672 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			672 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This file defines CFLGraph, an auxiliary data structure used by CFL-based
 | |
| /// alias analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
 | |
| #define LLVM_LIB_ANALYSIS_CFLGRAPH_H
 | |
| 
 | |
| #include "AliasAnalysisSummary.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| namespace cflaa {
 | |
| 
 | |
| /// \brief The Program Expression Graph (PEG) of CFL analysis
 | |
| /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
 | |
| /// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
 | |
| /// the main purpose of this graph is to abstract away unrelated facts and
 | |
| /// translate the rest into a form that can be easily digested by CFL analyses.
 | |
| /// Each Node in the graph is an InstantiatedValue, and each edge represent a
 | |
| /// pointer assignment between InstantiatedValue. Pointer
 | |
| /// references/dereferences are not explicitly stored in the graph: we
 | |
| /// implicitly assume that for each node (X, I) it has a dereference edge to (X,
 | |
| /// I+1) and a reference edge to (X, I-1).
 | |
| class CFLGraph {
 | |
| public:
 | |
|   using Node = InstantiatedValue;
 | |
| 
 | |
|   struct Edge {
 | |
|     Node Other;
 | |
|     int64_t Offset;
 | |
|   };
 | |
| 
 | |
|   using EdgeList = std::vector<Edge>;
 | |
| 
 | |
|   struct NodeInfo {
 | |
|     EdgeList Edges, ReverseEdges;
 | |
|     AliasAttrs Attr;
 | |
|   };
 | |
| 
 | |
|   class ValueInfo {
 | |
|     std::vector<NodeInfo> Levels;
 | |
| 
 | |
|   public:
 | |
|     bool addNodeToLevel(unsigned Level) {
 | |
|       auto NumLevels = Levels.size();
 | |
|       if (NumLevels > Level)
 | |
|         return false;
 | |
|       Levels.resize(Level + 1);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     NodeInfo &getNodeInfoAtLevel(unsigned Level) {
 | |
|       assert(Level < Levels.size());
 | |
|       return Levels[Level];
 | |
|     }
 | |
|     const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
 | |
|       assert(Level < Levels.size());
 | |
|       return Levels[Level];
 | |
|     }
 | |
| 
 | |
|     unsigned getNumLevels() const { return Levels.size(); }
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   using ValueMap = DenseMap<Value *, ValueInfo>;
 | |
| 
 | |
|   ValueMap ValueImpls;
 | |
| 
 | |
|   NodeInfo *getNode(Node N) {
 | |
|     auto Itr = ValueImpls.find(N.Val);
 | |
|     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
 | |
|       return nullptr;
 | |
|     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   using const_value_iterator = ValueMap::const_iterator;
 | |
| 
 | |
|   bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
 | |
|     assert(N.Val != nullptr);
 | |
|     auto &ValInfo = ValueImpls[N.Val];
 | |
|     auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
 | |
|     ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   void addAttr(Node N, AliasAttrs Attr) {
 | |
|     auto *Info = getNode(N);
 | |
|     assert(Info != nullptr);
 | |
|     Info->Attr |= Attr;
 | |
|   }
 | |
| 
 | |
|   void addEdge(Node From, Node To, int64_t Offset = 0) {
 | |
|     auto *FromInfo = getNode(From);
 | |
|     assert(FromInfo != nullptr);
 | |
|     auto *ToInfo = getNode(To);
 | |
|     assert(ToInfo != nullptr);
 | |
| 
 | |
|     FromInfo->Edges.push_back(Edge{To, Offset});
 | |
|     ToInfo->ReverseEdges.push_back(Edge{From, Offset});
 | |
|   }
 | |
| 
 | |
|   const NodeInfo *getNode(Node N) const {
 | |
|     auto Itr = ValueImpls.find(N.Val);
 | |
|     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
 | |
|       return nullptr;
 | |
|     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
 | |
|   }
 | |
| 
 | |
|   AliasAttrs attrFor(Node N) const {
 | |
|     auto *Info = getNode(N);
 | |
|     assert(Info != nullptr);
 | |
|     return Info->Attr;
 | |
|   }
 | |
| 
 | |
|   iterator_range<const_value_iterator> value_mappings() const {
 | |
|     return make_range<const_value_iterator>(ValueImpls.begin(),
 | |
|                                             ValueImpls.end());
 | |
|   }
 | |
| };
 | |
| 
 | |
| ///\brief A builder class used to create CFLGraph instance from a given function
 | |
| /// The CFL-AA that uses this builder must provide its own type as a template
 | |
| /// argument. This is necessary for interprocedural processing: CFLGraphBuilder
 | |
| /// needs a way of obtaining the summary of other functions when callinsts are
 | |
| /// encountered.
