832 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			832 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Loops should be simplified before this analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "branch-prob"
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
 | |
|                       "Branch Probability Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
 | |
|                     "Branch Probability Analysis", false, true)
 | |
| 
 | |
| char BranchProbabilityInfoWrapperPass::ID = 0;
 | |
| 
 | |
| // Weights are for internal use only. They are used by heuristics to help to
 | |
| // estimate edges' probability. Example:
 | |
| //
 | |
| // Using "Loop Branch Heuristics" we predict weights of edges for the
 | |
| // block BB2.
 | |
| //         ...
 | |
| //          |
 | |
| //          V
 | |
| //         BB1<-+
 | |
| //          |   |
 | |
| //          |   | (Weight = 124)
 | |
| //          V   |
 | |
| //         BB2--+
 | |
| //          |
 | |
| //          | (Weight = 4)
 | |
| //          V
 | |
| //         BB3
 | |
| //
 | |
| // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
 | |
| // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
 | |
| static const uint32_t LBH_TAKEN_WEIGHT = 124;
 | |
| static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
 | |
| 
 | |
| /// \brief Unreachable-terminating branch taken probability.
 | |
| ///
 | |
| /// This is the probability for a branch being taken to a block that terminates
 | |
| /// (eventually) in unreachable. These are predicted as unlikely as possible.
 | |
| /// All reachable probability will equally share the remaining part.
 | |
| static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
 | |
| 
 | |
| /// \brief Weight for a branch taken going into a cold block.
 | |
| ///
 | |
| /// This is the weight for a branch taken toward a block marked
 | |
| /// cold.  A block is marked cold if it's postdominated by a
 | |
| /// block containing a call to a cold function.  Cold functions
 | |
| /// are those marked with attribute 'cold'.
 | |
| static const uint32_t CC_TAKEN_WEIGHT = 4;
 | |
| 
 | |
| /// \brief Weight for a branch not-taken into a cold block.
 | |
| ///
 | |
| /// This is the weight for a branch not taken toward a block marked
 | |
| /// cold.
 | |
| static const uint32_t CC_NONTAKEN_WEIGHT = 64;
 | |
| 
 | |
| static const uint32_t PH_TAKEN_WEIGHT = 20;
 | |
| static const uint32_t PH_NONTAKEN_WEIGHT = 12;
 | |
| 
 | |
| static const uint32_t ZH_TAKEN_WEIGHT = 20;
 | |
| static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
 | |
| 
 | |
| static const uint32_t FPH_TAKEN_WEIGHT = 20;
 | |
| static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
 | |
| 
 | |
| /// \brief Invoke-terminating normal branch taken weight
 | |
| ///
 | |
| /// This is the weight for branching to the normal destination of an invoke
 | |
| /// instruction. We expect this to happen most of the time. Set the weight to an
 | |
| /// absurdly high value so that nested loops subsume it.
 | |
| static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
 | |
| 
 | |
| /// \brief Invoke-terminating normal branch not-taken weight.
 | |
| ///
 | |
| /// This is the weight for branching to the unwind destination of an invoke
 | |
| /// instruction. This is essentially never taken.
 | |
| static const uint32_t IH_NONTAKEN_WEIGHT = 1;
 | |
| 
 | |
| /// \brief Add \p BB to PostDominatedByUnreachable set if applicable.
 | |
| void
 | |
| BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
 | |
|   const TerminatorInst *TI = BB->getTerminator();
 | |
|   if (TI->getNumSuccessors() == 0) {
 | |
|     if (isa<UnreachableInst>(TI) ||
 | |
|         // If this block is terminated by a call to
 | |
|         // @llvm.experimental.deoptimize then treat it like an unreachable since
 | |
|         // the @llvm.experimental.deoptimize call is expected to practically
 | |
|         // never execute.
 | |
|         BB->getTerminatingDeoptimizeCall())
 | |
|       PostDominatedByUnreachable.insert(BB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the terminator is an InvokeInst, check only the normal destination block
 | |
|   // as the unwind edge of InvokeInst is also very unlikely taken.
