411 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- DemandedBits.cpp - Determine demanded bits -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements a demanded bits analysis. A demanded bit is one that
 | |
| // contributes to a result; bits that are not demanded can be either zero or
 | |
| // one without affecting control or data flow. For example in this sequence:
 | |
| //
 | |
| //   %1 = add i32 %x, %y
 | |
| //   %2 = trunc i32 %1 to i16
 | |
| //
 | |
| // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
 | |
| // trunc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DemandedBits.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstdint>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "demanded-bits"
 | |
| 
 | |
| char DemandedBitsWrapperPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
 | |
|                       "Demanded bits analysis", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
 | |
|                     "Demanded bits analysis", false, false)
 | |
| 
 | |
| DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
 | |
|   initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
 | |
|   DB->print(OS);
 | |
| }
 | |
| 
 | |
| static bool isAlwaysLive(Instruction *I) {
 | |
|   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
 | |
|       I->isEHPad() || I->mayHaveSideEffects();
 | |
| }
 | |
| 
 | |
| void DemandedBits::determineLiveOperandBits(
 | |
|     const Instruction *UserI, const Instruction *I, unsigned OperandNo,
 | |
|     const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
 | |
|   unsigned BitWidth = AB.getBitWidth();
 | |
| 
 | |
|   // We're called once per operand, but for some instructions, we need to
 | |
|   // compute known bits of both operands in order to determine the live bits of
 | |
|   // either (when both operands are instructions themselves). We don't,
 | |
|   // however, want to do this twice, so we cache the result in APInts that live
 | |
|   // in the caller. For the two-relevant-operands case, both operand values are
 | |
|   // provided here.
 | |
|   auto ComputeKnownBits =
 | |
|       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
 | |
|         const DataLayout &DL = I->getModule()->getDataLayout();
 | |
|         Known = KnownBits(BitWidth);
 | |
|         computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
 | |
| 
 | |
|         if (V2) {
 | |
|           Known2 = KnownBits(BitWidth);
 | |
|           computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
 | |
|         }
 | |
|       };
 | |
| 
 | |
|   switch (UserI->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Invoke:
 | |
|     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::bswap:
 | |
|         // The alive bits of the input are the swapped alive bits of
 | |
|         // the output.
 | |
|         AB = AOut.byteSwap();
 | |
|         break;
 | |
|       case Intrinsic::bitreverse:
 | |
|         // The alive bits of the input are the reversed alive bits of
 | |
|         // the output.
 | |
|         AB = AOut.reverseBits();
 | |
|         break;
 | |
|       case Intrinsic::ctlz:
 | |
|         if (OperandNo == 0) {
 | |
|           // We need some output bits, so we need all bits of the
 | |
|           // input to the left of, and including, the leftmost bit
 | |
|           // known to be one.
 | |
|           ComputeKnownBits(BitWidth, I, nullptr);
 | |
|           AB = APInt::getHighBitsSet(BitWidth,
 | |
|                  std::min(BitWidth, Known.countMaxLeadingZeros()+1));
 | |
|         }
 | |
|         break;
 | |
|       case Intrinsic::cttz:
 | |
|         if (OperandNo == 0) {
 | |
|           // We need some output bits, so we need all bits of the
 | |
|           // input to the right of, and including, the rightmost bit
 | |
|           // known to be one.
 | |
|           ComputeKnownBits(BitWidth, I, nullptr);
 | |
|           AB = APInt::getLowBitsSet(BitWidth,
 | |
|                  std::min(BitWidth, Known.countMaxTrailingZeros()+1));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // Find the highest live output bit. We don't need any more input
 | |
|     // bits than that (adds, and thus subtracts, ripple only to the
 | |
|     // left).
 | |
|     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     if (OperandNo == 0)
 | |
|       if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
 | |
|         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
 | |
|         AB = AOut.lshr(ShiftAmt);
 | |
| 
 | |
|         // If the shift is nuw/nsw, then the high bits are not dead
 | |
|         // (because we've promised that they *must* be zero).
 | |
|         const ShlOperator *S = cast<ShlOperator>(UserI);
 | |
|         if (S->hasNoSignedWrap())
 | |
|           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
 | |
|         else if (S->hasNoUnsignedWrap())
 | |
|           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
 | |
|       }
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     if (OperandNo == 0)
 | |
|       if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
 | |
|         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
 | |
|         AB = AOut.shl(ShiftAmt);
 | |
| 
 | |
|         // If the shift is exact, then the low bits are not dead
 | |
|         // (they must be zero).
 | |
|         if (cast<LShrOperator>(UserI)->isExact())
 | |
|           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | |
|       }
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     if (OperandNo == 0)
 | |
|       if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
 | |
|         uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
 | |
|         AB = AOut.shl(ShiftAmt);
 | |
|         // Because the high input bit is replicated into the
 | |
|         // high-order bits of the result, if we need any of those
 | |
|         // bits, then we must keep the highest input bit.
 | |
|         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
 | |
|             .getBoolValue())
 | |
|           AB.setSignBit();
 | |
| 
 | |
|         // If the shift is exact, then the low bits are not dead
 | |
|         // (they must be zero).
 | |
|         if (cast<AShrOperator>(UserI)->isExact())
 | |
|           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | |
|       }
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     AB = AOut;
 | |
| 
 | |
|     // For bits that are known zero, the corresponding bits in the
 | |
|     // other operand are dead (unless they're both zero, in which
 | |
|     // case they can't both be dead, so just mark the LHS bits as
 | |
|     // dead).
 | |
|     if (OperandNo == 0) {
 | |
|       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
 | |
|       AB &= ~Known2.Zero;
 | |
|     } else {
 | |
|       if (!isa<Instruction>(UserI->getOperand(0)))
 | |
|         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
 | |
|       AB &= ~(Known.Zero & ~Known2.Zero);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     AB = AOut;
 | |
| 
 | |
|     // For bits that are known one, the corresponding bits in the
 | |
|     // other operand are dead (unless they're both one, in which
 | |
|     // case they can't both be dead, so just mark the LHS bits as
 | |
|     // dead).
 | |
|     if (OperandNo == 0) {
 | |
|       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
 | |
|       AB &= ~Known2.One;
 | |
|     } else {
 | |
|       if (!isa<Instruction>(UserI->getOperand(0)))
 | |
|         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
 | |
|       AB &= ~(Known.One & ~Known2.One);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::PHI:
 | |
|     AB = AOut;
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|     AB = AOut.zext(BitWidth);
 | |
|     break;
 | |
|   case Instruction::ZExt:
 | |
|     AB = AOut.trunc(BitWidth);
 | |
|     break;
 | |
|   case Instruction::SExt:
 | |
|     AB = AOut.trunc(BitWidth);
 | |
|     // Because the high input bit is replicated into the
 | |
|     // high-order bits of the result, if we need any of those
 | |
|     // bits, then we must keep the highest input bit.
 | |
|     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
 | |
|                                       AOut.getBitWidth() - BitWidth))
 | |
|         .getBoolValue())
 | |
|       AB.setSignBit();
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     if (OperandNo != 0)
 | |
|       AB = AOut;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   DB.emplace(F, AC, DT);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DemandedBitsWrapperPass::releaseMemory() {
 | |
|   DB.reset();
 | |
| }
 | |
| 
 | |
| void DemandedBits::performAnalysis() {
 | |
|   if (Analyzed)
 | |
|     // Analysis already completed for this function.
 | |
|     return;
 | |
|   Analyzed = true;
 | |
|   
 | |
|   Visited.clear();
 | |
|   AliveBits.clear();
 | |
| 
 | |
|   SmallVector<Instruction*, 128> Worklist;
 | |
| 
 | |
|   // Collect the set of "root" instructions that are known live.
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     if (!isAlwaysLive(&I))
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
 | |
|     // For integer-valued instructions, set up an initial empty set of alive
 | |
|     // bits and add the instruction to the work list. For other instructions
 | |
|     // add their operands to the work list (for integer values operands, mark
 | |
|     // all bits as live).
 | |
|     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
 | |
|       if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
 | |
|         Worklist.push_back(&I);
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Non-integer-typed instructions...
 | |
|     for (Use &OI : I.operands()) {
 | |
|       if (Instruction *J = dyn_cast<Instruction>(OI)) {
 | |
|         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
 | |
|           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
 | |
|         Worklist.push_back(J);
 | |
|       }
 | |
|     }
 | |
|     // To save memory, we don't add I to the Visited set here. Instead, we
 | |
|     // check isAlwaysLive on every instruction when searching for dead
 | |
|     // instructions later (we need to check isAlwaysLive for the
 | |
|     // integer-typed instructions anyway).
 | |
|   }
 | |
| 
 | |
|   // Propagate liveness backwards to operands.