 | |
| /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
 | |
| /// member function that takes a Function& and returns the corresponding summary
 | |
| /// as a const AliasSummary*.
 | |
| template <typename CFLAA> class CFLGraphBuilder {
 | |
|   // Input of the builder
 | |
|   CFLAA &Analysis;
 | |
|   const TargetLibraryInfo &TLI;
 | |
| 
 | |
|   // Output of the builder
 | |
|   CFLGraph Graph;
 | |
|   SmallVector<Value *, 4> ReturnedValues;
 | |
| 
 | |
|   // Helper class
 | |
|   /// Gets the edges our graph should have, based on an Instruction*
 | |
|   class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
 | |
|     CFLAA &AA;
 | |
|     const DataLayout &DL;
 | |
|     const TargetLibraryInfo &TLI;
 | |
| 
 | |
|     CFLGraph &Graph;
 | |
|     SmallVectorImpl<Value *> &ReturnValues;
 | |
| 
 | |
|     static bool hasUsefulEdges(ConstantExpr *CE) {
 | |
|       // ConstantExpr doesn't have terminators, invokes, or fences, so only
 | |
|       // needs
 | |
|       // to check for compares.
 | |
|       return CE->getOpcode() != Instruction::ICmp &&
 | |
|              CE->getOpcode() != Instruction::FCmp;
 | |
|     }
 | |
| 
 | |
|     // Returns possible functions called by CS into the given SmallVectorImpl.
 | |
|     // Returns true if targets found, false otherwise.
 | |
|     static bool getPossibleTargets(CallSite CS,
 | |
|                                    SmallVectorImpl<Function *> &Output) {
 | |
|       if (auto *Fn = CS.getCalledFunction()) {
 | |
|         Output.push_back(Fn);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // TODO: If the call is indirect, we might be able to enumerate all
 | |
|       // potential
 | |
|       // targets of the call and return them, rather than just failing.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
 | |
|       assert(Val != nullptr && Val->getType()->isPointerTy());
 | |
|       if (auto GVal = dyn_cast<GlobalValue>(Val)) {
 | |
|         if (Graph.addNode(InstantiatedValue{GVal, 0},
 | |
|                           getGlobalOrArgAttrFromValue(*GVal)))
 | |
|           Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
 | |
|       } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
 | |
|         if (hasUsefulEdges(CExpr)) {
 | |
|           if (Graph.addNode(InstantiatedValue{CExpr, 0}))
 | |
|             visitConstantExpr(CExpr);
 | |
|         }
 | |
|       } else
 | |
|         Graph.addNode(InstantiatedValue{Val, 0}, Attr);
 | |
|     }
 | |
| 
 | |
|     void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
 | |
|       assert(From != nullptr && To != nullptr);
 | |
|       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
 | |
|         return;
 | |
|       addNode(From);
 | |
|       if (To != From) {
 | |
|         addNode(To);
 | |
|         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
 | |
|                       Offset);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void addDerefEdge(Value *From, Value *To, bool IsRead) {
 | |
|       assert(From != nullptr && To != nullptr);
 | |
|       // FIXME: This is subtly broken, due to how we model some instructions
 | |
|       // (e.g. extractvalue, extractelement) as loads. Since those take
 | |
|       // non-pointer operands, we'll entirely skip adding edges for those.
 | |
|       //
 | |
|       // addAssignEdge seems to have a similar issue with insertvalue, etc.
 | |
|       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
 | |
|         return;
 | |
|       addNode(From);
 | |
|       addNode(To);
 | |
|       if (IsRead) {
 | |
|         Graph.addNode(InstantiatedValue{From, 1});
 | |
|         Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
 | |
|       } else {
 | |
|         Graph.addNode(InstantiatedValue{To, 1});
 | |
|         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
 | |
|     void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
 | |
| 
 | |
|   public:
 | |
|     GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
 | |
|         : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
 | |
|           ReturnValues(Builder.ReturnedValues) {}
 | |
| 
 | |
|     void visitInstruction(Instruction &) {
 | |
|       llvm_unreachable("Unsupported instruction encountered");
 | |
|     }
 | |
| 
 | |
|     void visitReturnInst(ReturnInst &Inst) {
 | |
|       if (auto RetVal = Inst.getReturnValue()) {
 | |
|         if (RetVal->getType()->isPointerTy()) {
 | |
|           addNode(RetVal);
 | |
|           ReturnValues.push_back(RetVal);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void visitPtrToIntInst(PtrToIntInst &Inst) {
 | |
|       auto *Ptr = Inst.getOperand(0);
 | |
|       addNode(Ptr, getAttrEscaped());
 | |
|     }
 | |
| 
 | |
|     void visitIntToPtrInst(IntToPtrInst &Inst) {
 | |
|       auto *Ptr = &Inst;
 | |
|       addNode(Ptr, getAttrUnknown());
 | |
|     }
 | |
| 
 | |
|     void visitCastInst(CastInst &Inst) {
 | |
|       auto *Src = Inst.getOperand(0);
 | |
|       addAssignEdge(Src, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitBinaryOperator(BinaryOperator &Inst) {
 | |
|       auto *Op1 = Inst.getOperand(0);
 | |
|       auto *Op2 = Inst.getOperand(1);
 | |
|       addAssignEdge(Op1, &Inst);
 | |
|       addAssignEdge(Op2, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
 | |
|       auto *Ptr = Inst.getPointerOperand();
 | |
|       auto *Val = Inst.getNewValOperand();
 | |
|       addStoreEdge(Val, Ptr);
 | |
|     }
 | |
| 
 | |
|     void visitAtomicRMWInst(AtomicRMWInst &Inst) {
 | |
|       auto *Ptr = Inst.getPointerOperand();
 | |
|       auto *Val = Inst.getValOperand();
 | |
|       addStoreEdge(Val, Ptr);
 | |
|     }
 | |
| 
 | |
|     void visitPHINode(PHINode &Inst) {
 | |
|       for (Value *Val : Inst.incoming_values())
 | |
|         addAssignEdge(Val, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitGEP(GEPOperator &GEPOp) {
 | |
|       uint64_t Offset = UnknownOffset;
 | |
|       APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
 | |
|                      0);
 | |
|       if (GEPOp.accumulateConstantOffset(DL, APOffset))
 | |
|         Offset = APOffset.getSExtValue();
 | |
| 
 | |
|       auto *Op = GEPOp.getPointerOperand();
 | |
|       addAssignEdge(Op, &GEPOp, Offset);
 | |
|     }
 | |
| 
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &Inst) {
 | |
|       auto *GEPOp = cast<GEPOperator>(&Inst);
 | |
|       visitGEP(*GEPOp);
 | |
|     }
 | |
| 
 | |
|     void visitSelectInst(SelectInst &Inst) {
 | |
|       // Condition is not processed here (The actual statement producing
 | |
|       // the condition result is processed elsewhere). For select, the
 | |
|       // condition is evaluated, but not loaded, stored, or assigned
 | |
|       // simply as a result of being the condition of a select.
 | |
| 
 | |
|       auto *TrueVal = Inst.getTrueValue();
 | |
|       auto *FalseVal = Inst.getFalseValue();
 | |
|       addAssignEdge(TrueVal, &Inst);
 | |
|       addAssignEdge(FalseVal, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
 | |
| 
 | |
|     void visitLoadInst(LoadInst &Inst) {
 | |
|       auto *Ptr = Inst.getPointerOperand();
 | |
|       auto *Val = &Inst;
 | |
|       addLoadEdge(Ptr, Val);
 | |
|     }
 | |
| 
 | |
|     void visitStoreInst(StoreInst &Inst) {
 | |
|       auto *Ptr = Inst.getPointerOperand();
 | |
|       auto *Val = Inst.getValueOperand();
 | |
|       addStoreEdge(Val, Ptr);
 | |
|     }
 | |
| 
 | |
|     void visitVAArgInst(VAArgInst &Inst) {
 | |
|       // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
 | |
|       // does
 | |
|       // two things:
 | |
|       //  1. Loads a value from *((T*)*Ptr).
 | |
|       //  2. Increments (stores to) *Ptr by some target-specific amount.
 | |
|       // For now, we'll handle this like a landingpad instruction (by placing
 | |
|       // the
 | |
|       // result in its own group, and having that group alias externals).
 | |
|       if (Inst.getType()->isPointerTy())
 | |
|         addNode(&Inst, getAttrUnknown());
 | |
|     }
 | |
| 
 | |
|     static bool isFunctionExternal(Function *Fn) {
 | |
|       return !Fn->hasExactDefinition();
 | |
|     }
 | |
| 
 | |
|     bool tryInterproceduralAnalysis(CallSite CS,
 | |
|                                     const SmallVectorImpl<Function *> &Fns) {
 | |
|       assert(Fns.size() > 0);
 | |
| 
 | |
|       if (CS.arg_size() > MaxSupportedArgsInSummary)
 | |
|         return false;
 | |
| 
 | |
|       // Exit early if we'll fail anyway
 | |
|       for (auto *Fn : Fns) {
 | |
|         if (isFunctionExternal(Fn) || Fn->isVarArg())
 | |
|           return false;
 | |
|         // Fail if the caller does not provide enough arguments
 | |
|         assert(Fn->arg_size() <= CS.arg_size());
 | |
|         if (!AA.getAliasSummary(*Fn))
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       for (auto *Fn : Fns) {
 | |
|         auto Summary = AA.getAliasSummary(*Fn);
 | |
|         assert(Summary != nullptr);
 | |
| 
 | |
|         auto &RetParamRelations = Summary->RetParamRelations;
 | |
|         for (auto &Relation : RetParamRelations) {
 | |
|           auto IRelation = instantiateExternalRelation(Relation, CS);
 | |
|           if (IRelation.hasValue()) {
 | |
|             Graph.addNode(IRelation->From);
 | |
|             Graph.addNode(IRelation->To);
 | |
|             Graph.addEdge(IRelation->From, IRelation->To);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         auto &RetParamAttributes = Summary->RetParamAttributes;
 | |
|         for (auto &Attribute : RetParamAttributes) {
 | |
|           auto IAttr = instantiateExternalAttribute(Attribute, CS);
 | |
|           if (IAttr.hasValue())
 | |
|             Graph.addNode(IAttr->IValue, IAttr->Attr);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     void visitCallSite(CallSite CS) {
 | |
|       auto Inst = CS.getInstruction();
 | |
| 
 | |
|       // Make sure all arguments and return value are added to the graph first
 | |
|       for (Value *V : CS.args())
 | |
|         if (V->getType()->isPointerTy())
 | |
|           addNode(V);
 | |
|       if (Inst->getType()->isPointerTy())
 | |
|         addNode(Inst);
 | |
| 
 | |
|       // Check if Inst is a call to a library function that
 | |
|       // allocates/deallocates
 | |
|       // on the heap. Those kinds of functions do not introduce any aliases.
 | |
|       // TODO: address other common library functions such as realloc(),
 | |
|       // strdup(),
 | |
|       // etc.
 | |
|       if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI))
 | |
|         return;
 | |
| 
 | |
|       // TODO: Add support for noalias args/all the other fun function
 | |
|       // attributes
 | |
|       // that we can tack on.
 | |
|       SmallVector<Function *, 4> Targets;
 | |
|       if (getPossibleTargets(CS, Targets))
 | |
|         if (tryInterproceduralAnalysis(CS, Targets))
 | |
|           return;
 | |
| 
 | |
|       // Because the function is opaque, we need to note that anything
 | |
|       // could have happened to the arguments (unless the function is marked
 | |
|       // readonly or readnone), and that the result could alias just about
 | |
|       // anything, too (unless the result is marked noalias).
 | |
|       if (!CS.onlyReadsMemory())
 | |
|         for (Value *V : CS.args()) {
 | |
|           if (V->getType()->isPointerTy()) {
 | |
|             // The argument itself escapes.
 | |
|             Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
 | |
|             // The fate of argument memory is unknown. Note that since
 | |
|             // AliasAttrs is transitive with respect to dereference, we only
 | |
|             // need to specify it for the first-level memory.
 | |
|             Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (Inst->getType()->isPointerTy()) {
 | |
|         auto *Fn = CS.getCalledFunction();
 | |
|         if (Fn == nullptr || !Fn->returnDoesNotAlias())
 | |
|           // No need to call addNode() since we've added Inst at the
 | |
|           // beginning of this function and we know it is not a global.
 | |
|           Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Because vectors/aggregates are immutable and unaddressable, there's
 | |
|     /// nothing we can do to coax a value out of them, other than calling
 | |
|     /// Extract{Element,Value}. We can effectively treat them as pointers to
 | |
|     /// arbitrary memory locations we can store in and load from.
 | |
|     void visitExtractElementInst(ExtractElementInst &Inst) {
 | |
|       auto *Ptr = Inst.getVectorOperand();
 | |
|       auto *Val = &Inst;
 | |
|       addLoadEdge(Ptr, Val);
 | |
|     }
 | |
| 
 | |
|     void visitInsertElementInst(InsertElementInst &Inst) {
 | |
|       auto *Vec = Inst.getOperand(0);
 | |
|       auto *Val = Inst.getOperand(1);
 | |
|       addAssignEdge(Vec, &Inst);
 | |
|       addStoreEdge(Val, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitLandingPadInst(LandingPadInst &Inst) {
 | |
|       // Exceptions come from "nowhere", from our analysis' perspective.
 | |
|       // So we place the instruction its own group, noting that said group may
 | |
|       // alias externals
 | |
|       if (Inst.getType()->isPointerTy())
 | |
|         addNode(&Inst, getAttrUnknown());
 | |
|     }
 | |
| 
 | |
|     void visitInsertValueInst(InsertValueInst &Inst) {
 | |
|       auto *Agg = Inst.getOperand(0);
 | |
|       auto *Val = Inst.getOperand(1);
 | |
|       addAssignEdge(Agg, &Inst);
 | |
|       addStoreEdge(Val, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitExtractValueInst(ExtractValueInst &Inst) {
 | |
|       auto *Ptr = Inst.getAggregateOperand();
 | |
|       addLoadEdge(Ptr, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
 | |
|       auto *From1 = Inst.getOperand(0);
 | |
|       auto *From2 = Inst.getOperand(1);
 | |
|       addAssignEdge(From1, &Inst);
 | |
|       addAssignEdge(From2, &Inst);
 | |
|     }
 | |
| 
 | |
|     void visitConstantExpr(ConstantExpr *CE) {
 | |
|       switch (CE->getOpcode()) {
 | |
|       case Instruction::GetElementPtr: {
 | |
|         auto GEPOp = cast<GEPOperator>(CE);
 | |
|         visitGEP(*GEPOp);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::PtrToInt: {
 | |
|         auto *Ptr = CE->getOperand(0);
 | |
|         addNode(Ptr, getAttrEscaped());
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::IntToPtr:
 | |
|         addNode(CE, getAttrUnknown());
 | |
|         break;
 | |
| 
 | |
|       case Instruction::BitCast:
 | |
|       case Instruction::AddrSpaceCast:
 | |
|       case Instruction::Trunc:
 | |
|       case Instruction::ZExt:
 | |
|       case Instruction::SExt:
 | |
|       case Instruction::FPExt:
 | |
|       case Instruction::FPTrunc:
 | |
|       case Instruction::UIToFP:
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::FPToUI:
 | |
|       case Instruction::FPToSI: {
 | |
|         auto *Src = CE->getOperand(0);
 | |
|         addAssignEdge(Src, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Select: {
 | |
|         auto *TrueVal = CE->getOperand(0);
 | |
|         auto *FalseVal = CE->getOperand(1);
 | |
|         addAssignEdge(TrueVal, CE);
 | |
|         addAssignEdge(FalseVal, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::InsertElement: {
 | |
|         auto *Vec = CE->getOperand(0);
 | |
|         auto *Val = CE->getOperand(1);
 | |
|         addAssignEdge(Vec, CE);
 | |
|         addStoreEdge(Val, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::ExtractElement: {
 | |
|         auto *Ptr = CE->getOperand(0);
 | |
|         addLoadEdge(Ptr, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::InsertValue: {
 | |
|         auto *Agg = CE->getOperand(0);
 | |
|         auto *Val = CE->getOperand(1);
 | |
|         addAssignEdge(Agg, CE);
 | |
|         addStoreEdge(Val, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::ExtractValue: {
 | |
|         auto *Ptr = CE->getOperand(0);
 | |
|         addLoadEdge(Ptr, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::ShuffleVector: {
 | |
|         auto *From1 = CE->getOperand(0);
 | |
|         auto *From2 = CE->getOperand(1);
 | |
|         addAssignEdge(From1, CE);
 | |
|         addAssignEdge(From2, CE);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::FSub:
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::FMul:
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::SDiv:
 | |
|       case Instruction::FDiv:
 | |
|       case Instruction::URem:
 | |
|       case Instruction::SRem:
 | |
|       case Instruction::FRem:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::AShr:
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::FCmp:
 | |
|         addAssignEdge(CE->getOperand(0), CE);
 | |
|         addAssignEdge(CE->getOperand(1), CE);
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         llvm_unreachable("Unknown instruction type encountered!");
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Helper functions
 | |
| 
 | |
|   // Determines whether or not we an instruction is useless to us (e.g.
 | |
|   // FenceInst)
 | |
|   static bool hasUsefulEdges(Instruction *Inst) {
 | |
|     bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) &&
 | |
|                                     !isa<InvokeInst>(Inst) &&
 | |
|                                     !isa<ReturnInst>(Inst);
 | |
|     return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
 | |
|            !IsNonInvokeRetTerminator;
 | |
|   }
 | |
| 
 | |
|   void addArgumentToGraph(Argument &Arg) {
 | |
|     if (Arg.getType()->isPointerTy()) {
 | |
|       Graph.addNode(InstantiatedValue{&Arg, 0},
 | |
|                     getGlobalOrArgAttrFromValue(Arg));
 | |
|       // Pointees of a formal parameter is known to the caller
 | |
|       Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Given an Instruction, this will add it to the graph, along with any
 | |
|   // Instructions that are potentially only available from said Instruction
 | |
|   // For example, given the following line:
 | |
|   //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
 | |
|   // addInstructionToGraph would add both the `load` and `getelementptr`
 | |
|   // instructions to the graph appropriately.
 | |
|   void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
 | |
|     if (!hasUsefulEdges(&Inst))
 | |
|       return;
 | |
| 
 | |
|     Visitor.visit(Inst);
 | |
|   }
 | |
| 
 | |
|   // Builds the graph needed for constructing the StratifiedSets for the given
 | |
|   // function
 | |
|   void buildGraphFrom(Function &Fn) {
 | |
|     GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
 | |
| 
 | |
|     for (auto &Bb : Fn.getBasicBlockList())
 | |
|       for (auto &Inst : Bb.getInstList())
 | |
|         addInstructionToGraph(Visitor, Inst);
 | |
| 
 | |
|     for (auto &Arg : Fn.args())
 | |
|       addArgumentToGraph(Arg);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
 | |
|       : Analysis(Analysis), TLI(TLI) {
 | |
|     buildGraphFrom(Fn);
 | |
|   }
 | |
| 
 | |
|   const CFLGraph &getCFLGraph() const { return Graph; }
 | |
|   const SmallVector<Value *, 4> &getReturnValues() const {
 | |
|     return ReturnedValues;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace cflaa
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H
 |