4772 lines
		
	
	
		
			173 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4772 lines
		
	
	
		
			173 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements routines for folding instructions into simpler forms
 | |
| // that do not require creating new instructions.  This does constant folding
 | |
| // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
 | |
| // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
 | |
| // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
 | |
| // simplified: This is usually true and assuming it simplifies the logic (if
 | |
| // they have not been simplified then results are correct but maybe suboptimal).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/CmpInstAnalysis.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopAnalysisManager.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instsimplify"
 | |
| 
 | |
| enum { RecursionLimit = 3 };
 | |
| 
 | |
| STATISTIC(NumExpand,  "Number of expansions");
 | |
| STATISTIC(NumReassoc, "Number of reassociations");
 | |
| 
 | |
| static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
 | |
|                             unsigned);
 | |
| static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
 | |
|                               const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
 | |
|                               unsigned);
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse);
 | |
| static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
 | |
| static Value *SimplifyCastInst(unsigned, Value *, Type *,
 | |
|                                const SimplifyQuery &, unsigned);
 | |
| 
 | |
| /// For a boolean type or a vector of boolean type, return false or a vector
 | |
| /// with every element false.
 | |
| static Constant *getFalse(Type *Ty) {
 | |
|   return ConstantInt::getFalse(Ty);
 | |
| }
 | |
| 
 | |
| /// For a boolean type or a vector of boolean type, return true or a vector
 | |
| /// with every element true.
 | |
| static Constant *getTrue(Type *Ty) {
 | |
|   return ConstantInt::getTrue(Ty);
 | |
| }
 | |
| 
 | |
| /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
 | |
| static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
 | |
|                           Value *RHS) {
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(V);
 | |
|   if (!Cmp)
 | |
|     return false;
 | |
|   CmpInst::Predicate CPred = Cmp->getPredicate();
 | |
|   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
 | |
|   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
 | |
|     return true;
 | |
|   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
 | |
|     CRHS == LHS;
 | |
| }
 | |
| 
 | |
| /// Does the given value dominate the specified phi node?
 | |
| static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     // Arguments and constants dominate all instructions.
 | |
|     return true;
 | |
| 
 | |
|   // If we are processing instructions (and/or basic blocks) that have not been
 | |
|   // fully added to a function, the parent nodes may still be null. Simply
 | |
|   // return the conservative answer in these cases.
 | |
|   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // If we have a DominatorTree then do a precise test.
 | |
|   if (DT)
 | |
|     return DT->dominates(I, P);
 | |
| 
 | |
|   // Otherwise, if the instruction is in the entry block and is not an invoke,
 | |
|   // then it obviously dominates all phi nodes.
 | |
|   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
 | |
|       !isa<InvokeInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Simplify "A op (B op' C)" by distributing op over op', turning it into
 | |
| /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
 | |
| /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
 | |
| /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
 | |
| /// Returns the simplified value, or null if no simplification was performed.
 | |
| static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
 | |
|                           Instruction::BinaryOps OpcodeToExpand,
 | |
|                           const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check whether the expression has the form "(A op' B) op C".
 | |
|   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
 | |
|     if (Op0->getOpcode() == OpcodeToExpand) {
 | |
|       // It does!  Try turning it into "(A op C) op' (B op C)".
 | |
|       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | |
|       // Do "A op C" and "B op C" both simplify?
 | |
|       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
 | |
|         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
 | |
|           // They do! Return "L op' R" if it simplifies or is already available.
 | |
|           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | |
|           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
 | |
|                                      && L == B && R == A)) {
 | |
|             ++NumExpand;
 | |
|             return LHS;
 | |
|           }
 | |
|           // Otherwise return "L op' R" if it simplifies.
 | |
|           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
 | |
|             ++NumExpand;
 | |
|             return V;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   // Check whether the expression has the form "A op (B op' C)".
 | |
|   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
 | |
|     if (Op1->getOpcode() == OpcodeToExpand) {
 | |
|       // It does!  Try turning it into "(A op B) op' (A op C)".
 | |
|       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | |
|       // Do "A op B" and "A op C" both simplify?
 | |
|       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
 | |
|         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
 | |
|           // They do! Return "L op' R" if it simplifies or is already available.
 | |
|           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | |
|           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
 | |
|                                      && L == C && R == B)) {
 | |
|             ++NumExpand;
 | |
|             return RHS;
 | |
|           }
 | |
|           // Otherwise return "L op' R" if it simplifies.
 | |
|           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
 | |
|             ++NumExpand;
 | |
|             return V;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Generic simplifications for associative binary operations.
 | |
| /// Returns the simpler value, or null if none was found.
 | |
| static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
 | |
|                                        Value *LHS, Value *RHS,
 | |
|                                        const SimplifyQuery &Q,
 | |
|                                        unsigned MaxRecurse) {
 | |
|   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
 | |
| 
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "B op C" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
 | |
|       // It does!  Return "A op V" if it simplifies or is already available.
 | |
|       // If V equals B then "A op V" is just the LHS.
 | |
|       if (V == B) return LHS;
 | |
|       // Otherwise return "A op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "A op B" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
 | |
|       // It does!  Return "V op C" if it simplifies or is already available.
 | |
|       // If V equals B then "V op C" is just the RHS.
 | |
|       if (V == B) return RHS;
 | |
|       // Otherwise return "V op C" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The remaining transforms require commutativity as well as associativity.
 | |
|   if (!Instruction::isCommutative(Opcode))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
 | |
|       // It does!  Return "V op B" if it simplifies or is already available.
 | |
|       // If V equals A then "V op B" is just the LHS.
 | |
|       if (V == A) return LHS;
 | |
|       // Otherwise return "V op B" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
 | |
|       // It does!  Return "B op V" if it simplifies or is already available.
 | |
|       // If V equals C then "B op V" is just the RHS.
 | |
|       if (V == C) return RHS;
 | |
|       // Otherwise return "B op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// In the case of a binary operation with a select instruction as an operand,
 | |
| /// try to simplify the binop by seeing whether evaluating it on both branches
 | |
| /// of the select results in the same value. Returns the common value if so,
 | |
| /// otherwise returns null.
 | |
| static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
 | |
|                                     Value *RHS, const SimplifyQuery &Q,
 | |
|                                     unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   SelectInst *SI;
 | |
|   if (isa<SelectInst>(LHS)) {
 | |
|     SI = cast<SelectInst>(LHS);
 | |
|   } else {
 | |
|     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
 | |
|     SI = cast<SelectInst>(RHS);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the true and false branches of the select.
 | |
|   Value *TV;
 | |
|   Value *FV;
 | |
|   if (SI == LHS) {
 | |
|     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
 | |
|   } else {
 | |
|     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // If they simplified to the same value, then return the common value.
 | |
|   // If they both failed to simplify then return null.
 | |
|   if (TV == FV)
 | |
|     return TV;
 | |
| 
 | |
|   // If one branch simplified to undef, return the other one.
 | |
|   if (TV && isa<UndefValue>(TV))
 | |
|     return FV;
 | |
|   if (FV && isa<UndefValue>(FV))
 | |
|     return TV;
 | |
| 
 | |
|   // If applying the operation did not change the true and false select values,
 | |
|   // then the result of the binop is the select itself.
 | |
|   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
 | |
|     return SI;
 | |
| 
 | |
|   // If one branch simplified and the other did not, and the simplified
 | |
|   // value is equal to the unsimplified one, return the simplified value.
 | |
|   // For example, select (cond, X, X & Z) & Z -> X & Z.
 | |
|   if ((FV && !TV) || (TV && !FV)) {
 | |
|     // Check that the simplified value has the form "X op Y" where "op" is the
 | |
|     // same as the original operation.
 | |
|     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
 | |
|     if (Simplified && Simplified->getOpcode() == Opcode) {
 | |
|       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
 | |
|       // We already know that "op" is the same as for the simplified value.  See
 | |
|       // if the operands match too.  If so, return the simplified value.
 | |
|       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
 | |
|       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
 | |
|       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
 | |
|       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|       if (Simplified->isCommutative() &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(0) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// In the case of a comparison with a select instruction, try to simplify the
 | |
| /// comparison by seeing whether both branches of the select result in the same
 | |
| /// value. Returns the common value if so, otherwise returns null.
 | |
| static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const SimplifyQuery &Q,
 | |
|                                   unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the select is on the LHS.
 | |
|   if (!isa<SelectInst>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
 | |
|   SelectInst *SI = cast<SelectInst>(LHS);
 | |
|   Value *Cond = SI->getCondition();
 | |
|   Value *TV = SI->getTrueValue();
 | |
|   Value *FV = SI->getFalseValue();
 | |
| 
 | |
|   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
 | |
|   // Does "cmp TV, RHS" simplify?
 | |
|   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
 | |
|   if (TCmp == Cond) {
 | |
|     // It not only simplified, it simplified to the select condition.  Replace
 | |
|     // it with 'true'.
 | |
|     TCmp = getTrue(Cond->getType());
 | |
|   } else if (!TCmp) {
 | |
|     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
 | |
|     // condition then we can replace it with 'true'.  Otherwise give up.
 | |
|     if (!isSameCompare(Cond, Pred, TV, RHS))
 | |
|       return nullptr;
 | |
|     TCmp = getTrue(Cond->getType());
 | |
|   }
 | |
| 
 | |
|   // Does "cmp FV, RHS" simplify?
 | |
|   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
 | |
|   if (FCmp == Cond) {
 | |
|     // It not only simplified, it simplified to the select condition.  Replace
 | |
|     // it with 'false'.
 | |
|     FCmp = getFalse(Cond->getType());
 | |
|   } else if (!FCmp) {
 | |
|     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
 | |
|     // condition then we can replace it with 'false'.  Otherwise give up.
 | |
|     if (!isSameCompare(Cond, Pred, FV, RHS))
 | |
|       return nullptr;
 | |
|     FCmp = getFalse(Cond->getType());
 | |
|   }
 | |
| 
 | |
|   // If both sides simplified to the same value, then use it as the result of
 | |
|   // the original comparison.
 | |
|   if (TCmp == FCmp)
 | |
|     return TCmp;
 | |
| 
 | |
|   // The remaining cases only make sense if the select condition has the same
 | |
|   // type as the result of the comparison, so bail out if this is not so.
 | |
|   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
|   // If the false value simplified to false, then the result of the compare
 | |
|   // is equal to "Cond && TCmp".  This also catches the case when the false
 | |
|   // value simplified to false and the true value to true, returning "Cond".
 | |
|   if (match(FCmp, m_Zero()))
 | |
|     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
 | |
|       return V;
 | |
|   // If the true value simplified to true, then the result of the compare
 | |
|   // is equal to "Cond || FCmp".
 | |
|   if (match(TCmp, m_One()))
 | |
|     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
 | |
|       return V;
 | |
|   // Finally, if the false value simplified to true and the true value to
 | |
|   // false, then the result of the compare is equal to "!Cond".
 | |
|   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
 | |
|     if (Value *V =
 | |
|         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
 | |
|                         Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// In the case of a binary operation with an operand that is a PHI instruction,
 | |
| /// try to simplify the binop by seeing whether evaluating it on the incoming
 | |
| /// phi values yields the same result for every value. If so returns the common
 | |
| /// value, otherwise returns null.
 | |
| static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
 | |
|                                  Value *RHS, const SimplifyQuery &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   PHINode *PI;
 | |
|   if (isa<PHINode>(LHS)) {
 | |
|     PI = cast<PHINode>(LHS);
 | |
|     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(RHS, PI, Q.DT))
 | |
|       return nullptr;
 | |
|   } else {
 | |
|     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
 | |
|     PI = cast<PHINode>(RHS);
 | |
|     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(LHS, PI, Q.DT))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = nullptr;
 | |
|   for (Value *Incoming : PI->incoming_values()) {
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = PI == LHS ?
 | |
|       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
 | |
|       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return nullptr;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// In the case of a comparison with a PHI instruction, try to simplify the
 | |
| /// comparison by seeing whether comparing with all of the incoming phi values
 | |
| /// yields the same result every time. If so returns the common result,
 | |
| /// otherwise returns null.
 | |
| static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the phi is on the LHS.
 | |
|   if (!isa<PHINode>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
 | |
|   PHINode *PI = cast<PHINode>(LHS);
 | |
| 
 | |
|   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|   if (!ValueDominatesPHI(RHS, PI, Q.DT))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = nullptr;
 | |
|   for (Value *Incoming : PI->incoming_values()) {
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return nullptr;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
 | |
|                                        Value *&Op0, Value *&Op1,
 | |
|                                        const SimplifyQuery &Q) {
 | |
|   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (auto *CRHS = dyn_cast<Constant>(Op1))
 | |
|       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
 | |
| 
 | |
|     // Canonicalize the constant to the RHS if this is a commutative operation.
 | |
|     if (Instruction::isCommutative(Opcode))
 | |
|       std::swap(Op0, Op1);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Add, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X + undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X + 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X + (Y - X) -> Y
 | |
|   // (Y - X) + X -> Y
 | |
|   // Eg: X + -X -> 0
 | |
|   Value *Y = nullptr;
 | |
|   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
 | |
|       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
 | |
|     return Y;
 | |
| 
 | |
|   // X + ~X -> -1   since   ~X = -X-1
 | |
|   Type *Ty = Op0->getType();
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Ty);
 | |
| 
 | |
|   // add nsw/nuw (xor Y, signmask), signmask --> Y
 | |
|   // The no-wrapping add guarantees that the top bit will be set by the add.
 | |
|   // Therefore, the xor must be clearing the already set sign bit of Y.
 | |
|   if ((isNSW || isNUW) && match(Op1, m_SignMask()) &&
 | |
|       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
 | |
|     return Y;
 | |
| 
 | |
|   /// i1 add -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Add over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A + select(cond, B, C)" means evaluating
 | |
|   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const SimplifyQuery &Query) {
 | |
|   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// \brief Compute the base pointer and cumulative constant offsets for V.
 | |
| ///
 | |
| /// This strips all constant offsets off of V, leaving it the base pointer, and
 | |
| /// accumulates the total constant offset applied in the returned constant. It
 | |
| /// returns 0 if V is not a pointer, and returns the constant '0' if there are
 | |
| /// no constant offsets applied.
 | |
| ///
 | |
| /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
 | |
| /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
 | |
| /// folding.
 | |
| static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
 | |
|                                                 bool AllowNonInbounds = false) {
 | |
|   assert(V->getType()->isPtrOrPtrVectorTy());
 | |
| 
 | |
|   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
 | |
|   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(V);
 | |
|   do {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
 | |
|           !GEP->accumulateConstantOffset(DL, Offset))
 | |
|         break;
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (GA->isInterposable())
 | |
|         break;
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       if (auto CS = CallSite(V))
 | |
|         if (Value *RV = CS.getReturnedArgOperand()) {
 | |
|           V = RV;
 | |
|           continue;
 | |
|         }
 | |
|       break;
 | |
|     }
 | |
|     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V).second);
 | |
| 
 | |
|   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
 | |
|   if (V->getType()->isVectorTy())
 | |
|     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
 | |
|                                     OffsetIntPtr);
 | |
|   return OffsetIntPtr;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the constant difference between two pointer values.
 | |
| /// If the difference is not a constant, returns zero.
 | |
| static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
 | |
|                                           Value *RHS) {
 | |
|   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
 | |
|   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 | |
| 
 | |
|   // If LHS and RHS are not related via constant offsets to the same base
 | |
|   // value, there is nothing we can do here.
 | |
|   if (LHS != RHS)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, the difference of LHS - RHS can be computed as:
 | |
|   //    LHS - RHS
 | |
|   //  = (LHSOffset + Base) - (RHSOffset + Base)
 | |
|   //  = LHSOffset - RHSOffset
 | |
|   return ConstantExpr::getSub(LHSOffset, RHSOffset);
 | |
| }
 | |
| 
 | |
| /// Given operands for a Sub, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X - undef -> undef
 | |
|   // undef - X -> undef
 | |
|   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // X - 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X - X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // Is this a negation?
 | |
|   if (match(Op0, m_Zero())) {
 | |
|     // 0 - X -> 0 if the sub is NUW.
 | |
|     if (isNUW)
 | |
|       return Op0;
 | |
| 
 | |
|     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (Known.Zero.isMaxSignedValue()) {
 | |
|       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
 | |
|       // Op1 must be 0 because negating the minimum signed value is undefined.
 | |
|       if (isNSW)
 | |
|         return Op0;
 | |
| 
 | |
|       // 0 - X -> X if X is 0 or the minimum signed value.
 | |
|       return Op1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
 | |
|   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
 | |
|   Value *X = nullptr, *Y = nullptr, *Z = Op1;
 | |
|   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
 | |
|     // See if "V === Y - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "X + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "Y + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
 | |
|   // For example, X - (X + 1) -> -1
 | |
|   X = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
 | |
|     // See if "V === X - Y" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Z" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
 | |
|   // For example, X - (X - Y) -> Y.
 | |
|   Z = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
 | |
|     // See if "V === Z - X" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
 | |
|       // It does!  Now see if "V + Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
| 
 | |
|   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
 | |
|   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
 | |
|       match(Op1, m_Trunc(m_Value(Y))))
 | |
|     if (X->getType() == Y->getType())
 | |
|       // See if "V === X - Y" simplifies.
 | |
|       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
 | |
|         // It does!  Now see if "trunc V" simplifies.
 | |
|         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
 | |
|                                         Q, MaxRecurse - 1))
 | |
|           // It does, return the simplified "trunc V".
 | |
|           return W;
 | |
| 
 | |
|   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
 | |
|   if (match(Op0, m_PtrToInt(m_Value(X))) &&
 | |
|       match(Op1, m_PtrToInt(m_Value(Y))))
 | |
|     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
 | |
|       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
 | |
| 
 | |
|   // i1 sub -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Threading Sub over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A - select(cond, B, C)" means evaluating
 | |
|   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an FAdd, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // fadd X, -0 ==> X
 | |
|   if (match(Op1, m_NegZero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fadd X, 0 ==> X, when we know X is not -0
 | |
|   if (match(Op1, m_Zero()) &&
 | |
|       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
 | |
|     return Op0;
 | |
| 
 | |
|   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
 | |
|   //   where nnan and ninf have to occur at least once somewhere in this
 | |
|   //   expression
 | |
|   Value *SubOp = nullptr;
 | |
|   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
 | |
|     SubOp = Op1;
 | |
|   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
 | |
|     SubOp = Op0;
 | |
|   if (SubOp) {
 | |
|     Instruction *FSub = cast<Instruction>(SubOp);
 | |
|     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
 | |
|         (FMF.noInfs() || FSub->hasNoInfs()))
 | |
|       return Constant::getNullValue(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an FSub, see if we can fold the result.  If not, this
 | |
| /// returns null.
 | |
| static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // fsub X, 0 ==> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fsub X, -0 ==> X, when we know X is not -0
 | |
|   if (match(Op1, m_NegZero()) &&
 | |
|       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
 | |
|     return Op0;
 | |
| 
 | |
|   // fsub -0.0, (fsub -0.0, X) ==> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
 | |
|     return X;
 | |
| 
 | |
|   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
 | |
|   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
 | |
|       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
 | |
|     return X;
 | |
| 
 | |
|   // fsub nnan x, x ==> 0.0
 | |
|   if (FMF.noNaNs() && Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given the operands for an FMul, see if we can fold the result
 | |
| static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // fmul X, 1.0 ==> X
 | |
|   if (match(Op1, m_FPOne()))
 | |
|     return Op0;
 | |
| 
 | |
|   // fmul nnan nsz X, 0 ==> 0
 | |
|   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
 | |
|     return Op1;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for a Mul, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X * undef -> 0
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X * 0 -> 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X * 1 -> X
 | |
|   if (match(Op1, m_One()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X / Y) * Y -> X if the division is exact.
 | |
|   Value *X = nullptr;
 | |
|   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
 | |
|       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
 | |
|     return X;
 | |
| 
 | |
|   // i1 mul -> and.
 | |
|   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Mul distributes over Add.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
 | |
|                              Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Check for common or similar folds of integer division or integer remainder.
 | |
| static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
 | |
|   Type *Ty = Op0->getType();
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   // X % undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X / 0 -> undef
 | |
|   // X % 0 -> undef
 | |
|   // We don't need to preserve faults!
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return UndefValue::get(Ty);
 | |
| 
 | |
|   // If any element of a constant divisor vector is zero, the whole op is undef.
 | |
|   auto *Op1C = dyn_cast<Constant>(Op1);
 | |
|   if (Op1C && Ty->isVectorTy()) {
 | |
|     unsigned NumElts = Ty->getVectorNumElements();
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       Constant *Elt = Op1C->getAggregateElement(i);
 | |
|       if (Elt && Elt->isNullValue())
 | |
|         return UndefValue::get(Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // undef / X -> 0
 | |
|   // undef % X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Ty);
 | |
| 
 | |
|   // 0 / X -> 0
 | |
|   // 0 % X -> 0
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X / X -> 1
 | |
|   // X % X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
 | |
| 
 | |
|   // X / 1 -> X
 | |
|   // X % 1 -> 0
 | |
|   // If this is a boolean op (single-bit element type), we can't have
 | |
|   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
 | |
|   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1))
 | |
|     return IsDiv ? Op0 : Constant::getNullValue(Ty);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an SDiv or UDiv, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Value *V = simplifyDivRem(Op0, Op1, true))
 | |
|     return V;
 | |
| 
 | |
|   bool isSigned = Opcode == Instruction::SDiv;
 | |
| 
 | |
|   // (X * Y) / Y -> X if the multiplication does not overflow.
 | |
|   Value *X = nullptr, *Y = nullptr;
 | |
|   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
 | |
|     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
 | |
|     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
 | |
|     // If the Mul knows it does not overflow, then we are good to go.
 | |
|     if ((isSigned && Mul->hasNoSignedWrap()) ||
 | |
|         (!isSigned && Mul->hasNoUnsignedWrap()))
 | |
|       return X;
 | |
|     // If X has the form X = A / Y then X * Y cannot overflow.
 | |
|     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
 | |
|       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
 | |
|         return X;
 | |
|   }
 | |
| 
 | |
|   // (X rem Y) / Y -> 0
 | |
|   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
 | |
|   ConstantInt *C1, *C2;
 | |
|   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
 | |
|       match(Op1, m_ConstantInt(C2))) {
 | |
|     bool Overflow;
 | |
|     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
 | |
|     if (Overflow)
 | |
|       return Constant::getNullValue(Op0->getType());
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an SDiv, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a UDiv, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // udiv %V, C -> 0 if %V < C
 | |
|   if (MaxRecurse) {
 | |
|     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
 | |
|             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
 | |
|       if (C->isAllOnesValue()) {
 | |
|         return Constant::getNullValue(Op0->getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // undef / X -> undef    (the undef could be a snan).
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X / 1.0 -> X
 | |
|   if (match(Op1, m_FPOne()))
 | |
|     return Op0;
 | |
| 
 | |
|   // 0 / X -> 0
 | |
|   // Requires that NaNs are off (X could be zero) and signed zeroes are
 | |
|   // ignored (X could be positive or negative, so the output sign is unknown).
 | |
|   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
 | |
|     return Op0;
 | |
| 
 | |
|   if (FMF.noNaNs()) {
 | |
|     // X / X -> 1.0 is legal when NaNs are ignored.
 | |
|     if (Op0 == Op1)
 | |
|       return ConstantFP::get(Op0->getType(), 1.0);
 | |
| 
 | |
|     // -X /  X -> -1.0 and
 | |
|     //  X / -X -> -1.0 are legal when NaNs are ignored.
 | |
|     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
 | |
|     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
 | |
|          BinaryOperator::getFNegArgument(Op0) == Op1) ||
 | |
|         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
 | |
|          BinaryOperator::getFNegArgument(Op1) == Op0))
 | |
|       return ConstantFP::get(Op0->getType(), -1.0);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an SRem or URem, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   if (Value *V = simplifyDivRem(Op0, Op1, false))
 | |
|     return V;
 | |
| 
 | |
|   // (X % Y) % Y -> X % Y
 | |
|   if ((Opcode == Instruction::SRem &&
 | |
|        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (Opcode == Instruction::URem &&
 | |
|        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Op0;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an SRem, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a URem, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // urem %V, C -> %V if %V < C
 | |
|   if (MaxRecurse) {
 | |
|     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
 | |
|             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
 | |
|       if (C->isAllOnesValue()) {
 | |
|         return Op0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                                const SimplifyQuery &Q, unsigned) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // undef % X -> undef    (the undef could be a snan).
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X % undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // 0 % X -> 0
 | |
|   // Requires that NaNs are off (X could be zero) and signed zeroes are
 | |
|   // ignored (X could be positive or negative, so the output sign is unknown).
 | |
|   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Returns true if a shift by \c Amount always yields undef.
 | |
| static bool isUndefShift(Value *Amount) {
 | |
|   Constant *C = dyn_cast<Constant>(Amount);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   // X shift by undef -> undef because it may shift by the bitwidth.
 | |
|   if (isa<UndefValue>(C))
 | |
|     return true;
 | |
| 
 | |
|   // Shifting by the bitwidth or more is undefined.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | |
|     if (CI->getValue().getLimitedValue() >=
 | |
|         CI->getType()->getScalarSizeInBits())
 | |
|       return true;
 | |
| 
 | |
|   // If all lanes of a vector shift are undefined the whole shift is.
 | |
|   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
 | |
|     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
 | |
|       if (!isUndefShift(C->getAggregateElement(I)))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
 | |
|                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // 0 shift by X -> 0
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X shift by 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // Fold undefined shifts.
 | |
|   if (isUndefShift(Op1))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If any bits in the shift amount make that value greater than or equal to
 | |
|   // the number of bits in the type, the shift is undefined.
 | |
|   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|   if (Known.One.getLimitedValue() >= Known.getBitWidth())
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // If all valid bits in the shift amount are known zero, the first operand is
 | |
|   // unchanged.
 | |
|   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
 | |
|   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Given operands for an Shl, LShr or AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
 | |
|                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // X >> X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // undef >> X -> 0
 | |
|   // undef >> X -> undef (if it's exact)
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // The low bit cannot be shifted out of an exact shift if it is set.
 | |
|   if (isExact) {
 | |
|     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (Op0Known.One[0])
 | |
|       return Op0;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an Shl, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // undef << X -> 0
 | |
|   // undef << X -> undef if (if it's NSW/NUW)
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X >> A) << A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
 | |
|     return X;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an LShr, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
 | |
|                                     MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an AShr, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
 | |
|                                     MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // all ones >>a X -> all ones
 | |
|   if (match(Op0, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
 | |
|     return X;
 | |
| 
 | |
|   // Arithmetic shifting an all-sign-bit value is a no-op.
 | |
|   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
 | |
|     return Op0;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Commuted variants are assumed to be handled by calling this function again
 | |
| /// with the parameters swapped.
 | |
| static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
 | |
|                                          ICmpInst *UnsignedICmp, bool IsAnd) {
 | |
|   Value *X, *Y;
 | |
| 
 | |
|   ICmpInst::Predicate EqPred;
 | |
|   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
 | |
|       !ICmpInst::isEquality(EqPred))
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate UnsignedPred;
 | |
|   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
 | |
|       ICmpInst::isUnsigned(UnsignedPred))
 | |
|     ;
 | |
|   else if (match(UnsignedICmp,
 | |
|                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
 | |
|            ICmpInst::isUnsigned(UnsignedPred))
 | |
|     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // X < Y && Y != 0  -->  X < Y
 | |
|   // X < Y || Y != 0  -->  Y != 0
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
 | |
|     return IsAnd ? UnsignedICmp : ZeroICmp;
 | |
| 
 | |
|   // X >= Y || Y != 0  -->  true
 | |
|   // X >= Y || Y == 0  -->  X >= Y
 | |
|   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
 | |
|     if (EqPred == ICmpInst::ICMP_NE)
 | |
|       return getTrue(UnsignedICmp->getType());
 | |
|     return UnsignedICmp;
 | |
|   }
 | |
| 
 | |
|   // X < Y && Y == 0  -->  false
 | |
|   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
 | |
|       IsAnd)
 | |
|     return getFalse(UnsignedICmp->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Commuted variants are assumed to be handled by calling this function again
 | |
| /// with the parameters swapped.
 | |
| static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   Value *A ,*B;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
 | |
|       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
 | |
|   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
 | |
|   // can eliminate Op1 from this 'and'.
 | |
|   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
 | |
|     return Op0;
 | |
| 
 | |
|   // Check for any combination of predicates that are guaranteed to be disjoint.
 | |
|   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
 | |
|       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
 | |
|     return getFalse(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Commuted variants are assumed to be handled by calling this function again
 | |
| /// with the parameters swapped.
 | |
| static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   Value *A ,*B;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
 | |
|       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
 | |
|   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
 | |
|   // can eliminate Op0 from this 'or'.
 | |
|   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
 | |
|     return Op1;
 | |
| 
 | |
|   // Check for any combination of predicates that cover the entire range of
 | |
|   // possibilities.
 | |
|   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
 | |
|       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
 | |
|       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
 | |
|     return getTrue(Op0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Test if a pair of compares with a shared operand and 2 constants has an
 | |
| /// empty set intersection, full set union, or if one compare is a superset of
 | |
| /// the other.
 | |
| static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
 | |
|                                                 bool IsAnd) {
 | |
|   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
 | |
|   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
 | |
|     return nullptr;
 | |
| 
 | |
|   const APInt *C0, *C1;
 | |
|   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
 | |
|       !match(Cmp1->getOperand(1), m_APInt(C1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
 | |
|   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
 | |
| 
 | |
|   // For and-of-compares, check if the intersection is empty:
 | |
|   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
 | |
|   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
 | |
|     return getFalse(Cmp0->getType());
 | |
| 
 | |
|   // For or-of-compares, check if the union is full:
 | |
|   // (icmp X, C0) || (icmp X, C1) --> full set --> true
 | |
|   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
 | |
|     return getTrue(Cmp0->getType());
 | |
| 
 | |
|   // Is one range a superset of the other?
 | |
|   // If this is and-of-compares, take the smaller set:
 | |
|   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
 | |
|   // If this is or-of-compares, take the larger set:
 | |
|   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
 | |
|   if (Range0.contains(Range1))
 | |
|     return IsAnd ? Cmp1 : Cmp0;
 | |
|   if (Range1.contains(Range0))
 | |
|     return IsAnd ? Cmp0 : Cmp1;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   // (icmp (add V, C0), C1) & (icmp V, C0)
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   const APInt *C0, *C1;
 | |
|   Value *V;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
 | |
|   if (AddInst->getOperand(1) != Op1->getOperand(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = Op0->getType();
 | |
|   bool isNSW = AddInst->hasNoSignedWrap();
 | |
|   bool isNUW = AddInst->hasNoUnsignedWrap();
 | |
| 
 | |
|   const APInt Delta = *C1 - *C0;
 | |
|   if (C0->isStrictlyPositive()) {
 | |
|     if (Delta == 2) {
 | |
|       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
 | |
|         return getFalse(ITy);
 | |
|     }
 | |
|     if (Delta == 1) {
 | |
|       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
 | |
|         return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (C0->getBoolValue() && isNUW) {
 | |
|     if (Delta == 2)
 | |
|       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
|     if (Delta == 1)
 | |
|       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
 | |
|     return X;
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
 | |
|     return X;
 | |
|   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
 | |
|     return X;
 | |
|   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   // (icmp (add V, C0), C1) | (icmp V, C0)
 | |
|   ICmpInst::Predicate Pred0, Pred1;
 | |
|   const APInt *C0, *C1;
 | |
|   Value *V;
 | |
|   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
 | |
|   if (AddInst->getOperand(1) != Op1->getOperand(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = Op0->getType();
 | |
|   bool isNSW = AddInst->hasNoSignedWrap();
 | |
|   bool isNUW = AddInst->hasNoUnsignedWrap();
 | |
| 
 | |
|   const APInt Delta = *C1 - *C0;
 | |
|   if (C0->isStrictlyPositive()) {
 | |
|     if (Delta == 2) {
 | |
|       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
 | |
|         return getTrue(ITy);
 | |
|     }
 | |
|     if (Delta == 1) {
 | |
|       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
 | |
|         return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (C0->getBoolValue() && isNUW) {
 | |
|     if (Delta == 2)
 | |
|       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|     if (Delta == 1)
 | |
|       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
 | |
|     return X;
 | |
|   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
 | |
|     return X;
 | |
|   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
 | |
|     return X;
 | |
| 
 | |
|   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
 | |
|     return X;
 | |
|   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
 | |
|     return X;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) {
 | |
|   // Look through casts of the 'and' operands to find compares.
 | |
|   auto *Cast0 = dyn_cast<CastInst>(Op0);
 | |
|   auto *Cast1 = dyn_cast<CastInst>(Op1);
 | |
|   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
 | |
|       Cast0->getSrcTy() == Cast1->getSrcTy()) {
 | |
|     Op0 = Cast0->getOperand(0);
 | |
|     Op1 = Cast1->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   auto *Cmp0 = dyn_cast<ICmpInst>(Op0);
 | |
|   auto *Cmp1 = dyn_cast<ICmpInst>(Op1);
 | |
|   if (!Cmp0 || !Cmp1)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V =
 | |
|       IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1);
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
|   if (!Cast0)
 | |
|     return V;
 | |
| 
 | |
|   // If we looked through casts, we can only handle a constant simplification
 | |
|   // because we are not allowed to create a cast instruction here.
 | |
|   if (auto *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an And, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X & undef -> 0
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X & X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X & 0 = 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X & -1 = X
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & ~A  =  ~A & A  =  0
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (A | ?) & A = A
 | |
|   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
 | |
|     return Op1;
 | |
| 
 | |
|   // A & (A | ?) = A
 | |
|   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
 | |
|     return Op0;
 | |
| 
 | |
|   // A mask that only clears known zeros of a shifted value is a no-op.
 | |
|   Value *X;
 | |
|   const APInt *Mask;
 | |
|   const APInt *ShAmt;
 | |
|   if (match(Op1, m_APInt(Mask))) {
 | |
|     // If all bits in the inverted and shifted mask are clear:
 | |
|     // and (shl X, ShAmt), Mask --> shl X, ShAmt
 | |
|     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
 | |
|         (~(*Mask)).lshr(*ShAmt).isNullValue())
 | |
|       return Op0;
 | |
| 
 | |
|     // If all bits in the inverted and shifted mask are clear:
 | |
|     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
 | |
|     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
 | |
|         (~(*Mask)).shl(*ShAmt).isNullValue())
 | |
|       return Op0;
 | |
|   }
 | |
| 
 | |
|   // A & (-A) = A if A is a power of two or zero.
 | |
|   if (match(Op0, m_Neg(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Neg(m_Specific(Op0)))) {
 | |
|     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
 | |
|                                Q.DT))
 | |
|       return Op0;
 | |
|     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
 | |
|                                Q.DT))
 | |
|       return Op1;
 | |
|   }
 | |
| 
 | |
|   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true))
 | |
|     return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Or.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
 | |
|                              Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Xor.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
 | |
|                              Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an Or, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                              unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // X | undef -> -1
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // X | X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X | 0 = X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X | -1 = -1
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | ~A  =  ~A | A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (A & ?) | A = A
 | |
|   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | (A & ?) = A
 | |
|   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
 | |
|     return Op0;
 | |
| 
 | |
|   // ~(A & ?) | A = -1
 | |
|   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
 | |
|     return Constant::getAllOnesValue(Op1->getType());
 | |
| 
 | |
|   // A | ~(A & ?) = -1
 | |
|   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   Value *A, *B;
 | |
|   // (A & ~B) | (A ^ B) -> (A ^ B)
 | |
|   // (~B & A) | (A ^ B) -> (A ^ B)
 | |
|   // (A & ~B) | (B ^ A) -> (B ^ A)
 | |
|   // (~B & A) | (B ^ A) -> (B ^ A)
 | |
|   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op1;
 | |
| 
 | |
|   // Commute the 'or' operands.
 | |
|   // (A ^ B) | (A & ~B) -> (A ^ B)
 | |
|   // (A ^ B) | (~B & A) -> (A ^ B)
 | |
|   // (B ^ A) | (A & ~B) -> (B ^ A)
 | |
|   // (B ^ A) | (~B & A) -> (B ^ A)
 | |
|   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op0;
 | |
| 
 | |
|   // (A & B) | (~A ^ B) -> (~A ^ B)
 | |
|   // (B & A) | (~A ^ B) -> (~A ^ B)
 | |
|   // (A & B) | (B ^ ~A) -> (B ^ ~A)
 | |
|   // (B & A) | (B ^ ~A) -> (B ^ ~A)
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op1;
 | |
| 
 | |
|   // (~A ^ B) | (A & B) -> (~A ^ B)
 | |
|   // (~A ^ B) | (B & A) -> (~A ^ B)
 | |
|   // (B ^ ~A) | (A & B) -> (B ^ ~A)
 | |
|   // (B ^ ~A) | (B & A) -> (B ^ ~A)
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
 | |
|        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
 | |
|     return Op0;
 | |
| 
 | |
|   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false))
 | |
|     return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Or distributes over And.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
 | |
|                              MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // (A & C1)|(B & C2)
 | |
|   const APInt *C1, *C2;
 | |
|   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
 | |
|     if (*C1 == ~*C2) {
 | |
|       // (A & C1)|(B & C2)
 | |
|       // If we have: ((V + N) & C1) | (V & C2)
 | |
|       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | |
|       // replace with V+N.
 | |
|       Value *N;
 | |
|       if (C2->isMask() && // C2 == 0+1+
 | |
|           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return A;
 | |
|       }
 | |
|       // Or commutes, try both ways.
 | |
|       if (C1->isMask() &&
 | |
|           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
 | |
|         // Add commutes, try both ways.
 | |
|         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|           return B;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a Xor, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
 | |
|     return C;
 | |
| 
 | |
|   // A ^ undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A ^ 0 = A
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A ^ A = 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // A ^ ~A  =  ~A ^ A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Xor over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
 | |
|   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| 
 | |
| static Type *GetCompareTy(Value *Op) {
 | |
|   return CmpInst::makeCmpResultType(Op->getType());
 | |
| }
 | |
| 
 | |
| /// Rummage around inside V looking for something equivalent to the comparison
 | |
| /// "LHS Pred RHS". Return such a value if found, otherwise return null.
 | |
| /// Helper function for analyzing max/min idioms.
 | |
| static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
 | |
|                                          Value *LHS, Value *RHS) {
 | |
|   SelectInst *SI = dyn_cast<SelectInst>(V);
 | |
|   if (!SI)
 | |
|     return nullptr;
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
|   if (!Cmp)
 | |
|     return nullptr;
 | |
|   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
 | |
|   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
 | |
|     return Cmp;
 | |
|   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
 | |
|       LHS == CmpRHS && RHS == CmpLHS)
 | |
|     return Cmp;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // A significant optimization not implemented here is assuming that alloca
 | |
| // addresses are not equal to incoming argument values. They don't *alias*,
 | |
| // as we say, but that doesn't mean they aren't equal, so we take a
 | |
| // conservative approach.
 | |
| //
 | |
| // This is inspired in part by C++11 5.10p1:
 | |
| //   "Two pointers of the same type compare equal if and only if they are both
 | |
| //    null, both point to the same function, or both represent the same
 | |
| //    address."
 | |
| //
 | |
| // This is pretty permissive.
 | |
| //
 | |
| // It's also partly due to C11 6.5.9p6:
 | |
| //   "Two pointers compare equal if and only if both are null pointers, both are
 | |
| //    pointers to the same object (including a pointer to an object and a
 | |
| //    subobject at its beginning) or function, both are pointers to one past the
 | |
| //    last element of the same array object, or one is a pointer to one past the
 | |
| //    end of one array object and the other is a pointer to the start of a
 | |
| //    different array object that happens to immediately follow the first array
 | |
| //    object in the address space.)
 | |
| //
 | |
| // C11's version is more restrictive, however there's no reason why an argument
 | |
| // couldn't be a one-past-the-end value for a stack object in the caller and be
 | |
| // equal to the beginning of a stack object in the callee.
 | |
| //
 | |
| // If the C and C++ standards are ever made sufficiently restrictive in this
 | |
| // area, it may be possible to update LLVM's semantics accordingly and reinstate
 | |
| // this optimization.
 | |
| static Constant *
 | |
| computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
 | |
|                    const DominatorTree *DT, CmpInst::Predicate Pred,
 | |
|                    const Instruction *CxtI, Value *LHS, Value *RHS) {
 | |
|   // First, skip past any trivial no-ops.
 | |
|   LHS = LHS->stripPointerCasts();
 | |
|   RHS = RHS->stripPointerCasts();
 | |
| 
 | |
|   // A non-null pointer is not equal to a null pointer.
 | |
|   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
 | |
|       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
 | |
|     return ConstantInt::get(GetCompareTy(LHS),
 | |
|                             !CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   // We can only fold certain predicates on pointer comparisons.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return nullptr;
 | |
| 
 | |
|     // Equality comaprisons are easy to fold.
 | |
|   case CmpInst::ICMP_EQ:
 | |
|   case CmpInst::ICMP_NE:
 | |
|     break;
 | |
| 
 | |
|     // We can only handle unsigned relational comparisons because 'inbounds' on
 | |
|     // a GEP only protects against unsigned wrapping.
 | |
|   case CmpInst::ICMP_UGT:
 | |
|   case CmpInst::ICMP_UGE:
 | |
|   case CmpInst::ICMP_ULT:
 | |
|   case CmpInst::ICMP_ULE:
 | |
|     // However, we have to switch them to their signed variants to handle
 | |
|     // negative indices from the base pointer.
 | |
|     Pred = ICmpInst::getSignedPredicate(Pred);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Strip off any constant offsets so that we can reason about them.
 | |
|   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
 | |
|   // here and compare base addresses like AliasAnalysis does, however there are
 | |
|   // numerous hazards. AliasAnalysis and its utilities rely on special rules
 | |
|   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
 | |
|   // doesn't need to guarantee pointer inequality when it says NoAlias.
 | |
|   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
 | |
|   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
 | |
| 
 | |
|   // If LHS and RHS are related via constant offsets to the same base
 | |
|   // value, we can replace it with an icmp which just compares the offsets.
 | |
|   if (LHS == RHS)
 | |
|     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
 | |
| 
 | |
|   // Various optimizations for (in)equality comparisons.
 | |
|   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
 | |
|     // Different non-empty allocations that exist at the same time have
 | |
|     // different addresses (if the program can tell). Global variables always
 | |
|     // exist, so they always exist during the lifetime of each other and all
 | |
|     // allocas. Two different allocas usually have different addresses...
 | |
|     //
 | |
|     // However, if there's an @llvm.stackrestore dynamically in between two
 | |
|     // allocas, they may have the same address. It's tempting to reduce the
 | |
|     // scope of the problem by only looking at *static* allocas here. That would
 | |
|     // cover the majority of allocas while significantly reducing the likelihood
 | |
|     // of having an @llvm.stackrestore pop up in the middle. However, it's not
 | |
|     // actually impossible for an @llvm.stackrestore to pop up in the middle of
 | |
|     // an entry block. Also, if we have a block that's not attached to a
 | |
|     // function, we can't tell if it's "static" under the current definition.
 | |
|     // Theoretically, this problem could be fixed by creating a new kind of
 | |
|     // instruction kind specifically for static allocas. Such a new instruction
 | |
|     // could be required to be at the top of the entry block, thus preventing it
 | |
|     // from being subject to a @llvm.stackrestore. Instcombine could even
 | |
|     // convert regular allocas into these special allocas. It'd be nifty.
 | |
|     // However, until then, this problem remains open.
 | |
|     //
 | |
|     // So, we'll assume that two non-empty allocas have different addresses
 | |
|     // for now.
 | |
|     //
 | |
|     // With all that, if the offsets are within the bounds of their allocations
 | |
|     // (and not one-past-the-end! so we can't use inbounds!), and their
 | |
|     // allocations aren't the same, the pointers are not equal.
 | |
|     //
 | |
|     // Note that it's not necessary to check for LHS being a global variable
 | |
|     // address, due to canonicalization and constant folding.
 | |
|     if (isa<AllocaInst>(LHS) &&
 | |
|         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
 | |
|       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
 | |
|       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
 | |
|       uint64_t LHSSize, RHSSize;
 | |
|       if (LHSOffsetCI && RHSOffsetCI &&
 | |
|           getObjectSize(LHS, LHSSize, DL, TLI) &&
 | |
|           getObjectSize(RHS, RHSSize, DL, TLI)) {
 | |
|         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
 | |
|         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
 | |
|         if (!LHSOffsetValue.isNegative() &&
 | |
|             !RHSOffsetValue.isNegative() &&
 | |
|             LHSOffsetValue.ult(LHSSize) &&
 | |
|             RHSOffsetValue.ult(RHSSize)) {
 | |
|           return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                   !CmpInst::isTrueWhenEqual(Pred));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Repeat the above check but this time without depending on DataLayout
 | |
|       // or being able to compute a precise size.
 | |
|       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
 | |
|           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
 | |
|           LHSOffset->isNullValue() &&
 | |
|           RHSOffset->isNullValue())
 | |
|         return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                 !CmpInst::isTrueWhenEqual(Pred));
 | |
|     }
 | |
| 
 | |
|     // Even if an non-inbounds GEP occurs along the path we can still optimize
 | |
|     // equality comparisons concerning the result. We avoid walking the whole
 | |
|     // chain again by starting where the last calls to
 | |
|     // stripAndComputeConstantOffsets left off and accumulate the offsets.
 | |
|     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
 | |
|     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
 | |
|     if (LHS == RHS)
 | |
|       return ConstantExpr::getICmp(Pred,
 | |
|                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
 | |
|                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
 | |
| 
 | |
|     // If one side of the equality comparison must come from a noalias call
 | |
|     // (meaning a system memory allocation function), and the other side must
 | |
|     // come from a pointer that cannot overlap with dynamically-allocated
 | |
|     // memory within the lifetime of the current function (allocas, byval
 | |
|     // arguments, globals), then determine the comparison result here.
 | |
|     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
 | |
|     GetUnderlyingObjects(LHS, LHSUObjs, DL);
 | |
|     GetUnderlyingObjects(RHS, RHSUObjs, DL);
 | |
| 
 | |
|     // Is the set of underlying objects all noalias calls?
 | |
|     auto IsNAC = [](ArrayRef<Value *> Objects) {
 | |
|       return all_of(Objects, isNoAliasCall);
 | |
|     };
 | |
| 
 | |
|     // Is the set of underlying objects all things which must be disjoint from
 | |
|     // noalias calls. For allocas, we consider only static ones (dynamic
 | |
|     // allocas might be transformed into calls to malloc not simultaneously
 | |
|     // live with the compared-to allocation). For globals, we exclude symbols
 | |
|     // that might be resolve lazily to symbols in another dynamically-loaded
 | |
|     // library (and, thus, could be malloc'ed by the implementation).
 | |
|     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
 | |
|       return all_of(Objects, [](Value *V) {
 | |
|         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | |
|           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
 | |
|         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | |
|           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
 | |
|                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
 | |
|                  !GV->isThreadLocal();
 | |
|         if (const Argument *A = dyn_cast<Argument>(V))
 | |
|           return A->hasByValAttr();
 | |
|         return false;
 | |
|       });
 | |
|     };
 | |
| 
 | |
|     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
 | |
|         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
 | |
|         return ConstantInt::get(GetCompareTy(LHS),
 | |
|                                 !CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|     // Fold comparisons for non-escaping pointer even if the allocation call
 | |
|     // cannot be elided. We cannot fold malloc comparison to null. Also, the
 | |
|     // dynamic allocation call could be either of the operands.
 | |
|     Value *MI = nullptr;
 | |
|     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
 | |
|       MI = LHS;
 | |
|     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
 | |
|       MI = RHS;
 | |
|     // FIXME: We should also fold the compare when the pointer escapes, but the
 | |
|     // compare dominates the pointer escape
 | |
|     if (MI && !PointerMayBeCaptured(MI, true, true))
 | |
|       return ConstantInt::get(GetCompareTy(LHS),
 | |
|                               CmpInst::isFalseWhenEqual(Pred));
 | |
|   }
 | |
| 
 | |
|   // Otherwise, fail.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold an icmp when its operands have i1 scalar type.
 | |
| static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const SimplifyQuery &Q) {
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   Type *OpTy = LHS->getType();   // The operand type.
 | |
|   if (!OpTy->isIntOrIntVectorTy(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // A boolean compared to true/false can be simplified in 14 out of the 20
 | |
|   // (10 predicates * 2 constants) possible combinations. Cases not handled here
 | |
|   // require a 'not' of the LHS, so those must be transformed in InstCombine.
 | |
|   if (match(RHS, m_Zero())) {
 | |
|     switch (Pred) {
 | |
|     case CmpInst::ICMP_NE:  // X !=  0 -> X
 | |
|     case CmpInst::ICMP_UGT: // X >u  0 -> X
 | |
|     case CmpInst::ICMP_SLT: // X <s  0 -> X
 | |
|       return LHS;
 | |
| 
 | |
|     case CmpInst::ICMP_ULT: // X <u  0 -> false
 | |
|     case CmpInst::ICMP_SGT: // X >s  0 -> false
 | |
|       return getFalse(ITy);
 | |
| 
 | |
|     case CmpInst::ICMP_UGE: // X >=u 0 -> true
 | |
|     case CmpInst::ICMP_SLE: // X <=s 0 -> true
 | |
|       return getTrue(ITy);
 | |
| 
 | |
|     default: break;
 | |
|     }
 | |
|   } else if (match(RHS, m_One())) {
 | |
|     switch (Pred) {
 | |
|     case CmpInst::ICMP_EQ:  // X ==   1 -> X
 | |
|     case CmpInst::ICMP_UGE: // X >=u  1 -> X
 | |
|     case CmpInst::ICMP_SLE: // X <=s -1 -> X
 | |
|       return LHS;
 | |
| 
 | |
|     case CmpInst::ICMP_UGT: // X >u   1 -> false
 | |
|     case CmpInst::ICMP_SLT: // X <s  -1 -> false
 | |
|       return getFalse(ITy);
 | |
| 
 | |
|     case CmpInst::ICMP_ULE: // X <=u  1 -> true
 | |
|     case CmpInst::ICMP_SGE: // X >=s -1 -> true
 | |
|       return getTrue(ITy);
 | |
| 
 | |
|     default: break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     /// For signed comparison, the values for an i1 are 0 and -1
 | |
|     /// respectively. This maps into a truth table of:
 | |
|     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
 | |
|     ///  0  |  0  |  1 (0 >= 0)   |  1
 | |
|     ///  0  |  1  |  1 (0 >= -1)  |  1
 | |
|     ///  1  |  0  |  0 (-1 >= 0)  |  0
 | |
|     ///  1  |  1  |  1 (-1 >= -1) |  1
 | |
|     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try hard to fold icmp with zero RHS because this is a common case.
 | |
| static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                    Value *RHS, const SimplifyQuery &Q) {
 | |
|   if (!match(RHS, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown ICmp predicate!");
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     return getFalse(ITy);
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     return getTrue(ITy);
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return getFalse(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_NE:
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getTrue(ITy);
 | |
|     if (LHSKnown.isNonNegative())
 | |
|       return getFalse(ITy);
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SLE: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getTrue(ITy);
 | |
|     if (LHSKnown.isNonNegative() &&
 | |
|         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return getFalse(ITy);
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGE: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getFalse(ITy);
 | |
|     if (LHSKnown.isNonNegative())
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGT: {
 | |
|     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|     if (LHSKnown.isNegative())
 | |
|       return getFalse(ITy);
 | |
|     if (LHSKnown.isNonNegative() &&
 | |
|         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
 | |
|       return getTrue(ITy);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Many binary operators with a constant operand have an easy-to-compute
 | |
| /// range of outputs. This can be used to fold a comparison to always true or
 | |
| /// always false.
 | |
| static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
 | |
|   unsigned Width = Lower.getBitWidth();
 | |
|   const APInt *C;
 | |
|   switch (BO.getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
 | |
|       // FIXME: If we have both nuw and nsw, we should reduce the range further.
 | |
|       if (BO.hasNoUnsignedWrap()) {
 | |
|         // 'add nuw x, C' produces [C, UINT_MAX].
 | |
|         Lower = *C;
 | |
|       } else if (BO.hasNoSignedWrap()) {
 | |
|         if (C->isNegative()) {
 | |
|           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
 | |
|           Lower = APInt::getSignedMinValue(Width);
 | |
|           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
 | |
|         } else {
 | |
|           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
 | |
|           Lower = APInt::getSignedMinValue(Width) + *C;
 | |
|           Upper = APInt::getSignedMaxValue(Width) + 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::And:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)))
 | |
|       // 'and x, C' produces [0, C].
 | |
|       Upper = *C + 1;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Or:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)))
 | |
|       // 'or x, C' produces [C, UINT_MAX].
 | |
|       Lower = *C;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::AShr:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
 | |
|       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
 | |
|       Lower = APInt::getSignedMinValue(Width).ashr(*C);
 | |
|       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
 | |
|     } else if (match(BO.getOperand(0), m_APInt(C))) {
 | |
|       unsigned ShiftAmount = Width - 1;
 | |
|       if (!C->isNullValue() && BO.isExact())
 | |
|         ShiftAmount = C->countTrailingZeros();
 | |
|       if (C->isNegative()) {
 | |
|         // 'ashr C, x' produces [C, C >> (Width-1)]
 | |
|         Lower = *C;
 | |
|         Upper = C->ashr(ShiftAmount) + 1;
 | |
|       } else {
 | |
|         // 'ashr C, x' produces [C >> (Width-1), C]
 | |
|         Lower = C->ashr(ShiftAmount);
 | |
|         Upper = *C + 1;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::LShr:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
 | |
|       // 'lshr x, C' produces [0, UINT_MAX >> C].
 | |
|       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
 | |
|     } else if (match(BO.getOperand(0), m_APInt(C))) {
 | |
|       // 'lshr C, x' produces [C >> (Width-1), C].
 | |
|       unsigned ShiftAmount = Width - 1;
 | |
|       if (!C->isNullValue() && BO.isExact())
 | |
|         ShiftAmount = C->countTrailingZeros();
 | |
|       Lower = C->lshr(ShiftAmount);
 | |
|       Upper = *C + 1;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl:
 | |
|     if (match(BO.getOperand(0), m_APInt(C))) {
 | |
|       if (BO.hasNoUnsignedWrap()) {
 | |
|         // 'shl nuw C, x' produces [C, C << CLZ(C)]
 | |
|         Lower = *C;
 | |
|         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
 | |
|       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
 | |
|         if (C->isNegative()) {
 | |
|           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
 | |
|           unsigned ShiftAmount = C->countLeadingOnes() - 1;
 | |
|           Lower = C->shl(ShiftAmount);
 | |
|           Upper = *C + 1;
 | |
|         } else {
 | |
|           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
 | |
|           unsigned ShiftAmount = C->countLeadingZeros() - 1;
 | |
|           Lower = *C;
 | |
|           Upper = C->shl(ShiftAmount) + 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::SDiv:
 | |
|     if (match(BO.getOperand(1), m_APInt(C))) {
 | |
|       APInt IntMin = APInt::getSignedMinValue(Width);
 | |
|       APInt IntMax = APInt::getSignedMaxValue(Width);
 | |
|       if (C->isAllOnesValue()) {
 | |
|         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
 | |
|         //    where C != -1 and C != 0 and C != 1
 | |
|         Lower = IntMin + 1;
 | |
|         Upper = IntMax + 1;
 | |
|       } else if (C->countLeadingZeros() < Width - 1) {
 | |
|         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
 | |
|         //    where C != -1 and C != 0 and C != 1
 | |
|         Lower = IntMin.sdiv(*C);
 | |
|         Upper = IntMax.sdiv(*C);
 | |
|         if (Lower.sgt(Upper))
 | |
|           std::swap(Lower, Upper);
 | |
|         Upper = Upper + 1;
 | |
|         assert(Upper != Lower && "Upper part of range has wrapped!");
 | |
|       }
 | |
|     } else if (match(BO.getOperand(0), m_APInt(C))) {
 | |
|       if (C->isMinSignedValue()) {
 | |
|         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
 | |
|         Lower = *C;
 | |
|         Upper = Lower.lshr(1) + 1;
 | |
|       } else {
 | |
|         // 'sdiv C, x' produces [-|C|, |C|].
 | |
|         Upper = C->abs() + 1;
 | |
|         Lower = (-Upper) + 1;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::UDiv:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
 | |
|       // 'udiv x, C' produces [0, UINT_MAX / C].
 | |
|       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
 | |
|     } else if (match(BO.getOperand(0), m_APInt(C))) {
 | |
|       // 'udiv C, x' produces [0, C].
 | |
|       Upper = *C + 1;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::SRem:
 | |
|     if (match(BO.getOperand(1), m_APInt(C))) {
 | |
|       // 'srem x, C' produces (-|C|, |C|).
 | |
|       Upper = C->abs();
 | |
|       Lower = (-Upper) + 1;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::URem:
 | |
|     if (match(BO.getOperand(1), m_APInt(C)))
 | |
|       // 'urem x, C' produces [0, C).
 | |
|       Upper = *C;
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                        Value *RHS) {
 | |
|   const APInt *C;
 | |
|   if (!match(RHS, m_APInt(C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Rule out tautological comparisons (eg., ult 0 or uge 0).
 | |
|   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
 | |
|   if (RHS_CR.isEmptySet())
 | |
|     return ConstantInt::getFalse(GetCompareTy(RHS));
 | |
|   if (RHS_CR.isFullSet())
 | |
|     return ConstantInt::getTrue(GetCompareTy(RHS));
 | |
| 
 | |
|   // Find the range of possible values for binary operators.
 | |
|   unsigned Width = C->getBitWidth();
 | |
|   APInt Lower = APInt(Width, 0);
 | |
|   APInt Upper = APInt(Width, 0);
 | |
|   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
 | |
|     setLimitsForBinOp(*BO, Lower, Upper);
 | |
| 
 | |
|   ConstantRange LHS_CR =
 | |
|       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
 | |
| 
 | |
|   if (auto *I = dyn_cast<Instruction>(LHS))
 | |
|     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
 | |
|       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
 | |
| 
 | |
|   if (!LHS_CR.isFullSet()) {
 | |
|     if (RHS_CR.contains(LHS_CR))
 | |
|       return ConstantInt::getTrue(GetCompareTy(RHS));
 | |
|     if (RHS_CR.inverse().contains(LHS_CR))
 | |
|       return ConstantInt::getFalse(GetCompareTy(RHS));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// TODO: A large part of this logic is duplicated in InstCombine's
 | |
| /// foldICmpBinOp(). We should be able to share that and avoid the code
 | |
| /// duplication.
 | |
| static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                     Value *RHS, const SimplifyQuery &Q,
 | |
|                                     unsigned MaxRecurse) {
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
| 
 | |
|   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
 | |
|   if (MaxRecurse && (LBO || RBO)) {
 | |
|     // Analyze the case when either LHS or RHS is an add instruction.
 | |
|     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
 | |
|     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
 | |
|     if (LBO && LBO->getOpcode() == Instruction::Add) {
 | |
|       A = LBO->getOperand(0);
 | |
|       B = LBO->getOperand(1);
 | |
|       NoLHSWrapProblem =
 | |
|           ICmpInst::isEquality(Pred) ||
 | |
|           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
 | |
|           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
 | |
|     }
 | |
|     if (RBO && RBO->getOpcode() == Instruction::Add) {
 | |
|       C = RBO->getOperand(0);
 | |
|       D = RBO->getOperand(1);
 | |
|       NoRHSWrapProblem =
 | |
|           ICmpInst::isEquality(Pred) ||
 | |
|           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
 | |
|           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
 | |
|     }
 | |
| 
 | |
|     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
 | |
|       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
 | |
|                                       Constant::getNullValue(RHS->getType()), Q,
 | |
|                                       MaxRecurse - 1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | |
|     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
 | |
|       if (Value *V =
 | |
|               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
 | |
|                                C == LHS ? D : C, Q, MaxRecurse - 1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
 | |
|     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
 | |
|         NoRHSWrapProblem) {
 | |
|       // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | |
|       Value *Y, *Z;
 | |
|       if (A == C) {
 | |
|         // C + B == C + D  ->  B == D
 | |
|         Y = B;
 | |
|         Z = D;
 | |
|       } else if (A == D) {
 | |
|         // D + B == C + D  ->  B == C
 | |
|         Y = B;
 | |
|         Z = C;
 | |
|       } else if (B == C) {
 | |
|         // A + C == C + D  ->  A == D
 | |
|         Y = A;
 | |
|         Z = D;
 | |
|       } else {
 | |
|         assert(B == D);
 | |
|         // A + D == C + D  ->  A == C
 | |
|         Y = A;
 | |
|         Z = C;
 | |
|       }
 | |
|       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *Y = nullptr;
 | |
|     // icmp pred (or X, Y), X
 | |
|     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
 | |
|       if (Pred == ICmpInst::ICMP_ULT)
 | |
|         return getFalse(ITy);
 | |
|       if (Pred == ICmpInst::ICMP_UGE)
 | |
|         return getTrue(ITy);
 | |
| 
 | |
|       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
 | |
|         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|         if (RHSKnown.isNonNegative() && YKnown.isNegative())
 | |
|           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
 | |
|         if (RHSKnown.isNegative() || YKnown.isNonNegative())
 | |
|           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
 | |
|       }
 | |
|     }
 | |
|     // icmp pred X, (or X, Y)
 | |
|     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
 | |
|       if (Pred == ICmpInst::ICMP_ULE)
 | |
|         return getTrue(ITy);
 | |
|       if (Pred == ICmpInst::ICMP_UGT)
 | |
|         return getFalse(ITy);
 | |
| 
 | |
|       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
 | |
|         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|         if (LHSKnown.isNonNegative() && YKnown.isNegative())
 | |
|           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
 | |
|         if (LHSKnown.isNegative() || YKnown.isNonNegative())
 | |
|           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred (and X, Y), X
 | |
|   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
|   // icmp pred X, (and X, Y)
 | |
|   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
 | |
|     if (Pred == ICmpInst::ICMP_UGE)
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULT)
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // 0 - (zext X) pred C
 | |
|   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
 | |
|       if (RHSC->getValue().isStrictlyPositive()) {
 | |
|         if (Pred == ICmpInst::ICMP_SLT)
 | |
|           return ConstantInt::getTrue(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_SGE)
 | |
|           return ConstantInt::getFalse(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_EQ)
 | |
|           return ConstantInt::getFalse(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_NE)
 | |
|           return ConstantInt::getTrue(RHSC->getContext());
 | |
|       }
 | |
|       if (RHSC->getValue().isNonNegative()) {
 | |
|         if (Pred == ICmpInst::ICMP_SLE)
 | |
|           return ConstantInt::getTrue(RHSC->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_SGT)
 | |
|           return ConstantInt::getFalse(RHSC->getContext());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred (urem X, Y), Y
 | |
|   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE: {
 | |
|       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (!Known.isNonNegative())
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getFalse(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE: {
 | |
|       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (!Known.isNonNegative())
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp pred X, (urem Y, X)
 | |
|   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE: {
 | |
|       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (!Known.isNonNegative())
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getTrue(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE: {
 | |
|       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
 | |
|       if (!Known.isNonNegative())
 | |
|         break;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // x >> y <=u x
 | |
|   // x udiv y <=u x.
 | |
|   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
 | |
|               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
 | |
|     // icmp pred (X op Y), X
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_ULE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   // x >=u x >> y
 | |
|   // x >=u x udiv y.
 | |
|   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
 | |
|               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
 | |
|     // icmp pred X, (X op Y)
 | |
|     if (Pred == ICmpInst::ICMP_ULT)
 | |
|       return getFalse(ITy);
 | |
|     if (Pred == ICmpInst::ICMP_UGE)
 | |
|       return getTrue(ITy);
 | |
|   }
 | |
| 
 | |
|   // handle:
 | |
|   //   CI2 << X == CI
 | |
|   //   CI2 << X != CI
 | |
|   //
 | |
|   //   where CI2 is a power of 2 and CI isn't
 | |
|   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     const APInt *CI2Val, *CIVal = &CI->getValue();
 | |
|     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
 | |
|         CI2Val->isPowerOf2()) {
 | |
|       if (!CIVal->isPowerOf2()) {
 | |
|         // CI2 << X can equal zero in some circumstances,
 | |
|         // this simplification is unsafe if CI is zero.
 | |
|         //
 | |
|         // We know it is safe if:
 | |
|         // - The shift is nsw, we can't shift out the one bit.
 | |
|         // - The shift is nuw, we can't shift out the one bit.
 | |
|         // - CI2 is one
 | |
|         // - CI isn't zero
 | |
|         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
 | |
|             CI2Val->isOneValue() || !CI->isZero()) {
 | |
|           if (Pred == ICmpInst::ICMP_EQ)
 | |
|             return ConstantInt::getFalse(RHS->getContext());
 | |
|           if (Pred == ICmpInst::ICMP_NE)
 | |
|             return ConstantInt::getTrue(RHS->getContext());
 | |
|         }
 | |
|       }
 | |
|       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
 | |
|         if (Pred == ICmpInst::ICMP_UGT)
 | |
|           return ConstantInt::getFalse(RHS->getContext());
 | |
|         if (Pred == ICmpInst::ICMP_ULE)
 | |
|           return ConstantInt::getTrue(RHS->getContext());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
 | |
|       LBO->getOperand(1) == RBO->getOperand(1)) {
 | |
|     switch (LBO->getOpcode()) {
 | |
|     default:
 | |
|       break;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::LShr:
 | |
|       if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     case Instruction::SDiv:
 | |
|       if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|       break;
 | |
|     case Instruction::AShr:
 | |
|       if (!LBO->isExact() || !RBO->isExact())
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|       break;
 | |
|     case Instruction::Shl: {
 | |
|       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
 | |
|       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
 | |
|       if (!NUW && !NSW)
 | |
|         break;
 | |
|       if (!NSW && ICmpInst::isSigned(Pred))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), Q, MaxRecurse - 1))
 | |
|         return V;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Simplify integer comparisons where at least one operand of the compare
 | |
| /// matches an integer min/max idiom.
 | |
| static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                      Value *RHS, const SimplifyQuery &Q,
 | |
|                                      unsigned MaxRecurse) {
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   Value *A, *B;
 | |
|   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
 | |
| 
 | |
|   // Signed variants on "max(a,b)>=a -> true".
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // smax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred smax(A, B).
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // smin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred smin(A, B).
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_SGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_SGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_SLT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unsigned variants on "max(a,b)>=a -> true".
 | |
|   P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // umax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred umax(A, B).
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS)
 | |
|       std::swap(A, B);       // umin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS)
 | |
|       std::swap(A, B);       // A pred umin(A, B).
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_ULE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_UGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_UGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_ULT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Variants on "max(x,y) >= min(x,z)".
 | |
|   Value *C, *D;
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
 | |
|       (A == C || A == D || B == C || B == D)) {
 | |
|     // max(x, ?) pred min(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_SGE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_SLT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // min(x, ?) pred max(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_SLE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_SGT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // max(x, ?) pred min(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_UGE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_ULT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // min(x, ?) pred max(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_ULE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_UGT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for an ICmpInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
| 
 | |
|   // icmp X, X -> true/false
 | |
|   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
 | |
|   // because X could be 0.
 | |
|   if (LHS == RHS || isa<UndefValue>(RHS))
 | |
|     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
 | |
|     return V;
 | |
| 
 | |
|   // If both operands have range metadata, use the metadata
 | |
|   // to simplify the comparison.
 | |
|   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
 | |
|     auto RHS_Instr = cast<Instruction>(RHS);
 | |
|     auto LHS_Instr = cast<Instruction>(LHS);
 | |
| 
 | |
|     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
 | |
|         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
 | |
|       auto RHS_CR = getConstantRangeFromMetadata(
 | |
|           *RHS_Instr->getMetadata(LLVMContext::MD_range));
 | |
|       auto LHS_CR = getConstantRangeFromMetadata(
 | |
|           *LHS_Instr->getMetadata(LLVMContext::MD_range));
 | |
| 
 | |
|       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
 | |
|       if (Satisfied_CR.contains(LHS_CR))
 | |
|         return ConstantInt::getTrue(RHS->getContext());
 | |
| 
 | |
|       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
 | |
|                 CmpInst::getInversePredicate(Pred), RHS_CR);
 | |
|       if (InversedSatisfied_CR.contains(LHS_CR))
 | |
|         return ConstantInt::getFalse(RHS->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compare of cast, for example (zext X) != 0 -> X != 0
 | |
|   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
 | |
|     Instruction *LI = cast<CastInst>(LHS);
 | |
|     Value *SrcOp = LI->getOperand(0);
 | |
|     Type *SrcTy = SrcOp->getType();
 | |
|     Type *DstTy = LI->getType();
 | |
| 
 | |
|     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
 | |
|     // if the integer type is the same size as the pointer type.
 | |
|     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
 | |
|         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
 | |
|       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|         // Transfer the cast to the constant.
 | |
|         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
 | |
|                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
 | |
|                                         Q, MaxRecurse-1))
 | |
|           return V;
 | |
|       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
 | |
|         if (RI->getOperand(0)->getType() == SrcTy)
 | |
|           // Compare without the cast.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           Q, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<ZExtInst>(LHS)) {
 | |
|       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that signed predicates become unsigned.
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                           SrcOp, RI->getOperand(0), Q,
 | |
|                                           MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two zero-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                         SrcOp, Trunc, Q, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
 | |
|         // there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|           // LHS <u RHS.
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_NE:
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
 | |
|           // is non-negative then LHS <s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<SExtInst>(LHS)) {
 | |
|       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that the predicate does not change.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           Q, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two sign-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are all equal, while RHS has varying
 | |
|         // bits there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default: llvm_unreachable("Unknown ICmp predicate!");
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_NE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
 | |
|           // LHS >s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
 | |
|           // LHS >u RHS.
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             // Comparison is true iff the LHS <s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               Q, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             // Comparison is true iff the LHS >=s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               Q, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp eq|ne X, Y -> false|true if X != Y
 | |
|   if (ICmpInst::isEquality(Pred) &&
 | |
|       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
 | |
|     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Simplify comparisons of related pointers using a powerful, recursive
 | |
|   // GEP-walk when we have target data available..
 | |
|   if (LHS->getType()->isPointerTy())
 | |
|     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
 | |
|       return C;
 | |
|   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
 | |
|     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
 | |
|       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
 | |
|               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
 | |
|           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
 | |
|               Q.DL.getTypeSizeInBits(CRHS->getType()))
 | |
|         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
 | |
|                                          CLHS->getPointerOperand(),
 | |
|                                          CRHS->getPointerOperand()))
 | |
|           return C;
 | |
| 
 | |
|   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
 | |
|     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
 | |
|       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
 | |
|           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
 | |
|           (ICmpInst::isEquality(Pred) ||
 | |
|            (GLHS->isInBounds() && GRHS->isInBounds() &&
 | |
|             Pred == ICmpInst::getSignedPredicate(Pred)))) {
 | |
|         // The bases are equal and the indices are constant.  Build a constant
 | |
|         // expression GEP with the same indices and a null base pointer to see
 | |
|         // what constant folding can make out of it.
 | |
|         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
 | |
|         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
 | |
|         Constant *NewLHS = ConstantExpr::getGetElementPtr(
 | |
|             GLHS->getSourceElementType(), Null, IndicesLHS);
 | |
| 
 | |
|         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
 | |
|         Constant *NewRHS = ConstantExpr::getGetElementPtr(
 | |
|             GLHS->getSourceElementType(), Null, IndicesRHS);
 | |
|         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an FCmpInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                FastMathFlags FMF, const SimplifyQuery &Q,
 | |
|                                unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Fold trivial predicates.
 | |
|   Type *RetTy = GetCompareTy(LHS);
 | |
|   if (Pred == FCmpInst::FCMP_FALSE)
 | |
|     return getFalse(RetTy);
 | |
|   if (Pred == FCmpInst::FCMP_TRUE)
 | |
|     return getTrue(RetTy);
 | |
| 
 | |
|   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
 | |
|   if (FMF.noNaNs()) {
 | |
|     if (Pred == FCmpInst::FCMP_UNO)
 | |
|       return getFalse(RetTy);
 | |
|     if (Pred == FCmpInst::FCMP_ORD)
 | |
|       return getTrue(RetTy);
 | |
|   }
 | |
| 
 | |
|   // fcmp pred x, undef  and  fcmp pred undef, x
 | |
|   // fold to true if unordered, false if ordered
 | |
|   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
 | |
|     // Choosing NaN for the undef will always make unordered comparison succeed
 | |
|     // and ordered comparison fail.
 | |
|     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
 | |
|   }
 | |
| 
 | |
|   // fcmp x,x -> true/false.  Not all compares are foldable.
 | |
|   if (LHS == RHS) {
 | |
|     if (CmpInst::isTrueWhenEqual(Pred))
 | |
|       return getTrue(RetTy);
 | |
|     if (CmpInst::isFalseWhenEqual(Pred))
 | |
|       return getFalse(RetTy);
 | |
|   }
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   const ConstantFP *CFP = nullptr;
 | |
|   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     if (RHS->getType()->isVectorTy())
 | |
|       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
 | |
|     else
 | |
|       CFP = dyn_cast<ConstantFP>(RHSC);
 | |
|   }
 | |
|   if (CFP) {
 | |
|     // If the constant is a nan, see if we can fold the comparison based on it.
 | |
|     if (CFP->getValueAPF().isNaN()) {
 | |
|       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
 | |
|         return getFalse(RetTy);
 | |
|       assert(FCmpInst::isUnordered(Pred) &&
 | |
|              "Comparison must be either ordered or unordered!");
 | |
|       // True if unordered.
 | |
|       return getTrue(RetTy);
 | |
|     }
 | |
|     // Check whether the constant is an infinity.
 | |
|     if (CFP->getValueAPF().isInfinity()) {
 | |
|       if (CFP->getValueAPF().isNegative()) {
 | |
|         switch (Pred) {
 | |
|         case FCmpInst::FCMP_OLT:
 | |
|           // No value is ordered and less than negative infinity.
 | |
|           return getFalse(RetTy);
 | |
|         case FCmpInst::FCMP_UGE:
 | |
|           // All values are unordered with or at least negative infinity.
 | |
|           return getTrue(RetTy);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       } else {
 | |
|         switch (Pred) {
 | |
|         case FCmpInst::FCMP_OGT:
 | |
|           // No value is ordered and greater than infinity.
 | |
|           return getFalse(RetTy);
 | |
|         case FCmpInst::FCMP_ULE:
 | |
|           // All values are unordered with and at most infinity.
 | |
|           return getTrue(RetTy);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (CFP->getValueAPF().isZero()) {
 | |
|       switch (Pred) {
 | |
|       case FCmpInst::FCMP_UGE:
 | |
|         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
 | |
|           return getTrue(RetTy);
 | |
|         break;
 | |
|       case FCmpInst::FCMP_OLT:
 | |
|         // X < 0
 | |
|         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
 | |
|           return getFalse(RetTy);
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               FastMathFlags FMF, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// See if V simplifies when its operand Op is replaced with RepOp.
 | |
| static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
 | |
|                                            const SimplifyQuery &Q,
 | |
|                                            unsigned MaxRecurse) {
 | |
|   // Trivial replacement.
 | |
|   if (V == Op)
 | |
|     return RepOp;
 | |
| 
 | |
|   // We cannot replace a constant, and shouldn't even try.
 | |
|   if (isa<Constant>(Op))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a binary operator, try to simplify it with the replaced op.
 | |
|   if (auto *B = dyn_cast<BinaryOperator>(I)) {
 | |
|     // Consider:
 | |
|     //   %cmp = icmp eq i32 %x, 2147483647
 | |
|     //   %add = add nsw i32 %x, 1
 | |
|     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
 | |
|     //
 | |
|     // We can't replace %sel with %add unless we strip away the flags.
 | |
|     if (isa<OverflowingBinaryOperator>(B))
 | |
|       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
 | |
|         return nullptr;
 | |
|     if (isa<PossiblyExactOperator>(B))
 | |
|       if (B->isExact())
 | |
|         return nullptr;
 | |
| 
 | |
|     if (MaxRecurse) {
 | |
|       if (B->getOperand(0) == Op)
 | |
|         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
 | |
|                              MaxRecurse - 1);
 | |
|       if (B->getOperand(1) == Op)
 | |
|         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
 | |
|                              MaxRecurse - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Same for CmpInsts.
 | |
|   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
 | |
|     if (MaxRecurse) {
 | |
|       if (C->getOperand(0) == Op)
 | |
|         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
 | |
|                                MaxRecurse - 1);
 | |
|       if (C->getOperand(1) == Op)
 | |
|         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
 | |
|                                MaxRecurse - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: We could hand off more cases to instsimplify here.
 | |
| 
 | |
|   // If all operands are constant after substituting Op for RepOp then we can
 | |
|   // constant fold the instruction.
 | |
|   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
 | |
|     // Build a list of all constant operands.
 | |
|     SmallVector<Constant *, 8> ConstOps;
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       if (I->getOperand(i) == Op)
 | |
|         ConstOps.push_back(CRepOp);
 | |
|       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
 | |
|         ConstOps.push_back(COp);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // All operands were constants, fold it.
 | |
|     if (ConstOps.size() == I->getNumOperands()) {
 | |
|       if (CmpInst *C = dyn_cast<CmpInst>(I))
 | |
|         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
 | |
|                                                ConstOps[1], Q.DL, Q.TLI);
 | |
| 
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|         if (!LI->isVolatile())
 | |
|           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
 | |
| 
 | |
|       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to simplify a select instruction when its condition operand is an
 | |
| /// integer comparison where one operand of the compare is a constant.
 | |
| static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
 | |
|                                     const APInt *Y, bool TrueWhenUnset) {
 | |
|   const APInt *C;
 | |
| 
 | |
|   // (X & Y) == 0 ? X & ~Y : X  --> X
 | |
|   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
 | |
|   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
 | |
|       *Y == ~*C)
 | |
|     return TrueWhenUnset ? FalseVal : TrueVal;
 | |
| 
 | |
|   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
 | |
|   // (X & Y) != 0 ? X : X & ~Y  --> X
 | |
|   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
 | |
|       *Y == ~*C)
 | |
|     return TrueWhenUnset ? FalseVal : TrueVal;
 | |
| 
 | |
|   if (Y->isPowerOf2()) {
 | |
|     // (X & Y) == 0 ? X | Y : X  --> X | Y
 | |
|     // (X & Y) != 0 ? X | Y : X  --> X
 | |
|     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
 | |
|         *Y == *C)
 | |
|       return TrueWhenUnset ? TrueVal : FalseVal;
 | |
| 
 | |
|     // (X & Y) == 0 ? X : X | Y  --> X
 | |
|     // (X & Y) != 0 ? X : X | Y  --> X | Y
 | |
|     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
 | |
|         *Y == *C)
 | |
|       return TrueWhenUnset ? TrueVal : FalseVal;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// An alternative way to test if a bit is set or not uses sgt/slt instead of
 | |
| /// eq/ne.
 | |
| static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
 | |
|                                            ICmpInst::Predicate Pred,
 | |
|                                            Value *TrueVal, Value *FalseVal) {
 | |
|   Value *X;
 | |
|   APInt Mask;
 | |
|   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
 | |
|   if (!BitWidth)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *ExtX;
 | |
|   if (match(X, m_Trunc(m_Value(ExtX))) &&
 | |
|       (ExtX == TrueVal || ExtX == FalseVal)) {
 | |
|     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
 | |
|     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
 | |
|     X = ExtX;
 | |
|     Mask = Mask.zext(BitWidth);
 | |
|   }
 | |
| 
 | |
|   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
 | |
|                                Pred == ICmpInst::ICMP_EQ);
 | |
| }
 | |
| 
 | |
| /// Try to simplify a select instruction when its condition operand is an
 | |
| /// integer comparison.
 | |
| static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
 | |
|                                          Value *FalseVal, const SimplifyQuery &Q,
 | |
|                                          unsigned MaxRecurse) {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   Value *CmpLHS, *CmpRHS;
 | |
|   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
 | |
|     Value *X;
 | |
|     const APInt *Y;
 | |
|     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
 | |
|       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
 | |
|                                            Pred == ICmpInst::ICMP_EQ))
 | |
|         return V;
 | |
|   }
 | |
| 
 | |
|   // Check for other compares that behave like bit test.
 | |
|   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
 | |
|                                               TrueVal, FalseVal))
 | |
|     return V;
 | |
| 
 | |
|   if (CondVal->hasOneUse()) {
 | |
|     const APInt *C;
 | |
|     if (match(CmpRHS, m_APInt(C))) {
 | |
|       // X < MIN ? T : F  -->  F
 | |
|       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
 | |
|         return FalseVal;
 | |
|       // X < MIN ? T : F  -->  F
 | |
|       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
 | |
|         return FalseVal;
 | |
|       // X > MAX ? T : F  -->  F
 | |
|       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
 | |
|         return FalseVal;
 | |
|       // X > MAX ? T : F  -->  F
 | |
|       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
 | |
|         return FalseVal;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have an equality comparison, then we know the value in one of the
 | |
|   // arms of the select. See if substituting this value into the arm and
 | |
|   // simplifying the result yields the same value as the other arm.
 | |
|   if (Pred == ICmpInst::ICMP_EQ) {
 | |
|     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
 | |
|             TrueVal ||
 | |
|         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
 | |
|             TrueVal)
 | |
|       return FalseVal;
 | |
|     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
 | |
|             FalseVal ||
 | |
|         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
 | |
|             FalseVal)
 | |
|       return FalseVal;
 | |
|   } else if (Pred == ICmpInst::ICMP_NE) {
 | |
|     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
 | |
|             FalseVal ||
 | |
|         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
 | |
|             FalseVal)
 | |
|       return TrueVal;
 | |
|     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
 | |
|             TrueVal ||
 | |
|         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
 | |
|             TrueVal)
 | |
|       return TrueVal;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Given operands for a SelectInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
 | |
|                                  Value *FalseVal, const SimplifyQuery &Q,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
 | |
|     if (CB->isAllOnesValue())
 | |
|       return TrueVal;
 | |
|     if (CB->isNullValue())
 | |
|       return FalseVal;
 | |
|   }
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return TrueVal;
 | |
| 
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(FalseVal))
 | |
|       return FalseVal;
 | |
|     return TrueVal;
 | |
|   }
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return FalseVal;
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return TrueVal;
 | |
| 
 | |
|   if (Value *V =
 | |
|           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                                 const SimplifyQuery &Q) {
 | |
|   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an GetElementPtrInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
 | |
|                               const SimplifyQuery &Q, unsigned) {
 | |
|   // The type of the GEP pointer operand.
 | |
|   unsigned AS =
 | |
|       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
 | |
| 
 | |
|   // getelementptr P -> P.
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // Compute the (pointer) type returned by the GEP instruction.
 | |
|   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
 | |
|   Type *GEPTy = PointerType::get(LastType, AS);
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
 | |
|     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
 | |
|   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
 | |
|     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
 | |
| 
 | |
|   if (isa<UndefValue>(Ops[0]))
 | |
|     return UndefValue::get(GEPTy);
 | |
| 
 | |
|   if (Ops.size() == 2) {
 | |
|     // getelementptr P, 0 -> P.
 | |
|     if (match(Ops[1], m_Zero()))
 | |
|       return Ops[0];
 | |
| 
 | |
|     Type *Ty = SrcTy;
 | |
|     if (Ty->isSized()) {
 | |
|       Value *P;
 | |
|       uint64_t C;
 | |
|       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
 | |
|       // getelementptr P, N -> P if P points to a type of zero size.
 | |
|       if (TyAllocSize == 0)
 | |
|         return Ops[0];
 | |
| 
 | |
|       // The following transforms are only safe if the ptrtoint cast
 | |
|       // doesn't truncate the pointers.
 | |
|       if (Ops[1]->getType()->getScalarSizeInBits() ==
 | |
|           Q.DL.getPointerSizeInBits(AS)) {
 | |
|         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
 | |
|           if (match(P, m_Zero()))
 | |
|             return Constant::getNullValue(GEPTy);
 | |
|           Value *Temp;
 | |
|           if (match(P, m_PtrToInt(m_Value(Temp))))
 | |
|             if (Temp->getType() == GEPTy)
 | |
|               return Temp;
 | |
|           return nullptr;
 | |
|         };
 | |
| 
 | |
|         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
 | |
|         if (TyAllocSize == 1 &&
 | |
|             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
 | |
|           if (Value *R = PtrToIntOrZero(P))
 | |
|             return R;
 | |
| 
 | |
|         // getelementptr V, (ashr (sub P, V), C) -> Q
 | |
|         // if P points to a type of size 1 << C.
 | |
|         if (match(Ops[1],
 | |
|                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
 | |
|                          m_ConstantInt(C))) &&
 | |
|             TyAllocSize == 1ULL << C)
 | |
|           if (Value *R = PtrToIntOrZero(P))
 | |
|             return R;
 | |
| 
 | |
|         // getelementptr V, (sdiv (sub P, V), C) -> Q
 | |
|         // if P points to a type of size C.
 | |
|         if (match(Ops[1],
 | |
|                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
 | |
|                          m_SpecificInt(TyAllocSize))))
 | |
|           if (Value *R = PtrToIntOrZero(P))
 | |
|             return R;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
 | |
|       all_of(Ops.slice(1).drop_back(1),
 | |
|              [](Value *Idx) { return match(Idx, m_Zero()); })) {
 | |
|     unsigned PtrWidth =
 | |
|         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
 | |
|     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
 | |
|       APInt BasePtrOffset(PtrWidth, 0);
 | |
|       Value *StrippedBasePtr =
 | |
|           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
 | |
|                                                             BasePtrOffset);
 | |
| 
 | |
|       // gep (gep V, C), (sub 0, V) -> C
 | |
|       if (match(Ops.back(),
 | |
|                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
 | |
|         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
 | |
|         return ConstantExpr::getIntToPtr(CI, GEPTy);
 | |
|       }
 | |
|       // gep (gep V, C), (xor V, -1) -> C-1
 | |
|       if (match(Ops.back(),
 | |
|                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
 | |
|         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
 | |
|         return ConstantExpr::getIntToPtr(CI, GEPTy);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is constant foldable.
 | |
|   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
 | |
|                                             Ops.slice(1));
 | |
|   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
 | |
|     return CEFolded;
 | |
|   return CE;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an InsertValueInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
 | |
|                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
 | |
|                                       unsigned) {
 | |
|   if (Constant *CAgg = dyn_cast<Constant>(Agg))
 | |
|     if (Constant *CVal = dyn_cast<Constant>(Val))
 | |
|       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
 | |
| 
 | |
|   // insertvalue x, undef, n -> x
 | |
|   if (match(Val, m_Undef()))
 | |
|     return Agg;
 | |
| 
 | |
|   // insertvalue x, (extractvalue y, n), n
 | |
|   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
 | |
|     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
 | |
|         EV->getIndices() == Idxs) {
 | |
|       // insertvalue undef, (extractvalue y, n), n -> y
 | |
|       if (match(Agg, m_Undef()))
 | |
|         return EV->getAggregateOperand();
 | |
| 
 | |
|       // insertvalue y, (extractvalue y, n), n -> y
 | |
|       if (Agg == EV->getAggregateOperand())
 | |
|         return Agg;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
 | |
|                                      ArrayRef<unsigned> Idxs,
 | |
|                                      const SimplifyQuery &Q) {
 | |
|   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an ExtractValueInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
 | |
|                                        const SimplifyQuery &, unsigned) {
 | |
|   if (auto *CAgg = dyn_cast<Constant>(Agg))
 | |
|     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
 | |
| 
 | |
|   // extractvalue x, (insertvalue y, elt, n), n -> elt
 | |
|   unsigned NumIdxs = Idxs.size();
 | |
|   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
 | |
|        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
 | |
|     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
 | |
|     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
 | |
|     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
 | |
|     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
 | |
|         Idxs.slice(0, NumCommonIdxs)) {
 | |
|       if (NumIdxs == NumInsertValueIdxs)
 | |
|         return IVI->getInsertedValueOperand();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
 | |
|                                       const SimplifyQuery &Q) {
 | |
|   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for an ExtractElementInst, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
 | |
|                                          unsigned) {
 | |
|   if (auto *CVec = dyn_cast<Constant>(Vec)) {
 | |
|     if (auto *CIdx = dyn_cast<Constant>(Idx))
 | |
|       return ConstantFoldExtractElementInstruction(CVec, CIdx);
 | |
| 
 | |
|     // The index is not relevant if our vector is a splat.
 | |
|     if (auto *Splat = CVec->getSplatValue())
 | |
|       return Splat;
 | |
| 
 | |
|     if (isa<UndefValue>(Vec))
 | |
|       return UndefValue::get(Vec->getType()->getVectorElementType());
 | |
|   }
 | |
| 
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
 | |
|     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
 | |
|       return Elt;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
 | |
|                                         const SimplifyQuery &Q) {
 | |
|   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// See if we can fold the given phi. If not, returns null.
 | |
| static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
 | |
|   // If all of the PHI's incoming values are the same then replace the PHI node
 | |
|   // with the common value.
 | |
|   Value *CommonValue = nullptr;
 | |
|   bool HasUndefInput = false;
 | |
|   for (Value *Incoming : PN->incoming_values()) {
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PN) continue;
 | |
|     if (isa<UndefValue>(Incoming)) {
 | |
|       // Remember that we saw an undef value, but otherwise ignore them.
 | |
|       HasUndefInput = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (CommonValue && Incoming != CommonValue)
 | |
|       return nullptr;  // Not the same, bail out.
 | |
|     CommonValue = Incoming;
 | |
|   }
 | |
| 
 | |
|   // If CommonValue is null then all of the incoming values were either undef or
 | |
|   // equal to the phi node itself.
 | |
|   if (!CommonValue)
 | |
|     return UndefValue::get(PN->getType());
 | |
| 
 | |
|   // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | |
|   // instruction, we cannot return X as the result of the PHI node unless it
 | |
|   // dominates the PHI block.
 | |
|   if (HasUndefInput)
 | |
|     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
 | |
|                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (auto *C = dyn_cast<Constant>(Op))
 | |
|     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
 | |
| 
 | |
|   if (auto *CI = dyn_cast<CastInst>(Op)) {
 | |
|     auto *Src = CI->getOperand(0);
 | |
|     Type *SrcTy = Src->getType();
 | |
|     Type *MidTy = CI->getType();
 | |
|     Type *DstTy = Ty;
 | |
|     if (Src->getType() == Ty) {
 | |
|       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
 | |
|       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
 | |
|       Type *SrcIntPtrTy =
 | |
|           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
 | |
|       Type *MidIntPtrTy =
 | |
|           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
 | |
|       Type *DstIntPtrTy =
 | |
|           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
 | |
|       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
 | |
|                                          SrcIntPtrTy, MidIntPtrTy,
 | |
|                                          DstIntPtrTy) == Instruction::BitCast)
 | |
|         return Src;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // bitcast x -> x
 | |
|   if (CastOpc == Instruction::BitCast)
 | |
|     if (Op->getType() == Ty)
 | |
|       return Op;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
 | |
|                               const SimplifyQuery &Q) {
 | |
|   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// For the given destination element of a shuffle, peek through shuffles to
 | |
| /// match a root vector source operand that contains that element in the same
 | |
| /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
 | |
| static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
 | |
|                                    int MaskVal, Value *RootVec,
 | |
|                                    unsigned MaxRecurse) {
 | |
|   if (!MaxRecurse--)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Bail out if any mask value is undefined. That kind of shuffle may be
 | |
|   // simplified further based on demanded bits or other folds.
 | |
|   if (MaskVal == -1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The mask value chooses which source operand we need to look at next.
 | |
|   int InVecNumElts = Op0->getType()->getVectorNumElements();
 | |
|   int RootElt = MaskVal;
 | |
|   Value *SourceOp = Op0;
 | |
|   if (MaskVal >= InVecNumElts) {
 | |
|     RootElt = MaskVal - InVecNumElts;
 | |
|     SourceOp = Op1;
 | |
|   }
 | |
| 
 | |
|   // If the source operand is a shuffle itself, look through it to find the
 | |
|   // matching root vector.
 | |
|   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
 | |
|     return foldIdentityShuffles(
 | |
|         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
 | |
|         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // TODO: Look through bitcasts? What if the bitcast changes the vector element
 | |
|   // size?
 | |
| 
 | |
|   // The source operand is not a shuffle. Initialize the root vector value for
 | |
|   // this shuffle if that has not been done yet.
 | |
|   if (!RootVec)
 | |
|     RootVec = SourceOp;
 | |
| 
 | |
|   // Give up as soon as a source operand does not match the existing root value.
 | |
|   if (RootVec != SourceOp)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The element must be coming from the same lane in the source vector
 | |
|   // (although it may have crossed lanes in intermediate shuffles).
 | |
|   if (RootElt != DestElt)
 | |
|     return nullptr;
 | |
| 
 | |
|   return RootVec;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
 | |
|                                         Type *RetTy, const SimplifyQuery &Q,
 | |
|                                         unsigned MaxRecurse) {
 | |
|   if (isa<UndefValue>(Mask))
 | |
|     return UndefValue::get(RetTy);
 | |
| 
 | |
|   Type *InVecTy = Op0->getType();
 | |
|   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
 | |
|   unsigned InVecNumElts = InVecTy->getVectorNumElements();
 | |
| 
 | |
|   SmallVector<int, 32> Indices;
 | |
|   ShuffleVectorInst::getShuffleMask(Mask, Indices);
 | |
|   assert(MaskNumElts == Indices.size() &&
 | |
|          "Size of Indices not same as number of mask elements?");
 | |
| 
 | |
|   // Canonicalization: If mask does not select elements from an input vector,
 | |
|   // replace that input vector with undef.
 | |
|   bool MaskSelects0 = false, MaskSelects1 = false;
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     if (Indices[i] == -1)
 | |
|       continue;
 | |
|     if ((unsigned)Indices[i] < InVecNumElts)
 | |
|       MaskSelects0 = true;
 | |
|     else
 | |
|       MaskSelects1 = true;
 | |
|   }
 | |
|   if (!MaskSelects0)
 | |
|     Op0 = UndefValue::get(InVecTy);
 | |
|   if (!MaskSelects1)
 | |
|     Op1 = UndefValue::get(InVecTy);
 | |
| 
 | |
|   auto *Op0Const = dyn_cast<Constant>(Op0);
 | |
|   auto *Op1Const = dyn_cast<Constant>(Op1);
 | |
| 
 | |
|   // If all operands are constant, constant fold the shuffle.
 | |
|   if (Op0Const && Op1Const)
 | |
|     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
 | |
| 
 | |
|   // Canonicalization: if only one input vector is constant, it shall be the
 | |
|   // second one.
 | |
|   if (Op0Const && !Op1Const) {
 | |
|     std::swap(Op0, Op1);
 | |
|     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
 | |
|   }
 | |
| 
 | |
|   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
 | |
|   // value type is same as the input vectors' type.
 | |
|   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
 | |
|     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
 | |
|         OpShuf->getMask()->getSplatValue())
 | |
|       return Op0;
 | |
| 
 | |
|   // Don't fold a shuffle with undef mask elements. This may get folded in a
 | |
|   // better way using demanded bits or other analysis.
 | |
|   // TODO: Should we allow this?
 | |
|   if (find(Indices, -1) != Indices.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if every element of this shuffle can be mapped back to the
 | |
|   // corresponding element of a single root vector. If so, we don't need this
 | |
|   // shuffle. This handles simple identity shuffles as well as chains of
 | |
|   // shuffles that may widen/narrow and/or move elements across lanes and back.
 | |
|   Value *RootVec = nullptr;
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     // Note that recursion is limited for each vector element, so if any element
 | |
|     // exceeds the limit, this will fail to simplify.
 | |
|     RootVec =
 | |
|         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
 | |
| 
 | |
|     // We can't replace a widening/narrowing shuffle with one of its operands.
 | |
|     if (!RootVec || RootVec->getType() != RetTy)
 | |
|       return nullptr;
 | |
|   }
 | |
|   return RootVec;
 | |
| }
 | |
| 
 | |
| /// Given operands for a ShuffleVectorInst, fold the result or return null.
 | |
| Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
 | |
|                                        Type *RetTy, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| //=== Helper functions for higher up the class hierarchy.
 | |
| 
 | |
| /// Given operands for a BinaryOperator, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                             const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
 | |
|   case Instruction::FAdd:
 | |
|     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::Sub:
 | |
|     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
 | |
|   case Instruction::FSub:
 | |
|     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::Mul:
 | |
|     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FMul:
 | |
|     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::SDiv:
 | |
|     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::UDiv:
 | |
|     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FDiv:
 | |
|     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::SRem:
 | |
|     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::URem:
 | |
|     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::FRem:
 | |
|     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
|   case Instruction::Shl:
 | |
|     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
 | |
|   case Instruction::LShr:
 | |
|     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
 | |
|   case Instruction::AShr:
 | |
|     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
 | |
|   case Instruction::And:
 | |
|     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Or:
 | |
|     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
 | |
|   case Instruction::Xor:
 | |
|     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given operands for a BinaryOperator, see if we can fold the result.
 | |
| /// If not, this returns null.
 | |
| /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
 | |
| /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
 | |
| static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                               const FastMathFlags &FMF, const SimplifyQuery &Q,
 | |
|                               unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::FAdd:
 | |
|     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FSub:
 | |
|     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FMul:
 | |
|     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   case Instruction::FDiv:
 | |
|     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
 | |
|   default:
 | |
|     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                            const SimplifyQuery &Q) {
 | |
|   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                              FastMathFlags FMF, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// Given operands for a CmpInst, see if we can fold the result.
 | |
| static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
 | |
|     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
 | |
|   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                              const SimplifyQuery &Q) {
 | |
|   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static bool IsIdempotent(Intrinsic::ID ID) {
 | |
|   switch (ID) {
 | |
|   default: return false;
 | |
| 
 | |
|   // Unary idempotent: f(f(x)) = f(x)
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
 | |
|                                    const DataLayout &DL) {
 | |
|   GlobalValue *PtrSym;
 | |
|   APInt PtrOffset;
 | |
|   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
 | |
|   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
 | |
|   Type *Int32PtrTy = Int32Ty->getPointerTo();
 | |
|   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
 | |
| 
 | |
|   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
 | |
|   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
 | |
|     return nullptr;
 | |
| 
 | |
|   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
 | |
|   if (OffsetInt % 4 != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *C = ConstantExpr::getGetElementPtr(
 | |
|       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
 | |
|       ConstantInt::get(Int64Ty, OffsetInt / 4));
 | |
|   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
 | |
|   if (!Loaded)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
 | |
|   if (!LoadedCE)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (LoadedCE->getOpcode() == Instruction::Trunc) {
 | |
|     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
 | |
|     if (!LoadedCE)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (LoadedCE->getOpcode() != Instruction::Sub)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
 | |
|   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
 | |
|     return nullptr;
 | |
|   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
 | |
| 
 | |
|   Constant *LoadedRHS = LoadedCE->getOperand(1);
 | |
|   GlobalValue *LoadedRHSSym;
 | |
|   APInt LoadedRHSOffset;
 | |
|   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
 | |
|                                   DL) ||
 | |
|       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
 | |
|     return nullptr;
 | |
| 
 | |
|   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
 | |
| }
 | |
| 
 | |
| static bool maskIsAllZeroOrUndef(Value *Mask) {
 | |
|   auto *ConstMask = dyn_cast<Constant>(Mask);
 | |
|   if (!ConstMask)
 | |
|     return false;
 | |
|   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
 | |
|     return true;
 | |
|   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
 | |
|        ++I) {
 | |
|     if (auto *MaskElt = ConstMask->getAggregateElement(I))
 | |
|       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
 | |
|         continue;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <typename IterTy>
 | |
| static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
 | |
|                                 const SimplifyQuery &Q, unsigned MaxRecurse) {
 | |
|   Intrinsic::ID IID = F->getIntrinsicID();
 | |
|   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
 | |
| 
 | |
|   // Unary Ops
 | |
|   if (NumOperands == 1) {
 | |
|     // Perform idempotent optimizations
 | |
|     if (IsIdempotent(IID)) {
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
 | |
|         if (II->getIntrinsicID() == IID)
 | |
|           return II;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (IID) {
 | |
|     case Intrinsic::fabs: {
 | |
|       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
 | |
|         return *ArgBegin;
 | |
|       return nullptr;
 | |
|     }
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Binary Ops
 | |
|   if (NumOperands == 2) {
 | |
|     Value *LHS = *ArgBegin;
 | |
|     Value *RHS = *(ArgBegin + 1);
 | |
|     Type *ReturnType = F->getReturnType();
 | |
| 
 | |
|     switch (IID) {
 | |
|     case Intrinsic::usub_with_overflow:
 | |
|     case Intrinsic::ssub_with_overflow: {
 | |
|       // X - X -> { 0, false }
 | |
|       if (LHS == RHS)
 | |
|         return Constant::getNullValue(ReturnType);
 | |
| 
 | |
|       // X - undef -> undef
 | |
|       // undef - X -> undef
 | |
|       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
 | |
|         return UndefValue::get(ReturnType);
 | |
| 
 | |
|       return nullptr;
 | |
|     }
 | |
|     case Intrinsic::uadd_with_overflow:
 | |
|     case Intrinsic::sadd_with_overflow: {
 | |
|       // X + undef -> undef
 | |
|       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
 | |
|         return UndefValue::get(ReturnType);
 | |
| 
 | |
|       return nullptr;
 | |
|     }
 | |
|     case Intrinsic::umul_with_overflow:
 | |
|     case Intrinsic::smul_with_overflow: {
 | |
|       // 0 * X -> { 0, false }
 | |
|       // X * 0 -> { 0, false }
 | |
|       if (match(LHS, m_Zero()) || match(RHS, m_Zero()))
 | |
|         return Constant::getNullValue(ReturnType);
 | |
| 
 | |
|       // undef * X -> { 0, false }
 | |
|       // X * undef -> { 0, false }
 | |
|       if (match(LHS, m_Undef()) || match(RHS, m_Undef()))
 | |
|         return Constant::getNullValue(ReturnType);
 | |
| 
 | |
|       return nullptr;
 | |
|     }
 | |
|     case Intrinsic::load_relative: {
 | |
|       Constant *C0 = dyn_cast<Constant>(LHS);
 | |
|       Constant *C1 = dyn_cast<Constant>(RHS);
 | |
|       if (C0 && C1)
 | |
|         return SimplifyRelativeLoad(C0, C1, Q.DL);
 | |
|       return nullptr;
 | |
|     }
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Simplify calls to llvm.masked.load.*
 | |
|   switch (IID) {
 | |
|   case Intrinsic::masked_load: {
 | |
|     Value *MaskArg = ArgBegin[2];
 | |
|     Value *PassthruArg = ArgBegin[3];
 | |
|     // If the mask is all zeros or undef, the "passthru" argument is the result.
 | |
|     if (maskIsAllZeroOrUndef(MaskArg))
 | |
|       return PassthruArg;
 | |
|     return nullptr;
 | |
|   }
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename IterTy>
 | |
| static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
 | |
|                            IterTy ArgEnd, const SimplifyQuery &Q,
 | |
|                            unsigned MaxRecurse) {
 | |
|   Type *Ty = V->getType();
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
 | |
|     Ty = PTy->getElementType();
 | |
|   FunctionType *FTy = cast<FunctionType>(Ty);
 | |
| 
 | |
|   // call undef -> undef
 | |
|   // call null -> undef
 | |
|   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
 | |
|     return UndefValue::get(FTy->getReturnType());
 | |
| 
 | |
|   Function *F = dyn_cast<Function>(V);
 | |
|   if (!F)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (F->isIntrinsic())
 | |
|     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
 | |
|       return Ret;
 | |
| 
 | |
|   if (!canConstantFoldCallTo(CS, F))
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<Constant *, 4> ConstantArgs;
 | |
|   ConstantArgs.reserve(ArgEnd - ArgBegin);
 | |
|   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
 | |
|     Constant *C = dyn_cast<Constant>(*I);
 | |
|     if (!C)
 | |
|       return nullptr;
 | |
|     ConstantArgs.push_back(C);
 | |
|   }
 | |
| 
 | |
|   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
 | |
|                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
 | |
|                           const SimplifyQuery &Q) {
 | |
|   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
 | |
|                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
 | |
|   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// See if we can compute a simplified version of this instruction.
 | |
| /// If not, this returns null.
 | |
| 
 | |
| Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
 | |
|                                  OptimizationRemarkEmitter *ORE) {
 | |
|   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
 | |
|   Value *Result;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
 | |
|     break;
 | |
|   case Instruction::FSub:
 | |
|     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Sub:
 | |
|     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
 | |
|     break;
 | |
|   case Instruction::FMul:
 | |
|     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::SDiv:
 | |
|     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::SRem:
 | |
|     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::URem:
 | |
|     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
 | |
|                               I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               cast<BinaryOperator>(I)->isExact(), Q);
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               cast<BinaryOperator>(I)->isExact(), Q);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
 | |
|                               I->getOperand(0), I->getOperand(1), Q);
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     Result =
 | |
|         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
 | |
|                          I->getOperand(1), I->getFastMathFlags(), Q);
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
 | |
|                                 I->getOperand(2), Q);
 | |
|     break;
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
 | |
|     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
 | |
|                              Ops, Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::InsertValue: {
 | |
|     InsertValueInst *IV = cast<InsertValueInst>(I);
 | |
|     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
 | |
|                                      IV->getInsertedValueOperand(),
 | |
|                                      IV->getIndices(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ExtractValue: {
 | |
|     auto *EVI = cast<ExtractValueInst>(I);
 | |
|     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
 | |
|                                       EVI->getIndices(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ExtractElement: {
 | |
|     auto *EEI = cast<ExtractElementInst>(I);
 | |
|     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
 | |
|                                         EEI->getIndexOperand(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ShuffleVector: {
 | |
|     auto *SVI = cast<ShuffleVectorInst>(I);
 | |
|     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
 | |
|                                        SVI->getMask(), SVI->getType(), Q);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     Result = SimplifyPHINode(cast<PHINode>(I), Q);
 | |
|     break;
 | |
|   case Instruction::Call: {
 | |
|     CallSite CS(cast<CallInst>(I));
 | |
|     Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
 | |
|                           Q);
 | |
|     break;
 | |
|   }
 | |
| #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
 | |
| #include "llvm/IR/Instruction.def"
 | |
| #undef HANDLE_CAST_INST
 | |
|     Result =
 | |
|         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
 | |
|     break;
 | |
|   case Instruction::Alloca:
 | |
|     // No simplifications for Alloca and it can't be constant folded.
 | |
|     Result = nullptr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // In general, it is possible for computeKnownBits to determine all bits in a
 | |
|   // value even when the operands are not all constants.
 | |
|   if (!Result && I->getType()->isIntOrIntVectorTy()) {
 | |
|     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
 | |
|     if (Known.isConstant())
 | |
|       Result = ConstantInt::get(I->getType(), Known.getConstant());
 | |
|   }
 | |
| 
 | |
|   /// If called on unreachable code, the above logic may report that the
 | |
|   /// instruction simplified to itself.  Make life easier for users by
 | |
|   /// detecting that case here, returning a safe value instead.
 | |
|   return Result == I ? UndefValue::get(I->getType()) : Result;
 | |
| }
 | |
| 
 | |
| /// \brief Implementation of recursive simplification through an instruction's
 | |
| /// uses.
 | |
| ///
 | |
| /// This is the common implementation of the recursive simplification routines.
 | |
| /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
 | |
| /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
 | |
| /// instructions to process and attempt to simplify it using
 | |
| /// InstructionSimplify.
 | |
| ///
 | |
| /// This routine returns 'true' only when *it* simplifies something. The passed
 | |
| /// in simplified value does not count toward this.
 | |
| static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
 | |
|                                               const TargetLibraryInfo *TLI,
 | |
|                                               const DominatorTree *DT,
 | |
|                                               AssumptionCache *AC) {
 | |
|   bool Simplified = false;
 | |
|   SmallSetVector<Instruction *, 8> Worklist;
 | |
|   const DataLayout &DL = I->getModule()->getDataLayout();
 | |
| 
 | |
|   // If we have an explicit value to collapse to, do that round of the
 | |
|   // simplification loop by hand initially.
 | |
|   if (SimpleV) {
 | |
|     for (User *U : I->users())
 | |
|       if (U != I)
 | |
|         Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // Gracefully handle edge cases where the instruction is not wired into any
 | |
|     // parent block.
 | |
|     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
 | |
|         !I->mayHaveSideEffects())
 | |
|       I->eraseFromParent();
 | |
|   } else {
 | |
|     Worklist.insert(I);
 | |
|   }
 | |
| 
 | |
|   // Note that we must test the size on each iteration, the worklist can grow.
 | |
|   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
 | |
|     I = Worklist[Idx];
 | |
| 
 | |
|     // See if this instruction simplifies.
 | |
|     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
 | |
|     if (!SimpleV)
 | |
|       continue;
 | |
| 
 | |
|     Simplified = true;
 | |
| 
 | |
|     // Stash away all the uses of the old instruction so we can check them for
 | |
|     // recursive simplifications after a RAUW. This is cheaper than checking all
 | |
|     // uses of To on the recursive step in most cases.
 | |
|     for (User *U : I->users())
 | |
|       Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // Gracefully handle edge cases where the instruction is not wired into any
 | |
|     // parent block.
 | |
|     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
 | |
|         !I->mayHaveSideEffects())
 | |
|       I->eraseFromParent();
 | |
|   }
 | |
|   return Simplified;
 | |
| }
 | |
| 
 | |
| bool llvm::recursivelySimplifyInstruction(Instruction *I,
 | |
|                                           const TargetLibraryInfo *TLI,
 | |
|                                           const DominatorTree *DT,
 | |
|                                           AssumptionCache *AC) {
 | |
|   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
 | |
| }
 | |
| 
 | |
| bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
 | |
|                                          const TargetLibraryInfo *TLI,
 | |
|                                          const DominatorTree *DT,
 | |
|                                          AssumptionCache *AC) {
 | |
|   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
 | |
|   assert(SimpleV && "Must provide a simplified value.");
 | |
|   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
 | |
|   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
|   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | |
|   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
 | |
|   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
 | |
|   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
 | |
|   return {F.getParent()->getDataLayout(), TLI, DT, AC};
 | |
| }
 | |
| 
 | |
| const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
 | |
|                                          const DataLayout &DL) {
 | |
|   return {DL, &AR.TLI, &AR.DT, &AR.AC};
 | |
| }
 | |
| 
 | |
| template <class T, class... TArgs>
 | |
| const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
 | |
|                                          Function &F) {
 | |
|   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
 | |
|   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
 | |
|   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
 | |
|   return {F.getParent()->getDataLayout(), TLI, DT, AC};
 | |
| }
 | |
| template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
 | |
|                                                   Function &);
 | |
| }
 |