 | |
|   if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | |
|     if (PostDominatedByUnreachable.count(II->getNormalDest()))
 | |
|       PostDominatedByUnreachable.insert(BB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (auto *I : successors(BB))
 | |
|     // If any of successor is not post dominated then BB is also not.
 | |
|     if (!PostDominatedByUnreachable.count(I))
 | |
|       return;
 | |
| 
 | |
|   PostDominatedByUnreachable.insert(BB);
 | |
| }
 | |
| 
 | |
| /// \brief Add \p BB to PostDominatedByColdCall set if applicable.
 | |
| void
 | |
| BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
 | |
|   assert(!PostDominatedByColdCall.count(BB));
 | |
|   const TerminatorInst *TI = BB->getTerminator();
 | |
|   if (TI->getNumSuccessors() == 0)
 | |
|     return;
 | |
| 
 | |
|   // If all of successor are post dominated then BB is also done.
 | |
|   if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
 | |
|         return PostDominatedByColdCall.count(SuccBB);
 | |
|       })) {
 | |
|     PostDominatedByColdCall.insert(BB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the terminator is an InvokeInst, check only the normal destination
 | |
|   // block as the unwind edge of InvokeInst is also very unlikely taken.
 | |
|   if (auto *II = dyn_cast<InvokeInst>(TI))
 | |
|     if (PostDominatedByColdCall.count(II->getNormalDest())) {
 | |
|       PostDominatedByColdCall.insert(BB);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // Otherwise, if the block itself contains a cold function, add it to the
 | |
|   // set of blocks post-dominated by a cold call.
 | |
|   for (auto &I : *BB)
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | |
|       if (CI->hasFnAttr(Attribute::Cold)) {
 | |
|         PostDominatedByColdCall.insert(BB);
 | |
|         return;
 | |
|       }
 | |
| }
 | |
| 
 | |
| /// \brief Calculate edge weights for successors lead to unreachable.
 | |
| ///
 | |
| /// Predict that a successor which leads necessarily to an
 | |
| /// unreachable-terminated block as extremely unlikely.
 | |
| bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
 | |
|   const TerminatorInst *TI = BB->getTerminator();
 | |
|   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | |
| 
 | |
|   // Return false here so that edge weights for InvokeInst could be decided
 | |
|   // in calcInvokeHeuristics().
 | |
|   if (isa<InvokeInst>(TI))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<unsigned, 4> UnreachableEdges;
 | |
|   SmallVector<unsigned, 4> ReachableEdges;
 | |
| 
 | |
|   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
 | |
|     if (PostDominatedByUnreachable.count(*I))
 | |
|       UnreachableEdges.push_back(I.getSuccessorIndex());
 | |
|     else
 | |
|       ReachableEdges.push_back(I.getSuccessorIndex());
 | |
| 
 | |
|   // Skip probabilities if all were reachable.
 | |
|   if (UnreachableEdges.empty())
 | |
|     return false;
 | |
| 
 | |
|   if (ReachableEdges.empty()) {
 | |
|     BranchProbability Prob(1, UnreachableEdges.size());
 | |
|     for (unsigned SuccIdx : UnreachableEdges)
 | |
|       setEdgeProbability(BB, SuccIdx, Prob);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   auto UnreachableProb = UR_TAKEN_PROB;
 | |
|   auto ReachableProb =
 | |
|       (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
 | |
|       ReachableEdges.size();
 | |
| 
 | |
|   for (unsigned SuccIdx : UnreachableEdges)
 | |
|     setEdgeProbability(BB, SuccIdx, UnreachableProb);
 | |
|   for (unsigned SuccIdx : ReachableEdges)
 | |
|     setEdgeProbability(BB, SuccIdx, ReachableProb);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Propagate existing explicit probabilities from either profile data or
 | |
| // 'expect' intrinsic processing. Examine metadata against unreachable
 | |
| // heuristic. The probability of the edge coming to unreachable block is
 | |
| // set to min of metadata and unreachable heuristic.
 | |
| bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
 | |
|   const TerminatorInst *TI = BB->getTerminator();
 | |
|   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | |
|   if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
 | |
|     return false;
 | |
| 
 | |
|   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
 | |
|   if (!WeightsNode)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the number of successors is manageable.
 | |
|   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
 | |
| 
 | |
|   // Ensure there are weights for all of the successors. Note that the first
 | |
|   // operand to the metadata node is a name, not a weight.
 | |
|   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
 | |
|     return false;
 | |
| 
 | |
|   // Build up the final weights that will be used in a temporary buffer.
 | |
|   // Compute the sum of all weights to later decide whether they need to
 | |
|   // be scaled to fit in 32 bits.
 | |
|   uint64_t WeightSum = 0;
 | |
|   SmallVector<uint32_t, 2> Weights;
 | |
|   SmallVector<unsigned, 2> UnreachableIdxs;
 | |
|   SmallVector<unsigned, 2> ReachableIdxs;
 | |
|   Weights.reserve(TI->getNumSuccessors());
 | |
|   for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
 | |
|     ConstantInt *Weight =
 | |
|         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
 | |
|     if (!Weight)
 | |
|       return false;
 | |
|     assert(Weight->getValue().getActiveBits() <= 32 &&
 | |
|            "Too many bits for uint32_t");
 | |
|     Weights.push_back(Weight->getZExtValue());
 | |
|     WeightSum += Weights.back();
 | |
|     if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
 | |
|       UnreachableIdxs.push_back(i - 1);
 | |
|     else
 | |
|       ReachableIdxs.push_back(i - 1);
 | |
|   }
 | |
|   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
 | |
| 
 | |
|   // If the sum of weights does not fit in 32 bits, scale every weight down
 | |
|   // accordingly.
 | |
|   uint64_t ScalingFactor =
 | |
|       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
 | |
| 
 | |
|   if (ScalingFactor > 1) {
 | |
|     WeightSum = 0;
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|       Weights[i] /= ScalingFactor;
 | |
|       WeightSum += Weights[i];
 | |
|     }
 | |
|   }
 | |
|   assert(WeightSum <= UINT32_MAX &&
 | |
|          "Expected weights to scale down to 32 bits");
 | |
| 
 | |
|   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       Weights[i] = 1;
 | |
|     WeightSum = TI->getNumSuccessors();
 | |
|   }
 | |
| 
 | |
|   // Set the probability.
 | |
|   SmallVector<BranchProbability, 2> BP;
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
 | |
| 
 | |
|   // Examine the metadata against unreachable heuristic.
 | |
|   // If the unreachable heuristic is more strong then we use it for this edge.
 | |
|   if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
 | |
|     auto ToDistribute = BranchProbability::getZero();
 | |
|     auto UnreachableProb = UR_TAKEN_PROB;
 | |
|     for (auto i : UnreachableIdxs)
 | |
|       if (UnreachableProb < BP[i]) {
 | |
|         ToDistribute += BP[i] - UnreachableProb;
 | |
|         BP[i] = UnreachableProb;
 | |
|       }
 | |
| 
 | |
|     // If we modified the probability of some edges then we must distribute
 | |
|     // the difference between reachable blocks.
 | |
|     if (ToDistribute > BranchProbability::getZero()) {
 | |
|       BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
 | |
|       for (auto i : ReachableIdxs)
 | |
|         BP[i] += PerEdge;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     setEdgeProbability(BB, i, BP[i]);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Calculate edge weights for edges leading to cold blocks.
 | |
| ///
 | |
| /// A cold block is one post-dominated by  a block with a call to a
 | |
| /// cold function.  Those edges are unlikely to be taken, so we give
 | |
| /// them relatively low weight.
 | |
| ///
 | |
| /// Return true if we could compute the weights for cold edges.
 | |
| /// Return false, otherwise.
 | |
| bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
 | |
|   const TerminatorInst *TI = BB->getTerminator();
 | |
|   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | |
| 
 | |
|   // Return false here so that edge weights for InvokeInst could be decided
 | |
|   // in calcInvokeHeuristics().
 | |
|   if (isa<InvokeInst>(TI))
 | |
|     return false;
 | |
| 
 | |
|   // Determine which successors are post-dominated by a cold block.
 | |
|   SmallVector<unsigned, 4> ColdEdges;
 | |
|   SmallVector<unsigned, 4> NormalEdges;
 | |
|   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
 | |
|     if (PostDominatedByColdCall.count(*I))
 | |
|       ColdEdges.push_back(I.getSuccessorIndex());
 | |
|     else
 | |
|       NormalEdges.push_back(I.getSuccessorIndex());
 | |
| 
 | |
|   // Skip probabilities if no cold edges.
 | |
|   if (ColdEdges.empty())
 | |
|     return false;
 | |
| 
 | |
|   if (NormalEdges.empty()) {
 | |
|     BranchProbability Prob(1, ColdEdges.size());
 | |
|     for (unsigned SuccIdx : ColdEdges)
 | |
|       setEdgeProbability(BB, SuccIdx, Prob);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   auto ColdProb = BranchProbability::getBranchProbability(
 | |
|       CC_TAKEN_WEIGHT,
 | |
|       (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
 | |
|   auto NormalProb = BranchProbability::getBranchProbability(
 | |
|       CC_NONTAKEN_WEIGHT,
 | |
|       (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
 | |
| 
 | |
|   for (unsigned SuccIdx : ColdEdges)
 | |
|     setEdgeProbability(BB, SuccIdx, ColdProb);
 | |
|   for (unsigned SuccIdx : NormalEdges)
 | |
|     setEdgeProbability(BB, SuccIdx, NormalProb);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
 | |
| // between two pointer or pointer and NULL will fail.
 | |
| bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = BI->getCondition();
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | |
|   if (!CI || !CI->isEquality())
 | |
|     return false;
 | |
| 
 | |
|   Value *LHS = CI->getOperand(0);
 | |
| 
 | |
|   if (!LHS->getType()->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   assert(CI->getOperand(1)->getType()->isPointerTy());
 | |
| 
 | |
|   // p != 0   ->   isProb = true
 | |
|   // p == 0   ->   isProb = false
 | |
|   // p != q   ->   isProb = true
 | |
|   // p == q   ->   isProb = false;
 | |
|   unsigned TakenIdx = 0, NonTakenIdx = 1;
 | |
|   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
 | |
|   if (!isProb)
 | |
|     std::swap(TakenIdx, NonTakenIdx);
 | |
| 
 | |
|   BranchProbability TakenProb(PH_TAKEN_WEIGHT,
 | |
|                               PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
 | |
|   setEdgeProbability(BB, TakenIdx, TakenProb);
 | |
|   setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
 | |
| // as taken, exiting edges as not-taken.
 | |
| bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
 | |
|                                                      const LoopInfo &LI) {
 | |
|   Loop *L = LI.getLoopFor(BB);
 | |
|   if (!L)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<unsigned, 8> BackEdges;
 | |
|   SmallVector<unsigned, 8> ExitingEdges;
 | |
|   SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
 | |
| 
 | |
|   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
 | |
|     if (!L->contains(*I))
 | |
|       ExitingEdges.push_back(I.getSuccessorIndex());
 | |
|     else if (L->getHeader() == *I)
 | |
|       BackEdges.push_back(I.getSuccessorIndex());
 | |
|     else
 | |
|       InEdges.push_back(I.getSuccessorIndex());
 | |
|   }
 | |
| 
 | |
|   if (BackEdges.empty() && ExitingEdges.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
 | |
|   // normalize them so that they sum up to one.
 | |
|   BranchProbability Probs[] = {BranchProbability::getZero(),
 | |
|                                BranchProbability::getZero(),
 | |
|                                BranchProbability::getZero()};
 | |
|   unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
 | |
|                    (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
 | |
|                    (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
 | |
|   if (!BackEdges.empty())
 | |
|     Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
 | |
|   if (!InEdges.empty())
 | |
|     Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
 | |
|   if (!ExitingEdges.empty())
 | |
|     Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom);
 | |
| 
 | |
|   if (uint32_t numBackEdges = BackEdges.size()) {
 | |
|     auto Prob = Probs[0] / numBackEdges;
 | |
|     for (unsigned SuccIdx : BackEdges)
 | |
|       setEdgeProbability(BB, SuccIdx, Prob);
 | |
|   }
 | |
| 
 | |
|   if (uint32_t numInEdges = InEdges.size()) {
 | |
|     auto Prob = Probs[1] / numInEdges;
 | |
|     for (unsigned SuccIdx : InEdges)
 | |
|       setEdgeProbability(BB, SuccIdx, Prob);
 | |
|   }
 | |
| 
 | |
|   if (uint32_t numExitingEdges = ExitingEdges.size()) {
 | |
|     auto Prob = Probs[2] / numExitingEdges;
 | |
|     for (unsigned SuccIdx : ExitingEdges)
 | |
|       setEdgeProbability(BB, SuccIdx, Prob);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
 | |
|                                                const TargetLibraryInfo *TLI) {
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = BI->getCondition();
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | |
|   if (!CI)
 | |
|     return false;
 | |
| 
 | |
|   Value *RHS = CI->getOperand(1);
 | |
|   ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
 | |
|   if (!CV)
 | |
|     return false;
 | |
| 
 | |
|   // If the LHS is the result of AND'ing a value with a single bit bitmask,
 | |
|   // we don't have information about probabilities.
 | |
|   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
 | |
|     if (LHS->getOpcode() == Instruction::And)
 | |
|       if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
 | |
|         if (AndRHS->getValue().isPowerOf2())
 | |
|           return false;
 | |
| 
 | |
|   // Check if the LHS is the return value of a library function
 | |
|   LibFunc Func = NumLibFuncs;
 | |
|   if (TLI)
 | |
|     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
 | |
|       if (Function *CalledFn = Call->getCalledFunction())
 | |
|         TLI->getLibFunc(*CalledFn, Func);
 | |
| 
 | |
|   bool isProb;
 | |
|   if (Func == LibFunc_strcasecmp ||
 | |
|       Func == LibFunc_strcmp ||
 | |
|       Func == LibFunc_strncasecmp ||
 | |
|       Func == LibFunc_strncmp ||
 | |
|       Func == LibFunc_memcmp) {
 | |
|     // strcmp and similar functions return zero, negative, or positive, if the
 | |
|     // first string is equal, less, or greater than the second. We consider it
 | |
|     // likely that the strings are not equal, so a comparison with zero is
 | |
|     // probably false, but also a comparison with any other number is also
 | |
|     // probably false given that what exactly is returned for nonzero values is
 | |
|     // not specified. Any kind of comparison other than equality we know
 | |
|     // nothing about.
 | |
|     switch (CI->getPredicate()) {
 | |
|     case CmpInst::ICMP_EQ:
 | |
|       isProb = false;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|       isProb = true;
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   } else if (CV->isZero()) {
 | |
|     switch (CI->getPredicate()) {
 | |
|     case CmpInst::ICMP_EQ:
 | |
|       // X == 0   ->  Unlikely
 | |
|       isProb = false;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|       // X != 0   ->  Likely
 | |
|       isProb = true;
 | |
|       break;
 | |
|     case CmpInst::ICMP_SLT:
 | |
|       // X < 0   ->  Unlikely
 | |
|       isProb = false;
 | |
|       break;
 | |
|     case CmpInst::ICMP_SGT:
 | |
|       // X > 0   ->  Likely
 | |
|       isProb = true;
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
 | |
|     // InstCombine canonicalizes X <= 0 into X < 1.
 | |
|     // X <= 0   ->  Unlikely
 | |
|     isProb = false;
 | |
|   } else if (CV->isMinusOne()) {
 | |
|     switch (CI->getPredicate()) {
 | |
|     case CmpInst::ICMP_EQ:
 | |
|       // X == -1  ->  Unlikely
 | |
|       isProb = false;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|       // X != -1  ->  Likely
 | |
|       isProb = true;
 | |
|       break;
 | |
|     case CmpInst::ICMP_SGT:
 | |
|       // InstCombine canonicalizes X >= 0 into X > -1.
 | |
|       // X >= 0   ->  Likely
 | |
|       isProb = true;
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned TakenIdx = 0, NonTakenIdx = 1;
 | |
| 
 | |
|   if (!isProb)
 | |
|     std::swap(TakenIdx, NonTakenIdx);
 | |
| 
 | |
|   BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
 | |
|                               ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
 | |
|   setEdgeProbability(BB, TakenIdx, TakenProb);
 | |
|   setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = BI->getCondition();
 | |
|   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
 | |
|   if (!FCmp)
 | |
|     return false;
 | |
| 
 | |
|   bool isProb;
 | |
|   if (FCmp->isEquality()) {
 | |
|     // f1 == f2 -> Unlikely
 | |
|     // f1 != f2 -> Likely
 | |
|     isProb = !FCmp->isTrueWhenEqual();
 | |
|   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
 | |
|     // !isnan -> Likely
 | |
|     isProb = true;
 | |
|   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
 | |
|     // isnan -> Unlikely
 | |
|     isProb = false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned TakenIdx = 0, NonTakenIdx = 1;
 | |
| 
 | |
|   if (!isProb)
 | |
|     std::swap(TakenIdx, NonTakenIdx);
 | |
| 
 | |
|   BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
 | |
|                               FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
 | |
|   setEdgeProbability(BB, TakenIdx, TakenProb);
 | |
|   setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
 | |
|   const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
 | |
|   if (!II)
 | |
|     return false;
 | |
| 
 | |
|   BranchProbability TakenProb(IH_TAKEN_WEIGHT,
 | |
|                               IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
 | |
|   setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
 | |
|   setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::releaseMemory() {
 | |
|   Probs.clear();
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::print(raw_ostream &OS) const {
 | |
|   OS << "---- Branch Probabilities ----\n";
 | |
|   // We print the probabilities from the last function the analysis ran over,
 | |
|   // or the function it is currently running over.
 | |
|   assert(LastF && "Cannot print prior to running over a function");
 | |
|   for (const auto &BI : *LastF) {
 | |
|     for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
 | |
|          ++SI) {
 | |
|       printEdgeProbability(OS << "  ", &BI, *SI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::
 | |
| isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
 | |
|   // Hot probability is at least 4/5 = 80%
 | |
|   // FIXME: Compare against a static "hot" BranchProbability.
 | |
|   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
 | |
| }
 | |
| 
 | |
| const BasicBlock *
 | |
| BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
 | |
|   auto MaxProb = BranchProbability::getZero();
 | |
|   const BasicBlock *MaxSucc = nullptr;
 | |
| 
 | |
|   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
 | |
|     const BasicBlock *Succ = *I;
 | |
|     auto Prob = getEdgeProbability(BB, Succ);
 | |
|     if (Prob > MaxProb) {
 | |
|       MaxProb = Prob;
 | |
|       MaxSucc = Succ;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Hot probability is at least 4/5 = 80%
 | |
|   if (MaxProb > BranchProbability(4, 5))
 | |
|     return MaxSucc;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Get the raw edge probability for the edge. If can't find it, return a
 | |
| /// default probability 1/N where N is the number of successors. Here an edge is
 | |
| /// specified using PredBlock and an
 | |
| /// index to the successors.
 | |
| BranchProbability
 | |
| BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | |
|                                           unsigned IndexInSuccessors) const {
 | |
|   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
 | |
| 
 | |
|   if (I != Probs.end())
 | |
|     return I->second;
 | |
| 
 | |
|   return {1,
 | |
|           static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))};
 | |
| }
 | |
| 
 | |
| BranchProbability
 | |
| BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | |
|                                           succ_const_iterator Dst) const {
 | |
|   return getEdgeProbability(Src, Dst.getSuccessorIndex());
 | |
| }
 | |
| 
 | |
| /// Get the raw edge probability calculated for the block pair. This returns the
 | |
| /// sum of all raw edge probabilities from Src to Dst.
 | |
| BranchProbability
 | |
| BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | |
|                                           const BasicBlock *Dst) const {
 | |
|   auto Prob = BranchProbability::getZero();
 | |
|   bool FoundProb = false;
 | |
|   for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
 | |
|     if (*I == Dst) {
 | |
|       auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
 | |
|       if (MapI != Probs.end()) {
 | |
|         FoundProb = true;
 | |
|         Prob += MapI->second;
 | |
|       }
 | |
|     }
 | |
|   uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
 | |
|   return FoundProb ? Prob : BranchProbability(1, succ_num);
 | |
| }
 | |
| 
 | |
| /// Set the edge probability for a given edge specified by PredBlock and an
 | |
| /// index to the successors.
 | |
| void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
 | |
|                                                unsigned IndexInSuccessors,
 | |
|                                                BranchProbability Prob) {
 | |
|   Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
 | |
|   Handles.insert(BasicBlockCallbackVH(Src, this));
 | |
|   DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors
 | |
|                << " successor probability to " << Prob << "\n");
 | |
| }
 | |
| 
 | |
| raw_ostream &
 | |
| BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
 | |
|                                             const BasicBlock *Src,
 | |
|                                             const BasicBlock *Dst) const {
 | |
|   const BranchProbability Prob = getEdgeProbability(Src, Dst);
 | |
|   OS << "edge " << Src->getName() << " -> " << Dst->getName()
 | |
|      << " probability is " << Prob
 | |
|      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
 | |
| 
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
 | |
|   for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
 | |
|     auto Key = I->first;
 | |
|     if (Key.first == BB)
 | |
|       Probs.erase(Key);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
 | |
|                                       const TargetLibraryInfo *TLI) {
 | |
|   DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
 | |
|                << " ----\n\n");
 | |
|   LastF = &F; // Store the last function we ran on for printing.
 | |
|   assert(PostDominatedByUnreachable.empty());
 | |
|   assert(PostDominatedByColdCall.empty());
 | |
| 
 | |
|   // Walk the basic blocks in post-order so that we can build up state about
 | |
|   // the successors of a block iteratively.
 | |
|   for (auto BB : post_order(&F.getEntryBlock())) {
 | |
|     DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
 | |
|     updatePostDominatedByUnreachable(BB);
 | |
|     updatePostDominatedByColdCall(BB);
 | |
|     // If there is no at least two successors, no sense to set probability.
 | |
|     if (BB->getTerminator()->getNumSuccessors() < 2)
 | |
|       continue;
 | |
|     if (calcMetadataWeights(BB))
 | |
|       continue;
 | |
|     if (calcUnreachableHeuristics(BB))
 | |
|       continue;
 | |
|     if (calcColdCallHeuristics(BB))
 | |
|       continue;
 | |
|     if (calcLoopBranchHeuristics(BB, LI))
 | |
|       continue;
 | |
|     if (calcPointerHeuristics(BB))
 | |
|       continue;
 | |
|     if (calcZeroHeuristics(BB, TLI))
 | |
|       continue;
 | |
|     if (calcFloatingPointHeuristics(BB))
 | |
|       continue;
 | |
|     calcInvokeHeuristics(BB);
 | |
|   }
 | |
| 
 | |
|   PostDominatedByUnreachable.clear();
 | |
|   PostDominatedByColdCall.clear();
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
 | |
|     AnalysisUsage &AU) const {
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
 | |
|   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   BPI.calculate(F, LI, &TLI);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
 | |
| 
 | |
| void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
 | |
|                                              const Module *) const {
 | |
|   BPI.print(OS);
 | |
| }
 | |
| 
 | |
| AnalysisKey BranchProbabilityAnalysis::Key;
 | |
| BranchProbabilityInfo
 | |
| BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   BranchProbabilityInfo BPI;
 | |
|   BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
 | |
|   return BPI;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   OS << "Printing analysis results of BPI for function "
 | |
|      << "'" << F.getName() << "':"
 | |
|      << "\n";
 | |
|   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |