (RegClass == &WebAssembly::V128RegClass) {
 | |
|     unsigned TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
 | |
|     MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32));
 | |
|     MI->addOperand(MachineOperand::CreateReg(TempReg, false));
 | |
|     MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | |
|                                   TII->get(WebAssembly::CONST_I32), TempReg)
 | |
|                               .addImm(0);
 | |
|     LIS.InsertMachineInstrInMaps(*Const);
 | |
|   } else {
 | |
|     llvm_unreachable("Unexpected reg class");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Determine whether a call to the callee referenced by
 | |
| // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
 | |
| // effects.
 | |
| static void queryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
 | |
|                         bool &Write, bool &Effects, bool &StackPointer) {
 | |
|   // All calls can use the stack pointer.
 | |
|   StackPointer = true;
 | |
| 
 | |
|   const MachineOperand &MO = MI.getOperand(CalleeOpNo);
 | |
|   if (MO.isGlobal()) {
 | |
|     const Constant *GV = MO.getGlobal();
 | |
|     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
 | |
|       if (!GA->isInterposable())
 | |
|         GV = GA->getAliasee();
 | |
| 
 | |
|     if (const auto *F = dyn_cast<Function>(GV)) {
 | |
|       if (!F->doesNotThrow())
 | |
|         Effects = true;
 | |
|       if (F->doesNotAccessMemory())
 | |
|         return;
 | |
|       if (F->onlyReadsMemory()) {
 | |
|         Read = true;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assume the worst.
 | |
|   Write = true;
 | |
|   Read = true;
 | |
|   Effects = true;
 | |
| }
 | |
| 
 | |
| // Determine whether MI reads memory, writes memory, has side effects,
 | |
| // and/or uses the stack pointer value.
 | |
| static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
 | |
|                   bool &Write, bool &Effects, bool &StackPointer) {
 | |
|   assert(!MI.isTerminator());
 | |
| 
 | |
|   if (MI.isDebugInstr() || MI.isPosition())
 | |
|     return;
 | |
| 
 | |
|   // Check for loads.
 | |
|   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
 | |
|     Read = true;
 | |
| 
 | |
|   // Check for stores.
 | |
|   if (MI.mayStore()) {
 | |
|     Write = true;
 | |
|   } else if (MI.hasOrderedMemoryRef()) {
 | |
|     switch (MI.getOpcode()) {
 | |
|     case WebAssembly::DIV_S_I32:
 | |
|     case WebAssembly::DIV_S_I64:
 | |
|     case WebAssembly::REM_S_I32:
 | |
|     case WebAssembly::REM_S_I64:
 | |
|     case WebAssembly::DIV_U_I32:
 | |
|     case WebAssembly::DIV_U_I64:
 | |
|     case WebAssembly::REM_U_I32:
 | |
|     case WebAssembly::REM_U_I64:
 | |
|     case WebAssembly::I32_TRUNC_S_F32:
 | |
|     case WebAssembly::I64_TRUNC_S_F32:
 | |
|     case WebAssembly::I32_TRUNC_S_F64:
 | |
|     case WebAssembly::I64_TRUNC_S_F64:
 | |
|     case WebAssembly::I32_TRUNC_U_F32:
 | |
|     case WebAssembly::I64_TRUNC_U_F32:
 | |
|     case WebAssembly::I32_TRUNC_U_F64:
 | |
|     case WebAssembly::I64_TRUNC_U_F64:
 | |
|       // These instruction have hasUnmodeledSideEffects() returning true
 | |
|       // because they trap on overflow and invalid so they can't be arbitrarily
 | |
|       // moved, however hasOrderedMemoryRef() interprets this plus their lack
 | |
|       // of memoperands as having a potential unknown memory reference.
 | |
|       break;
 | |
|     default:
 | |
|       // Record volatile accesses, unless it's a call, as calls are handled
 | |
|       // specially below.
 | |
|       if (!MI.isCall()) {
 | |
|         Write = true;
 | |
|         Effects = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for side effects.
 | |
|   if (MI.hasUnmodeledSideEffects()) {
 | |
|     switch (MI.getOpcode()) {
 | |
|     case WebAssembly::DIV_S_I32:
 | |
|     case WebAssembly::DIV_S_I64:
 | |
|     case WebAssembly::REM_S_I32:
 | |
|     case WebAssembly::REM_S_I64:
 | |
|     case WebAssembly::DIV_U_I32:
 | |
|     case WebAssembly::DIV_U_I64:
 | |
|     case WebAssembly::REM_U_I32:
 | |
|     case WebAssembly::REM_U_I64:
 | |
|     case WebAssembly::I32_TRUNC_S_F32:
 | |
|     case WebAssembly::I64_TRUNC_S_F32:
 | |
|     case WebAssembly::I32_TRUNC_S_F64:
 | |
|     case WebAssembly::I64_TRUNC_S_F64:
 | |
|     case WebAssembly::I32_TRUNC_U_F32:
 | |
|     case WebAssembly::I64_TRUNC_U_F32:
 | |
|     case WebAssembly::I32_TRUNC_U_F64:
 | |
|     case WebAssembly::I64_TRUNC_U_F64:
 | |
|       // These instructions have hasUnmodeledSideEffects() returning true
 | |
|       // because they trap on overflow and invalid so they can't be arbitrarily
 | |
|       // moved, however in the specific case of register stackifying, it is safe
 | |
|       // to move them because overflow and invalid are Undefined Behavior.
 | |
|       break;
 | |
|     default:
 | |
|       Effects = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for writes to __stack_pointer global.
 | |
|   if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 &&
 | |
|       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
 | |
|     StackPointer = true;
 | |
| 
 | |
|   // Analyze calls.
 | |
|   if (MI.isCall()) {
 | |
|     unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI.getOpcode());
 | |
|     queryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Test whether Def is safe and profitable to rematerialize.
 | |
| static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
 | |
|                                 const WebAssemblyInstrInfo *TII) {
 | |
|   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
 | |
| }
 | |
| 
 | |
| // Identify the definition for this register at this point. This is a
 | |
| // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
 | |
| // LiveIntervals to handle complex cases.
 | |
| static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
 | |
|                                 const MachineRegisterInfo &MRI,
 | |
|                                 const LiveIntervals &LIS) {
 | |
|   // Most registers are in SSA form here so we try a quick MRI query first.
 | |
|   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
 | |
|     return Def;
 | |
| 
 | |
|   // MRI doesn't know what the Def is. Try asking LIS.
 | |
|   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
 | |
|           LIS.getInstructionIndex(*Insert)))
 | |
|     return LIS.getInstructionFromIndex(ValNo->def);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Test whether Reg, as defined at Def, has exactly one use. This is a
 | |
| // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
 | |
| // to handle complex cases.
 | |
| static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
 | |
|                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
 | |
|   // Most registers are in SSA form here so we try a quick MRI query first.
 | |
|   if (MRI.hasOneUse(Reg))
 | |
|     return true;
 | |
| 
 | |
|   bool HasOne = false;
 | |
|   const LiveInterval &LI = LIS.getInterval(Reg);
 | |
|   const VNInfo *DefVNI =
 | |
|       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
 | |
|   assert(DefVNI);
 | |
|   for (auto &I : MRI.use_nodbg_operands(Reg)) {
 | |
|     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
 | |
|     if (Result.valueIn() == DefVNI) {
 | |
|       if (!Result.isKill())
 | |
|         return false;
 | |
|       if (HasOne)
 | |
|         return false;
 | |
|       HasOne = true;
 | |
|     }
 | |
|   }
 | |
|   return HasOne;
 | |
| }
 | |
| 
 | |
| // Test whether it's safe to move Def to just before Insert.
 | |
| // TODO: Compute memory dependencies in a way that doesn't require always
 | |
| // walking the block.
 | |
| // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
 | |
| // more precise.
 | |
| static bool isSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
 | |
|                          AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
 | |
|   assert(Def->getParent() == Insert->getParent());
 | |
| 
 | |
|   // 'catch' and 'extract_exception' should be the first instruction of a BB and
 | |
|   // cannot move.
 | |
|   if (Def->getOpcode() == WebAssembly::CATCH ||
 | |
|       Def->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32) {
 | |
|     const MachineBasicBlock *MBB = Def->getParent();
 | |
|     auto NextI = std::next(MachineBasicBlock::const_iterator(Def));
 | |
|     for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
 | |
|       ;
 | |
|     if (NextI != Insert)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check for register dependencies.
 | |
|   SmallVector<unsigned, 4> MutableRegisters;
 | |
|   for (const MachineOperand &MO : Def->operands()) {
 | |
|     if (!MO.isReg() || MO.isUndef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
| 
 | |
|     // If the register is dead here and at Insert, ignore it.
 | |
|     if (MO.isDead() && Insert->definesRegister(Reg) &&
 | |
|         !Insert->readsRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
 | |
|       // from moving down, and we've already checked for that.
 | |
|       if (Reg == WebAssembly::ARGUMENTS)
 | |
|         continue;
 | |
|       // If the physical register is never modified, ignore it.
 | |
|       if (!MRI.isPhysRegModified(Reg))
 | |
|         continue;
 | |
|       // Otherwise, it's a physical register with unknown liveness.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If one of the operands isn't in SSA form, it has different values at
 | |
|     // different times, and we need to make sure we don't move our use across
 | |
|     // a different def.
 | |
|     if (!MO.isDef() && !MRI.hasOneDef(Reg))
 | |
|       MutableRegisters.push_back(Reg);
 | |
|   }
 | |
| 
 | |
|   bool Read = false, Write = false, Effects = false, StackPointer = false;
 | |
|   query(*Def, AA, Read, Write, Effects, StackPointer);
 | |
| 
 | |
|   // If the instruction does not access memory and has no side effects, it has
 | |
|   // no additional dependencies.
 | |
|   bool HasMutableRegisters = !MutableRegisters.empty();
 | |
|   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
 | |
|     return true;
 | |
| 
 | |
|   // Scan through the intervening instructions between Def and Insert.
 | |
|   MachineBasicBlock::const_iterator D(Def), I(Insert);
 | |
|   for (--I; I != D; --I) {
 | |
|     bool InterveningRead = false;
 | |
|     bool InterveningWrite = false;
 | |
|     bool InterveningEffects = false;
 | |
|     bool InterveningStackPointer = false;
 | |
|     query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
 | |
|           InterveningStackPointer);
 | |
|     if (Effects && InterveningEffects)
 | |
|       return false;
 | |
|     if (Read && InterveningWrite)
 | |
|       return false;
 | |
|     if (Write && (InterveningRead || InterveningWrite))
 | |
|       return false;
 | |
|     if (StackPointer && InterveningStackPointer)
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned Reg : MutableRegisters)
 | |
|       for (const MachineOperand &MO : I->operands())
 | |
|         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
 | |
|           return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
 | |
| static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
 | |
|                                      const MachineBasicBlock &MBB,
 | |
|                                      const MachineRegisterInfo &MRI,
 | |
|                                      const MachineDominatorTree &MDT,
 | |
|                                      LiveIntervals &LIS,
 | |
|                                      WebAssemblyFunctionInfo &MFI) {
 | |
|   const LiveInterval &LI = LIS.getInterval(Reg);
 | |
| 
 | |
|   const MachineInstr *OneUseInst = OneUse.getParent();
 | |
|   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
 | |
| 
 | |
|   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
 | |
|     if (&Use == &OneUse)
 | |
|       continue;
 | |
| 
 | |
|     const MachineInstr *UseInst = Use.getParent();
 | |
|     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
 | |
| 
 | |
|     if (UseVNI != OneUseVNI)
 | |
|       continue;
 | |
| 
 | |
|     if (UseInst == OneUseInst) {
 | |
|       // Another use in the same instruction. We need to ensure that the one
 | |
|       // selected use happens "before" it.
 | |
|       if (&OneUse > &Use)
 | |
|         return false;
 | |
|     } else {
 | |
|       // Test that the use is dominated by the one selected use.
 | |
|       while (!MDT.dominates(OneUseInst, UseInst)) {
 | |
|         // Actually, dominating is over-conservative. Test that the use would
 | |
|         // happen after the one selected use in the stack evaluation order.
 | |
|         //
 | |
|         // This is needed as a consequence of using implicit local.gets for
 | |
|         // uses and implicit local.sets for defs.
 | |
|         if (UseInst->getDesc().getNumDefs() == 0)
 | |
|           return false;
 | |
|         const MachineOperand &MO = UseInst->getOperand(0);
 | |
|         if (!MO.isReg())
 | |
|           return false;
 | |
|         unsigned DefReg = MO.getReg();
 | |
|         if (!TargetRegisterInfo::isVirtualRegister(DefReg) ||
 | |
|             !MFI.isVRegStackified(DefReg))
 | |
|           return false;
 | |
|         assert(MRI.hasOneNonDBGUse(DefReg));
 | |
|         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
 | |
|         const MachineInstr *NewUseInst = NewUse.getParent();
 | |
|         if (NewUseInst == OneUseInst) {
 | |
|           if (&OneUse > &NewUse)
 | |
|             return false;
 | |
|           break;
 | |
|         }
 | |
|         UseInst = NewUseInst;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Get the appropriate tee opcode for the given register class.
 | |
| static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
 | |
|   if (RC == &WebAssembly::I32RegClass)
 | |
|     return WebAssembly::TEE_I32;
 | |
|   if (RC == &WebAssembly::I64RegClass)
 | |
|     return WebAssembly::TEE_I64;
 | |
|   if (RC == &WebAssembly::F32RegClass)
 | |
|     return WebAssembly::TEE_F32;
 | |
|   if (RC == &WebAssembly::F64RegClass)
 | |
|     return WebAssembly::TEE_F64;
 | |
|   if (RC == &WebAssembly::V128RegClass)
 | |
|     return WebAssembly::TEE_V128;
 | |
|   llvm_unreachable("Unexpected register class");
 | |
| }
 | |
| 
 | |
| // Shrink LI to its uses, cleaning up LI.
 | |
| static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
 | |
|   if (LIS.shrinkToUses(&LI)) {
 | |
|     SmallVector<LiveInterval *, 4> SplitLIs;
 | |
|     LIS.splitSeparateComponents(LI, SplitLIs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// A single-use def in the same block with no intervening memory or register
 | |
| /// dependencies; move the def down and nest it with the current instruction.
 | |
| static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
 | |
|                                       MachineInstr *Def, MachineBasicBlock &MBB,
 | |
|                                       MachineInstr *Insert, LiveIntervals &LIS,
 | |
|                                       WebAssemblyFunctionInfo &MFI,
 | |
|                                       MachineRegisterInfo &MRI) {
 | |
|   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
 | |
| 
 | |
|   WebAssemblyDebugValueManager DefDIs(Def);
 | |
|   MBB.splice(Insert, &MBB, Def);
 | |
|   DefDIs.move(Insert);
 | |
|   LIS.handleMove(*Def);
 | |
| 
 | |
|   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
 | |
|     // No one else is using this register for anything so we can just stackify
 | |
|     // it in place.
 | |
|     MFI.stackifyVReg(Reg);
 | |
|   } else {
 | |
|     // The register may have unrelated uses or defs; create a new register for
 | |
|     // just our one def and use so that we can stackify it.
 | |
|     unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
 | |
|     Def->getOperand(0).setReg(NewReg);
 | |
|     Op.setReg(NewReg);
 | |
| 
 | |
|     // Tell LiveIntervals about the new register.
 | |
|     LIS.createAndComputeVirtRegInterval(NewReg);
 | |
| 
 | |
|     // Tell LiveIntervals about the changes to the old register.
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
 | |
|                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
 | |
|                      /*RemoveDeadValNo=*/true);
 | |
| 
 | |
|     MFI.stackifyVReg(NewReg);
 | |
| 
 | |
|     DefDIs.updateReg(NewReg);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
 | |
|   }
 | |
| 
 | |
|   imposeStackOrdering(Def);
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| /// A trivially cloneable instruction; clone it and nest the new copy with the
 | |
| /// current instruction.
 | |
| static MachineInstr *rematerializeCheapDef(
 | |
|     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
 | |
|     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
 | |
|     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
 | |
|     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
 | |
|   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
 | |
|   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
 | |
| 
 | |
|   WebAssemblyDebugValueManager DefDIs(&Def);
 | |
| 
 | |
|   unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
 | |
|   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
 | |
|   Op.setReg(NewReg);
 | |
|   MachineInstr *Clone = &*std::prev(Insert);
 | |
|   LIS.InsertMachineInstrInMaps(*Clone);
 | |
|   LIS.createAndComputeVirtRegInterval(NewReg);
 | |
|   MFI.stackifyVReg(NewReg);
 | |
|   imposeStackOrdering(Clone);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
 | |
| 
 | |
|   // Shrink the interval.
 | |
|   bool IsDead = MRI.use_empty(Reg);
 | |
|   if (!IsDead) {
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
|     shrinkToUses(LI, LIS);
 | |
|     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
 | |
|   }
 | |
| 
 | |
|   // If that was the last use of the original, delete the original.
 | |
|   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
 | |
|   if (IsDead) {
 | |
|     LLVM_DEBUG(dbgs() << " - Deleting original\n");
 | |
|     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
 | |
|     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
 | |
|     LIS.removeInterval(Reg);
 | |
|     LIS.RemoveMachineInstrFromMaps(Def);
 | |
|     Def.eraseFromParent();
 | |
| 
 | |
|     DefDIs.move(&*Insert);
 | |
|     DefDIs.updateReg(NewReg);
 | |
|   } else {
 | |
|     DefDIs.clone(&*Insert, NewReg);
 | |
|   }
 | |
| 
 | |
|   return Clone;
 | |
| }
 | |
| 
 | |
| /// A multiple-use def in the same block with no intervening memory or register
 | |
| /// dependencies; move the def down, nest it with the current instruction, and
 | |
| /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
 | |
| /// this:
 | |
| ///
 | |
| ///    Reg = INST ...        // Def
 | |
| ///    INST ..., Reg, ...    // Insert
 | |
| ///    INST ..., Reg, ...
 | |
| ///    INST ..., Reg, ...
 | |
| ///
 | |
| /// to this:
 | |
| ///
 | |
| ///    DefReg = INST ...     // Def (to become the new Insert)
 | |
| ///    TeeReg, Reg = TEE_... DefReg
 | |
| ///    INST ..., TeeReg, ... // Insert
 | |
| ///    INST ..., Reg, ...
 | |
| ///    INST ..., Reg, ...
 | |
| ///
 | |
| /// with DefReg and TeeReg stackified. This eliminates a local.get from the
 | |
| /// resulting code.
 | |
| static MachineInstr *moveAndTeeForMultiUse(
 | |
|     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
 | |
|     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
 | |
|     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
 | |
|   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
 | |
| 
 | |
|   WebAssemblyDebugValueManager DefDIs(Def);
 | |
| 
 | |
|   // Move Def into place.
 | |
|   MBB.splice(Insert, &MBB, Def);
 | |
|   LIS.handleMove(*Def);
 | |
| 
 | |
|   // Create the Tee and attach the registers.
 | |
|   const auto *RegClass = MRI.getRegClass(Reg);
 | |
|   unsigned TeeReg = MRI.createVirtualRegister(RegClass);
 | |
|   unsigned DefReg = MRI.createVirtualRegister(RegClass);
 | |
|   MachineOperand &DefMO = Def->getOperand(0);
 | |
|   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
 | |
|                               TII->get(getTeeOpcode(RegClass)), TeeReg)
 | |
|                           .addReg(Reg, RegState::Define)
 | |
|                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
 | |
|   Op.setReg(TeeReg);
 | |
|   DefMO.setReg(DefReg);
 | |
|   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
 | |
|   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
 | |
| 
 | |
|   DefDIs.move(Insert);
 | |
| 
 | |
|   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
 | |
|   LiveInterval &LI = LIS.getInterval(Reg);
 | |
|   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
 | |
|   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
 | |
|   I->start = TeeIdx;
 | |
|   ValNo->def = TeeIdx;
 | |
|   shrinkToUses(LI, LIS);
 | |
| 
 | |
|   // Finish stackifying the new regs.
 | |
|   LIS.createAndComputeVirtRegInterval(TeeReg);
 | |
|   LIS.createAndComputeVirtRegInterval(DefReg);
 | |
|   MFI.stackifyVReg(DefReg);
 | |
|   MFI.stackifyVReg(TeeReg);
 | |
|   imposeStackOrdering(Def);
 | |
|   imposeStackOrdering(Tee);
 | |
| 
 | |
|   DefDIs.clone(Tee, DefReg);
 | |
|   DefDIs.clone(Insert, TeeReg);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
 | |
|   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A stack for walking the tree of instructions being built, visiting the
 | |
| /// MachineOperands in DFS order.
 | |
| class TreeWalkerState {
 | |
|   using mop_iterator = MachineInstr::mop_iterator;
 | |
|   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
 | |
|   using RangeTy = iterator_range<mop_reverse_iterator>;
 | |
|   SmallVector<RangeTy, 4> Worklist;
 | |
| 
 | |
| public:
 | |
|   explicit TreeWalkerState(MachineInstr *Insert) {
 | |
|     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
 | |
|     if (Range.begin() != Range.end())
 | |
|       Worklist.push_back(reverse(Range));
 | |
|   }
 | |
| 
 | |
|   bool done() const { return Worklist.empty(); }
 | |
| 
 | |
|   MachineOperand &pop() {
 | |
|     RangeTy &Range = Worklist.back();
 | |
|     MachineOperand &Op = *Range.begin();
 | |
|     Range = drop_begin(Range, 1);
 | |
|     if (Range.begin() == Range.end())
 | |
|       Worklist.pop_back();
 | |
|     assert((Worklist.empty() ||
 | |
|             Worklist.back().begin() != Worklist.back().end()) &&
 | |
|            "Empty ranges shouldn't remain in the worklist");
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   /// Push Instr's operands onto the stack to be visited.
 | |
|   void pushOperands(MachineInstr *Instr) {
 | |
|     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
 | |
|     if (Range.begin() != Range.end())
 | |
|       Worklist.push_back(reverse(Range));
 | |
|   }
 | |
| 
 | |
|   /// Some of Instr's operands are on the top of the stack; remove them and
 | |
|   /// re-insert them starting from the beginning (because we've commuted them).
 | |
|   void resetTopOperands(MachineInstr *Instr) {
 | |
|     assert(hasRemainingOperands(Instr) &&
 | |
|            "Reseting operands should only be done when the instruction has "
 | |
|            "an operand still on the stack");
 | |
|     Worklist.back() = reverse(Instr->explicit_uses());
 | |
|   }
 | |
| 
 | |
|   /// Test whether Instr has operands remaining to be visited at the top of
 | |
|   /// the stack.
 | |
|   bool hasRemainingOperands(const MachineInstr *Instr) const {
 | |
|     if (Worklist.empty())
 | |
|       return false;
 | |
|     const RangeTy &Range = Worklist.back();
 | |
|     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
 | |
|   }
 | |
| 
 | |
|   /// Test whether the given register is present on the stack, indicating an
 | |
|   /// operand in the tree that we haven't visited yet. Moving a definition of
 | |
|   /// Reg to a point in the tree after that would change its value.
 | |
|   ///
 | |
|   /// This is needed as a consequence of using implicit local.gets for
 | |
|   /// uses and implicit local.sets for defs.
 | |
|   bool isOnStack(unsigned Reg) const {
 | |
|     for (const RangeTy &Range : Worklist)
 | |
|       for (const MachineOperand &MO : Range)
 | |
|         if (MO.isReg() && MO.getReg() == Reg)
 | |
|           return true;
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// State to keep track of whether commuting is in flight or whether it's been
 | |
| /// tried for the current instruction and didn't work.
 | |
| class CommutingState {
 | |
|   /// There are effectively three states: the initial state where we haven't
 | |
|   /// started commuting anything and we don't know anything yet, the tentative
 | |
|   /// state where we've commuted the operands of the current instruction and are
 | |
|   /// revisiting it, and the declined state where we've reverted the operands
 | |
|   /// back to their original order and will no longer commute it further.
 | |
|   bool TentativelyCommuting = false;
 | |
|   bool Declined = false;
 | |
| 
 | |
|   /// During the tentative state, these hold the operand indices of the commuted
 | |
|   /// operands.
 | |
|   unsigned Operand0, Operand1;
 | |
| 
 | |
| public:
 | |
|   /// Stackification for an operand was not successful due to ordering
 | |
|   /// constraints. If possible, and if we haven't already tried it and declined
 | |
|   /// it, commute Insert's operands and prepare to revisit it.
 | |
|   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
 | |
|                     const WebAssemblyInstrInfo *TII) {
 | |
|     if (TentativelyCommuting) {
 | |
|       assert(!Declined &&
 | |
|              "Don't decline commuting until you've finished trying it");
 | |
|       // Commuting didn't help. Revert it.
 | |
|       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
 | |
|       TentativelyCommuting = false;
 | |
|       Declined = true;
 | |
|     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
 | |
|       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
 | |
|         // Tentatively commute the operands and try again.
 | |
|         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
 | |
|         TreeWalker.resetTopOperands(Insert);
 | |
|         TentativelyCommuting = true;
 | |
|         Declined = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Stackification for some operand was successful. Reset to the default
 | |
|   /// state.
 | |
|   void reset() {
 | |
|     TentativelyCommuting = false;
 | |
|     Declined = false;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
 | |
|   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
 | |
|                        "********** Function: "
 | |
|                     << MF.getName() << '\n');
 | |
| 
 | |
|   bool Changed = false;
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
 | |
|   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
 | |
|   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
 | |
|   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   auto &MDT = getAnalysis<MachineDominatorTree>();
 | |
|   auto &LIS = getAnalysis<LiveIntervals>();
 | |
| 
 | |
|   // Walk the instructions from the bottom up. Currently we don't look past
 | |
|   // block boundaries, and the blocks aren't ordered so the block visitation
 | |
|   // order isn't significant, but we may want to change this in the future.
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     // Don't use a range-based for loop, because we modify the list as we're
 | |
|     // iterating over it and the end iterator may change.
 | |
|     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
 | |
|       MachineInstr *Insert = &*MII;
 | |
|       // Don't nest anything inside an inline asm, because we don't have
 | |
|       // constraints for $push inputs.
 | |
|       if (Insert->isInlineAsm())
 | |
|         continue;
 | |
| 
 | |
|       // Ignore debugging intrinsics.
 | |
|       if (Insert->isDebugValue())
 | |
|         continue;
 | |
| 
 | |
|       // Iterate through the inputs in reverse order, since we'll be pulling
 | |
|       // operands off the stack in LIFO order.
 | |
|       CommutingState Commuting;
 | |
|       TreeWalkerState TreeWalker(Insert);
 | |
|       while (!TreeWalker.done()) {
 | |
|         MachineOperand &Op = TreeWalker.pop();
 | |
| 
 | |
|         // We're only interested in explicit virtual register operands.
 | |
|         if (!Op.isReg())
 | |
|           continue;
 | |
| 
 | |
|         unsigned Reg = Op.getReg();
 | |
|         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
 | |
|         assert(!Op.isImplicit() &&
 | |
|                "explicit_uses() should only iterate over explicit operands");
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|           continue;
 | |
| 
 | |
|         // Identify the definition for this register at this point.
 | |
|         MachineInstr *Def = getVRegDef(Reg, Insert, MRI, LIS);
 | |
|         if (!Def)
 | |
|           continue;
 | |
| 
 | |
|         // Don't nest an INLINE_ASM def into anything, because we don't have
 | |
|         // constraints for $pop outputs.
 | |
|         if (Def->isInlineAsm())
 | |
|           continue;
 | |
| 
 | |
|         // Argument instructions represent live-in registers and not real
 | |
|         // instructions.
 | |
|         if (WebAssembly::isArgument(Def->getOpcode()))
 | |
|           continue;
 | |
| 
 | |
|         // Currently catch's return value register cannot be stackified, because
 | |
|         // the wasm LLVM backend currently does not support live-in values
 | |
|         // entering blocks, which is a part of multi-value proposal.
 | |
|         //
 | |
|         // Once we support live-in values of wasm blocks, this can be:
 | |
|         // catch                           ; push exnref value onto stack
 | |
|         // block exnref -> i32
 | |
|         // br_on_exn $__cpp_exception      ; pop the exnref value
 | |
|         // end_block
 | |
|         //
 | |
|         // But because we don't support it yet, the catch instruction's dst
 | |
|         // register should be assigned to a local to be propagated across
 | |
|         // 'block' boundary now.
 | |
|         //
 | |
|         // TODO Fix this once we support the multi-value proposal.
 | |
|         if (Def->getOpcode() == WebAssembly::CATCH)
 | |
|           continue;
 | |
| 
 | |
|         // Decide which strategy to take. Prefer to move a single-use value
 | |
|         // over cloning it, and prefer cloning over introducing a tee.
 | |
|         // For moving, we require the def to be in the same block as the use;
 | |
|         // this makes things simpler (LiveIntervals' handleMove function only
 | |
|         // supports intra-block moves) and it's MachineSink's job to catch all
 | |
|         // the sinking opportunities anyway.
 | |
|         bool SameBlock = Def->getParent() == &MBB;
 | |
|         bool CanMove = SameBlock && isSafeToMove(Def, Insert, AA, MRI) &&
 | |
|                        !TreeWalker.isOnStack(Reg);
 | |
|         if (CanMove && hasOneUse(Reg, Def, MRI, MDT, LIS)) {
 | |
|           Insert = moveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
 | |
|         } else if (shouldRematerialize(*Def, AA, TII)) {
 | |
|           Insert =
 | |
|               rematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
 | |
|                                     LIS, MFI, MRI, TII, TRI);
 | |
|         } else if (CanMove &&
 | |
|                    oneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
 | |
|           Insert = moveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
 | |
|                                          MRI, TII);
 | |
|         } else {
 | |
|           // We failed to stackify the operand. If the problem was ordering
 | |
|           // constraints, Commuting may be able to help.
 | |
|           if (!CanMove && SameBlock)
 | |
|             Commuting.maybeCommute(Insert, TreeWalker, TII);
 | |
|           // Proceed to the next operand.
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
 | |
|         // to a constant 0 so that the def is explicit, and the push/pop
 | |
|         // correspondence is maintained.
 | |
|         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
 | |
|           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
 | |
| 
 | |
|         // We stackified an operand. Add the defining instruction's operands to
 | |
|         // the worklist stack now to continue to build an ever deeper tree.
 | |
|         Commuting.reset();
 | |
|         TreeWalker.pushOperands(Insert);
 | |
|       }
 | |
| 
 | |
|       // If we stackified any operands, skip over the tree to start looking for
 | |
|       // the next instruction we can build a tree on.
 | |
|       if (Insert != &*MII) {
 | |
|         imposeStackOrdering(&*MII);
 | |
|         MII = MachineBasicBlock::iterator(Insert).getReverse();
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
 | |
|   // that it never looks like a use-before-def.
 | |
|   if (Changed) {
 | |
|     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
 | |
|     for (MachineBasicBlock &MBB : MF)
 | |
|       MBB.addLiveIn(WebAssembly::VALUE_STACK);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify that pushes and pops are performed in LIFO order.
 | |
|   SmallVector<unsigned, 0> Stack;
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     for (MachineInstr &MI : MBB) {
 | |
|       if (MI.isDebugInstr())
 | |
|         continue;
 | |
|       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
 | |
|         if (!MO.isReg())
 | |
|           continue;
 | |
|         unsigned Reg = MO.getReg();
 | |
| 
 | |
|         if (MFI.isVRegStackified(Reg)) {
 | |
|           if (MO.isDef())
 | |
|             Stack.push_back(Reg);
 | |
|           else
 | |
|             assert(Stack.pop_back_val() == Reg &&
 | |
|                    "Register stack pop should be paired with a push");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // TODO: Generalize this code to support keeping values on the stack across
 | |
|     // basic block boundaries.
 | |
|     assert(Stack.empty() &&
 | |
|            "Register stack pushes and pops should be balanced");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return Changed;
 | |
| }
 |