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *UserI = Worklist.pop_back_val();
 | |
| 
 | |
|     DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
 | |
|     APInt AOut;
 | |
|     if (UserI->getType()->isIntegerTy()) {
 | |
|       AOut = AliveBits[UserI];
 | |
|       DEBUG(dbgs() << " Alive Out: " << AOut);
 | |
|     }
 | |
|     DEBUG(dbgs() << "\n");
 | |
| 
 | |
|     if (!UserI->getType()->isIntegerTy())
 | |
|       Visited.insert(UserI);
 | |
| 
 | |
|     KnownBits Known, Known2;
 | |
|     // Compute the set of alive bits for each operand. These are anded into the
 | |
|     // existing set, if any, and if that changes the set of alive bits, the
 | |
|     // operand is added to the work-list.
 | |
|     for (Use &OI : UserI->operands()) {
 | |
|       if (Instruction *I = dyn_cast<Instruction>(OI)) {
 | |
|         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
 | |
|           unsigned BitWidth = IT->getBitWidth();
 | |
|           APInt AB = APInt::getAllOnesValue(BitWidth);
 | |
|           if (UserI->getType()->isIntegerTy() && !AOut &&
 | |
|               !isAlwaysLive(UserI)) {
 | |
|             AB = APInt(BitWidth, 0);
 | |
|           } else {
 | |
|             // If all bits of the output are dead, then all bits of the input
 | |
|             // Bits of each operand that are used to compute alive bits of the
 | |
|             // output are alive, all others are dead.
 | |
|             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
 | |
|                                      Known, Known2);
 | |
|           }
 | |
| 
 | |
|           // If we've added to the set of alive bits (or the operand has not
 | |
|           // been previously visited), then re-queue the operand to be visited
 | |
|           // again.
 | |
|           APInt ABPrev(BitWidth, 0);
 | |
|           auto ABI = AliveBits.find(I);
 | |
|           if (ABI != AliveBits.end())
 | |
|             ABPrev = ABI->second;
 | |
| 
 | |
|           APInt ABNew = AB | ABPrev;
 | |
|           if (ABNew != ABPrev || ABI == AliveBits.end()) {
 | |
|             AliveBits[I] = std::move(ABNew);
 | |
|             Worklist.push_back(I);
 | |
|           }
 | |
|         } else if (!Visited.count(I)) {
 | |
|           Worklist.push_back(I);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| APInt DemandedBits::getDemandedBits(Instruction *I) {
 | |
|   performAnalysis();
 | |
|   
 | |
|   const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
 | |
|   auto Found = AliveBits.find(I);
 | |
|   if (Found != AliveBits.end())
 | |
|     return Found->second;
 | |
|   return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
 | |
| }
 | |
| 
 | |
| bool DemandedBits::isInstructionDead(Instruction *I) {
 | |
|   performAnalysis();
 | |
| 
 | |
|   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
 | |
|     !isAlwaysLive(I);
 | |
| }
 | |
| 
 | |
| void DemandedBits::print(raw_ostream &OS) {
 | |
|   performAnalysis();
 | |
|   for (auto &KV : AliveBits) {
 | |
|     OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
 | |
|        << *KV.first << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createDemandedBitsWrapperPass() {
 | |
|   return new DemandedBitsWrapperPass();
 | |
| }
 | |
| 
 | |
| AnalysisKey DemandedBitsAnalysis::Key;
 | |
| 
 | |
| DemandedBits DemandedBitsAnalysis::run(Function &F,
 | |
|                                              FunctionAnalysisManager &AM) {
 | |
|   auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   return DemandedBits(F, AC, DT);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
 | |
|                                                FunctionAnalysisManager &AM) {
 | |
|   AM.getResult<DemandedBitsAnalysis>(F).print(OS);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |