1093 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1093 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // C Includes
 | |
| // C++ Includes
 | |
| #include <list>
 | |
| 
 | |
| #include "lldb/Core/ArchSpec.h"
 | |
| #include "lldb/Core/Module.h"
 | |
| #include "lldb/Core/Section.h"
 | |
| #include "lldb/Core/dwarf.h"
 | |
| #include "lldb/Host/Host.h"
 | |
| #include "lldb/Symbol/DWARFCallFrameInfo.h"
 | |
| #include "lldb/Symbol/ObjectFile.h"
 | |
| #include "lldb/Symbol/UnwindPlan.h"
 | |
| #include "lldb/Target/RegisterContext.h"
 | |
| #include "lldb/Target/Thread.h"
 | |
| #include "lldb/Utility/Log.h"
 | |
| #include "lldb/Utility/Timer.h"
 | |
| 
 | |
| using namespace lldb;
 | |
| using namespace lldb_private;
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // GetDwarfEHPtr
 | |
| //
 | |
| // Used for calls when the value type is specified by a DWARF EH Frame
 | |
| // pointer encoding.
 | |
| //----------------------------------------------------------------------
 | |
| static uint64_t
 | |
| GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
 | |
|                 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
 | |
|                 addr_t data_addr) //, BSDRelocs *data_relocs) const
 | |
| {
 | |
|   if (eh_ptr_enc == DW_EH_PE_omit)
 | |
|     return ULLONG_MAX; // Value isn't in the buffer...
 | |
| 
 | |
|   uint64_t baseAddress = 0;
 | |
|   uint64_t addressValue = 0;
 | |
|   const uint32_t addr_size = DE.GetAddressByteSize();
 | |
| #ifdef LLDB_CONFIGURATION_DEBUG
 | |
|   assert(addr_size == 4 || addr_size == 8);
 | |
| #endif
 | |
| 
 | |
|   bool signExtendValue = false;
 | |
|   // Decode the base part or adjust our offset
 | |
|   switch (eh_ptr_enc & 0x70) {
 | |
|   case DW_EH_PE_pcrel:
 | |
|     signExtendValue = true;
 | |
|     baseAddress = *offset_ptr;
 | |
|     if (pc_rel_addr != LLDB_INVALID_ADDRESS)
 | |
|       baseAddress += pc_rel_addr;
 | |
|     //      else
 | |
|     //          Log::GlobalWarning ("PC relative pointer encoding found with
 | |
|     //          invalid pc relative address.");
 | |
|     break;
 | |
| 
 | |
|   case DW_EH_PE_textrel:
 | |
|     signExtendValue = true;
 | |
|     if (text_addr != LLDB_INVALID_ADDRESS)
 | |
|       baseAddress = text_addr;
 | |
|     //      else
 | |
|     //          Log::GlobalWarning ("text relative pointer encoding being
 | |
|     //          decoded with invalid text section address, setting base address
 | |
|     //          to zero.");
 | |
|     break;
 | |
| 
 | |
|   case DW_EH_PE_datarel:
 | |
|     signExtendValue = true;
 | |
|     if (data_addr != LLDB_INVALID_ADDRESS)
 | |
|       baseAddress = data_addr;
 | |
|     //      else
 | |
|     //          Log::GlobalWarning ("data relative pointer encoding being
 | |
|     //          decoded with invalid data section address, setting base address
 | |
|     //          to zero.");
 | |
|     break;
 | |
| 
 | |
|   case DW_EH_PE_funcrel:
 | |
|     signExtendValue = true;
 | |
|     break;
 | |
| 
 | |
|   case DW_EH_PE_aligned: {
 | |
|     // SetPointerSize should be called prior to extracting these so the
 | |
|     // pointer size is cached
 | |
|     assert(addr_size != 0);
 | |
|     if (addr_size) {
 | |
|       // Align to a address size boundary first
 | |
|       uint32_t alignOffset = *offset_ptr % addr_size;
 | |
|       if (alignOffset)
 | |
|         offset_ptr += addr_size - alignOffset;
 | |
|     }
 | |
|   } break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Decode the value part
 | |
|   switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
 | |
|   case DW_EH_PE_absptr: {
 | |
|     addressValue = DE.GetAddress(offset_ptr);
 | |
|     //          if (data_relocs)
 | |
|     //              addressValue = data_relocs->Relocate(*offset_ptr -
 | |
|     //              addr_size, *this, addressValue);
 | |
|   } break;
 | |
|   case DW_EH_PE_uleb128:
 | |
|     addressValue = DE.GetULEB128(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_udata2:
 | |
|     addressValue = DE.GetU16(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_udata4:
 | |
|     addressValue = DE.GetU32(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_udata8:
 | |
|     addressValue = DE.GetU64(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_sleb128:
 | |
|     addressValue = DE.GetSLEB128(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_sdata2:
 | |
|     addressValue = (int16_t)DE.GetU16(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_sdata4:
 | |
|     addressValue = (int32_t)DE.GetU32(offset_ptr);
 | |
|     break;
 | |
|   case DW_EH_PE_sdata8:
 | |
|     addressValue = (int64_t)DE.GetU64(offset_ptr);
 | |
|     break;
 | |
|   default:
 | |
|     // Unhandled encoding type
 | |
|     assert(eh_ptr_enc);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Since we promote everything to 64 bit, we may need to sign extend
 | |
|   if (signExtendValue && addr_size < sizeof(baseAddress)) {
 | |
|     uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
 | |
|     if (sign_bit & addressValue) {
 | |
|       uint64_t mask = ~sign_bit + 1;
 | |
|       addressValue |= mask;
 | |
|     }
 | |
|   }
 | |
|   return baseAddress + addressValue;
 | |
| }
 | |
| 
 | |
| DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
 | |
|                                        SectionSP §ion_sp, Type type)
 | |
|     : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
 | |
| 
 | |
| bool DWARFCallFrameInfo::GetUnwindPlan(Address addr, UnwindPlan &unwind_plan) {
 | |
|   FDEEntryMap::Entry fde_entry;
 | |
| 
 | |
|   // Make sure that the Address we're searching for is the same object file
 | |
|   // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
 | |
|   ModuleSP module_sp = addr.GetModule();
 | |
|   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
 | |
|       module_sp->GetObjectFile() != &m_objfile)
 | |
|     return false;
 | |
| 
 | |
|   if (GetFDEEntryByFileAddress(addr.GetFileAddress(), fde_entry) == false)
 | |
|     return false;
 | |
|   return FDEToUnwindPlan(fde_entry.data, addr, unwind_plan);
 | |
| }
 | |
| 
 | |
| bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
 | |
| 
 | |
|   // Make sure that the Address we're searching for is the same object file
 | |
|   // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
 | |
|   ModuleSP module_sp = addr.GetModule();
 | |
|   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
 | |
|       module_sp->GetObjectFile() != &m_objfile)
 | |
|     return false;
 | |
| 
 | |
|   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
 | |
|     return false;
 | |
|   GetFDEIndex();
 | |
|   FDEEntryMap::Entry *fde_entry =
 | |
|       m_fde_index.FindEntryThatContains(addr.GetFileAddress());
 | |
|   if (!fde_entry)
 | |
|     return false;
 | |
| 
 | |
|   range = AddressRange(fde_entry->base, fde_entry->size,
 | |
|                        m_objfile.GetSectionList());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DWARFCallFrameInfo::GetFDEEntryByFileAddress(
 | |
|     addr_t file_addr, FDEEntryMap::Entry &fde_entry) {
 | |
|   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
 | |
|     return false;
 | |
| 
 | |
|   GetFDEIndex();
 | |
| 
 | |
|   if (m_fde_index.IsEmpty())
 | |
|     return false;
 | |
| 
 | |
|   FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains(file_addr);
 | |
| 
 | |
|   if (fde == nullptr)
 | |
|     return false;
 | |
| 
 | |
|   fde_entry = *fde;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
 | |
|     FunctionAddressAndSizeVector &function_info) {
 | |
|   GetFDEIndex();
 | |
|   const size_t count = m_fde_index.GetSize();
 | |
|   function_info.Clear();
 | |
|   if (count > 0)
 | |
|     function_info.Reserve(count);
 | |
|   for (size_t i = 0; i < count; ++i) {
 | |
|     const FDEEntryMap::Entry *func_offset_data_entry =
 | |
|         m_fde_index.GetEntryAtIndex(i);
 | |
|     if (func_offset_data_entry) {
 | |
|       FunctionAddressAndSizeVector::Entry function_offset_entry(
 | |
|           func_offset_data_entry->base, func_offset_data_entry->size);
 | |
|       function_info.Append(function_offset_entry);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const DWARFCallFrameInfo::CIE *
 | |
| DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
 | |
|   cie_map_t::iterator pos = m_cie_map.find(cie_offset);
 | |
| 
 | |
|   if (pos != m_cie_map.end()) {
 | |
|     // Parse and cache the CIE
 | |
|     if (pos->second.get() == nullptr)
 | |
|       pos->second = ParseCIE(cie_offset);
 | |
| 
 | |
|     return pos->second.get();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| DWARFCallFrameInfo::CIESP
 | |
| DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
 | |
|   CIESP cie_sp(new CIE(cie_offset));
 | |
|   lldb::offset_t offset = cie_offset;
 | |
|   if (m_cfi_data_initialized == false)
 | |
|     GetCFIData();
 | |
|   uint32_t length = m_cfi_data.GetU32(&offset);
 | |
|   dw_offset_t cie_id, end_offset;
 | |
|   bool is_64bit = (length == UINT32_MAX);
 | |
|   if (is_64bit) {
 | |
|     length = m_cfi_data.GetU64(&offset);
 | |
|     cie_id = m_cfi_data.GetU64(&offset);
 | |
|     end_offset = cie_offset + length + 12;
 | |
|   } else {
 | |
|     cie_id = m_cfi_data.GetU32(&offset);
 | |
|     end_offset = cie_offset + length + 4;
 | |
|   }
 | |
|   if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
 | |
|                      (m_type == EH && cie_id == 0ul))) {
 | |
|     size_t i;
 | |
|     //    cie.offset = cie_offset;
 | |
|     //    cie.length = length;
 | |
|     //    cie.cieID = cieID;
 | |
|     cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
 | |
|     cie_sp->version = m_cfi_data.GetU8(&offset);
 | |
|     if (cie_sp->version > CFI_VERSION4) {
 | |
|       Host::SystemLog(Host::eSystemLogError,
 | |
|                       "CIE parse error: CFI version %d is not supported\n",
 | |
|                       cie_sp->version);
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
 | |
|       cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
 | |
|       if (cie_sp->augmentation[i] == '\0') {
 | |
|         // Zero out remaining bytes in augmentation string
 | |
|         for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
 | |
|           cie_sp->augmentation[j] = '\0';
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (i == CFI_AUG_MAX_SIZE &&
 | |
|         cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
 | |
|       Host::SystemLog(Host::eSystemLogError,
 | |
|                       "CIE parse error: CIE augmentation string was too large "
 | |
|                       "for the fixed sized buffer of %d bytes.\n",
 | |
|                       CFI_AUG_MAX_SIZE);
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // m_cfi_data uses address size from target architecture of the process
 | |
|     // may ignore these fields?
 | |
|     if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
 | |
|       cie_sp->address_size = m_cfi_data.GetU8(&offset);
 | |
|       cie_sp->segment_size = m_cfi_data.GetU8(&offset);
 | |
|     }
 | |
| 
 | |
|     cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|     cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
 | |
| 
 | |
|     cie_sp->return_addr_reg_num =
 | |
|         m_type == DWARF && cie_sp->version >= CFI_VERSION3
 | |
|             ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
 | |
|             : m_cfi_data.GetU8(&offset);
 | |
| 
 | |
|     if (cie_sp->augmentation[0]) {
 | |
|       // Get the length of the eh_frame augmentation data
 | |
|       // which starts with a ULEB128 length in bytes
 | |
|       const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
 | |
|       const size_t aug_data_end = offset + aug_data_len;
 | |
|       const size_t aug_str_len = strlen(cie_sp->augmentation);
 | |
|       // A 'z' may be present as the first character of the string.
 | |
|       // If present, the Augmentation Data field shall be present.
 | |
|       // The contents of the Augmentation Data shall be interpreted
 | |
|       // according to other characters in the Augmentation String.
 | |
|       if (cie_sp->augmentation[0] == 'z') {
 | |
|         // Extract the Augmentation Data
 | |
|         size_t aug_str_idx = 0;
 | |
|         for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
 | |
|           char aug = cie_sp->augmentation[aug_str_idx];
 | |
|           switch (aug) {
 | |
|           case 'L':
 | |
|             // Indicates the presence of one argument in the
 | |
|             // Augmentation Data of the CIE, and a corresponding
 | |
|             // argument in the Augmentation Data of the FDE. The
 | |
|             // argument in the Augmentation Data of the CIE is
 | |
|             // 1-byte and represents the pointer encoding used
 | |
|             // for the argument in the Augmentation Data of the
 | |
|             // FDE, which is the address of a language-specific
 | |
|             // data area (LSDA). The size of the LSDA pointer is
 | |
|             // specified by the pointer encoding used.
 | |
|             cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
 | |
|             break;
 | |
| 
 | |
|           case 'P':
 | |
|             // Indicates the presence of two arguments in the
 | |
|             // Augmentation Data of the CIE. The first argument
 | |
|             // is 1-byte and represents the pointer encoding
 | |
|             // used for the second argument, which is the
 | |
|             // address of a personality routine handler. The
 | |
|             // size of the personality routine pointer is
 | |
|             // specified by the pointer encoding used.
 | |
|             //
 | |
|             // The address of the personality function will
 | |
|             // be stored at this location.  Pre-execution, it
 | |
|             // will be all zero's so don't read it until we're
 | |
|             // trying to do an unwind & the reloc has been
 | |
|             // resolved.
 | |
|             {
 | |
|               uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
 | |
|               const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
 | |
|               cie_sp->personality_loc = GetGNUEHPointer(
 | |
|                   m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
 | |
|                   LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|           case 'R':
 | |
|             // A 'R' may be present at any position after the
 | |
|             // first character of the string. The Augmentation
 | |
|             // Data shall include a 1 byte argument that
 | |
|             // represents the pointer encoding for the address
 | |
|             // pointers used in the FDE.
 | |
|             // Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4
 | |
|             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
 | |
|         // If the Augmentation string has the value "eh", then
 | |
|         // the EH Data field shall be present
 | |
|       }
 | |
| 
 | |
|       // Set the offset to be the end of the augmentation data just in case
 | |
|       // we didn't understand any of the data.
 | |
|       offset = (uint32_t)aug_data_end;
 | |
|     }
 | |
| 
 | |
|     if (end_offset > offset) {
 | |
|       cie_sp->inst_offset = offset;
 | |
|       cie_sp->inst_length = end_offset - offset;
 | |
|     }
 | |
|     while (offset < end_offset) {
 | |
|       uint8_t inst = m_cfi_data.GetU8(&offset);
 | |
|       uint8_t primary_opcode = inst & 0xC0;
 | |
|       uint8_t extended_opcode = inst & 0x3F;
 | |
| 
 | |
|       if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
 | |
|                                    cie_sp->data_align, offset,
 | |
|                                    cie_sp->initial_row))
 | |
|         break; // Stop if we hit an unrecognized opcode
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return cie_sp;
 | |
| }
 | |
| 
 | |
| void DWARFCallFrameInfo::GetCFIData() {
 | |
|   if (m_cfi_data_initialized == false) {
 | |
|     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
 | |
|     if (log)
 | |
|       m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
 | |
|     m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
 | |
|     m_cfi_data_initialized = true;
 | |
|   }
 | |
| }
 | |
| // Scan through the eh_frame or debug_frame section looking for FDEs and noting
 | |
| // the start/end addresses
 | |
| // of the functions and a pointer back to the function's FDE for later
 | |
| // expansion.
 | |
| // Internalize CIEs as we come across them.
 | |
| 
 | |
| void DWARFCallFrameInfo::GetFDEIndex() {
 | |
|   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
 | |
|     return;
 | |
| 
 | |
|   if (m_fde_index_initialized)
 | |
|     return;
 | |
| 
 | |
|   std::lock_guard<std::mutex> guard(m_fde_index_mutex);
 | |
| 
 | |
|   if (m_fde_index_initialized) // if two threads hit the locker
 | |
|     return;
 | |
| 
 | |
|   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
 | |
|   Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
 | |
|                      m_objfile.GetFileSpec().GetFilename().AsCString(""));
 | |
| 
 | |
|   bool clear_address_zeroth_bit = false;
 | |
|   ArchSpec arch;
 | |
|   if (m_objfile.GetArchitecture(arch)) {
 | |
|     if (arch.GetTriple().getArch() == llvm::Triple::arm ||
 | |
|         arch.GetTriple().getArch() == llvm::Triple::thumb)
 | |
|       clear_address_zeroth_bit = true;
 | |
|   }
 | |
| 
 | |
|   lldb::offset_t offset = 0;
 | |
|   if (m_cfi_data_initialized == false)
 | |
|     GetCFIData();
 | |
|   while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
 | |
|     const dw_offset_t current_entry = offset;
 | |
|     dw_offset_t cie_id, next_entry, cie_offset;
 | |
|     uint32_t len = m_cfi_data.GetU32(&offset);
 | |
|     bool is_64bit = (len == UINT32_MAX);
 | |
|     if (is_64bit) {
 | |
|       len = m_cfi_data.GetU64(&offset);
 | |
|       cie_id = m_cfi_data.GetU64(&offset);
 | |
|       next_entry = current_entry + len + 12;
 | |
|       cie_offset = current_entry + 12 - cie_id;
 | |
|     } else {
 | |
|       cie_id = m_cfi_data.GetU32(&offset);
 | |
|       next_entry = current_entry + len + 4;
 | |
|       cie_offset = current_entry + 4 - cie_id;
 | |
|     }
 | |
| 
 | |
|     if (next_entry > m_cfi_data.GetByteSize() + 1) {
 | |
|       Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
 | |
|                                              "entry offset of 0x%x found in "
 | |
|                                              "cie/fde at 0x%x\n",
 | |
|                       next_entry, current_entry);
 | |
|       // Don't trust anything in this eh_frame section if we find blatantly
 | |
|       // invalid data.
 | |
|       m_fde_index.Clear();
 | |
|       m_fde_index_initialized = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
 | |
|     // in eh_frame. CIE_pointer is an offset into the .debug_frame section.
 | |
|     // So, variable cie_offset should be equal to cie_id for debug_frame.
 | |
|     // FDE entries with cie_id == 0 shouldn't be ignored for it.
 | |
|     if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
 | |
|       auto cie_sp = ParseCIE(current_entry);
 | |
|       if (!cie_sp) {
 | |
|         // Cannot parse, the reason is already logged
 | |
|         m_fde_index.Clear();
 | |
|         m_fde_index_initialized = true;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       m_cie_map[current_entry] = std::move(cie_sp);
 | |
|       offset = next_entry;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (m_type == DWARF)
 | |
|       cie_offset = cie_id;
 | |
| 
 | |
|     if (cie_offset > m_cfi_data.GetByteSize()) {
 | |
|       Host::SystemLog(Host::eSystemLogError,
 | |
|                       "error: Invalid cie offset of 0x%x "
 | |
|                       "found in cie/fde at 0x%x\n",
 | |
|                       cie_offset, current_entry);
 | |
|       // Don't trust anything in this eh_frame section if we find blatantly
 | |
|       // invalid data.
 | |
|       m_fde_index.Clear();
 | |
|       m_fde_index_initialized = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const CIE *cie = GetCIE(cie_offset);
 | |
|     if (cie) {
 | |
|       const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
 | |
|       const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
 | |
|       const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
 | |
| 
 | |
|       lldb::addr_t addr =
 | |
|           GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
 | |
|                           text_addr, data_addr);
 | |
|       if (clear_address_zeroth_bit)
 | |
|         addr &= ~1ull;
 | |
| 
 | |
|       lldb::addr_t length = GetGNUEHPointer(
 | |
|           m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
 | |
|           pc_rel_addr, text_addr, data_addr);
 | |
|       FDEEntryMap::Entry fde(addr, length, current_entry);
 | |
|       m_fde_index.Append(fde);
 | |
|     } else {
 | |
|       Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
 | |
|                                              "0x%8.8x for cie_id = 0x%8.8x for "
 | |
|                                              "entry at 0x%8.8x.\n",
 | |
|                       cie_offset, cie_id, current_entry);
 | |
|     }
 | |
|     offset = next_entry;
 | |
|   }
 | |
|   m_fde_index.Sort();
 | |
|   m_fde_index_initialized = true;
 | |
| }
 | |
| 
 | |
| bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
 | |
|                                          Address startaddr,
 | |
|                                          UnwindPlan &unwind_plan) {
 | |
|   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
 | |
|   lldb::offset_t offset = dwarf_offset;
 | |
|   lldb::offset_t current_entry = offset;
 | |
| 
 | |
|   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
 | |
|     return false;
 | |
| 
 | |
|   if (m_cfi_data_initialized == false)
 | |
|     GetCFIData();
 | |
| 
 | |
|   uint32_t length = m_cfi_data.GetU32(&offset);
 | |
|   dw_offset_t cie_offset;
 | |
|   bool is_64bit = (length == UINT32_MAX);
 | |
|   if (is_64bit) {
 | |
|     length = m_cfi_data.GetU64(&offset);
 | |
|     cie_offset = m_cfi_data.GetU64(&offset);
 | |
|   } else {
 | |
|     cie_offset = m_cfi_data.GetU32(&offset);
 | |
|   }
 | |
| 
 | |
|   // FDE entries with zeroth cie_offset may occur for debug_frame.
 | |
|   assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
 | |
| 
 | |
|   // Translate the CIE_id from the eh_frame format, which
 | |
|   // is relative to the FDE offset, into a __eh_frame section
 | |
|   // offset
 | |
|   if (m_type == EH) {
 | |
|     unwind_plan.SetSourceName("eh_frame CFI");
 | |
|     cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
 | |
|     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
 | |
|   } else {
 | |
|     unwind_plan.SetSourceName("DWARF CFI");
 | |
|     // In theory the debug_frame info should be valid at all call sites
 | |
|     // ("asynchronous unwind info" as it is sometimes called) but in practice
 | |
|     // gcc et al all emit call frame info for the prologue and call sites, but
 | |
|     // not for the epilogue or all the other locations during the function
 | |
|     // reliably.
 | |
|     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
 | |
|   }
 | |
|   unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
 | |
| 
 | |
|   const CIE *cie = GetCIE(cie_offset);
 | |
|   assert(cie != nullptr);
 | |
| 
 | |
|   const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
 | |
| 
 | |
|   const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
 | |
|   const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
 | |
|   const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
 | |
|   lldb::addr_t range_base =
 | |
|       GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
 | |
|                       text_addr, data_addr);
 | |
|   lldb::addr_t range_len = GetGNUEHPointer(
 | |
|       m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
 | |
|       pc_rel_addr, text_addr, data_addr);
 | |
|   AddressRange range(range_base, m_objfile.GetAddressByteSize(),
 | |
|                      m_objfile.GetSectionList());
 | |
|   range.SetByteSize(range_len);
 | |
| 
 | |
|   addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
 | |
| 
 | |
|   if (cie->augmentation[0] == 'z') {
 | |
|     uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|     if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
 | |
|       offset_t saved_offset = offset;
 | |
|       lsda_data_file_address =
 | |
|           GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
 | |
|                           pc_rel_addr, text_addr, data_addr);
 | |
|       if (offset - saved_offset != aug_data_len) {
 | |
|         // There is more in the augmentation region than we know how to process;
 | |
|         // don't read anything.
 | |
|         lsda_data_file_address = LLDB_INVALID_ADDRESS;
 | |
|       }
 | |
|       offset = saved_offset;
 | |
|     }
 | |
|     offset += aug_data_len;
 | |
|   }
 | |
|   Address lsda_data;
 | |
|   Address personality_function_ptr;
 | |
| 
 | |
|   if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
 | |
|       cie->personality_loc != LLDB_INVALID_ADDRESS) {
 | |
|     m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
 | |
|                                               lsda_data);
 | |
|     m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
 | |
|                                               personality_function_ptr);
 | |
|   }
 | |
| 
 | |
|   if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
 | |
|     unwind_plan.SetLSDAAddress(lsda_data);
 | |
|     unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
 | |
|   }
 | |
| 
 | |
|   uint32_t code_align = cie->code_align;
 | |
|   int32_t data_align = cie->data_align;
 | |
| 
 | |
|   unwind_plan.SetPlanValidAddressRange(range);
 | |
|   UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
 | |
|   *cie_initial_row = cie->initial_row;
 | |
|   UnwindPlan::RowSP row(cie_initial_row);
 | |
| 
 | |
|   unwind_plan.SetRegisterKind(GetRegisterKind());
 | |
|   unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
 | |
| 
 | |
|   std::vector<UnwindPlan::RowSP> stack;
 | |
| 
 | |
|   UnwindPlan::Row::RegisterLocation reg_location;
 | |
|   while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
 | |
|     uint8_t inst = m_cfi_data.GetU8(&offset);
 | |
|     uint8_t primary_opcode = inst & 0xC0;
 | |
|     uint8_t extended_opcode = inst & 0x3F;
 | |
| 
 | |
|     if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
 | |
|                                  offset, *row)) {
 | |
|       if (primary_opcode) {
 | |
|         switch (primary_opcode) {
 | |
|         case DW_CFA_advance_loc: // (Row Creation Instruction)
 | |
|         { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
 | |
|           // takes a single argument that represents a constant delta. The
 | |
|           // required action is to create a new table row with a location
 | |
|           // value that is computed by taking the current entry's location
 | |
|           // value and adding (delta * code_align). All other
 | |
|           // values in the new row are initially identical to the current row.
 | |
|           unwind_plan.AppendRow(row);
 | |
|           UnwindPlan::Row *newrow = new UnwindPlan::Row;
 | |
|           *newrow = *row.get();
 | |
|           row.reset(newrow);
 | |
|           row->SlideOffset(extended_opcode * code_align);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
 | |
|                                // register
 | |
|           // takes a single argument that represents a register number. The
 | |
|           // required action is to change the rule for the indicated register
 | |
|           // to the rule assigned it by the initial_instructions in the CIE.
 | |
|           uint32_t reg_num = extended_opcode;
 | |
|           // We only keep enough register locations around to
 | |
|           // unwind what is in our thread, and these are organized
 | |
|           // by the register index in that state, so we need to convert our
 | |
|           // eh_frame register number from the EH frame info, to a register
 | |
|           // index
 | |
| 
 | |
|           if (unwind_plan.IsValidRowIndex(0) &&
 | |
|               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
 | |
|                                                             reg_location))
 | |
|             row->SetRegisterInfo(reg_num, reg_location);
 | |
|           break;
 | |
|         }
 | |
|         }
 | |
|       } else {
 | |
|         switch (extended_opcode) {
 | |
|         case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
 | |
|         {
 | |
|           // DW_CFA_set_loc takes a single argument that represents an address.
 | |
|           // The required action is to create a new table row using the
 | |
|           // specified address as the location. All other values in the new row
 | |
|           // are initially identical to the current row. The new location value
 | |
|           // should always be greater than the current one.
 | |
|           unwind_plan.AppendRow(row);
 | |
|           UnwindPlan::Row *newrow = new UnwindPlan::Row;
 | |
|           *newrow = *row.get();
 | |
|           row.reset(newrow);
 | |
|           row->SetOffset(m_cfi_data.GetPointer(&offset) -
 | |
|                          startaddr.GetFileAddress());
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
 | |
|         {
 | |
|           // takes a single uword argument that represents a constant delta.
 | |
|           // This instruction is identical to DW_CFA_advance_loc except for the
 | |
|           // encoding and size of the delta argument.
 | |
|           unwind_plan.AppendRow(row);
 | |
|           UnwindPlan::Row *newrow = new UnwindPlan::Row;
 | |
|           *newrow = *row.get();
 | |
|           row.reset(newrow);
 | |
|           row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
 | |
|         {
 | |
|           // takes a single uword argument that represents a constant delta.
 | |
|           // This instruction is identical to DW_CFA_advance_loc except for the
 | |
|           // encoding and size of the delta argument.
 | |
|           unwind_plan.AppendRow(row);
 | |
|           UnwindPlan::Row *newrow = new UnwindPlan::Row;
 | |
|           *newrow = *row.get();
 | |
|           row.reset(newrow);
 | |
|           row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
 | |
|         {
 | |
|           // takes a single uword argument that represents a constant delta.
 | |
|           // This instruction is identical to DW_CFA_advance_loc except for the
 | |
|           // encoding and size of the delta argument.
 | |
|           unwind_plan.AppendRow(row);
 | |
|           UnwindPlan::Row *newrow = new UnwindPlan::Row;
 | |
|           *newrow = *row.get();
 | |
|           row.reset(newrow);
 | |
|           row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_restore_extended: // 0x6
 | |
|         {
 | |
|           // takes a single unsigned LEB128 argument that represents a register
 | |
|           // number. This instruction is identical to DW_CFA_restore except for
 | |
|           // the encoding and size of the register argument.
 | |
|           uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|           if (unwind_plan.IsValidRowIndex(0) &&
 | |
|               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
 | |
|                                                             reg_location))
 | |
|             row->SetRegisterInfo(reg_num, reg_location);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_remember_state: // 0xA
 | |
|         {
 | |
|           // These instructions define a stack of information. Encountering the
 | |
|           // DW_CFA_remember_state instruction means to save the rules for every
 | |
|           // register on the current row on the stack. Encountering the
 | |
|           // DW_CFA_restore_state instruction means to pop the set of rules off
 | |
|           // the stack and place them in the current row. (This operation is
 | |
|           // useful for compilers that move epilogue code into the body of a
 | |
|           // function.)
 | |
|           stack.push_back(row);
 | |
|           UnwindPlan::Row *newrow = new UnwindPlan::Row;
 | |
|           *newrow = *row.get();
 | |
|           row.reset(newrow);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_restore_state: // 0xB
 | |
|         {
 | |
|           // These instructions define a stack of information. Encountering the
 | |
|           // DW_CFA_remember_state instruction means to save the rules for every
 | |
|           // register on the current row on the stack. Encountering the
 | |
|           // DW_CFA_restore_state instruction means to pop the set of rules off
 | |
|           // the stack and place them in the current row. (This operation is
 | |
|           // useful for compilers that move epilogue code into the body of a
 | |
|           // function.)
 | |
|           if (stack.empty()) {
 | |
|             if (log)
 | |
|               log->Printf("DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
 | |
|                           ", startaddr: %" PRIx64
 | |
|                           " encountered DW_CFA_restore_state but state stack "
 | |
|                           "is empty. Corrupt unwind info?",
 | |
|                           __FUNCTION__, dwarf_offset,
 | |
|                           startaddr.GetFileAddress());
 | |
|             break;
 | |
|           }
 | |
|           lldb::addr_t offset = row->GetOffset();
 | |
|           row = stack.back();
 | |
|           stack.pop_back();
 | |
|           row->SetOffset(offset);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_GNU_args_size: // 0x2e
 | |
|         {
 | |
|           // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
 | |
|           // operand
 | |
|           // representing an argument size. This instruction specifies the total
 | |
|           // of
 | |
|           // the size of the arguments which have been pushed onto the stack.
 | |
| 
 | |
|           // TODO: Figure out how we should handle this.
 | |
|           m_cfi_data.GetULEB128(&offset);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         case DW_CFA_val_offset:    // 0x14
 | |
|         case DW_CFA_val_offset_sf: // 0x15
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   unwind_plan.AppendRow(row);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
 | |
|                                                  uint8_t extended_opcode,
 | |
|                                                  int32_t data_align,
 | |
|                                                  lldb::offset_t &offset,
 | |
|                                                  UnwindPlan::Row &row) {
 | |
|   UnwindPlan::Row::RegisterLocation reg_location;
 | |
| 
 | |
|   if (primary_opcode) {
 | |
|     switch (primary_opcode) {
 | |
|     case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
 | |
|                           // register
 | |
|       // takes two arguments: an unsigned LEB128 constant representing a
 | |
|       // factored offset and a register number. The required action is to
 | |
|       // change the rule for the register indicated by the register number
 | |
|       // to be an offset(N) rule with a value of
 | |
|       // (N = factored offset * data_align).
 | |
|       uint8_t reg_num = extended_opcode;
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
 | |
|       reg_location.SetAtCFAPlusOffset(op_offset);
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|   } else {
 | |
|     switch (extended_opcode) {
 | |
|     case DW_CFA_nop: // 0x0
 | |
|       return true;
 | |
| 
 | |
|     case DW_CFA_offset_extended: // 0x5
 | |
|     {
 | |
|       // takes two unsigned LEB128 arguments representing a register number
 | |
|       // and a factored offset. This instruction is identical to DW_CFA_offset
 | |
|       // except for the encoding and size of the register argument.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
 | |
|       UnwindPlan::Row::RegisterLocation reg_location;
 | |
|       reg_location.SetAtCFAPlusOffset(op_offset);
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_undefined: // 0x7
 | |
|     {
 | |
|       // takes a single unsigned LEB128 argument that represents a register
 | |
|       // number. The required action is to set the rule for the specified
 | |
|       // register to undefined.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       UnwindPlan::Row::RegisterLocation reg_location;
 | |
|       reg_location.SetUndefined();
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_same_value: // 0x8
 | |
|     {
 | |
|       // takes a single unsigned LEB128 argument that represents a register
 | |
|       // number. The required action is to set the rule for the specified
 | |
|       // register to same value.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       UnwindPlan::Row::RegisterLocation reg_location;
 | |
|       reg_location.SetSame();
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_register: // 0x9
 | |
|     {
 | |
|       // takes two unsigned LEB128 arguments representing register numbers.
 | |
|       // The required action is to set the rule for the first register to be
 | |
|       // the second register.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       UnwindPlan::Row::RegisterLocation reg_location;
 | |
|       reg_location.SetInRegister(other_reg_num);
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
 | |
|     {
 | |
|       // Takes two unsigned LEB128 operands representing a register
 | |
|       // number and a (non-factored) offset. The required action
 | |
|       // is to define the current CFA rule to use the provided
 | |
|       // register and offset.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
 | |
|     {
 | |
|       // takes a single unsigned LEB128 argument representing a register
 | |
|       // number. The required action is to define the current CFA rule to
 | |
|       // use the provided register (but to keep the old offset).
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
 | |
|                                                 row.GetCFAValue().GetOffset());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
 | |
|     {
 | |
|       // Takes a single unsigned LEB128 operand representing a
 | |
|       // (non-factored) offset. The required action is to define
 | |
|       // the current CFA rule to use the provided offset (but
 | |
|       // to keep the old register).
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       row.GetCFAValue().SetIsRegisterPlusOffset(
 | |
|           row.GetCFAValue().GetRegisterNumber(), op_offset);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
 | |
|     {
 | |
|       size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
 | |
|       const uint8_t *block_data =
 | |
|           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
 | |
|       row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_expression: // 0x10
 | |
|     {
 | |
|       // Takes two operands: an unsigned LEB128 value representing
 | |
|       // a register number, and a DW_FORM_block value representing a DWARF
 | |
|       // expression. The required action is to change the rule for the
 | |
|       // register indicated by the register number to be an expression(E)
 | |
|       // rule where E is the DWARF expression. That is, the DWARF
 | |
|       // expression computes the address. The value of the CFA is
 | |
|       // pushed on the DWARF evaluation stack prior to execution of
 | |
|       // the DWARF expression.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       const uint8_t *block_data =
 | |
|           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
 | |
|       UnwindPlan::Row::RegisterLocation reg_location;
 | |
|       reg_location.SetAtDWARFExpression(block_data, block_len);
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_offset_extended_sf: // 0x11
 | |
|     {
 | |
|       // takes two operands: an unsigned LEB128 value representing a
 | |
|       // register number and a signed LEB128 factored offset. This
 | |
|       // instruction is identical to DW_CFA_offset_extended except
 | |
|       // that the second operand is signed and factored.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
 | |
|       UnwindPlan::Row::RegisterLocation reg_location;
 | |
|       reg_location.SetAtCFAPlusOffset(op_offset);
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
 | |
|     {
 | |
|       // Takes two operands: an unsigned LEB128 value representing
 | |
|       // a register number and a signed LEB128 factored offset.
 | |
|       // This instruction is identical to DW_CFA_def_cfa except
 | |
|       // that the second operand is signed and factored.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
 | |
|       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
 | |
|     {
 | |
|       // takes a signed LEB128 operand representing a factored
 | |
|       // offset. This instruction is identical to  DW_CFA_def_cfa_offset
 | |
|       // except that the operand is signed and factored.
 | |
|       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
 | |
|       uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
 | |
|       row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case DW_CFA_val_expression: // 0x16
 | |
|     {
 | |
|       // takes two operands: an unsigned LEB128 value representing a register
 | |
|       // number, and a DW_FORM_block value representing a DWARF expression.
 | |
|       // The required action is to change the rule for the register indicated
 | |
|       // by the register number to be a val_expression(E) rule where E is the
 | |
|       // DWARF expression. That is, the DWARF expression computes the value of
 | |
|       // the given register. The value of the CFA is pushed on the DWARF
 | |
|       // evaluation stack prior to execution of the DWARF expression.
 | |
|       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
 | |
|       const uint8_t *block_data =
 | |
|           (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
 | |
|       //#if defined(__i386__) || defined(__x86_64__)
 | |
|       //              // The EH frame info for EIP and RIP contains code that
 | |
|       //              looks for traps to
 | |
|       //              // be a specific type and increments the PC.
 | |
|       //              // For i386:
 | |
|       //              // DW_CFA_val_expression where:
 | |
|       //              // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup,
 | |
|       //              DW_OP_plus_uconst(0x34),
 | |
|       //              //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0),
 | |
|       //              DW_OP_deref,
 | |
|       //              //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap,
 | |
|       //              DW_OP_lit4, DW_OP_ne,
 | |
|       //              //       DW_OP_and, DW_OP_plus
 | |
|       //              // This basically does a:
 | |
|       //              // eip = ucontenxt.mcontext32->gpr.eip;
 | |
|       //              // if (ucontenxt.mcontext32->exc.trapno != 3 &&
 | |
|       //              ucontenxt.mcontext32->exc.trapno != 4)
 | |
|       //              //   eip++;
 | |
|       //              //
 | |
|       //              // For x86_64:
 | |
|       //              // DW_CFA_val_expression where:
 | |
|       //              // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup,
 | |
|       //              DW_OP_plus_uconst(0x90), DW_OP_deref,
 | |
|       //              //          DW_OP_swap, DW_OP_plus_uconst(0),
 | |
|       //              DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
 | |
|       //              //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
 | |
|       //              DW_OP_and, DW_OP_plus
 | |
|       //              // This basically does a:
 | |
|       //              // rip = ucontenxt.mcontext64->gpr.rip;
 | |
|       //              // if (ucontenxt.mcontext64->exc.trapno != 3 &&
 | |
|       //              ucontenxt.mcontext64->exc.trapno != 4)
 | |
|       //              //   rip++;
 | |
|       //              // The trap comparisons and increments are not needed as
 | |
|       //              it hoses up the unwound PC which
 | |
|       //              // is expected to point at least past the instruction that
 | |
|       //              causes the fault/trap. So we
 | |
|       //              // take it out by trimming the expression right at the
 | |
|       //              first "DW_OP_swap" opcodes
 | |
|       //              if (block_data != NULL && thread->GetPCRegNum(Thread::GCC)
 | |
|       //              == reg_num)
 | |
|       //              {
 | |
|       //                  if (thread->Is64Bit())
 | |
|       //                  {
 | |
|       //                      if (block_len > 9 && block_data[8] == DW_OP_swap
 | |
|       //                      && block_data[9] == DW_OP_plus_uconst)
 | |
|       //                          block_len = 8;
 | |
|       //                  }
 | |
|       //                  else
 | |
|       //                  {
 | |
|       //                      if (block_len > 8 && block_data[7] == DW_OP_swap
 | |
|       //                      && block_data[8] == DW_OP_plus_uconst)
 | |
|       //                          block_len = 7;
 | |
|       //                  }
 | |
|       //              }
 | |
|       //#endif
 | |
|       reg_location.SetIsDWARFExpression(block_data, block_len);
 | |
|       row.SetRegisterInfo(reg_num, reg_location);
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DWARFCallFrameInfo::ForEachFDEEntries(
 | |
|     const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
 | |
|   GetFDEIndex();
 | |
| 
 | |
|   for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
 | |
|     const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
 | |
|     if (!callback(entry.base, entry.size, entry.data))
 | |
|       break;
 | |
|   }
 | |
| }
 |